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Abstract

The present Ph.D. thesis is devoted to studying, developing, and applying
data-driven methodologies, based on multivariate statistical models of latent
variables, to address the scientific learning paradigm in the Industry 4.0 envi-
ronment. Particular emphasis is placed on causal latent variable-based models
using both data coming from a planned design of experiments and, mainly,
data coming from the daily production process, namely happenstance data.
The dissertation is structured in five parts.

The first part discusses the scientific learning paradigm in the Industry 4.0
environment. The objectives of the thesis are highlighted. In addition to that,
a comprehensive description of latent variable-based models is presented, on
which the novel methodologies proposed in this thesis are founded.

In the second part, the novel methodological contributions are presented.
Firstly, the potential of PLS to analyze data from DOE, with or without miss-
ing runs is illustrated. Then, the potential of causal latent variable-based
models is concentrated on defining the raw material design space providing
assurance of quality with a certain confidence level for the critical to quality
attributes, jointly with the development of a novel latent space-based multivari-
ate capability index to rank and select suppliers for a particular raw material
used in a manufacturing process.

The third part aims to address novel applications by means of causal latent
variable-based models using happenstance data. First, it concerns a health ap-
plication: the Pandemic COVID-19. In this context, the use of latent variable-
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based models is applied to develop an alternative to placebo-controlled clinical
trials. Then, latent variable-based models are used to optimize processes within
the framework of industrial applications.

The fourth part introduces a graphical user interface developed in Python code
that integrates the developed methods with the aim of being self-explanatory
and user-friendly.

Finally, the last part discusses the relevance of this dissertation, including
proposals that deserve further research.

v



Resumen

La presente tesis doctoral esta dedicada a estudiar, desarrollar y aplicar meto-
dologias basadas en datos, fundamentadas en modelos estadisticos multivari-
antes de variables latentes, para abordar el paradigma del aprendizaje cienti-
fico en el entorno de la Industria 4.0. Se pone especial énfasis en los modelos
causales basados en variables latentes que utilizan tanto datos provenientes de
un diseno de experimentos como, principalmente, datos provenientes del pro-
ceso de produccién diario, es decir, datos histéricos. La tesis esta estructurada
en cinco partes.

La primera parte discute el paradigma del aprendizaje cientifico en el entorno
de la Industria 4.0. Se destacan los objetivos de la tesis. Ademaés, se presenta
una descripcién exhaustiva de los modelos basados en variables latentes, sobre
los cuales se fundamentan las metodologias novedosas propuestas en esta tesis.

En la segunda parte, se presentan las novedosas aportaciones metodolégicas.
En primer lugar, se muestra el potencial de PLS para analizar datos del DOE,
con o sin datos faltantes. Posteriormente, el potencial de los modelos causales
basados en variables latentes se centra en definir el espacio de diseno de la
materia prima que proporciona garantia de calidad con un cierto nivel de con-
fianza para los atributos criticos de calidad, junto con el desarrollo de un nuevo
indice de capacidad multivariante basado en el espacio latente para clasificar
y seleccionar proveedores para una materia prima particular utilizada en un
proceso de fabricacion.



La tercera parte pretende abordar aplicaciones novedosas mediante modelos
causales basados en variables latentes utilizando datos histéricos. En primer
lugar, se trata de su aplicacién en el ambito sanitario: la Pandemia COVID-
19. En este contexto, se utiliza el uso de modelos basados en variables latentes
para desarrollar una alternativa a los ensayos clinicos controlados con placebo.
Luego, se utilizan modelos basados en variables latentes para optimizar proce-
sos en el marco de aplicaciones industriales.

La cuarta parte presenta una interfaz grafica de usuario desarrollada en c6digo
Python que integra los métodos desarrollados con el objetivo de ser autoex-
plicativa y facil de usar.

Finalmente, la altima parte discute la relevancia de esta disertacion, incluyendo
propuestas que merecen mayor investigacion.
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Resum

Aquesta tesi doctoral esta dedicada a estudiar, desenvolupar i aplicar metodolo-
gies basades en dades, fonamentades en models estadistics multivariants de
variables latents, per abordar el paradigma de I’aprenentatge cientific a I’entorn
de la Indtustria 4.0. Es posa un émfasi especial en els models causals basats en
variables latents que utilitzen tant; dades provinents d’un disseny d’experiments
com, principalment, dades provinents del procés de produccié diari, és a dir,
dades historiques. La tesi esta estructurada en cinc parts.

A la primera part es discuteix el paradigma de ’aprenentatge cientific a I’entorn
de la Industria 4.0. Es destaquen els objectius de la tesi. A més, es presenta
una descripcié exhaustiva dels models basats en variables latents, sobre els
quals es fonamenten les noves metodologies proposades en aquesta tesi.

A la segona part, es presenten les noves aportacions metodologiques. En primer
lloc, es mostra el potencial de PLS per analitzar dades del DOE, amb dades fal-
tants o sense aquestes. Posteriorment, el potencial dels models causals basats
en variables latents se centra a definir I’espai de disseny de la matéria prima
que proporciona garantia de qualitat amb un cert nivell de confianca per als
atributs critics de qualitat, juntament amb el desenvolupament d’un nou index
de capacitat multivariant basat en ’espai latent per a classificar i seleccionar
proveidors per a una primera matéria particular utilitzada en un procés de
fabricacio.

La tercera part pretén abordar aplicacions noves mitjancant models causals
basats en variables latents utilitzant dades historques. En primer lloc, es
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tracta de la seva aplicacié a l'ambit sanitari: la Pandémia COVID-19. En
aquest context, es fa servir 'as de models basats en variables latents per de-
senvolupar una alternativa als assaigs clinics controlats amb placebo. Després
s'utilitzen models basats en variables latents per optimitzar processos en el
marc d’aplicacions industrials.

La quarta part presenta una interficie grafica d’usuari desenvolupada en codi
Python que integra els métodes desenvolupats amb 1’objectiu de ser autoex-
plicativa i facil d’usar.

Finalment, I'altima part discuteix la rellevancia d’aquesta dissertacié, incloent-
hi propostes que mereixen més investigacié.
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Chapter 1. Justification, objectives and contributions

1.1 Justification

For a long time, it has been acknowledged that the process of scientific learn-
ing is achieved by a motivated iteration between theory and practice [1|. By
practice, it is meant reality in the form of facts and data, and evidence of
progress can be achieved through the continuous evolution of a developing
theory, in the form of models, as it is exposed to reality, ultimately reaching
a currently satisfactory level of understanding. For that, it is critical to de-
termine the cause-and-effect relationships between different phenomena, and
hence, causality is a fundamental concept in the scientific learning paradigm.
A causal model must explain how changes in input variables relate to changes
in the outputs. For this purpose, deterministic (i.e. first principles) models are
always desirable. However, the lack of knowledge and the generally ample need
for resources required to properly develop such models make their use unfeasi-
ble in many cases. In such cases, the inversion of empirical (i.e. data-driven)
models, fitted on data from the process, can be carried out instead.

The advent of Industry 4.0 and the growing popularity of the Big Data move-
ment have caused a recent shift in the nature of data. Data is now more
abundant than ever before and the rate at which it accumulates is acceler-
ating. This is characterized by the four V’s: volume, variety, velocity and
veracity. In this new Industry 4.0 environment, a new discipline has emerged:
Data Science [2]. In general, data scientists usually apply machine learning
models focused on correlation and prediction (i.e., passive use), rather than
causation (i.e., active use). The main goal of these models is to find patterns
in data and use them to make accurate predictions about new data. Therefore,
in many cases, machine learning models focused on passive use can provide a
good description of the relationship between different variables and can accu-
rately predict future outcomes. However, these models cannot always identify
the underlying causal relationships that explain why certain phenomena occur,
and hence, no really new scientific knowledge is acquired in these situations.
Therefore, one of the big challenges in the scientific learning paradigm is the
development of statistical models that are able to iterate with this new data
with the purpose of reaching new scientific knowledge. Although useful, it is
well known that all these models will be wrong being not possible to obtain
the "true" one [1], even more so, if data come from daily production charac-
terized by a low signal-to-noise ratio. Thus, these statistical models must be
useful not only to acquire knowledge but also to identify and comprehend the
uncertainty arising from the discrepancy between theory and practice.



1.1 Justification

The present Ph.D. thesis aims at providing better insight and novel data-driven
methodologies, based on multivariate statistical models of latent variables,
to address the scientific learning paradigm in the Industry 4.0 environment.
As commented, causality is a fundamental concept in the scientific learning
paradigm. When using conventional predictive methods that directly relate the
registered input variables with the output variables, causality must be inferred
from data obtained from a Design of Experiments (DOE). Although Multiple
Linear Regression (MLR) is a well-established statistical technique to analyze
data from DOE, the analysis of experiments with incomplete data may be dif-
ficult for practitioners without a solid training in experimental design. Missing
runs in experimental designs lead to aliasing due to correlated regressors and,
unlike MLR, this is the environment where Partial Least Squares (PLS) re-
gression, a latent variable-based multivariate statistical technique, performs
particularly well. Part of this Ph.D. thesis will be devoted to studying the
properties of PLS regression to analyze data from DOE.

Nevertheless, the use of classical DOE techniques is usually not feasible in
real processes due to the generally high number of variables involved, which
would require an impractically large amount of experimentation. Besides, one
must also consider the logistic problems caused by the execution of these ex-
periments, since they would force to stop the production itself in most cases.
This leads to a situation in which any potential process improvement would
not be enough to justify the high economic costs involved. In addition to this,
the complex correlation structure among variables imposes several restrictions
that prevent manipulating some factors independently from one another, as is
required in a DOE. On the other hand, with the emergence of Industry 4.0
and the Big Data movement [3], it is typical for most companies to have access
to large amounts of historical (happenstance) data that usually present cer-
tain (unplanned) excitations due to small changes in the operating conditions
of the processes during their daily operation. This results from variations of
properties and impurities in different batches of raw materials, changes in en-
vironmental conditions, equipment wear, process control adjustments made by
operators, and so on. However, these data are highly collinear and low rank
because variations in the inputs are commonly not independent (i.e., data are
not obtained from a DOE that guarantees this independent variation in the
inputs). As commented, with observational data not coming from a DOE, clas-
sical predictive models (such as linear regression and machine learning models
focused on passive use), proven to be very powerful for prediction, cannot be
used for extracting interpretable or causal models from historical data for ac-
tive use. In fact, with historical data, there are an infinite number of models
that can arise from any of these linear regression or machine learning meth-
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ods, all of which might provide good predictions of the outputs, but none of
which is unique or causal [4]. This is the essence of the Box et al. |5] warning:
input-output correlation does not mean necessarily causation. Hence, there is
a growing body of literature that recognizes the critical role played by causal
network structures in order to infer causal relationships between original vari-
ables from observational data. Most methods presented so far resort to the
existing expert knowledge [6] or use network inference techniques |7, 8| to es-
tablish the causal map. However, the aforementioned methodologies suffer
with the increase of the process dimensionality [8|.

On the contrary, latent variable-based models, such as PLS regression, allow
for the analysis of large datasets containing highly correlated data. Since they
assume that the input space and the output space are not of full statistical
rank, they do not only model the relationship between them (as classical linear
regression and machine learning models do) but also provide models for both
spaces. This fact gives them a very nice property: uniqueness and causality in
the reduced latent space no matter if the data come either from a DOE or daily
production process (historical/happenstance data) [9]. Moreover, contrary to
causal network structures, this latent variable-based approach does not require
relying on expert knowledge or network inference techniques based on the
original variables. Nevertheless, it is crucial to highlight that this approach
does not prove causation in the way causal inference methods in DOE studies
(or even causal network structures) do. Indeed, causality is not inferred in the
original space, as it may be hindered by the confounding structure where there
is no guarantee that any active change in the original space would respect
the correlation structure of the data used to build the model. By contrast,
active changes in the original variables can be done along the directions of
the latent variables, which is equivalent to implicitly “changing” the latent
variables themselves. This, of course, implies that the causality interpretation
in the latent space is highly restricted since it will only provide active changes
that respect the correlation structure of the latent variable-based model and,
consequently, any confounding structure is kept (i.e., it will only allow us to
modify the process in specific ways, so that the original variables are not varied
independently from each other, and any solution will abide by the correlation
structure defined by the subspace of the latent variable-based model).

Therefore, there is tremendous potential in Industry 4.0 to develop causal
latent variable-based models using happenstance data (i.e., data not coming
from a planned DOE but from historical data). To accomplish this, the rest of
the Ph.D. thesis will be devoted to: i) defining the raw material design space,
in line with the goals of the Quality by Design (QbD) initiative, ii) developing a
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Latent Space-based Multivariate Capability Index (LSb-M C,y), iii) illustrating
the use of PLS for process optimization in some novel applications, and iv)
integrating the developed methods by means of a Graphical User Interface

(GUI).

1.2 Objectives

This section provides a detailed description of the objectives of this Ph.D.
thesis and the proposals to achieve them.

Objective I: To study the properties of Partial Least Squares (PLS)
regression to analyze data from Design of Experiments (DOE).

Chapter 4 of this Ph.D. thesis aims to analyze data from DOE, with or without
missing runs, with just one method: Partial Least Squares (PLS) regression.
This property is very attractive since, to the best of our knowledge, no other
statistical tool has comparable versatility. Thus, we challenge the widely held
view that PLS is useful only when dealing with non-experimental design (i.e.,
correlated observational data), but also when dealing with data from experi-
mental designs.

Objective II: To define the raw material design space via latent
variable-based models.

Raw materials properties are usually considered as Critical Input Parameters
(CIPs) because their variability has an impact on Critical Quality Attributes
(CQASs) of the final product. Hence, the development of specification regions
for raw materials is crucial to ensure the desired quality of the product. In this
context, this thesis focuses on developing novel methodologies based on latent
variable-based models using happenstance data for:

e defining multivariate raw material specifications providing assurance of
quality with a certain confidence level for the critical to quality attributes
(CQAs) of the manufactured product. This corresponds to the estimation
of the so-called raw material design space, which is defined as the mul-
tidimensional combination and interaction of inputs variables (e.g., raw
material properties) and process conditions that have been demonstrated
to provide assurance of quality [10] (Chapter 5).

e implementing an effective process control system attenuating most raw
material variations. This allows expanding the raw material design space
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and, hence, one may potentially be able to accept lower cost raw materi-
als that will yield products with perfectly satisfactory quality properties
(Chapter 6).

This objective refers to the robust design advocated long ago by Genichi
Taguchi and that, nowadays, it is found in the goals of the QbD initiative
nowadays [11].

Objective I1I: To develop a latent space-based multivariate capability
index.

To rank and select suppliers for a particular raw material used in a manufactur-
ing process, Chapter 7 focuses on developing a novel Latent Space-based Mul-
tivariate Capability Index (LSb-MC,y). The novelty of this new index is that,
contrary to other multivariate capability indexes proposed in the literature
that are defined in the multivariate raw material space, this new LSb-MC), is
defined in the latent space connecting the raw material properties of a batch
with the CQAs of the product manufactured with this raw material batch. This
is of great interest as it quantifies the capacity of each supplier of providing
assurance of quality with a certain confidence level for the CQAs. All we need
is a database with historical information of the several properties measured for
a particular raw material along with the CQAs of the corresponding manufac-
tured product, which is usually available in Industry 4.0. Besides, Chapter 7
also aims to carry out the diagnosing assignable causes when a supplier does
not score a good capability index.

Objective IV: To illustrate the use of PLS for process optimization
using happenstance data.

We cannot know if any statistical technique we develop is useful unless we use
it. Major advances in science, and in statistical science in particular, usually
occur as the result of the theory-practice iteration [1]. For that reason, one of
the most important goals of this thesis is to illustrate the utility of the causal
latent variable-based models for process optimization using happenstance data
by applying them to different novel applications in Part III (Chapters 8 and
9).

At the same time, the theory-practice iteration also demands us to improve our
methods from the discrepancy between theory and practice. Hence, the thesis
focuses on developing a reformulation of the process optimization problem
with the purpose of addressing these novel applications by means of a creative
process converging to a solution [12].
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Objective V: To integrate the developed methods by means of a
Graphical User Interface (GUI).

In statistical science, the theory-practice iteration requires a closed loop, by
contrast, when for any reason the loop is open, the progress stops. Therefore,
making the models accessible to new applications favors progress. There are
two ways to apply these models: programming the algorithms behind the
models (expert users) and using a Graphical User Interface (GUI) (starting
users). For that reason, Chapter 10 integrates the developed methods in a
GUI with the aim of being self-explanatory and user-friendly.
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Chapter 2

On latent variable-based
regression models
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Chapter 2. On latent variable-based regression models

2.1 Introduction

Latent variable-based models (LVMs) are statistical models specifically de-
signed to analyze massive amounts of correlated data. The basic idea behind
LVMs is that the number of underlying factors acting on a process is much
smaller than the number of measurements taken on the system. Indeed, the
factors that drive the process leave a similar signature on different measurable
variables, which therefore appear correlated. By combining the measured vari-
ables, LVMs find new variables (called latent variables (LVs)) that optimally
describe the variability in the data and can be useful in the identification of
the driving forces acting on the system and responsible for the data variability
[22].

LVMs can be used to relate data from different datasets: an input data matrix
X, and an output data matrix Y. This is done by means of latent variable-
based regression models (LVRMs), such as partial least squares (PLS) regres-
sion. Thus, LVRMs find the main driving forces acting on the input space
that are more related to the output space by projecting the input (X) and
the output variables (Y) onto a common latent space’. The number of LVs
corresponds to the dimension of the latent space and can be interpreted, from
a physical point of view, as the number of driving forces acting on a system
[23].

2.2 Partial Least Square (PLS) Regression

PLS regression [24, 25| is a LVRM used not only to model the inner relation-
ships between the matrix of inputs X* (N x M) and the matrix of output
variables Y (N x L), but also to provide a model for both. This fact gives
them a very nice property: uniqueness and causality in the reduced latent
space no matter if the data come either from a DOE or daily production pro-
cess (historical /happenstance data) typical in Industry 4.0 [26, 27]. The PLS
regression model structure can be expressed as follows:

T = XW* (2.1)
X =TP" +E

1Note that, there are other approximations based on artificial intelligent methodologies (e.g.,
autoencoders) that use the idea of latent space, but they are not considered in this manuscript.

2In the remainder of this Ph.D. thesis (except Chapter 8), the input data matrix can refer to raw
material properties, Z, process conditions, X, and known disturbances, D. In Chapter 8, this input
data matrix can refer to patient features, Z, and drug therapy, X.
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2.2 Partial Least Square (PLS) Regression

Y=TQ"+F (2.3)

where the columns of the matrix T (N x A) are the PLS score vectors (¢,,a =
1,2,3,..., A), containing the first A latent variables (LVs) from PLS. These
score vectors explain most of the covariance between X and Y, and each one
of them is estimated as a linear combination of the original variables with the
corresponding “weight” vector ¢, = Xw? (a = 1,2,3,...,A) (Equation 2.1).
These weights vectors, w?, are the columns of the weighting matrix W* (M x

A).

The PLS scores vectors are also good “summaries” of X according to the X-
loadings, P (M x A) (Equation 2.2), and good predictors of Y according to
Y-loadings, Q (L x A) (Equation 2.3), where E (N x M) and F (N x L) are
residual matrices of X space and Y space, respectively. The sum of squares
of F is an indicator of how good the model is in predicting the Y-space, and
the sum of squares of E is an indicator of how well the model explains the
X-space.

In order to evaluate the model performance when projecting the n-th obser-
vation x,, onto it, the Hotelling 72 in the latent space, T, and the Squared
Prediction Error, SPE,, , are calculated [28]:

T? = 7rAT,
SAPE:cn = (:I:n — PTn)T (xn - PTn) = egen (26)

where T, refers to the n-th row extracted from X being defined as a column
vector, e, is the residual vector associated to the n-th observation (n-th row of
E) defined as a column vector, A~! is defined as the (A x A) diagonal matrix
containing the inverse of the A variances of the scores associated with the LVs,
and T, is the column vector of scores corresponding to the projection of the
n-th observation «,, onto the latent subspace of the PLS model.

The Hotelling 77 statistic of an observation (772) is the estimated squared
Mahalanobis distance from the center of the latent subspace to the projection
of such observation onto this subspace. The SPE statistic gives a measure
of how close (in an Euclidean way) the n-th observation (x,,) is from the A-
dimensional latent space. Upper confidence limits (with a specified confidence
level) for both statistics, SPE};,, and T7, , can be calculated for Phase I (model

lim>

building) and Phase II (model exploiting) based on theoretical distributions
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[29, 30]. The normality assumption on which these calculations are based is
usually quite reasonable in practice. Alternatively, these confidence limits can
be obtained from distribution-free methods by repeated sampling [31]. The
only requirement is to have a large reference dataset. Besides, if this large
dataset is available (as with historical /happenstance data), confidence limits
for Phase II can also be used in Phase I. In the present Ph.D. thesis, SPFE and
T? 99% confidence limits are calculated from theoretical distributions.

Once the PLS regression model has been fitted, it can be used directly in order
to obtain the prediction vector corresponding to a particular observation, z°,
fulfilling that 772, < T3, and SPE2,,. < SPE}, . for Phase II, as:

,gobs _ QTobs — QW*TCL'ObS (27)

2.2.1 Prediction uncertainty

However, predictions are not free from uncertainty, yielding prediction errors.
Three different sources of uncertainties can affect the prediction error ef** of
the I-th CQA g¢* given a new observation x°* [32]: (i) measurement uncer-
tainty in both the regressor matrix (X) and the response matrix (Y) used to
calibrate the PLS model, (ii) uncertainty in the estimated model regression
parameters, (iii) and uncertainty due to the unmodeled part of the response
variable (structural model uncertainty).

Estimation of prediction uncertainty is done by using Ordinary Least Squares
(OLS) as Faber and Kowalski [33] suggested. Although this approach is an
approximation, it was observed to yield good results in practice [34]. First,

obs

it is assumed that the prediction error ey*® follows a normal distribution with
zero mean and variance agm (Equation 2.9).
l

ehs — yobs _ gobs L N (07 Ugfﬁ) (2.8)

Therefore ei’bs/sﬁ;,bs follows a t-statistic with N — df degrees of freedom and,
consequently, the (1 — «) prediction interval (P e.) on yi** is calculated as:

P_[y;)bs - :I)lObs j: tN—df,("/ZSe?bS (29)

where N is the number of the PLS model calibration samples, df the degrees
of freedom consumed by the model (it is set equal to the number of LVs of the
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2.2 Partial Least Square (PLS) Regression

model®), a the false alarm rate for the prediction interval (i.e., (1 — ) x 100
confidence level) and Seovs the estimated standard deviation of the prediction
error. The latter is calculated using Equation 2.10 when taking into account
the second and third sources of uncertainty mentioned above. Note that, to
estimate the first source of uncertainty requires explicit knowledge about error
variance in Z and y, which is estimated from replications and thus this limits
its use in practice. However, it seems to be more practical to assume that the
second and third sources of uncertainties dominate and ignore the first one

[34].
Segne = SEJ1+ hos 4 1/n (2.10)

In the above expression, h°*® is the leverage of the observation (Equation 2.11)
and SE; the standard error of calibration (Equation 2.12).

hobs — TobsT (TTT)il TObS (211)

_ 27]:]:1 (yl,n — Ql)2
SE_% N (2.12)

where y;,, is the measured value of the n-th observation for I-th CQA in the
calibration dataset, and g, is the estimated value for the [-th CQA in the
calibration dataset.

2.2.2 Model inversion

The objective of model inversion is to find (predict) a window of Critical Input
Parameters (CIPs) for a desired product quality characterized by the Critical
Quality Attributes (CQAs). Jaeckle and MacGregor [9] proposed a framework
for the inversion of PLS models using historical data available on the process
operating conditions and on the corresponding product quality. Using stan-
dard regression or machine learning models, the inversion is inadequate because
those models do not contain any information about the covariance structure
and, consequently, the inversion solution of the model almost certainly does

3Although the derivation of the degrees of freedom for PLS is not straightforward, they are
expected to be low in comparison with the number of observations when dealing with historical
data, N — df tends to N, thus having a negligible effect on estimating the prediction uncertainty.
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not respect previous structural relationships, leading to unfeasible solutions.
By contrast, when inverting a PLS model the inversion solution belongs to the
latent space (defined by the latent variables) and, therefore, such a solution
is constrained to be physically feasible and consistent with the sets of process
conditions and correlation structure from the past. In this respect, the PLS
model inversion has been demonstrated to be a valid tool to support the devel-
opment of new products and their manufacturing conditions using historical
data in several case studies [13, 23, 35-39).

When considering the inversion of a PLS model (Equations 2.1 and 2.3), the set
of CIPs (column vector ") that will yield the desired set of CQAs (column

vector y?*) are obtained by solving the following system of linear equations:
ydes — QTnew (213)
where 77 is the vector of scores corresponding to the projection of the ob-

new

servation £™**, which is estimated by the inversion of the PLS model:

Frew — f—l (ydes) (214)

Then, ™" is estimated going back from the latent space to the CIPs space as
follows:

I - (2.15)

Equation 2.15 clearly shows that the solution ™", obtained by the PLS model
inversion, is a linear combination of the loading vectors p, (columns of P)
and thus belongs to the latent space. Besides, notice that the PLS model
inversion involves solving a system of linear equations represented in a matrix
form (Equation 2.13), where there are as many linear independent equations
as the rank of Y (ry), and the number of unknown variables corresponds
to the dimensionality of the latent space (A). Thus, three possible cases are
considered based on dimensions ry and A:

e ryv > A: the most likely case is that no solution provides the desired set
of CQAs, but the least squares solution can be obtained as follows:

Frew (QTQ)_1 QTydes
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e ryv = A: a single solution exists that provides the desired set of CQAs.
Frew Q—lydes

e ry < A: it corresponds to an underdetermined system of linear equations,
and has multiple solutions forming a vector space whose dimension is
the difference between A and ry. Hence, multiple solutions 77¢* fall
into a (A — ry)-dimensional subspace of the A-dimensional space, that
theoretically yields the same desired set of CQAs. This subspace is so-
called Null Space (NS) and, in such a case, the model inversion requires
defining such a space.

The latter situation (ry < A) corresponds to the most common case and, for
that reason, it has been widely studied. Jaeckle and MacGregor [35]| defined
the hyper-plane related to the NS by both the solution given by the pseudo-
inverse with minimal Euclidean norm as a point which belongs to the NS
(Equation 2.16), and the orthogonal directions referring to null variations in
CQAs (A — 1 linearly independent vectors parallel to the NS).

e QT (QQT)_l ydes (216)

Garcia-Munoz et al. [37] extended this approach proposing a linear equation
system where each equation defines the NS for each CQA as proposed by
Jaeckle and MacGregor [35] (i.e., by both a point and orthogonal directions
of null variations). On the other hand, Palaci-Lopez et al. [40| defined the
NS for each I-th CQA by the analytical equation of a (A — 1)-dimensional
hyper-plane, which spans the multiple inversion solutions for such I-th CQA.
The general form of a hyperplane only requires a constant (vp,) and a single
orthogonal vector to the NS (v;). This vector corresponds to the direction of
maximum variation of the [-th CQA. The intersection of all these NS (if they
exist) gives the same solution as the one proposed by Jaeckle and MacGregor
[35].

In this work, it is assumed that all variables are centered and scaled to unit
variance as a pre-treatment. Thus, the [-th NS is defined as follows:

oo, + wF TS = 0
Vo, = —yldes (2.17)
V= q
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where q; is the [-th row of Q. When applied to all L CQAs:

vo+V+1V=0

Vo, ’U;F
T
vo, 5 v} (2.18)
’UO = . = —yd a V = : = Q
Vo, ’UE

Indeed, Equation 2.18 is equivalent to Equation 2.7 but expressed as the in-
tersection of the L NSs (if it exists). However, in most practical cases CQAs
are correlated, and this may raise singularity issues upon algebraic model in-
version. To overcome this problem, Jaeckle and MacGregor [35] suggested two
alternative approaches. The first one is to first build a Principal Component
Analysis (PCA) model on the entire set of CQAs, and then use a significant
number of columns of the relevant score matrix to build the response matrix.
Nevertheless, a drawback of this approach is that some people may feel un-
comfortable when using latent variables instead of true variables to represent
product quality. The second approach relies on removing a priori some of the
CQAs from the model output matrix, and on building the latent variable-based
model in such a way that the inputs be related to the remaining CQAs only.
By contrast, Arnese-Feffin [39] proposed an algebraic formulation of the latent
variable-based model inversion problem, named regularized direct inversion,
which can cope with CQA correlation by design. This enables one to retain
in the model output matrix all CQAs and addresses output correlation by
removing a posteriori only the non-systematic information that would cause
singularity issues.

Finally, to put it briefly, Figure 2.1 shows the PLS model inversion by means
of a simple example. In this example, there are three CIPs (M = 3) and the
focus is on the I-th CQA, and a PLS model has been previously fitted using
two components (A = 2). Then, given a desired [-th CQA, multiple solutions
are predicted, which will theoretically result in such I-th CQA. These solutions
belong to the one-dimensional NS.
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Figure 2.1: Simple example of the model inversion where there are three CIPs and the
focus is on the I-th CQA, and a PLS model has been fitted by two components.

2.2.3 Optimization problem formulation

As mentioned in Section 2.2.2, if a null space exists, the solution of the model
inversion could theoretically be moved along without affecting the product
quality. Hence, the PLS model inversion can be formulated as an optimization
problem in order to find the best feasible solution on the null space [23, 36,
41]. In any process, restrictions on the CIPs and CQAs may be imposed, for
feasibility reasons. The optimization problem formulation can be formulated
as follows based on Palaci-Lopez et al. [41]:

A

2
-
min | go (vo+VT)' T (vo+ VT) + ¢ Z s%
a=1 @
s.t.
vy = _ydes
V=Q (2.19)
ynew _ QT
" =Pt
13- A < T,
AT <d,
F,r= fT

where 7 is the score vector of the solution, composed by A elements, 7,, §™¢*
and £"" are the vectors of CQAs and CIPs, respectively, corresponding to the
solution 7, A~! is the (A x A) diagonal matrix containing the inverse of the A
variances of the scores, s?, associated to the LVs. A, and d, (F, and f,) are
a matrix and a vector used to define inequality (and equality) hard constraints
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on the LVs, respectively. These hard constraints expressed as restrictions on
the LVs are the result of transferring the restrictions on the CPIs and CQAs to
the latent space as Palaci-Lopez et al. [41] suggested. T is a (L x L) diagonal
matrix where the [-th element in the diagonal represents the weight given to
achieving the desired value for the I-th CQA. gq and g; are the weights given
to each term in the objective function when solving the optimization problem.

Note that, from Equations 2.18 and 2.19, one can conclude that vy + V7 =
g"e? — y Therefore, the objective function in Equation 2.19 minimizes
the sum of the weighted squared difference between the desired CQAs in g%
and those predicted by the model included in §"¢“ and of the Hotelling’s T2,
represented by the second term of the objective function (soft constraint). The
soft constraint on 72 is included to find a solution lying as close as possible
to the historical data when multiple solutions exist. In addition to that, a
confidence limit, 772, , can be also accounted as a hard constraint.

lim>

2.3 Sequential Multi-block (SMB) PLS regression

The SMB-PLS is a multi-block latent variable-based regression model [42] that
combines the strengths of Multi-block PLS (MB-PLS) [43] and those of the
Sequential Orthogonal PLS (SO-PLS) [44] methods as discussed Ref. [45].
Indeed, the SMB-PLS improves the interpretability of between block relation-
ships over the traditional MB-PLS methods by imposing a sequential ordering
of the blocks (pathway) and applying stepwise block orthogonalization. Be-
sides, as opposed to the SO-PLS, it models both the orthogonal and correlated
information between blocks.

The pseudocode of the SMB-PLS is presented in Appendix 2.A and the algo-
rithm is also shown schematically in Figure 2.2, similarly as in Reference [45].
The algorithm in Figure 2.2 is presented for the two-blocks case (Z and X) for
the sake of simplicity explaining the algorithm, but it can be extended to any
number of regressor blocks as it is shown in Appendix 2.A.

Figure 2.2 shows that the SMB-PLS uses a hierarchical structure where the
input blocks are ordered according to the process flowsheet with the first block
Z, and the second block X. The algorithm computes the block weights and
scores from the first block Z. The subsequent block X is then regressed onto
the first block scores to extract the information that is correlated with Z, and
their block weights and scores are then calculated. All block scores are com-
bined in the super level score matrix T and a PLS model is built between Y
and T to obtain the super weights and super scores. Upon convergence, super-
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2.8 Sequential Multi-block (SMB) PLS regression

. %) Ut
1st modelling step
S PLS
uper level T — Y
T — T
Wr/ e — qr
tZ' o KXoy
Block level 7 X b= X
CT RS S—
WT Xcorr T
% ?COTT
Pz PXcorr
2nd modelling step ¢ Uy in
orth ort
PLS
Xorth E— F
T
Worth = — Qoren
T
Portn

Figure 2.2: Scheme of SMB-PLS algorithm for two input blocks.

score deflation is applied to the input blocks, Z and X, and the output block,
Y, ensuring that the next component will extract orthogonal information to
the first one. The procedure is repeated for computing the next component
using the residual of all data blocks. It continues to extract components from
the first regressor block in the sequence until it has modelled all relevant in-
formation from Y. When all relevant information from Z is extracted in the
first modelling step, a regular PLS model is fitted to the X and Y residuals

(i.e., Xorin and F| respectively) in the second modelling step.

Note that, the sequential order of the blocks is critical. When a priori knowl-

edge exists about the natural ordering of the blocks (e.g., data arising from
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Chapter 2. On latent variable-based regression models

sequential operations in a production process), this specification is straightfor-
ward. However, in the absence of such knowledge, sequential methods (such as
SO-PLS and SMB-PLS) face the problem of having to find the most adequate
one. In this sense, Campos, Sousa and Reis [46] proposed a Stepwise SO-PLS
as an efficient algorithm for selecting the block ordering when performing SO-
PLS with capabilities of block exclusion. A priori, the same approach could
be applied to the SMB-PLS. However, in the remainder of this manuscript, it
is assumed that the natural order is known due to a priori knowledge.
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2.A SMB PLS regression

Appendices

2.A SMB PLS regression

The pseudocode of the SMB-PLS assuming a process with B blocks is presented
similarly to Ref. [45].

NN NN N N N N = e e e e e e e

cforb=1,2,...,B—1do

set wp any column of Y

> Initialization

while there is no convergence on tt or ur do

wy, = Xy ur/ (upur)

wy, = wy/ ||wy|

t, = Xpwy

for k=1,2,...,B—bdo

c(b+k)corr = Xg‘+ktb/ (thtb)

X(b+k)corr - tbcg;ﬂrk)corr

_ T T
W(bo+k) corr — X(bJrk)corruT/ (uTU’T)
w(b+k)corr = w(b+k)cor7‘/Hw(b+k)corrH
t(b+k)co7"r' = X(b+k)co7”rw(b+k)cor'r

end for
T = [t E41) gy 5]
wr = TTur/ (utur)
wr = wr/||lwr||
tt = Twy
gr = Y'tr (trtr)
ur = Yqr (g1qr)
end while
for k=1,2,...,B—bdo
pr = Xjtr (trtr)
E, =X, —trp;
end for
F=Y —trq;

> Compute X, block weights
> Normalize weights vectors
> Compute X, block scores

> Compute correlation coefficients
> Extract correlated information
> Compute weights

> Normalize weights
> Compute scores

> Concatenate block scores in T

> Compute super weights
> Normalize super weights

> Compute X}, block loadings
> Deflate X block

> Deflate Y block

Store all vectors at the block and super levels in matrices.
To compute the next LV, replace X, by E; (k > b) and Y by F, and

28: end for
29: For b = B, fit a regular PLS model to Eg and F.

go back to 2 until the relevant information in block X, is depleted.
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Chapter 3. Materials

3.1 Hardware

All the computations for the elaboration of the present Ph.D. were carried out
on a DELL Inspiron 7386 equipped with Intel Core i7-8565U, CPU 1.80 GHz,
and 16 GB of RAM.

3.2 Software

All functions, algorithms, and scripts used in the present Ph.D. (except Chap-
ter 4) are original code implemented in Python 3.9.13 [47|, leveraging the
following packages:

e pandas 1.4.4 [48]

e numpy 1.21.5 [49]

e matplotlib 3.5.2 [50]
e scipy 1.9.1 [51]

e PyQt 5.9.2

The software MATLAB 2022a (The MathWorks, Inc.) is used for the develop-
ment of Chapter 4.

3.3 Datasets

Different datasets are used in the present Ph.D. to evaluate the performance
of the novel methods. For the convenience of the reader, the information
regarding datasets can be found in the corresponding chapter where they are
resorted or applied.
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Chapter 4

On the properties of PLS for
analyzing Design of
Experiments

Part of the content of this chapter has been included in:

[18] J. Borras-Ferris, A. Folch-Fortuny, and A. Ferrer, “On the properties of
PLS for analyzing Design of Experiments,” 2023, SUBMITTED
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Chapter 4. On the properties of PLS for analyzing Design of Experiments

4.1 Introduction

Two-level full factorial designs, 2¥, and fractional factorial designs, 2¥~7, are
well known and widely used experimental designs that can be easily analyzed
when there are no missing runs using Multiple Linear Regression (MLR) [5].
Several authors have studied the problem of analyzing factorial designs with
missing runs and proposed different solutions. One of the proposals consists
of fitting an appropriate model to the incomplete data by MLR. However, the
analysis of experiments with incomplete data may be difficult for practitioners
without a solid training in experimental design. For this reason, Yates [52]
proposed to plug in a fitted value for the response values for the missing runs
and analyze the experiment as if there were no missing runs. In this sense,
the advice of Cochran and Cox [53] was to estimate the missing values by
minimizing the sum of squares for the interactions that are used as error (i.e.,
sacrificed effects). The minimization of this sum of squares provides a system of
equations with as many equations as missing runs as is explained in Section 4.4.
However, unless a careful choice is made of effects to be sacrificed, the equations
may be dependent, and no solution will be possible. An identical estimate
would be obtained by equating to zero the sacrificed effects as Draper and
Stoneman proposed [54]. In this case, sacrificed effects must also be chosen
providing independent equations in order to estimate the missing runs.

In practice, missing runs occur due to different reasons, such as i) lack of re-
sources to execute all the runs, or ii) problems in the execution of some of the
runs. Regarding scenario i), a prior selection of the runs to be omitted can
be done to obtain the maximum information in the model estimation. For in-
stance, the D-optimal criterion is one of the most common approaches for gen-
erating optimal designs by finding a regression matrix (X) that maximizes the
determinant of the information matrix (X*X) [55] However, as Xampeny et al.
[56] pointed out, the provided optimal designs (e.g., D-optimal) often change
the factor levels, even if only slightly. Besides, the estimated effects may have
different variances making the statistical analysis more complex, especially for
practitioners with limited training in DOE. For that reason, they recently pro-
posed a simple and easy-to-understand method being useful for practitioners
and experimenters who lack a deep theoretical knowledge of optimal designs
and linear models. This method is based on the Draper and Stoneman’s [54]
method of setting equal to zero the effects that can be considered negligible
(i.e. sacrificed effects) a priori in order to estimate the response of the runs
to be omitted. Unlike D-optimal designs, Xampeny et al. s [56] method yields
estimates of the effects that not only have similar and small variances, but
are also as independent as possible. This has the additional advantage that,
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4.1 Introduction

once the missing values have been estimated, the analysis procedure is the
same as if there were no missing runs. In the scenario ii), there is no prior
selection of the runs to skip. Execution problems yield accidentally missing
responses in the design, which do not necessarily follow any optimal criteria.
Consequently, estimating the missing runs according to Cochran and Cox [53]
or Draper and Stoneman [54| might be difficult, because the alias structure of
the design might make prior choice of sacrificed interactions unfeasible in prac-
tice. Besides, being X the regressor or contrast matrix, the random missing
runs may yield an ill-conditioned information matrix (X*X) that could create
severe problems when using MLR directly. In such a case, a variable selection
method would be required (e.g., stepwise regression). In addition, the poten-
tial ill-conditioned matrix may hinder causality interpretations in the original
space with any predictive method used that directly connects X-space to Y-
space, as independent variations in the regressors are not completely satisfied.
Box et al. [5] already warned that, due to the confounding, regressor-response
correlation does not imply necessarily direct causation.

The goal of this chapter is to study the properties of Latent Variable (LV)
models, such as Partial Least Squares (PLS) regression, to analyze incomplete
experimental data in both scenarios i) and ii). PLS is well known from its
ability to analyze data with many, noisy, collinear, and even incomplete data
in both regressors and response spaces [57|, typical when dealing with non-
experimental design (i.e., correlated observational data). We challenge the
widely held view that PLS is useful only when dealing with this kind of data
and, hence, we also highlight the potential of PLS to be used to analyze data
from design of experiments, especially when some runs are missing (incomplete
designs). The rationale for carrying out this proposal is that missing runs in
experimental designs lead to aliasing due to correlated regressors and, unlike
MLR, this is the environment where PLS performs particularly well.

The chapter is structured as follows. Section 4.2 shows the equivalence of
one-PLS component model and MLR in the estimated effects and statistical
significance analysis of complete two-level full and fractional designs, widely
used in practice. In Section 4.3, we present the traditional approaches to
the problem of analyzing experimental designs with missing runs and then, in
Section 4.4 a novel methodology, based on PLS, is proposed to address this
problem. Section 4.5 illustrates the methodology by two illustrative examples.
Finally, Section 4.6 gives an easy-to-follow route map useful for practitioners
without a solid training in experimental design to efficiently analyze DOE data
with missing runs (either complete or incomplete) using PLS, and it sums up
the discussion of the findings.
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4.2 Two-level factorial designs

4.2.1 Full factorial designs: 2F

A two-level full factorial design consists of all possible combinations of two
levels for k factors yielding a total number of N = 2* different runs. The
resulting design matrix contains in columns the values —1 or +1 corresponding
to the two levels of the k factors under study.

4.2.1.1 FEquivalence in the estimated effects by MLR and PLS

In matrix notation, the MLR model is commonly written as:
y:XI;A/[LR+f (41)

where y is the centered vector of observed values of the response variable, X is
the regressor or contrast matrix! of dimensions N x M, being M = 2*¥ — 1 the
number of total estimable effects in the full factorial design, f represents the
residual vector expressing the deviation between measured and predicted re-
sponse values, and by, is the estimation of the vector of population regression
coefficients (basrr)?.

Since in these designs X is an orthogonal matrix (i.e., full rank), the effects
can be estimated by the standard least squares solution as follows:

BMLR = (XTX)_ley (42)

having the regression variables (columns of X) the same variance s2 = N/(v-1).
Thus, the information matrix can be expressed as:

(XTX) = s (N — 1) "M = NTM>M (4.3)

1X matrix is the 2¥ design matrix augmented with new columns obtained by multiplying the
original k£ columns. This way, the columns of the X matrix contain the regressors to estimate the
different contrasts: main and interaction effects.

2The estimated regression coefficients are equal to one-half of the respective estimated effects of
the two-level factorial designs obtained as the scalar product of the response variable vector, y, and
the k-th column of X matrix corresponding to the effect of interest, divided by half the number of
runs N/2.
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4.2 Two-level factorial designs

where TM*M i the identity matrix (M x M). Substituting Equation 4.3 in
Equation 4.2:

XTy

(4.4)

b]\lLR =

On the other hand, by substituting Equation 2.1 in Equation 2.3, PLS can be
rewritten as an MLR-like model:

Y =XW'Q'+F=XBp,s+F (4.5)

where B prs is the matrix of estimated PLS regression coeflicients (B PLS =
W*QT). This PLS regression, often termed PLS2, allows modelling a set of
different responses jointly. A special version of it, the PLS1 algorithm, used to
model a single variable y, can be expressed from Equation 4.6 where matrices
Q7T B prs and F degenerate to vectors q, BPLS and f, respectively.

It is important to remark the PLS space has up to C relevant components
for prediction if and only if there are C' different eigenvalues of the regressor
covariance matrix. Besides, the PLS regression coefficients, brr s, will be equal
to the MLR regression coefficients, birr, if and only if the number of the
latent variables of the PLS model, A, is equal to the C relevant components
[58]. Therefore, MLR is a particular case of PLS when extracting the maximum
number of C relevant components.

When PLS is applied to data from a full factorial design the regression matrix
is orthogonal having only C' = 1 relevant component (i.e., all eigenvalues are
equal). Therefore, only the first PLS component has predictive ability, and
the one-PLS component model matches the MLR solution [59]. An analytical
demonstration is shown below.

When considering data from a two-level full factorial design, the one-PLS com-
ponent model y-loading ¢ is obtained as follows:

X7y

- (4.7)

35



Chapter 4. On the properties of PLS for analyzing Design of Experiments

where || X"y || is the 2-norm of the vector X"y, and the elements of the weight
vector w* are calculated according to Equation 4.8.
_ Xy

I XTy |

* (4.8)
More details about Equations 4.7 and 4.8 can be found in Appendix 4.A.

The last equivalence can be also deduced when considering that the first PLS
component maximizes the covariance between the first latent variable ¢ and
the response vector y [60] (see Appendix 4.B).

Then, when having a one-PLS component model, the regression vector of PLS
coefficients is estimated from Equation 4.6 as:

BPLS = 'w*q (49)

Hence, by substituting Equations 4.7 and 4.8 in Equation 4.9:

b= XY Xyl _ X'y
I XTy || N N

(4.10)

Equation 4.10 is equivalent to Equation 4.4, demonstrating that the solution
to the one-PLS component model corresponds to the MLR solution. The
reason why only the first PLS component has predictive ability is that the y
residual vector after extracting the first PLS component, f, is orthogonal to
E (see Appendix 4.C), so when analyzing orthogonal arrays there is no point
in extracting more than one PLS component. Note that, this is consistent
with the Helland criterion [58] previously commented in the same section, as
in a two-level full factorial there is only one different eigenvalue of the contrast
matrix and, consequently, there is only one relevant component for prediction.

Finally, in Appendix 4.D we present a simple case to illustrate the latent space
in a full factorial design.
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4.2 Two-level factorial designs

4.2.1.2  Equivalence in the statistical significance analysis by MLR and
one-PLS component model

In MLR, it is assumed that the estimation of the m-th regression coefficient
follows a normal distribution with mean by;1g,» and standard deviation oy, ,,.
Since oy, ,,, is almost always unknown, an estimate of 0}, ,,,, 85, is used instead.
Thus, when the null hypothesis (the m-th effect is zero) is true (byrr.m = 0),
the t-statistic follows a Student’s distribution with N — M*3 — 1 degrees of
freedom:

briLrm
t= MLE, ~ tN*M*fl (411)
Sb,m
where s, is calculated as:
- \/MSE (x| (4.12)

where M Sy is the mean square error of the model and [(XTX)_l} is the

m-th element of the diagonal of (XTX)fl. In a two-level full factorial design,
the following equivalence is deduced from Equation 4.3:

(x™x)7] = % (4.13)

m,m

and Equation 4.11 is expressed as:

t

Z)MLR,m . Z;MLR,m (4.14)

sV

The uncertainty of the model parameters from two block regression modelling
by PLS has been already discussed |62, 63| when using happenstance data (i.e.,
data not coming from an experimental design). In this case, the use of cross-
validation/jack-knife (CV/JK) resampling approach is widely recommended

3Without replicates, it is necessary to include negligible effects on the residual in order to have
degrees of freedom to estimate random noise. Negligible effects can be detected, for instance, by the
Normal Probability Plot (NPP) or the Lenth’s method [61], as illustrated later.
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[62]. Cross-validation consists of re-estimating all the parameters of the model
several times, each time keeping out one or more of the available samples (a
cross-validation segment) during the estimation. In each cross-validation seg-
ment, a set of the model’s parameters estimates is obtained. Then, statistical
significance is evaluated by calculating the JK confidence intervals [63].

Nevertheless, when data come from a DOE without replicates, there is insuf-
ficient redundancy between observed samples and the resampling strategy is
meaningless [64]. In such a case, we propose a statistical significance analysis
in the PLS solution, which is equivalent to MLR’s. This approach is based
on the acceptance region for the estimated regression weights w,,, proposed by
Martens et al. [59], which contains those weights being consistent with the null
hypothesis (i.e., bprs., = 0) given a particular false alarm rate. Thus, having
data from a two-level full factorial design:

SS,, = w: ¢ N (4.15)
SSp =vy'y — ¢*N (4.16)

where S5, is the sum of the squares of the m-th effect and SSg the residual
sum of the squares (see Appendix 4.E for more details). Then, by assuming
that the null hypothesis is true (bprs,, = 0), the ratio between the mean
square of the m-th effect (M S,,) and the residual mean square (M Sg) follows
a F-distribution with 1 and N — (A* + 1) degrees of freedom:

MS,, w:?¢*N
= ";n b} ~ Fl N—(A*—',—l) (417)
2N »
MSg z?\J/fZAi]H)

where (A* + 1) denotes the degrees of freedom used for parameter estimation.
For PLS, the most common value used for A* corresponds to the number of
the latent variables of the PLS model, A (i.e., PLS model dimensionality).
However, when having a full factorial design only the first PLS component is
used to estimate all the effects included in the model (M*), hence, A* is equal
to M™* instead of 1.

Combining Equation 4.9 for the m-th effect with Equation 4.17, and reorga-

nizing terms, it is deduced that:

72
bPLS,nL
]V[SE/N

~F oo (4.18)
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4.2 Two-level factorial designs

Since the square root of the Fj , distribution, with 1 and v degrees of freedom,
is equivalent the ¢, distribution, with v degrees of freedom, Equation 4.18 can
be rewritten as follows:

bPLS,m

\/TT/N ~EtN_pe—1

(4.19)

Equation 4.19 is equivalent to Equation 4.14, demonstrating that the statistical
significance analysis of the one-PLS component estimates corresponds to the
MLR case.

4.2.2 Fractional factorial designs: 2577

A fractional factorial design is an experimental design in which only a se-
lected subset or fraction of the runs in the full factorial design are carried out.
They require fewer samples than the full design without becoming unbalanced
and spurious, like a design with missing values at random. In a fractional
factorial design, some effects cannot be distinguished from others due to the
confounding. Consequently, one single regression variable might be represent-
ing different confounded effects. The estimate associated to that regression
variable refers to the sum of its confounded effects. In such a case, the regres-
sion variables present the same properties as a full factorial design (centered,
equal variance (i.e., N/(N — 1)) and orthogonality). Therefore, as discussed
above, the solution given by the one-PLS component model is equivalent to the
MLR solution, including the effect estimates and their statistical significance
analysis as discussed above.

In addition to that, we suggest another option by augmenting the regression
matrix with new columns allocating the effects to be estimated despite their
confounding. This yields an augmented regression matrix, X **9. While esti-
mation of fully confounded effects is not possible in MLR, it is possible with
PLS, as it can handle rank-deficient data matrices (i.e., not full rank). This
leads to a scenario where there may be C different eigenvalues, so more than
one PLS component may need to be selected in order to explain the response
variability related to regression variables. Besides, the statistical significance
analysis according to Equation 4.17 will no longer be possible, but the esti-
mation of the effects will be. In such a case, PLS will evenly distribute the
value of the block of fully confounded effects among all of them. Therefore, an
experimenter with lack of knowledge on experimental designs can obviate the
details of the generator and the aliasing structure of the design. For that, they

39



Chapter 4. On the properties of PLS for analyzing Design of Experiments

will directly use the X9 to estimate all effects by PLS, and then, they can
detect the aliasing structure of the design by looking at the effects with the
same estimate. Following that, the identical estimates will be pooled?, and the
statistical analysis of the effect groups will be carried out in a similar way as

in a full factorial design, giving the same results as if they had used the X"
in MLR.

4.3 Traditional approaches applied to two-level factorial
designs with missing runs

A common difficulty in using designed experiments is that there might be
missing runs with respect to factorial designs. Hence, Cochran and Cox [53]
proposed to estimate the missing values by minimizing the sum of squares for
the sacrificed effects.

If R runs are missing, only (N — R) effects (including the mean) can be esti-
mated from (N — R) remaining runs. Therefore, the user must choose which
(N — R — 1) of the original (N — 1) effects, apart from the mean, are to be
estimated, and which R effects are to be sacrificed. Suppose we sacrifice the
(N — R)-th to (N — 1)-th effects. Minimization of the sum of squares of these
R effects with respect to the R missing runs leads to the following system of
R equations:

N1
Y aymly=0  j=12..R (4.20)
i=N—R
where x; is the column vector of the contrast matrix X related to the i-th
effect to be sacrificed, and a, ; is &1 according as the coeflicient of the j-th
missing observation in the i-th sacrificed effect is positive or negative. Thus,
if the R by R matrix A = {a;;} is non-singular (i.e., the a; ; are such that the
above R equations (Equation 4.20) are independent) then it is equivalent to:

zjy=0 i=(N—-R),...,(N-1) (4.21)

So, an identical estimate would be obtained by equating to zero the sacrificed
effects as Draper and Stoneman proposed |54]. The correct choice of the effect

4Note that, it is extremely unlikely to get exactly the same estimate for two effects that are not
confounded.
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4.4 PLS applied to two-level factorial designs with missing runs

to be sacrificed is, therefore, equivalent to finding effects for which matrix A
is non-singular. Note that, solving for the system of equations (Equation 4.21)
is not needed as the method will give the same estimates as a least squares so-
lution (Equation 4.2) from a contrast matrix X obtained from the original one
after deleting all rows corresponding to missing runs and all columns related
to the effects to be sacrificed.

On the other hand, Kenett, Rahav, and Steinberg [65] proposed another ap-
proach based on bootstrapping to analyze designed experiments handling miss-
ing runs. The findings suggest that bootstrapping can contribute significantly
to the design of experiments methodology in the presence of missing runs,
however, the minimal requirement for applying the bootstrap is the presence
of replicate observations (or a suitable model for generating replicates) at all
levels of the experiment. Note that, replicates are not particularly common
in most industrial DOE, and hence, this requirement is not assumed in the
remainder of this chapter.

4.4 PLS applied to two-level factorial designs with missing
runs

The approaches of Cochran and Cox [53] and Draper and Stoneman [54| have
a good performance when missing runs are selected in advance in an optimal
sense (scenario 1)), however, they might lead to difficulties when having missing
runs due to problems in their execution (scenario ii)) because the prior choice
of sacrificed interactions might be unfeasible in practice. This situation could
also create severe problems when using MLR directly.

For that reason, we propose a simple procedure addressing scenario i) (see
Section 4.4.1) and scenario ii) (see Section 4.4.2) with just one method: PLS.

4.4.1 Lack of resources to execute a factorial design (scenario 1))

4.4.1.1 Selection of runs to be omitted

In industrial applications of design of experiments, practical constraints in
resources such as budget, time, material, etc. could lead to difficulties in
running a complete factorial design [66]. In the line of Xampeny et al. [56],
that is, with the aim of designing a simple and easy-to-understand method, we
propose using an optimal design, but constraining the solution to a subset of
the complete factorial design. The latter provides designs that do not change
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factor levels (they are set at +1) and are, therefore, easily implementable
for practitioners. We use the K-optimal criterion [67] based on the condition
number of the information matrix, s:

K= Amas (4.22)

where A, and \,,;, are, respectively, the maximum and minimum eigenvalues
of the information matrix. For this step, we recommend selecting only the main
and two-factor interaction effects in the first model to not yield a rank-deficient
information matrix (i.e., infinite condition number). The higher the condition
number the closer a matrix is to being singular. Therefore, the combination of
experiments yielding an information matrix with minimum condition number
is recommended.

Anyway, one must be careful if estimating the resulting missing runs with
respect to a complete factorial design because, as Box [68] warned, such esti-
mation is a convenient computational approach that does not of course recover
the information that has been lost. Hence, the collinearity, when exists, will be
artificially removed. Indeed, Box [68| pointed out that one could start to feel
uncomfortable with the estimation, for instance, in the case of having more
than two observations missing from a sixteen run experiment. However, in-
stead of considering the number of missing runs, we propose the experimenter
to be warned by the condition number of the information matrix, since the
same number of missing runs could yield information matrices with an un-
equal degree of collinearity. In this sense, Belsey [69] adopted a threshold of
30 for this condition number, from which one would expect moderate rela-
tions among regression variables being problematic in practice. Despite being
a heuristic threshold, it performs well discerning ill-conditioned information
matrices according to the authors’ experience.

Table 4.1 presents a practical guide for quickly and simply selecting which
runs to skip for the most popular designs according to the minimum condition
number criterion. All these designs present a condition number less than 30.
Grey cells indicate that for that particular combination of full or fractional
design and number of runs to skip there is no resulting design with a condition
number less than 30 and, therefore, there is no recommended design.

The lists of recommended combinations of missing runs when skipping more
than one missing run are shown in Appendix 4.F.
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Table 4.1: Practical guide for selecting the runs to skip for the most popular full and
fractional factorial designs (2" and 2*~P). Condition number  is shown in each case.

Design
Runs to skip 23 21 215t 257! 2672 2753
1 Any (k=7) Any (k=3) Any (k=7.5) Any (k= 15)
2 Any (k= 3) (k=28)
3 (k=4)
4 (k=14)
5 (k=4)

4.4.1.2  How to estimate missing runs by PLS

After carrying out the recommended runs, regression variables are not orthog-
onal due to the missing runs, hence the one-PLS component model is no longer
equivalent to the MLR solution. More than one component could be extracted
in a PLS model to improve prediction. In fact, the PLS space has more than
one relevant components (C' > 1) for prediction [58]. However, PLS might
run into overfitting issues when too many PLS components are used. For that
reason, when the purpose of the model is prediction (e.g., estimating missing
data), the cross-validation approach is widely used for determining the number
of components based on checking the model’s predictive ability [70].

Regarding the estimation, one could replace missing runs with the predictions
from the fitted model, however, these estimated response values might yield
to an overestimation of the correlation between X and y. Thus, we suggest
adding random noise to the predictions to overcome this problem according to
Equation 4.23.

yp — xObSTI;PLS 4 eobs (423)

where y? is the response prediction of a missing run (™") after adding random
noise (e”"). The noise is the prediction error obtained from a normal distri-
bution with zero mean and variance O'zabs. The estimation of gemr, Semr, iS
calculated as s.ov- in Equation 2.10. This is feasible if there are degrees of free-
dom to estimate the random noise. For that reason, although the PLS model
can be fitted incorporating all effects, at this point it is advisable to select
only main and two-factor interaction effects in the first model in order to have
enough degrees of freedom to estimate random noise properly. Once missing
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runs are estimated, one may fit a one-PLS component model by using data
referring to the complete full or fractional factorial design as in Section 4.2.

4-4.2 Unezxpected problems in the execution of some runs
(scenario 1ii))

Once an experimental design has been planned, it may face unexpected prob-
lems such as: running out of resources during the experiments, having problems
collecting data, not being able to reproduce the same conditions between ex-
periments, having unfeasible conditions in some runs, outliers, etc. For these
kinds of problems, it is assumed that the missingness mechanism is ignorable,
what refers to the Missing At Random (MAR) case |71].

Note that, these missing runs are not selected in advance in an optimal sense
and, hence, these designs may result in either well-conditioned matrix (i.e.,
k < 30) or ill-conditioned information matrices (i.e., £ > 30). Regarding
the first situation, the authors recommend following the missing runs estima-
tion strategy as in Section 4.4.1.2 In the second situation, the missing esti-
mation itself is no longer recommended because the estimation would remove
the collinearity artificially. At this point, the user may consider carrying out
some of the missing runs to overcome the confusion®. If possible, it will be
preferable to carry out those experiments that minimize the condition number
of the resulting information matrix according to Equation 4.22 yielding a well-
conditioned matrix. If it is not possible, note that the potential ill-conditioned
information matrix is no longer a problem with PLS due to its ability to handle
correlated variables and, thereby, potential crucial effects can be all considered
instead of having to select them (in contrast to stepwise MLR). Then, the in-
terpretation and decision-making could be carried out with caution. Indeed,
the confounding map is crucial to reveal the potential risk in the analysis due
to the confusion. However, the recommendation for a practitioner without a
solid training in experimental design would be not to proceed to the analysis
in such a case.

5If there is a suspicion that something has not remained constant, it would be wise to define a
new factor that designates whether a given run was in the original or in the new experiment.
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4.5 Illustrative examples

4.5.1 First illustrative example: 2*

To illustrate how to use the proposed methodology, we use a 2% two-level full
factorial design from Box et al. [5]. The four quantitative design variables are:
amount of catalyst charge (A), temperature (B), pressure (C) and concentra-
tion of one of the reactants (D). The response variable y is the conversion rate
at each of the 16 reaction conditions being centered in this work.

4.5.1.1 Full factorial design

Fitting one-PLS model and detecting negligible effects

First, a one-PLS model is fitted considering all effects. Since there are not
replicates, it is necessary to include negligible effects on the residual in or-
der to have degrees of freedom to estimate random noise. Thus, the Normal
Probability Plot (NPP) and the Lenth’s method [61] are used to determine the
effects that are negligible (Figure 4.1).

In this example, interactions between three or more factors are considered
negligible. This can be checked by representing all estimated effects on a NPP,
showing that three and four level interactions take values close to zero and lie
on the straight line of the negligible effects (see Figure 4.1a). To complement
the NPP, a Pareto chart with the Lenth’s method [61] can be also used to
analyze the statistical significance of the effects (see Figure 4.1b). An effect
whose bar extends beyond the simultaneous margin of error (SME) line is
clearly active, one which does not extend beyond the margin of error (ME)
line cannot be deemed active, and one in between is in a zone of uncertainty
where a good argument can be made both for its being active and for its being
a happenstance result of an inactive contrast. Figure 4.1b shows that three
and four level interactions do not extend beyond the ME line.
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Figure 4.1

Refitting one-PLS model and getting p-values

The linear model refitted in the following will only contain main and two-factor
interaction effects. Table 4.2 compares the estimates and the statistical sig-
nificance of both MLR and PLS approaches. P-values for PLS solution are
calculated based on both F-distribution (Equation 4.17) and CV/JK resam-
pling approaches.

Table 4.2: Estimates (MLR and PLS) and p-values (MLR, PLS based on both the F-
distribution and CV/JK resampling) for full factorial design. P-values< 0.05 in bold.

A B C D AB AC AD BC BD CD

Estimates MLR -4.00 12.00 -0.13 -2.75 050 038 0.00 -0.63 225 -0.13
PLS -4.00 12.00 -0.13 -2.75 050 0.38 0.00 -0.63 225 -0.13

MLR 0.00 0.00 0.67 0.00 0.13 0.23 1.00 0.07 0.00 0.67

p-values PLSpa4it 0.00 0.00 0.67 0.00 0.13 0.23 1.00 0.07 0.00 0.67
MLRcyix 022 0.00 097 040 088 091 1.00 0.85 049 0.97

Table 4.2 shows that not only the one-PLS component model gives the same
estimates as MLR, but also p-values when considering the F-distribution ap-
proach. However, by CV/JK resampling approach no statistically significant
relevance is detected in A, D and BD effects. Since there are no replicates
in this kind of designs, the regression matrix in each perturbed model spans
different spaces. For that reason, the uncertainty assessment of the individual
model parameters estimated by jack-knifing is greater than expected, reducing
the statistical power of the approach.
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4.5.1.2  Lack of resources to execute a factorial design (scenario 1))

The purpose of this section is to compare the proposed PLS-based approach
(based on the condition number of the information matrix, followed by PLS
estimation) with respect to the Xampeny et al.’s [56] approach (based on the
Draper and Stoneman [54] estimation), when skipping runs due to a lack of
resources to carry out a factorial design.

Selection of the runs to omit

Table 4.3 shows the number of recommended combinations in each case when
skipping up to 5 runs in a 2* two-level full factorial design.

Table 4.3: Number of combinations and recommended combinations of missing runs when
skipping up to 5 runs from 2% full factorial design based on the Xampeny et al.’s [56] and
the condition number s of the information matrix approaches. The latter is based on the
lists of recommended combinations shown in Table 4.1 and Appendix 4.F.

Number of Number of combinations Number of recommended Number of recommended
missing runs of missing runs combinations (Xampeny et combinations (minimum
al.’s [56] approach) K)

1 16 16 16 (k = 3)

2 120 80 80 (k =4)

3 560 160 160 (k = 4)

4 1820 40 120 (k = 4)

5 4368 16 16 (k =4)

Regardless the approach, Table 4.3 shows that the number of recommended
combinations is the same for both approaches, except for the four missing runs
case. Indeed, Xampeny et al. [56] highlighted this case as peculiar, because
it does not follow their general rule and, finally, they ended up proposing 40
combinations instead of 120. Note that, the D-optimal criterion would give the
same recommended combinations as the K-optimal criterion, as both require
all the eigenvalues of the information matrix to be as equal as possible [72].

Estimation of missing runs

After selecting the appropriate combinations of missing runs for the different
cases up to 5 missing runs from Table 4.3, the skipped runs were estimated
by PLS (without adding random noise to make the results comparable), and
the Draper and Stoneman’s [54| approach. The first PLS model was fitted by
CV including only main and two-factor interaction effects. Figure 4.2a shows
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Figure 4.2

multiple boxplots of the difference between the estimated and the real values
(i.e., the errors) of the missing runs in both approaches for the different cases.
Figure 4.2b shows the 95% confidence intervals for the difference in the mean
of the squared errors between PLS, and Draper and Stoneman [54] approaches
for the different cases.

As Figure 4.2a shows, for any number of missing runs, no relevant discrepancy
is found between both approaches in the distribution of differences between real
and estimated values. However, Figure 4.2b does show statistically significant
differences (p-values< 0.05) for two and three missing runs cases, being the
mean of the squared errors lower in both cases for the PLS approach. Thus,
PLS performs equal or even slightly better than Draper and Stoneman [54]
approach in the estimation of the missing runs in this example. Note that,
once missing runs are estimated the user could analyze the analysis as a full
factorial design as in Section 4.5.1.1.
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4.5.1.8  Unexpected problems in the execution of some runs (scenario ii)

Assessment of the conditioning of the information matriz

As commented above, when missing runs are not planned in advance, different
degrees of collinearity can be obtained, being the best case that obtained in sce-
nario i). When the result of unplanned missing runs yields a well-conditioned
matrix (k < 30), the authors recommend following the missing runs estimation
strategy as in Section 4.4.1.2. Nevertheless, when x > 30, missing estimation
is no longer recommended because the estimation would remove the collinear-
ity artificially. Besides, collinearity may hinder the estimates as shown in the
example below. Let us assume that, for example, runs 1, 2, 13 and 14 from
the 2% full factorial design are missing. This design yields a rank-deficient
information matrix (i.e., infinite condition number). Figure 4.3 shows the con-
founding map considering main and two-factor interaction effects. In this case,
a variable selection method is required if using MLR (e.g., stepwise regression).
In contrast, PLS allows considering all variables due to its ability to handle
correlated variables. Table 4.4 shows the outcome of stepwise regression and
PLS analysis of the incomplete factorial design.

Ir| ]
09
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07
06
05
04
03
) 02
0.1
0

A B C D AB AC AD BC BD CD

Figure 4.3: Confounding map for the full factorial design with four missing runs (1, 2, 13
and 14) and considering main and two-factor interaction effects.

What stands out in Table 4.4 is that BD and D effects are not selected by step-
wise MLR even though they are statistically significant (p-value< 0.05) in the
full factorial design. Note that, since the regression matrix is not full of rank,
the stepwise regression method cannot select all effects. Indeed, Figure 4.3
shows that effects C, D, BC and BD are partially aliased, and therefore, not
all of them are selected (in this case only C and BC are selected). Alterna-
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Table 4.4: Estimated effects by the stepwise regression and PLS by CV for the full factorial
design with four missing runs (1, 2, 13 and 14). Full design results are also shown for
comparison. “*” means that such design variable is not selected.

A B C D AB AC AD BC BD CD

Stepwise MLR, -3.83 12.13 2.38 * * * * -3.13 % *
PLS -4.00 1237 1.00 -1.63 050 0.31 -0.06 -1.75 1.13 -0.50
Full design  -4.00 12.00 -0.13 -2.75 0.50 0.38 0.00 -0.63 225 -0.13

tively, PLS is able to estimate all effects but, due to collinearity, the effects
could not be estimated correctly either. For that reason, we propose using the
confounding map (Figure 4.3) to improve interpretation and decision-making.
A closer look at Figure 4.3 shows that C, D, BC and BD effects are moderately
correlated with each other, being impossible to separate their direct causation
with the response and, hence, their estimates differ from those obtained from
the full design. If the confusion would have involved not two but only one main
effect, the interpretation and decision-making could be carried out taking the
same risk as in a fractional factorial design of resolution III (i.e., give more
credit to the main effect than to the interaction effects). However, in this ex-
ample, two main effects are involved making the interpretation of the results
extremely risky.

Selection of the runs to carry out and following analysis as in the scenario i)

At this point, the user may consider carrying out some of the missing runs to
overcome the confusion®. If possible, it will be preferable to carry out those
experiments that minimize the condition number of the information matrix.
In this example, if a new experiment could be carried out, all four possibilities
would result in the same condition number, £ = 10.53, yielding a well-condition
matrix and thus the missing runs estimation strategy as in the scenario i)
could be applied. After carrying out the missing run 1, Table 4.5 shows the
estimates and p-values after fitting one-PLS component model of the complete
design, which has been previously filled in by means of a first PLS model by
CV estimation (using only main and two-factor interaction effects) with or
without random noise addition (Equation 4.23).

Table 4.5 shows that, after carrying out the missing run 1, the performance
of the analysis improves significantly after estimating the remaining missing

6If there is a suspicion that something has not remained constant, it would be wise to define a
new factor that designates whether a given run was in the original or in the new experiment.
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Table 4.5: Estimates and p-values after estimating the three missing runs (2, 13 and 14)
by means of the PLS strategy (without adding random noise and adding random noise).
P-values < 0.05 in bold). Full design results are also shown for comparison.

A B C D AB AC AD BC BD CD

Without noise -4.00 12.38 -0.56 -3.19 050 0.31 -0.06 -0.19 2.69 -0.50

Estimates  Adding noise -4.75 12.37 -0.74 -3.37 1.25 -0.62 -0.99 -0.01 2.87 -0.50
Full Design  -4.00 12.00 -0.13 -2.75 0.50 0.38 0.00 -0.63 225 -0.13

Without noise 0.00 0.00 0.05 0.00 0.07 020 078 042 0.00 0.07

p-values Adding noise 0.00 0.00 0.39 0.00 0.17 047 026 0.99 0.02 0.56
Full Design  0.00 0.00 0.67 0.00 0.13 0.23 1.00 0.07 0.00 0.67

data by means of PLS both adding and not adding random noise. When
random noise is not added, some non-significant effects (C, AB, CD) have low
p-values near 0.05. This inconsistency may be due to an overestimation of
the correlation between X and y when estimating the missing runs. For that
reason, adding random noise seems to be a more conservative approach despite
the fact that the randomness in the imputation slightly affects the estimates.

4.5.2 Second illustrative example: 2672

This is a simulated example corresponding to a 2672 two-level fractional fac-
torial design. This is a popular design, being widely used in practice, since it
allows estimating the 6 main effects by a 16-run design of resolution IV, and
generators E = ABC and F = BCD. The simulator assumes a linear model
according to the known values from Table 4.6, and random noise is added to
the responses assuming a standardized normal distribution. This illustrative
example has the advantage over the previous one that we can compare the
effects estimates with respect to the known values. These estimates are made
on the assumption that all interactions between three or more factors are neg-
ligible. However, two-factor interaction effects cannot be distinguished from
others due to the confounding.

4.5.2.1 Fractional factorial design

A priori, confounded effects should be represented by one single regression
variable yielding to the X"*?. As commented, the PLS tool allows the exper-
imenter to obtain the same results as MLR when using the same orthogonal
regression matrix (X"¢¢). In addition to that, PLS also allows estimating fully
confounded effects yielding to the X*“9. Table 4.6 shows the estimates and the
statistical significance of the proposed based-PLS approach.
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Table 4.6: Known population effects and their estimates for the 2?;2 fractional factorial
design using the augmented design matrix. P-values < 0.05 in bold. “#” means that such
design variable is not included in the statistical analysis.

2052 Known value X (PLS by CV) Poleed efects p-value
G1: A + BCE + DEF + ABCDF -7,0,0,0 -1.665 (x4) -6.66 0.00
G2: B + ACE + CDF + ABDEF 10,0, 0,0 2.38 (x4) 9.52 0.00
G3: C + ABE | BDF + ACDEF 0,0, 0, 0 -0.14 (x4) -0.56 0.16
G4: D + AEF | BCF + ABCDE 11,0, 0, 0 2.896 (x4) 11.584 0.00
G5: E + ABC + ADF + BCDEF  0,0,0,0 0.074 (x4) -0.296 0.43
G6: F + ADE + BCD + ABCEF -8,0,0,0 2.002 (x4) -8.008 0.00
G7: AB + CE { ACDF + BDEF  0,0,0,0 0.145 (x4) 0.58 *
G8: AC + BE | ABDF + CDEF 0,0, 0, 0 -0.165 (x4) -0.66 «
G9: AD + EF + ABCF + BCDE 0,0,0,0 -0.027 (x4) -0.108 *
G10: AE + BC + DF + ABCDEF -5, -4, 0, 0 -2.809 (x3) 8.427 0.00
G11: AF + DE + ABCD + BCEF 0,3,0,0 0.658 (x4) 2.632 0.00
G12: BD  CF + ABEF + ACDE 0,0, 0,0 -0.03 (x4) 0.12 x
G13: BF + CD | ABDE | ACEF 0,0, 0, 0 0.075 (x4) 0.3 «
G14: ABD + ACF + BEF + CDE 0,0,0,0 0.013 (x4) 0.052 *
G15: ABF + ACD + BDE + CEF  0,0,0,0 0 (x4) 0 *

Table 4.6 shows that PLS allows estimating all effects. Note that, as already
commented in Section 4.2.2, fully confounded effects have exactly the same es-
timation. Thus, the aliasing structure of the design can be detected by looking
at those effects with the same estimate. Following that, the identical esti-
mates are pooled, and the statistical analysis of the pooled effects is carried
out by means of either the NPP or Lenth’s method [61] shown in Figure 4.4.
This figure shows that the pooled effects G7, G8 G9, G12, G13, G14 and
G5 take values close to zero and lie on the straight line of the negligible ef-
fects (see Figure 4.4a), and none of them extends beyond the margin of error
(ME) (see Figure 4.4b). Finally, p-values of Table 4.6 are calculated based
on F-distribution (Equation 4.17) after deleting the negligible pooled effects
according to Figure 4.4 and refitting a one-PLS component model.

Note that, the pooled effects G3 and G5 are included in the statistical analysis
for calculating p-values of Table 4.6 because they present main effects involved
in potentially significant interactions.
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Figure 4.4

4.5.2.2  Lack of resources to execute a factorial design (scenario i))

In the case of having lack of resources to execute a factorial design (i.e., sce-
nario i)), Xampeny et al.’s [56] addresses the cases of having one or two missing
values. In the case of having one missing value, any of the 16 runs are rec-
ommended to be skipped. In the case of having two missing runs, only 64
pairs of the 120 possible of runs are recommended to be skipped (see Ap-
pendix 4.F). In both cases, the recommended list corresponds to the minimum
condition number of the information matrix, which is less than 30. After se-
lecting all recommended combinations up to 2 missing runs, those skipped
runs were estimated and, then, the effects were estimated by means of the pro-
posed PLS-based approach (without adding random noise to make the results
comparable), and the Draper and Stoneman [54] approach. Figure 4.5 shows
multiple boxplots of the difference between estimates and known population
effects (i.e., the errors) for all active effects, distinguishing between one and
two missing runs. For the PLS-based approach confounding effects are pooled
to make results comparable.

Figures 4.5a and 4.5b shows that for any number of missing runs, the distri-
bution of differences between estimates and known population effects are very
similar for both approaches (no statistical significance discrepancies are found,
p-values < 0.05).
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Figure 4.5: Multiple boxplots of the difference between estimates and known population
effects for all active effects with PLS, and Draper and Storeman [54] (D. & S.) approaches
when having:

4.6 Discussion and conclusions

A novel framework to analyze two-level full and fractional factorial designs
with one single technique, PLS, is proposed. This property is very attractive
for practitioners since, to the best of our knowledge, no other statistical tool
has comparable versatility. To provide an easy-to-follow route map for prac-
titioners interested in using PLS to analyze design of experiments no matter
their completeness, Figure 4.6 shows the proposed scheme.

In the case of a full factorial design, the one-PLS component yields the same
analytical solution as MLR, not only in the estimation of the effects, but also
in their statistical significance analysis. Besides, when data from a fractional
factorial design is analyzed, PLS also allows the possibility of including and
estimating straightforwardly all effects in the model despite their confounding,
in contrast to MLR. When dealing with lack of resources to execute a factorial
design (scenario i)) we propose an alternative method to Xampeny’s et al
[56] approach in order to decide which runs to omit based on the condition
number of the information matrix. The potential ill-conditioned information
matrix in scenario ii) is no longer a problem with PLS due to its ability to
handle correlated data. In both scenarios, one could use a PLS model to
estimate the value of the missed runs (by getting the prediction from the PLS
model and adding random noise as in Equation 4.23) yielding an orthogonal
factorial design which can be analyzed by the one-PLS component model. This
proposed PLS-based approach does not require selecting a priori the effects to
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Figure 4.6: Route map summarizing how to use PLS when dealing with data from design
of experiments.

be sacrificed, and its performance is similar or slightly better to the Draper
and Stoneman [54| approach. Nevertheless, in the case of having ill-conditioned
information matrix we do not recommend using any of the approaches discussed
in this chapter to avoid obtaining severe estimation biases. Alternatively, the
user may consider carrying out some of the missing runs until getting a well-
conditioned information matrix.

Practitioners can resort to using only PLS instead of using different methods
(MLR, Xampeny’s et al [56]) and Draper and Stoneman [54]) without sacrific-
ing accuracy, reliability, or interpretability. Indeed, as shown in this chapter,
PLS can be used to estimate the effects no matter of the completeness of exper-
imental data, being MLR a particular case of it. In addition to that, another
type of DOE application concerns the mixture designs, where data analysis
becomes more challenging as the mixture factors are correlated due to the
restrictions that must be fulfilled. Hence, the MLR. method is not directly
applicable, but a special model form needs to be used [73]. By contrast, PLS
regression works well because analyzing correlated mixture variables is not a
problem [74-76|. Therefore, PLS is not only a powerful tool when dealing with
non-experimental data (i.e., observational data), but also when dealing with
data from experimental designs.
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Appendices

4.A Definition of PLS coefficients from NIPALS algorithm in
a full factorial design

Let us consider two centered data arrays X (N x M) and y (N x 1), where
columns of X have the same variance and are orthogonal to each other. To
calculate the parameters of the PLS model in a sequential manner, the Non-
linear Iterative Partial Least Squares (NIPALS) algorithm can be used [77].
The algorithm is as follows:

1: Start: set u to y > Initialization

2: while there is no convergence on t or u do

3: w' = XTu/ (uTu) > Compute X block weights
4: w™eY = wd /|| we| > Normalize weights vectors
5: t = Xw"e? > Compute X block scores
6: q=y"t/(t"t) > Compute y weights

7 u = y/q > Compute y scores

8: end while

9 p= (tTt)_l XTt > Compute X block loadings
100 E=X—tpTand f =y —tq > Compute residual matrices

The next set of iterations starts with the new X and y arrays as the residual
arrays, E and f, respectively.

For the first component (note that ¢ is a scalar), one can substitute the equation
of step 3 to the equation of the step 4:

W — (u"u) ' X Ty  X"u (1A1)
\/(UTU)*1 uTX (uTu) ' XTu VY uTXXTu o

and by substituting the equation of the step 7 in Equation 4.A.1:

new __ XT (y/Q) _ XTy XTy

= = = (4.A.2)
\/(y/Q)TXXT(y/q) VYTXXTy X7y
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Since w"™" is of length one (w"*Tw"" = 1), it is deduced from Equa-
tion 4.A.2:

|XTy|| = w X Ty (4.A.3)

On the other hand, one can substitute the equation of step 5 to the equation
of the step 6:

T new
vy Xw
= 4.A4
9 wnewTX TX qpnew ( )

and by substituting Equation 4.3 in Equation 4.A.4:

yTXwnew
wnewTSi (N _ 1) TM XM qpynew

q= (4.A.5)

Since w"" is of length one (w™*WTIM*Mqyrew = 1)

tion 4.A.5:

, it is deduced from Equa-

T new newT~T
y Xw w X'y
pr— pr— 4.A.
1" aN-1)  s2({NN-1 (4.A.6)

Substituting Equation 4.A.3 in Eq. Equation 4.A.6:

-l A

Note that, if X comes from a two-level full factorial design coded by minus
and plus values, s2 = N/(N — 1) and Equation 4.A.7 is expressed as:

X y]]

p— 4.A.8
=" (4.A.8)
Besides, after each PLS component is calculated the X-matrix is deflated ac-
cording to step 10, making the PLS model alternatively be expressed in weights
w"" referring to the residuals after previous dimension, instead of the X-
variables themselves (as w* does according to Equation 2.1). However, for
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the first component, X has not yet deflated and, therefore, both w™* and
w* relate directly to X (i.e., w™* = w*). Thus, for the first component,
Equation 4.A.7 can be expressed as follows:

. XTy

4.B Definition of PLS coefficients from the criterion of
maximum variance in a full factorial design

Let us consider two centered data arrays X and vy, where columns of X have
the same variance. From NIPALS algorithm (Appendix 4.A), it follows that:

tT = wnerTX"T (4.B.1)

Besides, since PLS maximizes the covariance between vector t and y, the
following expressions are obtained for the first PLS component:

max cov (t,y) o max (¢'y) = max <w”ewTXTy) (4.B.2)

The last equivalence is the scalar product of two vectors, the unitary vector
w"™ and (XTy), being maximum if both vectors are parallel (Equation 4.B.3).

Wnew XTy
mazx = (4.B.3)
[awree]] [ Xy
Since w"" is of length one ([|lw™"|| = 1):
Xty
mazw"" = ——— (4.B.4)
X"y

As commented in Appendix 4.A, for the first PLS component: (w™" = w*)
and, therefore, Equation 4.B.4 is expressed as:
XTy
w = ———— (4.B.5)
X Tyl
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4.C The second PLS component lacks predictive ability in a
full factorial design

Let us consider two centered data arrays X (N x M) and y (N x 1), where
columns of X have the same variance and are orthogonal to each other. For
the first component, it is deduced from NIPALS algorithm (Appendix 4.A)
that residual arrays are obtained as:

E=X—tp" (4.C.1)
f=X-1 (4.C.2)

Then, the iteration of the second component starts with the new X and y arrays
as E and f, respectively. Thus, the second PLS component lacks predictive
ability if the vector f is orthogonal to the subspace E, i.e., ETf = 0.

From Equation 4.C.1, ET f can be expressed as:
E'f=X"f-pt'f (4.C.3)
and substituting the equation of the step 5 (Appendix 4.A) in Equation 4.C.3:
ETf=X"f —pw'XTf (4.C.4)
On the other hand, Equations 4.4 and 4.10 demonstrate that the solution to

the one-PLS component model corresponds to the MLR solution (i.e., BPLS =

BM rr) and, hence, the residual vector expressing the deviation between mea-
sured and predicted response values are also equivalents (i.e., f = e). Thus,
since in MLR e is orthogonal to the subspace X, it can be deduced that
XTf = 0. Therefore, Equation 4.C.4 is expressed as:

ETf =0pw'0=0 (4.C.5)

proving that f is orthogonal to the subspace E and, therefore, the second PLS
component lacks predictive ability.
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4.D Illustrating the latent space in a full factorial design

Consider a two-level full factorial design of experiment with three factors A, B
and C' (N = 8), and suppose that the population regression coefficient vector
for the main effects is b}, ; » = (5, —2, 4)T. To ease the graphical representation
interactions effects and random noise are not considered. Thus, the response
variable y is calculated as Xbys1r, where X is the (8 x 3) contrast matrix coded
by —1 and +1 values. The parameters of the first PLS component, p, w* and
t, are calculated according to NIPALS algorithm (Appendix 4.A).

In this simple case, the X can be represented as 8 points in the 3-dimensional
regressor space where each column of X defines one coordinate axis. The PLS
model defines a 1-dimensional hyper-plane (i.e., it is defined by one line). The
direction coefficients of this line are p. The coordinates of each run when its
data are projected down on this line are defined by t [25]. These positions
can be represented in the 3-dimensional regressor space as X = tp'. This is
illustrated in Figure 4.D.1.

Note that, according to the equation of the step 9 (Appendix 4.A), p can be
expressed as:

p=(t"t) X"t (4.D.1)
and substituting equation of the step 5 (Appendix 4.A) in Equation 4.D.1:

p= (w”ewTXTXw”ew> T XX e (4.D.2)

Besides, in a two-level full factorial design X*X is equivalent to 8I**% (from
Equation 4.3) and, hence, Equation 4.D.2 can be expressed as:

-1 —1

p= ('w”e“’T8IBX3w”ew) SIS = (w”ewTw”ew) w" (4.D.3)

new newT new

Since w is of length one (w w"® = 1), p is equivalent to w and,
consequently, equivalent to w* (see Appendix 4.A), where w* corresponds to
the regression coefficients multiplied by a scalar (Equation 4.9) . For that
reason, the direction of the latent space, p, is consistent with the direction of
the maximum response gradient as is shown in Figure 4.D.1.
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e X 0 X ——Latent Space ——= Maximum response gradient

Figure 4.D.1: The geometric representation of PLS in the regressor space for a two-
level full factorial design with three factors A, B and C and vector for the main effects

bE{LR = (57 —274))T~

4.E Partitioning of the sum of squares for PLS in a full
factorial design

Let us consider a two-level full factorial design 2%, the sum of squares of a
particular m effect SS,, is expressed as:

88, =1[@" -5 (@' -7)°] (4E1)

where I is the number of samples at each level (i.e., ¥/2), 7' is the average
for level +1, 7! is the average for level —1 and 7 is the total average. Using
g™ = A and y~' = B, and replacing the value ¥ in Equation 4.E.1 by A+B/2

(mean of two averages) gives:

S8, = I{[A—(A+B)j2 +[B— (A+B)/2 )
(A—B)/2" +[(B— 4)/2"}
[(A* + B* —2AB) /4] + [(A® + B* - 2AB)/4] }

(I/2)(A*+ B®> —2AB)

(4.E.2)

1
- If
- I

Besides, using a = X'y, it is deduced for the m-th effect that:

am=1(F" —7") =I(A—B) (4.E.3)
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The square of Equation 4.E.3 is a2, = I? (A — B)*, and dividing by 2I gives:

= (I/2)(A - B)? = (I/2)(A? + B> — 2AB) (4.E.4)

CIRS)
N‘S"’

Comparing Equation 4.E.2 and Equation 4.E.3:

Q

2
== 4.E.
e (4E.5)

N |8
~ s

SS,, =

On the other hand, from Appendix 4.A (Equation 4.A.7) is deduced that:

Xy a a'a
_ _ _ 4E.6
1 "aWw-1 " EN-1 N (4E6)

and from Appendix 4.B (Equation 4.B.5):

XTy a a
W= = = — (4.E.7)
Xyl el VaTa
Hence, for the m-th effect:
a a
wh = —— = 4E.8
" aTa qN ( )
Thus, by relating Equation 4.E.5 and Equation 4.E.8:
* 2 2N2
S8, = % — w2 N (4.E.9)

The residual sum of squares SSg can be easily calculated by subtracting the
explained sum of squares (fozl SS,,) from the total sum of squares SSr as
Equation 4.E.10.

M
SSp =857 - > 98, =y"y—¢*N (4.E.10)

m=1
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Note that, w* is of length one: (XM_ w*? =1).

m=1 "m

4.F Lists of recommended combinations of missing runs for
the most popular designs

This appendix presents the lists of recommended combinations of missing runs
for the most popular designs.

Table 4.F.1: List of the 80 recommended combinations when skipping two runs in a 2%.

1,4 2,3 3,5 46 510 6,15 8,12 10,15
1,6 2,5 3,6 4,7 511 6,16 8,13 10,16
1,7 2,7 3,8 49 514 7,9 814 11,13
1,8 2,8 3,9 4,10 5,15 7,11 8,15 11,14
1,10 2,9 3,10 4,11 5,16 7,12 9,12 11,16
1,11 2,11 3,12 4,14 6,7 7,13 9,14 12 13
1,12 2,12 3,13 4,15 6,9 7,14 9,15 12 14
1,13 2,13 3,15 4,16 6,10 7,16 9,16 12,15
1,14 2,14 3,16 58 6,12 8,10 10,11 13,16
1,15 2,16 4,5 59 6,13 811 10,13 14,15
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Table 4.F.2: List of the 160 recommended combinations when skipping three runs in a 2*.

1,46 1,815 2,516 3,5,8 3,10,16 4,9,15 b5,14,15 7, 12,13
1,4,7 1,10,11 2,7,9 3,5,9 3,12,13 4,9,16 6,7,9 7,12, 14
1,4,10 1,10,13 2,7,11 3,510 3,12, 15 4,10,11 6,7,12 7,13, 16
1,4,11 1,10,15 2,7,12 3,515 3,13,16 4,10,15 6,7, 13 8, 10, 11
1,4,14 1,11,13 2,7,13 3,5,16 4,5,9 4,10,16 6,7,16 8, 10, 13
1,4,15 1,11,14 2,7,14  3,6,9 4,510 4,11,14 6,9,12 8, 10,15

06,7 1,12,13 2,7,16 3,6,10 4,5 11 4,11,16 6,9,15 8, 11,13
1,6,10 1,12, 14 2,8, 11 3,6,12 4,5 14 4,14,15 6,9,16 8, 11,14
1,6,12 1,12,15 2,812 3,6,13 4,515 5,810 6,10,13 &, 12,13
1,6,13 1,14,15 2,813 3,6,15 4,516 5,8 11 6,10,15 8, 12,14
1,6,15 2,35 2,814 3,6,16 4,6,7 58,14 6,10,16 8, 12,15
1,7,11 2,3,8 2,912 3,810 4,6,9 5815 6,12, 13 8, 14,15
1,7,12  2,3,9 2,9,14 3,812 4,6,10 5,9,14 6,12, 15 9,12, 14
1,7,13 23,12 2,916 3,813 4,6,15 59,15 6,13,16 9,12, 15
1,7,14 2,3,13 211,13 3,815 4,6,16 5,9,16 7,9,12 9, 14,15
1,8,10 2,3,16 2, 11,14 3,9,12 4,7,9 5,10,11 7,9, 14 10,11, 13
1,8,11 2,58 211,16 3,915 4,7,11 5,10,15 7,9,16 10, 11, 16
1,8,12 2,5,9 212,13 3,9,16 4,7,14 5,10,16 7,11,13 10,13, 16
1,8,13 2,5, 11 2,12,14 3,10,13 4,7,16 5,11,14 7,11, 14 11,13, 16
1,8,14 2,514 213,16 3,10,15 4,9,14 5,11,16 7,11,16 12, 14,15

) )

Table 4.F.3: List of the 120 recommended combinations when skipping four runs in a 2*.

1,4,6,7 1,8,10,13 2,58 14 3,58, 10 3,10,13,16 4,9, 14, 15
1,4,6,10 1,8,10,15 2,5,9,14 3,5,8,15 4,59,14 4,10, 11, 16
1,4,6,15 1,8,11,13 2,5,9,16 3,5,9,15 4,59, 15 5,38, 10, 11
1,4,7,11 1,8, 11,14 2,5,11,14 3,5,9,16 4,59,16 5,8, 10, 15
1,4,7,14 1,8,12,13 2,5,11,16 3,5,10,15 4,5, 10,11 5,8, 11, 14
1,4,10,11 1,8,12,14 2,7,9,12 3,5,10,16 4,5,610,15 5,8, 14, 15
1,4,10,15 1,8,12,15 2,7,9,14 3,6,9,12 4,5,10,16 5,9, 14, 15
1,4,11,14 1,8,14,15 2,7,9,16 3,6,9,15 4,5 11,14 5,10, 11, 16
1,4,14,15 1,10,11,13 2,7,11,13 3,6,9,16 4,5 11,16 6,7, 9, 12
1,6,7,12 1,12,14,15 2,7,11,14 3,6,10,13 4,5, 14,15 6,7, 9, 16
1,6,7,13 2,3,58 2, 7,11,16 3,6,10,15 4,6,7,9 6,7, 12,13
1,6,10,13 2,3,5,9 2,7,12,13 3,6,10,16 4,6,7,16 6,7, 13, 16
1,6,10,15 2,3,5,16 2,7,12,14 3,6,12,13 4,6,9,15 6,9, 12, 15
1,6,12,13 2,3,8,12 2,7,13,16 3,6,12,15 4,6,9,16 6, 10, 13, 16
1,6,12,15 2,3,8,13 2,8 11,13 3,6,13,16 4,6,10,15 7,9, 12, 14
1,7,11,13 2,3,9,12 2,8, 11,14 3,8,10,13 4,6,10,16 7, 11,13, 16
1,7,11,14  2,3,9,16 2,8,12,13 3,8,10,15 4,7,9,14 8,10, 11, 13
1,7,12,13 2,3,12,13 2,8,12, 14 3,8,12,13 4,7,9,16 8,12, 14, 15
1,7,12,14 2,3,13,16 2,9,12, 14 3,8,12,15 4,7, 11,14 9,12, 14, 15
1,8,10,11 2,58 11 2,11,13,16 3,9,12, 15 4,7, 11,16 10, 11, 13, 16
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Table 4.F.4: List of the 16 recommended combinations when skipping five runs in a 2*.

1,4,6,10,15 1,812, 14,15  2,7,9,12, 14 3,6, 10, 13, 16
1, 4,7, 11, 14 2,3,59,16  2,7,11,13,16  4,5,9, 14, 15
1,6,7,12,13  2,3,8,12, 13  3,5,8,10,15 4,5, 10, 11, 16
1,8,10,11,13  2,5,8, 11,14  3,6,9,12, 15 4,6,7,9, 16

Table 4.F.5: List of the 64 recommended combinations when skipping two runs in a 2?‘_,2

13 23 37 49 515 711 911 11,15
14 24 38 41 516 7,12 912 11,16
1,5 25 39 415 67 713 913 1215
16 26 31 416 68 7,14 914 12,16
1,11 211 315 57 69 811 10,11 13,15
1,12 212 316 58 61 812 10,12 13,16
1,13 2,13 47 59 615 813 10,13 14,15
1,14 2,14 4,8 51 616 814 10,14 14,16
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Chapter 5

Defining multivariate raw
materials specifications

Part of the content of this chapter has been included in:

[14] J. Borras-Ferris, D. Palaci-Lopez, C. Duchesne, and A. Ferrer, “Defining
multivariate raw material specifications in industry 4.0,” Chemometrics and
Intelligent Laboratory Systems, vol. 225, 2022, 1sSN: 18733239. DOI: 10.1016/
j-chemolab.2022.104563
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Chapter 5. Defining multivariate raw materials specifications

5.1 Introduction

Raw materials properties are usually considered as Critical Input Parameters
(CIPs) because their variability has an impact on Critical Quality Attributes
(CQAS) of the final product. Thus, as commented by Duchesne and MacGregor
[78], the development of specification regions for raw materials is crucial to
ensure the desired quality of the product. In this chapter, we propose a novel
method to define meaningful raw material specifications, namely a region that
is expected to provide assurance of quality with a certain confidence level for
the CQAs. Our approach overcomes the drawbacks of the current industrial
practice of setting univariate specifications for each property of raw material
and allows the producer to make a decision on accepting or rejecting a raw
material batch based on the confidence of producing good product quality
prior to starting the manufacturing process.

Despite their importance, specifications are usually defined in an arbitrary way
based mostly on subjective past experience, instead of using a quantitative ob-
jective description of their impact on CQAs. Furthermore, in many cases,
univariate specifications on each property are designated, with the implicit
assumption that these properties are independent from one another. As a con-
sequence, significant amounts of raw materials whose properties are correlated
may be misclassified, as appropriate or otherwise, when univariate specifica-
tions are considered, as it is shown in Figure 5.1.

Let us consider a raw material with two correlated properties, Z; and Z, (see
Figure 5.1) used in the manufacturing of a particular product with final prod-
uct quality Y. The elliptical region “A” is the true multivariate region in Z; and
Z5 such that any batch of raw material used with Z; and Z, properties falling
within it will provide good product quality (i.e., within the Y quality specifi-
cation limits). On the contrary, raw material batches with properties outside
this elliptical region correspond to unacceptable raw material batches, as they
lead to poor product quality (i.e., outside the Y quality specification limits).
The square region “B” corresponds to the univariate specification region when
accepting the same variance on each individual property as the multivariate
region. In this case, accepting raw material batches with properties outside
region “A” and inside region “B” leads to manufacturing products with final
product quality Y outside its specification limits. To avoid this, companies
are forced to shrink the univariate specifications from region “B” to the region
“C”, at the cost of rejecting acceptable raw material batches (i.e., those outside
region “C” but inside region “A”). Another consequence of setting these more
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A. True multivariate region.
B. Univariate specification region containing the true multivariate region.

C. Univariate specification region containing only acceptable raw material.

Figure 5.1: Problem of using univariate specifications on correlated raw material properties
(Z1 and Zz),

restrictive univariate specifications is an increase in costs in the acquisition of
raw material batches with tighter variations in their properties.

Multivariate specifications provide, therefore, much insight into what consti-
tutes acceptable raw material batches when their properties are correlated (as
usually happens). In order to cope with this correlation several authors suggest
using multivariate approaches, such as Partial Least Squares (PLS) regression,
to improve the definition of raw materials specifications.

The first systematic study was reported by De Smet [79], where PLS regression
is used first to build a model between raw materials properties and CQAs by
using historical data. Then, a boundary in the model subspace is defined
within which most of the values for the raw materials properties associated
with good CQAs can be found. This multivariate region (in the latent space)
can then be used to accept or reject new batches of raw materials. The key
assumption of this method is that variability in the CQAs results exclusively
from variations in the raw materials properties of a single material. Duchesne
and MacGregor [78] generalized this method by assuming that both variation
in raw materials properties and in process operating conditions are responsible
for CQAs variations. Uncontrolled variability in the operating conditions will
increase the variability of the CQAs and require tightening specifications on the
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raw material properties to make up for it. On the other hand, properly tuned
feedback and feedforward controllers may compensate for CQAs variations
allowing for wider raw material properties specifications [80]. Later on, Garcia-
Muiioz [81] extended the Duchesne-MacGregor method to combine data from
multiple scales (e.g. lab or pilot scale and commercial scale) with different
processing conditions and control strategies.

These approaches, however, focused on defining multivariate specification re-
gions on the multiple properties of a single raw material. To overcome this
limitation, MacGregor et al. [82] extended them to determine the acceptabil-
ity of new raw materials from multiple suppliers and with multiple measured
properties, as well as to assess the suitability of combining specific batches
of raw materials currently in inventory to minimize the risk of manufactur-
ing a poor quality product. Finally, Azari et al. [42] proposed a sequential
multiblock PLS algorithm to better sort the contribution of raw materials and
process operating conditions on CQA variations, considering two types of raw
materials.

In the aforementioned references, the aim was to determine the boundary in
the latent space of the historical data that best separates acceptable from un-
acceptable raw materials by direct mapping (i.e., those leading to good and
poor CQAs, respectively). Nonetheless, the general shape (e.g., an ellipsoid or
a straight line) and locus of such boundary was decided based on subjective
criteria, trying to best balance out the type I and type II risks'. In contrast
to this, Garcia-Munoz, Dolph, and Ward [80] emphasized the use of mathe-
matical and statistical models as an objective way to define such specifications
by linking them with specification limits for CQAs. Thus, given a desired set
of CQAs, and in order to predict an appropriate set of raw materials prop-
erties, it is necessary to carry out the inversion of the model relating inputs
(raw materials properties) with outputs (CQAs). Recently, Paris, Duchesne
and Poulin [83] carried out a comparison between direct mapping and model
inversion stating their advantages and drawbacks.

However, when inverting PLS models, their prediction uncertainty is also back-
propagated [40, 84]. This issue has not been addressed in the past when defin-
ing multivariate raw materials specifications and, thereby, all the methods com-
mented above are considered as descriptive approaches focused on historical
data, lacking a probabilistic interpretation. For that, uncertainty is accounted

IType I risk is defined as the proportion of truly acceptable batches of raw materials that is
rejected by the customer under a given specification region; type II risk consists of the proportion
of truly unacceptable batches of raw materials that is accepted by the customer under a given
specification region [78].
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in the form of prediction intervals, with a certain confidence level, finding a
window within which any batch with raw material properties is expected to
produce product with CQAs within specification limits with at least the pre-
defined confidence level. In this regard, this window refers to the estimation of
the so-called Raw Material Design Space (DS). The DS is defined as the multi-
dimensional combination and interaction of input variables (e.g., raw material
properties) that have been demonstrated to provide assurance of quality [10].

Bayesian approaches [85-87] can be used to include the model-parameter uncer-
tainty and estimate the probability map of meeting the specifications imposed
on the CQAs being used to identify the DS [88|. However, these methodologies
define the DS by means of a predictive (forward) approach instead of carrying
out the model inversion (backward). Therefore, the representation of the DS
a priori requires the discretization of the multidimensional input domain by
sampling algorithms. Then, simulation methods, such as Markov-Chain Monte
Carlo techniques, are required for each discretization point to determine if it is
within the DS. Hence, these approaches do not represent analytically the DS
in the input domain, with the additional drawback of being computationally
costly.

The novelty of the methodology presented in this chapter is the implementa-
tion of the frequentist probabilistic interpretation in the definition of the Raw
Material DS in the latent space. For that, we propose a method to define
analytically a window in the latent space of the raw material properties that
is expected to provide assurance of quality for the CQAs with at least a cer-
tain confidence level. Besides, it can be used with historical data (i.e., daily
production data not coming from any experimental design but with varying
raw material properties, typical from Industry 4.0 environment) since, when
fitting PLS models, causality can be inferred in the latent space, which allows
the meaningful inversion of the model as discussed in Part 1.

The chapter is organized as follows. Data requirements for defining multi-
variate specification are first discussed in Section 5.2. How PLS inversion
addresses the definition of multivariate specifications by considering a proba-
bilistic approach is then presented (Section 5.3), followed by a description of
the exploitation of those specifications. Finally, the methodology is illustrated
by means of two industrial case studies (Section 5.5).
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5.2 Data requirements

The data required for developing raw materials multivariate specifications fol-
lowing the methodology proposed in this chapter involves two blocks, Z and
Y. Z (N x M) is a matrix of inputs which includes a total of M measurements
characterizing the properties of each of the IV batches of a particular raw ma-
terial. Finally, the Y (IV x L) output matrix consists of L measurements of
the CQAs of the final product obtained for each one of the N corresponding
batches.

Furthermore, process conditions may be under tight control to attenuate some
raw material variations, whenever the eventual effect of such variability on the
CQAs can be compensated by control systems. Specifications for incoming
raw materials are nonetheless required, however, to account for variations in
raw materials whose effect on the CQAs cannot be compensated by control
systems. Therefore, if this situation prevails in the future there is no need to
consider process data to establish the specification regions associated to the
latter source of variation.

5.3 Defining the design space in the latent space by means of
PLS

Defining the multivariate raw material specification region in the latent space
is equivalent to defining the multidimensional combination and interaction of
raw materials properties that have been demonstrated to provide assurance
of quality (i.e., the Raw Material DS). Hence, both terms (multivariate spec-
ifications region and DS) are used interchangeably in the remainder of the
chapter.

5.3.1 Design space with no uncertainty

If there is no prediction uncertainty, the DS must be defined as a region in the
latent space associated with raw materials properties such that these proper-
ties yield an expected value of CQAs, according to Equation 2.7, within their
specification limits.

Besides, since PLS is an empirical model based on historical data, any new set
of raw materials properties must respect the correlation structure and range of
this historical data [35]. Regarding the correlation structure: since the DS is
defined in the latent space, it ensures new observations to behave in the same
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way as the ones used to create the model, in the sense that the correlation
structure of the model is respected. Regarding the historical range: when
considering the Hotelling T2 confidence limit as a raw material specification
limit, the new set of raw material properties are constrained to be within
historical ranges by a multivariate approach. Additionally, historical univariate
ranges for each property (and other constraints) might be included. In this
study, we initially focus on the I-th CQA and, hence, vector y9¢* degenerates
to scalar y?¢*, and matrix Q degenerates to vector g (I-th row of matrix Q).
Besides, one might face three scenarios depending on the kind of specifications
for it:

1. y; = y?*. In this first scenario, a specific value of the 1-th CQA is required.

2.yl <y, < yPS5T. In the second scenario, it is desired that the 1-th CQA

is between a lower specification limit (y/’) and an upper specification

limit (y75%).

3. In the third scenario, only one specification limit is considered, which
might be lower (y/°" < y;) (scenario 3i) or upper (y; < y”5%) (scenario

3ii).

Following the same framework as in Figure 2.1, there are three raw material
properties (M = 3) and the focus is on the I-th CQA, and a PLS model has
been previously fitted using two components (A = 2). Figure 5.2 shows the DS
in the latent space for the latter three scenarios assuming a PLS model with
no uncertainty.

In the first scenario, the desired specific value for the I[-th CQA yields a one-
dimensional NS and, the DS is defined by the intersection of this NS and
the Hotelling’s T2 confidence region. In the same way, in the second and third
scenarios, each specification limit is defined in the latent space by its associated
NS. Thus, the DS in the latent space is defined by the intersection of the scores
fulfilling the specifications’ NSs and the Hotelling T2 confidence region.

Until now, the DS has been defined without taking into account the prediction
uncertainty. However, since empirical models are subject to uncertainty, when
a PLS model is inverted, the uncertainty is backpropagated to the calculated
inputs (i.e., the DS calculation is probabilistic) [40, 84].
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Scenario 1 Scenario 2 Scenario 3i
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Figure 5.2: The Design Space in the latent space, for the three scenarios, assuming a PLS
model with no uncertainty. NS: null space.

5.3.2 High confidence design space

5.83.2.1 Bracketing the design space

When prediction uncertainties are present, the DS without uncertainty shown
in Figure 5.2 does not correspond to the true DS. Therefore, it might be possible
to improve the estimation of the DS by running a set of experiments designed
within the input domain that have already been used in the past (i.e., the
so-called Knowledge Space (KS)). However, exploring the entire KS may be
impractical due to the high number of experiments that may be needed to
account for the variability in all accessible inputs [84]. For that reason, several
approaches have already been proposed in order to define a subspace of the
historical KS where the true DS is likely to lie with a predefined confidence
level. This subspace is called the Experimental Space (ES).

In particular, Facco et al. [84] present a methodology to account for the back-
propagation of the prediction uncertainty in model inversion to bracket the DS.
This methodology resorts to the calculation of the prediction interval consider-
ing only the inversion solution by means of the pseudo-inverse (Equation 2.16).
However, this approach does not consider the difference in the amplitude of the
confidence region due to the leverage of different sets of scores along the NS. A
proposed solution was given by Palaci-Lopez et al. [40] leading to non-linear
confidence limits.
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A graphical interpretation of the methodology proposed by Palaci-Lopez et al.
[40] is shown in Figure 5.3 assuming the first scenario (y, = y%).

" Latent space CQA

Experimental Space == -= (99%) Hoteling 77 Confidence Limit

Figure 5.3: FIRST SCENARIO: The methodology proposed by Palaci-Lépez et al. [40].

Figure 5.3 shows that, as expected, moving along the NS one would obtain
the same prediction of the [-th CQA. Nevertheless, due to model uncertainty,
it does not guarantee to obtain exactly such a prediction. When considering
the prediction uncertainty, a prediction interval which is expected to contain
the true value of an individual value with a predefined confidence level can be
calculated. Note that, since the prediction interval depends on the leverage of
the observation (Equations 2.9 2.10 and 2.11), its amplitude is expected to be
lower for observations close to the centre of projection (small leverage) than for
those far away from it (high leverage) [40]. Then, the prediction intervals for
the multiple solutions are backpropagated when the model is inverted. Thus,
the KS is restricted in such a way as to identify an experimental space in the
latent space, which has a high probability of containing the true DS. However,
this does not mean high probability of providing assurance of quality, which is
what we are interested in when defining multivariate specifications.

5.83.2.2  Proposed definition of the design space

The proposed methodology for defining multivariate raw material specifications
is motivated by Facco et al. [84] and Palaci-Lopez et al. [40] ideas when
back-propagating the uncertainty, but framing the knowledge space with a
different purpose. The ES has a high probability of containing the true DS at
the expense of including unacceptable raw material batches. By contrast, in
this chapter we propose considering the prediction uncertainty in a different
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way, when the model is inverted, in order to define a subspace of the KS
where there is assurance of quality with a certain confidence level. For ease of
understanding of the proposed methodology, we illustrate the second scenario
(Figure 5.4) where it is desired that [-th CQA is between y/* and y/5L.

As discussed above, even though working in the NS associated with the specifi-
cation limit leads to a predicted value between specifications, it might yield out
of specifications values for the [-th CQA due to prediction uncertainties. For
that reason, focusing on the y*T, one should accept raw materials properties
such that its projection in the latent space leads to a lower endpoint, which
is equal or higher than the y/°L, thus delimiting a lower confidence region

(Equation 5.1.
ySt < gf e — EN—df,o/2Sepew (5.1)

When calculating this confidence limit for the multiple solutions along the
NS of y/5F, a non-linear boundary is obtained for the y*5’ as is shown in
Figure 5.4a. Such boundary in the latent space refers to the Lower Specifi-
cation Confidence Limit (LSCL). If working in the LSCL there will be a high

probability to obtain the I-th CQA higher than the y/T.

High-Confidence Design Space

i N > . Warning Space Low-Confidence Space
(Multivariate specification region)
_____ (99%) Hotelin_g _7Y Null Spaces — — — ((1-0)%) Specification
Confidence Limit Confidence Limits

Figure 5.4: SECOND SCENARIO: Graphical interpretation of the proposed definition of
the High-Confidence Design Space. (a) lower specification confidence limit (LSCL). (b) upper
specification confidence limit (USCL). (c) Splitting the KS into High-Confidence Design
Space, Warning Space and Low-Confidence Space.
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In the same way, considering the y”L one should accept raw materials prop-
erties such that its projection in the latent space leads to an upper endpoint
which is equal or lower than the y/“%, thus delimiting an upper confidence
region (Equation 5.2).

leSL > qlTT”ew + EN—df,0p2Sepew (5.2)

Following an analogous reasoning as before, another non-linear boundary, called
Upper Specification Confidence Limit (USCL), is obtained for the y”S (see
Figure 5.4b). If working in the USCL there will be a high probability to obtain
the I-th CQA lower than the y”5T.

Appendix 5.A shows the analytical expression, which allows calculating the
score belonging to both the lower and upper specification confidence limits
given its respective score in the NS for the [-th CQA. Although Equations 5.1
and 5.2 refer to one-sided prediction intervals, the t-statistic is calculated at
the @/2 significance level because two specifications limits are considered. In
the case of having one specification limit (i.e., third scenario), Equations 5.1
or 5.2, as appropriate, would be used at « significance level.

The intersection regions delimited by the LSCL, USCL and the Hotelling
T? confidence ellipsoid, delimits the so-called High-Confidence Design Space,
where any batch of raw material properties results in a prediction interval
for the CQA within specifications. Therefore, from a frequentist probabilis-
tic interpretation, these batches are expected to produce product with CQAs
within specification limits with a confidence level equal or higher than 1 — «.
In other words, this definition of the High-Confidence DS has been demon-
strated to provide assurance of quality with at least a certain confidence level
(Figure 5.4c). The High-Confidence DS is a potential opportunity to establish
Real-Time Release (RTR), which is defined as the ability to evaluate and en-
sure the acceptable quality of the final product based on inputs variables (e.g.,
raw material properties) without using end-product testing [10].

Additionally, the intersection between the region bounded by the two NSs
corresponding to the y=°L and y”5L, and the Hotelling’s T confidence region,
but outside the High-Confidence DS, defines the so-called Warning Space (Fig-
ure 5.4c). Note that, although this space does not belong to the multivariate
raw material specification region as defined, it does not necessarily imply the
rejection of batches. In fact, batches lying within the Warning Space lead to
predicted values between specifications, but they result in prediction intervals

for the CQA partially outside of specifications given the predefined confidence
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level 1 — a. Namely, there is no assurance of quality due to the prediction
uncertainty and, hence, RTR testing is not feasible. Instead of that, end-
product testing may be employed, which usually involves undertaking specific
lab-testing procedures on samples of the final product. This could be interest-
ing when rejecting all batches in the Warning Space is not affordable. Finally,
the Low-Confidence Space (Figure 5.4c) leads to predicted values outside spec-
ifications. Although batches lying within this subspace may lead to response
values between specifications, most of the time such values are expected to be
outside.

Therefore, following the proposed approach, the KS is split into three regions:
High-Confidence DS, Warning Space and Low-Confidence Space, providing a
strategy where RTR or end-product testing, can be used as needed.

Note that, the High-Confidence DS is more restrictive that the unknown true
DS, and the less uncertainty there is, the more similar the High-Confidence
DS and the true DS are, as it is graphically shown in Figure 5.5.

+ Uncertainty -

N Design Space High-Confidence Design Space (99%) Hoteling 72 __ __ _ ((1-a) %) Specification

(without uncertainty) (Multivariate specification region) Confidence Limit Confidence Limits

Figure 5.5: SECOND SCENARIO: Effect of the uncertainty on the High-Confidence DS
related to the DS without uncertainty.

High uncertainty in the data is reflected in a low goodness of prediction model.
But this does not limit the proposed methodology, indeed, the lower goodness
of prediction, the more crucial it is to take uncertainties into account if product
quality is to be guaranteed. In that point, the authors would like to challenge
the widely held view that a low goodness of prediction model is useless and
point out that low goodness of prediction model, typical from the industry

78
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4.0 environment, can be useful if being cautious. In this sense, Garcia-Munoz
and Mercado [89] already worked in a real process under control where a LV
regression model, that had the ability to systematically predict 21% of the
variability in the quality attribute, was used with a great potential for im-
provement. However, in certain situations a low goodness of prediction model
may be a warning of non-linearities in the original dataset that is not captured
adequately by the linear PLS model [86].

To summarize, Figure 5.6 shows the DS (if there is not uncertainty in the
model), the experimental space and our proposed High-Confidence DS for all
scenarios.

Scenario 1 Scenario 2 Scenario 3i

~ 7
So ,°
S
LSL USL
=y B T
<] Design Space E imental S High-Confidence Design Space ~ _  _ _ (99%) Hoteling 7%
(without uncertainty) xperimental Space (Multivariate specification region) Confidence Limit

Figure 5.6: Comparison of the DS (without uncertainty), ES and High-Confidence DS for
the three scenarios.

The first scenario is a particular case of the second scenario where yrF =
yV5E. In this case, there is no intersection between the LSCL and USCL
and, therefore, the High-Confidence DS does not exist. Up to this point,
we have defined the High-Confidence DS for the I-th CQA. The joint High-
Confidence DS for the L CQAs will be obtained as the intersection of the L
High-Confidence DSs for each CQA.
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5.4 Exploiting the model

Once the High-Confidence DS have been defined as discussed above, the model
can be used to inspect every new batch of raw material, 2°** (Phase II). This
allows the user to predict if the CQAs of the product, that would be manufac-
tured using any new raw material batch, would be within specifications, and
consequently accept or reject the raw material batch prior to introducing it
into the production process. The procedure for that is as follows:

80

1. Mean-center and scale z°* using the same mean and scaling factor used

on the calibration data when the PLS model was developed in Phase 1.

. The scores 7°% are obtained from the linear combinations of mean-centered

and scaled raw materials properties according to Equation2.4, and the
SPE.os is obtained according to Equation 2.6.

. The final decision on whether to accept or reject a new raw material

batch is up to the user based on the values of SPE, .- and z°**. When
the SPE, o is higher than SPEj;,,, this suggests that their properties re-
flect a different correlation structure than that of the raw material batches
from the historical dataset used to build the PLS model. It is then impos-
sible to predict with the fitted PLS model the impact of this raw material
batch on CQAs of the final product. Besides, in such a case, one could
use the SPE contribution plot in order to examine which raw material
properties contribute the most to this high SPE value, providing the sup-
plier with useful information about deviations in the batch raw material
properties. Regarding the projection in the latent space z°%, if these
scores fall within the High-Confidence DS, this batch will be expected
to produce product with CQAs within specification limits with at least
a certain confidence level. Note that, instead of rejecting all the high
SPE,x. and high T2 raw material batches, one may also process some
of them (when deviations are not too important), incorporate them as
new design points to augment the historical data matrices Z and Y, and
fit a new PLS model in order to better define sequentially the multivariate
specification region.
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5.5 Industrial case studies

5.5.1 First industrial case study: cereal extraction process

Description of the dataset

Historical data collected from a maize cereal extraction process is used to illus-
trate the proposed methodology. The maize is fed to the production process
where, initially, it is cleaned to free the maize of all kinds of impurities and then
it is steeped. Subsequently, a grinding process takes place to grind the harder
parts of the maize, followed by a degerminating process so that the germ is
separated from the fiber, gluten, and starch. Finally, after a sieving process
is carried out to separate the fiber, a primary separator splits by centrifugal
force the stream in two fractions: gluten and slurry starch. The latter has a
great interest as it has become a major industrial raw material.

The data available in this case are a compilation of eight raw material proper-
ties (Z) of maize: promatest value, protein, acid value, specific weight, burnt
grain, broken grain, starch and extractable lipids, and one response variable
y (extraction yield of starch slurry). These variables are easily registered in
order to assess the feasibility of a raw material batch. In total, 989 historical
batches/observations were measured: Z (989 x 8) and y (989 x 1). Besides, a
lower specification limit of 69% is considered for the response variable, hence
this case refers to the third scenario.

Performance of the multivariate raw material specifications

Leave-one-out Cross-Validation (CV) was used for selecting the number of PLS
components. Thus, two LVs were chosen to fit a PLS model (R = 37.6%,
Ry, =26.73% and Q% = 25.63%) using the 989 calibration observations.
The R? values (goodness of fit) give the percentage of the total sum of squares
of y and Z, respectively, that are explained by the fitted PLS model, while
the Q% (goodness of prediction) gives the percentage of the total sum of
squares of the response that can be predicted with the PLS model by CV. It
is also crucial to validate the model by monitoring charts for SPE and T?
(shown in Figure 5.7), in order to determine whether historical /happenstance
data are consistent with normal process conditions (i.e., common cause process
variations).
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Figure 5.7: First Case Study: Monitoring charts for SPE (left) and T? (right).

Figure 5.7 shows that none of the historical batches exhibit any unusual be-
havior caused by special cause process variations. Notice that, although some
of them slightly exceed the upper confidence limit, they correspond approxi-
mately to 1% false alarm rate (expected when using 99% confidence limits).

Figure 5.8 illustrates the 99% Hotelling T confidence limit, the NS associ-
ated with the LSL, and its 90% confidence limit when considering the pre-
diction uncertainty (i.e., the Low Specification Confidence Limit, LSCL). The
intersection of all confidence regions, defined by their limits, yields the High-
Confidence DS (i.e., the proposed multivariate raw material specifications in
the latent space) within which there is assurance of obtaining superior or equal
yields to 69% with at least 90% confidence level.

To evaluate the performance of the definition of the multivariate raw material
specification region, a diagnostic test is carried out. In particular, type I
risk, type II risk and the Negative Predictive Value (NPV) are calculated for
the High-Confidence DS. The NPV is the proportion of batches that actually
result in a good product out of all those within the High Confidence Design
Space, and, hence, this metric is directly connected to the definition of the
High-Confidence DS itself. The assessment of these metrics is carried out by
leave-one-out CV.
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Figure 5.8: First Case Study: Graphical definition of the High Confidence Design Space,
Warning Space and Low-Confidence Space by showing calibration data.

De Smet [79] and Duchesne and MacGregor [78] approaches would have ended
up defining a straight line or an ellipsoid in a subjective way, that would best
balance type I and type II risks in Figure 5.8. Besides, if the PLS model
was of a higher dimension (A > 3), it would be difficult to decide the gen-
eral shape and locus that best defines the separation between good and poor
quality, unlike the proposed approach, which does not suffer from such hand-
icap regardless of the dimensionality of the latent space. On the other hand,
Garcia-Munoz, Dolph, and Ward [80] would have obtained a wider region, akin
to the DS without considering the uncertainty (the joint of High-Confidence
DS and Warning Space). However, because of the uncertainty, this approach
would result in accepting almost every batch of raw materials (no matter if
they are acceptable or unacceptable), leading to 6.10% type I risk, 88.89%
type II risk, and 77.42% NPV. None of these approaches are probabilistic, and
therefore they do not allow knowing the confidence level in meeting the final
product quality specifications.

By contrast, our High-Confidence DS is defined with at least a 90% confidence
level of obtaining superior or equal yields to 69%. Thus, one would expect that,
of the batches lying within the High-Confidence DS, 90% or more would be
acceptable batches (the NPV for the High-Confidence DS is 96.10%). On the
other hand, the High-Confidence DS leads to 70.60% type I risk and 3.86% type
IT risk. This means that if only batches lying within the High-Confidence DS
are accepted, 3.86% of unacceptable batches of raw materials will be accepted
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at the expense of rejecting 70.60% of acceptable batches. These results are the
consequence of the low PLS goodness of prediction (Q%, = 25.63%) in this
case study, due to the fact that historical data presents a low signal to noise
ratio. Alternatively, one could accept batches lying within the Warning Space
knowingly that the NPV in such space would be 71.14% and, hence, likely end-
product test should be required. Another option would be to balance the type
I and type II risks by modifying the confidence level of the High-Confidence
DS. Figure 5.9 shows the High-Confidence DS for different confidence levels
(50, 70, 90 and 99%). The corresponding type I risk, type II risk and NPV
for the High-Confidence DS, and NPV for the Warning Space are shown in
Figure 5.10. Note that, in this case (i.e., scenario 3) the 50% confidence level
case corresponds to the DS without considering the uncertainty.

Figure 5.9 shows that as confidence level increases, a tighter High-Confidence
DS is spanned, thereby, the type II risk is reduced at the expense of increasing
the type I risk, as is shown in Figure 5.10. Therefore, the confidence level of
the High-Confidence DS must be chosen according to the users by balancing
the consequences of having type I and type II errors in their processes and the
total amount of such errors. Besides, for all cases, the NPV is equal or higher
than its corresponding confidence level as expected.

Influence of the goodness of predictions

In order to investigate how PLS goodness of prediction Q%{cum affects the per-
formance of the High-Confidence DS a simulation study is carried out. In these
simulations, we assume that the true model relating Z and y is, indeed, the
one calculated by the calibration set. Hence, individual values of y, y°**, are
obtained using Eq. (21) given a batch of raw material 2°* and the weighting
matrices g2 and W*:

yobs _ qu*Tzobs + 6obs (53)

where €% is an independent random noise value from a normal distribution

with zero mean and standard deviation ¢. By modifying the value of such
standard deviation, one can create simulated datasets yielding PLS models
with different goodness of prediction. Figure 5.11 shows the High-Confidence
DS with 90% confidence level of obtaining superior or equal yields to 69% for
different datasets simulated from the exploiting dataset by using a standard

2Note that since there is only one CQA, L =1 and Q = ¢q7.

84



5.5 Industrial case studies

50%
I A} T 1
=== Null Space HC DS v Poor Quality
= = Specification CL @  Good Quality

2 PLS component
(=]

-2
—4
1 PLS component
90%

T A} F) 1
=== Null Space HC DS e Good Quality
= = Specification CL WS v Poor Quality

2

2 PLS component
(=]

1 PLS component

70%
r A} . T 1
=== Null Space HC DS e Good Quality
= = Specification CL WS v Poor Quality

1 PLS component

99%
r A} T . 1
= Null Space HC DS e Good Quality
= = Specification CL WS v Poor Quality

1 PLS component

Figure 5.9: First Case Study: High-Confidence DS, Warning Space and Low-Confidence

Space for several confidence levels.
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Figure 5.10: First Case Study: type I risk, type II risk and NPV for the High-Confidence
(HC) DS, and NPV for the Warning Space (WS) vs confidence level: 50%, 60%, 70%, 80%,
90% and 99%. Bold values refer to those used in Figure 5.9 and are shown bigger.

deviation of 0.025, 0.1, 0.5 and 1 yielding Q3 of 91.76%, 73.92%, 41.06%
and 20.19%, respectively. 989 batches have been simulated for each dataset to
obtain more accurate results with respect to the original data.

Figure 5.11 shows that the lower the noise standard deviation, the higher
the goodness of prediction and, consequently, the clearer the discrimination
between acceptable and unacceptable raw materials. Besides, regardless the
goodness of prediction, the proposed method defines the multivariate specifica-
tion region given the same confidence level (90%). As can be seen, lower values
for the goodness of prediction result in narrower multivariate specification re-
gion where more acceptable material is rejected to guarantee such confidence
level. This will affect the type I and type II risks as shown in Figure 5.12.

Figure 5.12 shows that with moderate/high values of Q%(wm it is feasible to
obtain DS with high confidence level and low type I and II risks, and high
NPV. For example, given desired yields equal or superior to 69%, the DS with
90% confidence level and o = 0.025 (Q%,. = 91.76%) leads to 9.23% type I
risk, 3.57% type Il risk and 99.50% NPV. However, with low values of Q3. it
is more critical to consider the prediction uncertainty for guarantying quality
(i.e., high NPV in the High-Confidence DS) at the expense of increasing the
type I risk.

Note that the apparently bad performance for low values of Q3 is solely
due to the nature of the data and not the methodology, as noise refers to
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Figure 5.11: First Case Study: High-Confidence DS, Warning Space and Low-Confidence
Space for simulated data with different noise variability o.

87



Chapter 5.

Defining multivariate raw materials specifications

=== Type [ risk === Type II risk ===+ NPV DS NPV WS
100
80 | _--"0
/"’
R
//
60 | D
/7
7
//
?
10 + ,
4
/
/
/
201 o
/
S q
2 1 g ————
0 & 1 L 1 ! L
0.0 0.2 0.4 0.6 0.8 1.0
Noise variability (o)

Figure 5.12: First Case Study: type I risk, type II risk and NPV for the High-Confidence
DS, and NPV for the Warning Space (WS) with 90% confidence level vs noise variability:
0.025, 0.1, 0.3, 0.5, 0.7, 0.9 and 1. Bold values refer to those used in Figure 5.11 and are
shown bigger.

random variation with no pattern, and therefore usually unavoidable and un-
predictable.

In the case of desiring to increase the signal-to-noise ratio of the data sets, some
process excitation is needed. Multivariate design of experiments can be used
such that it provides the greatest amount of additional information with re-
spect to the information available in the existing dataset [90] Considering these
new observations from experimentation in addition to the historical /happen-
stance data will improve the estimation of the High-Confidence DS (i.e., wide
multivariate specification region with high confidence level and low type I and
type II risks will be obtained).

Sensitivity analysis of the number of PLS components

A sensitivity analysis was undertaken to assess the stability of the High-
Confidence DS with respect to the number of PLS components. The number
of components to be used is a very important property of a PLS model and
their choice must be done according to the purpose of such model. In our case
study, we have evaluated how changes in the number of components may affect
the type I and type II risks of the High-Confidence DS with 90% confidence
limit. Table 5.1 shows that no relevant differences in the performance of the
diagnostic test are observed when adding PLS components. The reason for
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this is the fact that the goodness of prediction (Q%(Hn) is quite similar among
the models.

Table 5.1: First Case Study: Goodness of prediction (Q%(mm), type I risk, type II risk and
NPV for the High-Confidence (HC) DS, and NPV for the Warning Space (WS) as a function
of the number of PLS components (High-Confidence DS for 90% confidence level).

A Q% (%) Typel (%) Typell (%) NPV HCDS (%) NPV WS (%)
1 25.06 72.88 3.86 95.79 71.67
2 2567 70.63 3.86 96.10 71.14
3 2558 70.90 3.43 96.49 71.45
4 2557 70.90 3.43 96.49 71.51
5 2556 70.90 3.00 96.92 71.32
6 2556 70.90 2.58 97.35 70.98
7 2556 71.03 2.58 97.33 70.96
8 2556 71.03 2.58 97.33 70.68

5.5.2 Second industrial case study: blown film process

Description of the dataset

This industrial case study refers to a catalytic afterburner used as control de-
vice for oxidation of undesirable combustible gases in a petrochemical process.
The properties of the catalyst have an impact on the afterburn quality process
and, hence, it is not only crucial to determine the raw material properties of
the catalyst, but also to define its multivariate specifications for ensuring such
quality.

The historical /happenstance data available are a compilation of nine proper-
ties of the afterburn catalyst (Z) related to regenerated catalyst percentage,
catalyst density, particle size distribution and chemical composition, and one
response variable y (afterburn yield). In total, 9971 historical batches/ob-
servations were measured. Besides, both lower and upper specification limits
are considered for the response variable, hence this case refers to the second
scenario.
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Figure 5.13: Second Case Study.

Performance of the multivariate raw material specifications

Leave-one-out CV [62, 91| was used for selecting the number of PLS com-
ponents. Thus, two LVs were chosen to fit a PLS model (R}, = 56.44%,
Ry~ =173.32% and Q% = 73.29%) using calibration observations. This
is a case study with a moderate goodness of prediction (Q%... ). None of the
historical observations exhibit any unusual behavior caused by special cause
process variations based on SPE and T? charts (charts not shown).

Figure 5.13a illustrates the High-Confidence DS with a 90% confidence level
resulting in 41.20% type I risk, 10.23% type II risk and 97.82% NPV. However,
if uncertainty had not been considered, 4.47% type I risk, 62.34% type II risk
and 92.27% NPV would have been obtained. As expected, Figure 5.13b shows
that as confidence level increases, the type II risk is reduced at the expense
of increasing the type I risk. It should be noticed that the type I and II risks
and NPV not only depend on the goodness of prediction but also on other
factors such as the scenario, the value of the specification limits or the tested
data. For that reason, different case studies with the same Q3 could result
in slightly different type I and II risks for the same confidence level.
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Sensitivity analysis of the number of PLS components

Since in the second case study there is a substantial variation in the goodness
of prediction when adding the second PLS component, the sensibility analysis
of the number of the PLS components is also undertaken (Table 5.2).

Table 5.2: Second Case Study: Goodness of prediction (Q%{cum), type I risk, type II risk
and NPV for the High-Confidence (HC) DS, and NPV for the Warning Space (WS) as a
function of the number of PLS components (High-Confidence DS for 90% confidence level).

A Q% (%) Typel (%) Typell (%) NPV HCDS (%) NPV WS (%)

1 46.82 66.04 13.84 95.03 85.88
2 73.29 41.20 10.23 97.82 84.60
3 73.97 40.67 8.11 98.28 84.64
4 74.24 41.86 7.50 98.37 84.02
5 74.30 41.99 7.76 98.31 84.05
6 74.37 41.37 7.41 98.40 83.86
7 74.47 42.03 7.32 98.41 84.18
8 74.62 41.52 7.94 98.29 84.20

Unlike the first case study (Table 5.1), Table 5.2 shows relevant improvements
in the reduction of type I and II risks when adding the second PLS component,
but not after adding more components. For that reason, it is concluded that
the CV criterion for the selection of two PLS components results in good
performance indices.

5.6 Conclusion

In this chapter, we propose a novel approach to define an analytical expression
for defining the multivariate raw material specification region in the latent
space where there is assurance of quality with a certain confidence level for the
CQAs of the final product (i.e., the so-called High-Confidence design space).
Thus, it would allow evaluating the capability of the raw material batches of
producing product with CQAs within specification limits, before producing a
single unit of the product, and based on that information, making a decision
about accepting or not the supplier raw material batch. This is totally different
from existing approaches that evaluate (and also accept or reject) raw material
batches based on their raw material properties but not on the desired final
product properties.
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This methodology is based on the inversion of the PLS model, and the most
remarkable advantages are:

It can be used with historical data (i.e., daily production data not coming
from any experimental design but with varying raw material properties,
typical from Industry 4.0 environment) since, when fitting PLS models,
causality can be inferred in the latent space, which allows the meaningful
inversion of the model.

It considers a multivariate approach providing much insight into what
constitutes acceptable raw material batches when their properties are
correlated.

The use of mathematical and statistical models as a way to define such
raw material specifications by linking them with specification limits for
CQAs of the final product.

It allows a frequentist probabilistic interpretation. The multivariate raw
material region is expected to produce product with CQAs within spec-
ification limits with a confidence level equal or higher than (1 — a) x
100.

It provides the analytical definition of the limits of the multivariate raw
material specifications.

It provides a strategy where RTR (for batches in the multivariate raw
material specification region or High-Confidence Design Space), or end-
product testing (for batches in the Warning Space) can be used as needed.

Note that, while driven by the need to define meaningful specifications for raw
materials, the developed methodology can be applied not only to defining High-
Confidence DS for raw materials but also for other input variables, including
process variables.
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Appendices

5.A Specification confidence limits for the [-th critical
quality attributes

Let 7% be a vector of scores belonging to the NS associated to either the
upper or lower specification limit for the I-th CQA (y7’F), and 75¢F the vector
of scores belonging to such specification confidence limit. Thus, the vector
defined by (779 — 75°L) is orthogonal to the NS (i.e., as vector v; defining the
hyperplane of the NS (Equation 2.17)), and the direction depends on whether

it refers to yFSL (7E9CL) or y/ S (7USCL)

TN — 750 = g\ (5.A.1)

where A is a scalar that can be negative or positive depending on it referring

to the 7E5CL or 7USCL yespectively. Besides, the lower (if y£5” is considered)

or upper (if y75% is considered) endpoint of its prediction interval must match

the specification limit.

ySE = gl (5.A.2)
W= a4 — tx—dpepsepser (5.4.3)
Ut =q +tn_apepssor (5.A.4)

By substitution and reorganization of either Equations 5.A.1, 5.A.2 and 5.A.3,
or Equations 5.A.1, 5.A.2 and 5.A.3 the same quadratic equation is defined
(Equation 5.A.5).

stserty_gpapn = (@)’ N’ (5.A.5)

Notice that there will be a negative solution attributed to the ySF and a

positive solution attributed to the y/S%. Furthermore, since s%,sc. depends
1

on the leverage of the unknown 75¢% (either 729¢L or 7U9¢L) according to

Equations 2.10 and 2.11, it must can hesexpressed as a function of
T

by taking into account Equation 5.A.1 as follows:
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1

st = SEF (] (TTT) " wA? = 20 (TTT) " 7¥5)

+ 14+ 1/NTNST (TTT) )
Substituting Equation 5.A.6 in Equation 5.A.5:

(qo)* A = SE} (v (T™T) " 0,32 - 20 (TTT) " 775
+ 14+ 1/NTNST(TTT) T NS,

and reorganizing terms:
aN +bA+c=0 (5.A.6)

where:

—1 2
a=SE (T'T) vty 4.0, — (qvr)
1
b= —SE2vf (TTT) " 75 .., (5.A.7)
c= SEH(L+ 1/NTYT (TVT) e,

The values of A that satisfy the Equation 5.A.6 are the solutions of a quadratic
equation and, as commented above, there will be a positive and a negative one.
Besides, it is known that ¢ is positive given the terms that define it. For all
this, it can be deduced that the quadratic function is concave down (i.e., the
second derivative is negative) and, consequently, a must be negative. Because
a is negative and c is positive, it is determined that the discriminant (b* —4ac)
is positive and, therefore, there are two distinct roots as follows:

—b+Vb? — dac

)\1 =
2a
5A.8
\ —b —/b% — 4dac ( )
2 p—
2a

where both of them are, by definition, real numbers. Since the root of the dis-
criminant is higher than b and a is negative, it is deduced that A; is negative

(it refers to y%) and ), is positive (it refers to y”**). Thus, Equation 5.A.9
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shows the analytical expression of the specification confidence limits when con-
sidering the prediction uncertainty.
FLSCL _ oNS _ g5,

7_USC’L NS

5.A.9
=7V — v ( )
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Chapter 6

Defining multivariate raw
material specifications via

SMB-PLS

Part of the content of this chapter has been included in:

[17] J. Borras-Ferris, C. Duchesne, and A. Ferrer, “Defining Multivariate Raw
Material Specifications via SMB-PLS,” Chemometrics and Intelligent Labora-
tory Systems, vol. 240, 2023. DOI: 10.1016/j.chemolab.2023.104912
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Chapter 6. Defining multivariate raw material specifications via SMB-PLS

6.1 Introduction

In Chapter 5, we have discussed the advantages of being able to define pre-
cisely meaningful multivariate raw material specifications, i.e., a region that
is expected to provide assurance of quality with a certain confidence level for
the CQAs. To cope with that several authors suggest using multivariate ap-
proaches, such as Partial Least Squares (PLS) regression. Two approaches
emerge from the literature when using PLS. The first is based on a direct map-
ping of good quality final product and associated batches of raw materials in
the latent space, followed by a selection of boundaries that minimize or best
balance type I and II errors. The second rather defines specification regions
by inverting the PLS model for each point lying on final product acceptance
limits [83]. Besides, assuming that both variations in raw materials properties
and process operating conditions are responsible for CQAs variations, Azari
et al. [42] proposed a Sequential Multi-block PLS (SMB-PLS) algorithm con-
sidering the direct mapping approach. The SMB-PLS imposes a sequential
pathway between the regressor blocks according to the process flowsheet (e.g.,
raw material properties and process operating conditions), and then uses or-
thogonalization to separate correlated information between the blocks from
orthogonal variations. Hence, the SMB-PLS captures the impact of variations
in raw material properties on the process and on CQAs in the first block of
latent variables. This allows identifying feedback /feedforward control actions
made to compensate for variations in raw material properties. Then, the sec-
ond block of latent variables captures process variations that are independent
from raw material properties and also affect CQAs, e.g., certain (unplanned)
excitations due to small changes in the process conditions during their daily
operation. For that reason, the SMB-PLS is more efficient to establish the
multivariate specifications when raw material properties and process condi-
tions are correlated as it better sorts the contribution of both on the CQA
variations.

However, since not only raw material properties influence the quality of the
final product, but also process conditions, it is reasonable to consider also the
possibility to modify process conditions to compensate for raw material prop-
erties variations. Thus, wider raw materials specifications could be used if an
effective process control system attenuating most raw material variations is
implemented. In this sense, Garcia-Munoz, Dolph, and Ward [80] already pro-
posed a feed-forward controller based on the PLS model inversion. However,
this approach requires solving an optimization problem by a non-linear pro-
gramming method, where raw material properties are fixed to hard constraints
reducing the degrees of freedom to only process conditions. Thus, once a new
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raw material batch is received, the controller is executed in order to calculate
the combination of the best process conditions, based on the desired CQAs, for
such raw material batch. Note that, if too many constraints are specified for
raw material properties, the model inversion solution may be forced to move
away from the latent model [23|. Besides, this approach makes no attempt
to differentiate between correlated and uncorrelated variations in process con-
ditions with raw material properties and, hence, this proposed feed-forward
controller does not identify properly the control actions from the past.

The purpose of this work is to develop a novel methodology taking advan-
tage of the SMB-PLS model already discussed in the direct mapping approach
but applied into the PLS model inversion approach. Thus, by means of the
SMB-PLS model inversion, this methodology allows defining analytically such
specifications by considering the possibility to modify process conditions prior
to selecting a new raw material batch and, hence, it does not require solving an
optimization problem each time a new raw material batch is received. In ad-
dition to that, unlike PLS, the SMB-PLS model does identify the variation in
process conditions uncorrelated with both raw material properties and known
disturbances, which is crucial as the modification of process conditions only
must be inferred from such variations as it will be explained in Section 6.3.

6.2 Data requirements

The data required for developing raw materials multivariate specifications by
considering the possibility to modify process conditions involves three blocks:
Z,XandY.Z (NxM)andY (N xL) are defined as in Chapter 5, and X (N x
K) is a matrix of inputs which includes a total of K process conditions used to
process each one of the IV batches of a particular raw material. In this chapter,
it is assumed that process conditions refer to process manipulated variables.
Finally, batches of raw materials are typically large, and it is assumed that
the process will run for a long period at steady state on each batch. Thus, the
three data blocks are collected in steady state.
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6.3 The SMB-PLS model in the raw material paradigm

The SMB-PLS, presented in Section 2.3, is applied in the raw material paradigm
to differentiate between process variations associated with raw material prop-
erties from other orthogonal sources of variations. Indeed, it imposes a hier-
archical structure where the input blocks are ordered according to the process
flowsheet with the first block Z containing incoming raw material properties,
and process data in the second block X. Besides, the SMB-PLS latent space
can be expressed, similarly to PLS, but as two blocks of latent variables (Equa-
tion 6.1).

Y = [TTTorth] [QTQorth]T 4 F* — TQ 4 F* (61)

where F* are the residuals of Y after extracting the last SMB-PLS component.
Thus, SMB-PLS captures the impact of variation in raw material properties on
the process and on Y in the first modelling step represented by the first block
of latent variables, Ty, referring to [Z X,..]. These latent variables allow
identifying past operating procedures, and control actions from the past (i.e.,
feedback /feedforward control) implemented to compensate for raw material
properties variations.

Note that as already commented, process data is collected in steady state, and
hence, dynamics are not considered. Besides, if the controllers remove the
disturbances completely (perfectly), no deviation in Y in steady state will be
captured after a raw material disturbance occurred. In such a case, there will
be a correlation between Z and the manipulated variable in the control loop
X, but that information should not be captured by any latent variable since
there will be no correlation with Y.

However, in the case of feedforward control on raw material properties, an ideal
controller would compensate for any raw material disturbance completely only
if it would know the “true” model, which is never the case. In the case of feed-
back control, if the controller transfer function includes an integrating element
(e.g., the I mode in PID controller that seeks to eliminate the residual error ac-
cording to the historic cumulative error), and if the manipulated variable does
not reach an upper or lower bound (i.e., saturation), the impact of the distur-
bance on Y should not be captured if the data is collected truly in steady state
(i.e., perfect controller). Note that, feedforward controllers are never ideal, nor
feedback controllers are perfect. Therefore, these controllers do not compen-
sate perfectly (i.e., there will be a residual effect on Y). In addition to that,
regarding the feedback control, the correlations between the manipulated and
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controlled variable of the control loop are not causal but anti-causal, that is,
these correlations capture the reciprocal of the control transfer functions, lead-
ing to the negative inverse of the controller gain for steady state data. Finally,
note that control loops are known, and hence, when interpreting the SMB-PLS
model, these correlations are not a surprise, but something expected.

In both feedback/feedforward control, the purpose is not to interpret these
relationships as causal (which would be wrong), but to account for them in the
first block of latent variables. Thus, in the second modelling step, the second
block of latent variables, T, referring to X1, is expected to capture only
process variations that are independent of raw materials and also affect Y
(e.g., certain (unplanned) excitations). The main aim of this study is to take
advantage of the information captured in this second block to improve the
control actions from the past in a feedforward control strategy.

6.4 Defining the design space in the latent space by means of
SMB-PLS

In this section, a brief overview of defining the DS is shown based on Chap-
ter 5, but by considering the process conditions by means of the SMB-PLS
model instead of applying PLS. This is possible as the SMB-PLS latent space
(Equation 6.1) is expressed similarly to PLS.

Defining the DS involves finding (predicting) a window of inputs (raw materials
properties, process conditions, etc.) for a desired product quality by means of
the model inversion. When considering the inversion of a SMB-PLS model,

new

the set of input variables (column vector [;new ) that will yield the desired

des)

set of CQAs (column vector y¢*) are obtained by solving the following system

of linear equations:

new
Tr

TTLCU} } = QTnew (6.2)

ortho

ydes — Q |:

new

is the vector of scores corresponding to the observation new |-

new

where T

new new

The way to calculate z and ™ from 7" is explained in Section 6.5.

The SMB-PLS model inversion involves solving a system of linear equations
represented in a matrix form (Equation 6.2), where there are as many linear
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independent equations as the rank of Y (ry), and the number of unknown
variables corresponds to the dimensionality of the latent space (A). Commonly,
ry is lower than A and, hence, Equation 6.2 corresponds to an underdetermined
system of linear equations. The multiple solutions "¢ fall into a (A — ry)-
dimensional hyper-plane of the A-dimensional space (i.e., Null Space (NS)),
that theoretically yields the same desired set of CQAs. Finally, DS without
uncertainty in the latent space is defined by the intersection of the scores
fulfilling the specifications’ NSs and the Hotelling T confidence region.

In addition to that, when inverting the SMB-PLS model, the prediction un-
certainty is accounted in the form of prediction intervals as in Section 5.3.2.2,
with a certain confidence level, finding a window within which inputs variables
are expected to produce product with CQAs within specification limits with
at least the predefined confidence level. This window refers to the so-called
High-Confidence Design Space (HC DS).

6.5 Multivariate raw material specification region

The HC DS, defined by the SMB-PLS model, simultaneously considers the raw
material properties and process conditions. At this point, one could use such
model to define the multivariate raw material specification region (i.e., the
Raw Material HC DS) according to two strategies: without or under improved
control.

6.5.1 Without improved control

In this section, it is assumed that process variations, correlated with raw ma-
terial properties will remain in place in the future without any improvement.
Thus, establishing specifications in raw material properties aims at penaliz-
ing those combinations that are not compensated for by the current control
schemes.

A priori, in this strategy, there is no need to consider the orthogonal variations
in process conditions and, hence, Raw Material HC DS refers to the HC DS
of the SMB-PLS for [ZX,,,..|. Thus, given a new raw material batch, 2",
its corresponding Z scores, T7°", the expected process conditions according to
the control actions from the past, &7 and its corresponding X, scores,

corr?
new

%" , are calculated according to Equation 6.3.
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new W* T _new

e new

corr Cxcorr TZ (63)
new __ T new
Txcnr'r‘ W Xeorr®corr

where W*z is the Z block weights transformed to be independent between
components, Cx is the correlation coefficient matrix calculated in the first

corr

modelling step which directly relates 77° to xlsw, and W*x_  is the X .,
block weights transformed to be independent between components. Both, W*
and W*x__ are calculated in the first modeling step as it is shown in Ap-
pendix 6.A. The corresponding projection into the first block of latent variables,

T2, are obtained in the super level score matrix Equation 6.4.

T = dmg([ 7T ]WT) (6.4)

Xeorr

where [17°7Tg" | refers to the matrix of concatenated score vectors (A x 2),
W is the super Welght matrix containing the super weight vectors organized
by columuns (2 x A), and diag is the matrix-to-vector diagonal operator. Then,
if any point, 7" is within the HC DS, one would expect good quality with a
certain conﬁdence level for such z"*. Hence, the Raw Material HC DS (i.e.,
RM HC DS) can be defined as Equation 6.5).

RMHCDS :={(7r): 70 € HCDS} (6.5)

In the case of considering also X,,:, in the second modeling step, the Raw
Material HC DS would refer to the space defined in Equation 6.6.

Ort = {(TT7 T()T'th) Tr € R Torth = T;:netq]f:

6.6
RMHCDS :={(7r): 11 € HC'DS NOrt} (6:6)

Note that, the Raw Material HC DS defined in Equation 6.6 a priori requires
that the vector of scores referring to orthogonal variations in process conditions,
7%, is known beforehand. If this is not the case, it is assumed that 725 will
remain on average with respect to the past (i.e., 775 = 04, ,, ) where 04_,, isa
zero vector of size A,.,). However, as it is unknown, the confidence limits must
be calculated disregarding the orthogonal latent space. In other words, the

prediction uncertainty, back-propagated in the definition of the specification
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confidence limits, must be estimated assuming that the 7]/5% remain on average

with respect to the past.

6.5.2 Under improved control

Several works have already emphasized the control actions from the past could
be improved in order to compensate for some of the raw materials variabil-
ity [42, 80, 92]. Hence, wider raw materials specifications can be used if an
effective process control system attenuating most raw material variations is
implemented. In this sense, the SMB-PLS is particularly useful approaching
this strategy as it models the orthogonal variations in process conditions in a
second block of latent variables being orthogonal to the first one. Thus, one
can infer causality interpretations in the reduced latent space of the second
block. This information offers an effective way of manipulating the process
conditions, with respect to the control actions from the past, for compensating
raw material variations.

In this strategy, given a new raw material batch, 2™, the expected process
conditions according to the control actions from the past, 5", and the first
block of latent variables, T3¢”, are obtained as above (i.e., Section 6.5.1).
Then, any raw material batch, resulting in 73", is expected to have good
quality with a certain confidence level by modifying process conditions (i.e., it

new

belongs to the Raw material HC DS), if and only if there is any 7,4, = 75

such that 7" = {T}:ew belongs to the HC DS, where )% is the score values
orth

of the second block of latent variables. From 7.5}, one can figure out how to
manipulate the process conditions to compensate for raw material variations
according to Equation 6.7.

new new new new

— __ .new
4 = Teopy + Lorth = Leorr + POTthTorth (67)

new

where P, is the loading matrix of the second latent block. Note that, 7/5%
represents the locus of the 7% projections within the HC DS given a new raw
material batch. Therefore, if it exists, the control actions could be improved
in different ways without leaving the DS, which provides operational flexibility

in process improvement.

Finally, we can define analytically the Raw Material HC DS, prior to selecting
a new raw material, as the projection of the HC DS onto the space defined by
the first block of latent variables as Equation 6.8.
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RMHCDS = {(r7) : 70 = Tp, [7] ,¥7 € HCDS} (6.8)

where Tp.. is the linear transformation that projects from RAT+Aoren to RAT
defined by the matrix Pp = [I4,.04, 4,,,,], L4y is the identity matrix of size
Ar, 04 4,,,, is a zero matrix of size Ar x A, and Ar and A, are the
latent dimensionality of the first and second block, respectively.

6.6 Presence of known disturbances affecting control actions

Until now, we have assumed that orthogonal process variations to raw mate-
rial properties and related to CQAs are due to certain (unplanned) excitations.
However, process conditions could present variations due to feedforward com-
pensation for some known disturbances.

This issue needs special attention as if one decides to ignore the known dis-
turbance for not being manipulatable, the SMB-PLS could model, in the or-
thogonal block, variations in process conditions that may be related to such
disturbance. The fact that the correlation between process conditions and the
known disturbance could still explain variations in CQAs is because the control
adjustment may not be perfect (i.e., the effect of the known disturbances is
not removed completely). This will yield misleading causality relations in the
reduced latent space. Therefore, we suggest adding an intermediate block D
(N x O) being a matrix of inputs which includes a total of O known distur-
bances measured in each one of the N batches of a particular raw material.
Thus, the SMB-PLS algorithm includes an intermediate modelling step that
captures the impact of variation in disturbances orthogonal to Z (i.e., D,.1,)
on the process and on Y, represented by latent variables Tp. This interme-
diate block of latent variables allows identifying control actions from the past
implemented to compensate for disturbances not related to raw material prop-
erties. This ensures that the last modeling step only model certain (unplanned)
excitations in process conditions, X, from which causality can be inferred.

In the same way as Section 6.5.1 but including the disturbance space, the Raw
Material HC DS without improved control would refer to the space defined in
Equation 6.9.

Dis := {(TTa D, Torth) TT € RAT) ™D = T]?)ewv Torth € RAOT”L}
OT‘t = {(TT7 D, To’r'th) L TT S ]RATv ™ S RAD; Torth = T;etq]f: (69)
RMHCDS :={(7r): 70 € HCDSNOrtN Dis}
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Equation 6.9 assumes that both the disturbance and the orthogonal space are
not manipulatable and, hence, they must be defined as constraints, Dis and
Ort respectively, that intersect with the HC DS. However, if control actions can
be improved by means of the orthogonal space, such space must be projected
onto the remaining space in the same way as Section 6.5.2. Thus, the Raw
Material HC DS, by considering the possibility to modify process conditions
prior to selecting a new raw material batch, can be defined analytically as the
intersection between the projection of the HC DS onto the first and second
block of latent variables (i.e., Pr), and the subspace defined by m3¢ (i.e., Dis),
as it is shown in Equation 6.10.

Dis := {(tp, ™) : 7r € R, mp = 757}
Pr:={(rr,m™) : {:ﬂ =Tpy, [T],VT € HCDS} (6.10)
RMHCDS :={(rr) : 7v € DisN Pr}

where Tp.., is the linear transformation that projects from RATTAp+Aorin tq
RAT+AD defined by the matrix PTD = [IAT-FADOAT-FAD,Aomh,]? IAT+AD is the
identity matrix of size At + Ap, Oartap.4,,,, 1S & zero matrix of size Ar +
Ap X Ayen, and Ap is the latent dimensionality of the disturbance block.

Note that, the Raw Material HC DS defined in Equation 6.9 and Equation 6.10
a priori requires that the vector of scores referring to orthogonal variations in
disturbances, 73", is known beforehand. If this is not the case, it is assumed
that 75" will remain on average with respect to the past (i.e., 75
where 04, is a zero vector of size Ap), and the confidence limits must be

calculated disregarding the disturbance latent space.

:OAD

6.7 Industrial case study

Description of the dataset

A simulated polymer extrusion film blowing process was used to generate data
in order to illustrate how to define multivariate specification regions for in-
coming raw materials [45, 78|. The dataset consists of two regressor blocks
(mathbfZ and mathbfX) and a response block (mathbfY). The raw ma-
terial block (mathbfZ) contains the following polymer resin properties: ten
temperature dependent viscosities (1), heat capacity (C,), and density (p).
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The second block (mathbfX) contains 3 process conditions, namely the air
temperature (T,), the polymer flow rate (@) and the cooling air flow rate rep-
resented by the maximum local heat transfer coefficient along the film bubble
(ho). The response block (y) is characterized by one quality attribute of the
film, which is the full stress in the machine direction (FMDS), with a lower
specification defined as its average.

The dataset was simulated in two steps. First, variability was introduced in
raw material properties and process conditions in such a way that both regres-
sor blocks affect y, but variations in Z and X are uncorrelated to each other
(initially blocks are orthogonal). This was achieved by introducing random
variations in raw material properties (Z) and processing conditions (X) to sim-
ulate their effect on product quality. However, the variables within each block
are collinear to a certain extent. Regarding Z, correlation is due to viscosities
measured at different temperatures. In a second step, similar uncorrelated
variations were again implemented in both regressor blocks, but between block
correlations were introduced by a feedforward controller, added to attenuate
variations caused by raw material properties. This controller corrects for some
of the variability in the polymer heat capacity C}, by adjusting the flow rate
Q. The processing of 50 raw materials batches were simulated.

Building the SMB-PLS model

Three components were found sufficient to capture the impact of raw material
properties (and correlated process variations) on y in the first modelling step.
One additional component was also needed in the second modelling step to
model the effect of orthogonal variations in process conditions on the remain-
ing variations in y. The goodness of fit, R3,  (i.e., variability percentage
explained by the model) for each one of the 1nput blocks Z and X, and the
output block, y, and each component, is presented in Flgure 6.1.

Figure 6.1 shows that the first three components of the first modelling stage ex-
plain 74.89% of the information in Z and 22.10% of the information in X that
was correlated with Z, to explain a great percentage of the response variability
(86.22%). Component 4 (the unique component of the second modelling stage)
shows that the 62.12% of the variation in X, not related to Z, is able to ex-
plain 8.65% of the response variability. Since the last two components explain
the greatest variation in X (Figure 6.1), Figure 6.2 shows the bi-plot of the
block weights and y loadings for these components to understand the behavior
of process conditions. Figure 6.2 reveals that the explained variation in the
polymer flow rate @ seems to be related to raw material properties according
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Figure 6.1: Explained Z, X and y variabil- Figure 6.2: Bi-plot of the block weights and
ity for the SMB-PLS model depending on ei- vy loadings for last two components.

ther the number of latent variables (LVS) or

the two blocks of latent variables (LV1-LV3

explain the first block [ZXcorr], and LV4 ex-

plains the second block Xorip).

to the third component. In fact, @) is strongly negatively correlated with the
heat capacity C, because when C, increases, ) is reduced (as a result of the
feedforward controller) to mitigate its impact on quality product. However,
component 4 shows that () barely presents orthogonal variations to raw mate-
rial properties related to y. By contrast, the air temperature T, and the cooling
air flow rate hg present orthogonal variations to raw material properties highly
correlated with each other, from which one can infer causality in the reduced
latent space. In other words, for any active change in the process conditions
of T, and hg, being consistent with the correlation structure modeled by the
latent orthogonal space, the SMB-PLS model will reliably predict the changes

in y.
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Defining the high-confidence design space

The HC DS is defined with at least a 90% confidence level of obtaining superior
or equal FM DS values to the average of calibration data (lower specification
limit). Figure 6.3 shows the HC DS by showing the calibration data for the
first two components of the first modelling step [ZX.,,.| and the orthogonal
one. The third [ZX,,..| component from the first modelling step is omitted.

Null Space |—
HC DS
e  Good Quality |

v Poor Quality

w

Orth. SMB-PLS component

Confidence limit

12 3

“3-2-1
1 SMB-pLg 123 _3 -2 -1
MB-PLS comy, ’ 2 SMB-PLS component

onent

Figure 6.3: Graphical definition of the High-Confidence Design Space by showing calibra-
tion data.

One would expect that, of the batches lying within the HC DS, 90% or more
would be acceptable batches. Indeed, the negative predictive value! is 95%.
On the other hand, the HC DS leads to 3.57% type I risk and 13.64% type II
risk. This means that if only batches lying within the HC DS are accepted,
13.64% of unacceptable batches of raw materials had been accepted at the
expense of rejecting 3.57% of acceptable batches.

Multivariate raw material specification region without improved control

In this section, it is assumed that process variations, correlated with raw ma-
terial properties due to control actions through manipulated variables, will
remain in place in the future without any improvement. In such a case, a
priori there is no need to consider process conditions to establish the specifica-
tion regions associated with the raw material properties and, hence, one could
define this region by the PLS model inversion by considering only raw material

IThe negative predictive is the proportion of batches that actually result in a good product out
of all those within the HC DS.
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properties as in [14]. By contrast, without improved control, we propose to de-
fine the raw material HC DS as the HC DS of the first block of latent variables,
referring to [ZX..,| of the SMB-PLS. The amount of information/variability
contained in the first input block depends on Z as X, does not provide a new
source of variability. Therefore, the predictive power of both, PLS for Z with
three components and SMB-PLS for only [ZX.,,.| with three components, are
the same. Consequently, a priori, the classification performance of new raw
material batches is expected to be equivalent. However, incorporating process
data by means of the SMB-PLS presents some advantages with respect to PLS
as we will see below.

As Azari et al. [42] discussed, the SMB-PLS provides great insights in agree-
ment with process knowledge for the effects of material variations and corre-
lated process conditions (control schemes mainly). Firstly, since the SMB-PLS
also can model the orthogonal variations in process conditions by the second
block of latent variables, it provides a great capability for diagnosing assignable
causes of such variations. In fact, by interrogating the underlying SMB-PLS
model, one can extract diagnostic or contribution plots which reveal the group
of process conditions making the greatest contributions to the deviations in
the squared prediction errors, and the scores |28, 93]. In addition to that,
the second block of latent variables provides a better understanding of the re-
sponse variability with respect to both PLS and SMB-PLS for only [ZX .o
(this increases the response variance percentage up to 95.87%). The latter
results in less prediction uncertainty, and this affects the definition of the Raw
Material HC DS. Figure 6.4 shows the graphical definition of such space for
the SMB-PLS depending on whether the X,,;, is considered or not.

Figure 6.4 shows graphically that, as expected, the Raw Material DS without
uncertainty (i.e., the union of the Raw Material HC DS and the Raw Material
WS) are equal regardless of whether X, is considered or not. In addition
to that, the less uncertainty there is, the more similar the Raw Material HC
DS and the Raw Material DS without uncertainty are. For that reason, the
SMB-PLS Raw Material HC DS becomes wider when incorporating the X,
block as can see in Figure 6.4. Therefore, it can be concluded that, for model
building, the SMB-PLS provides useful information in order to achieve a higher
level of process understanding when considering the X,,;,. However, it is
crucial to bear in mind that for exploiting the model, Figure 6.4b requires
that orthogonal variations are known beforehand. Indeed, the Raw Material
HC DS shown in Figure 6.4b arises from the assumption that the orthogonal
variation in process conditions will remain at the average value with respect
to the past. If they are not known beforehand, it is assumed that 75 will
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Figure 6.4: Graphical definition of the Raw Material High-confidence Design Space (Mul-
tivariate Raw Material Specification region) and Raw Material Warning Space when:

remain on average with respect to the past and, hence, the confidence limits
must be calculated disregarding the orthogonal block yielding Figure 6.4a.

Multivariate raw material specification region under improved control

Let us consider the HC DS defined previously (see Figure 6.3). Then, a new raw
material batch is considered prior to the manufacturing process (i.e., only raw
material properties are known). Thus, the red triangle in Figure 6.5 refers to
the projection onto the latent space assuming that the control actions of process
conditions remain in place, and the orthogonal variation in process conditions
remain at the average value with respect to the past (i.e., the orthogonal

component is null): {T“E) }

In such a case, as shown in Figure 6.5, this batch would be outside the specifi-
cation region. However, if the orthogonal component is modified orthogonally,
such batch can become part of the specification region (deep blue solid line).
This is a batch that, a priori, would give place to a film with an unacceptable
response value (FMDS), but that by improving the control actions it would
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Figure 6.5: Graphical definition of the High-Confidence Design Space by showing the
projection of the new raw material batch when: i) orthogonal variation in process conditions
remain at the average value with respect to the past (red triangle), and ii) control actions
are improved (blue circle).

yield a film with an acceptable response value (FM DS). As commented, since
the control actions could be improved in different ways without leaving the HC
DS, it provides operational flexibility in process improvement. As an exam-
ple, the blue circle is selected among all process conditions yielding the score:

Torth]
in the same way as the ones used to create the model, in the sense that the
correlation structure of the model is respected. A logical question then arises:
how to manipulate the process conditions to get this solution? The answer is

applying Equation 6.7. This is shown graphically in Figure 6.6.

[TT } This solution belongs to the latent space and, therefore, it behaves

Figure 6.6 shows the time series of manipulated variables with their historical
limits. The red triangles refer to the expected process conditions due to the
control actions from the past, 5%, while the blue circles show the final con-
ditions after improving such control for compensating raw material variations.
The latter arises from adding the orthogonal variation, ¢ . which is obtained
as P, 705", As expected, the flow rate () is barely modified with respect to
the expected control actions because, as it is shown in Figure 6.2, this process
condition does not present a relevant amount of orthogonal variation related
to y. By contrast, the air temperature 7, and the cooling air flow rate hqg do
and, hence, one can infer causality in the reduced latent space in order to at-
tenuate most raw material variations. Note that, since causality is inferred in
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Figure 6.6: Time series of process conditions, T, ) and ho, and new setpoints in two
scenarios: no improved control (red triangle) and under improved control (blue circle).
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Figure 6.7: Raw Material High-Confidence Design Space:

the reduced latent space, process conditions are manipulated to be consistent
with the latent orthogonal space shown in Figure 6.2.

Finally, the Raw Material HC DS, by considering the possibility of modifying
process conditions prior to selecting a new raw material batch, can be defined
analytically as the projection of the HC DS onto the space defined by the first
block of latent variables, according to Equation 6.8 (see Figure 6.7b).

Figure 6.7 shows that Raw Material HC DS is expanded when considering
the possibility to modify process conditions for compensating raw material
variations. Thus, one may be able to accept raw materials that will yield
products with perfectly satisfactory quality properties as a consequence of the
process conditions modification, as in the considered new raw material batch.
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Presence of known disturbances affecting control actions

Process conditions could present variations due to feedforward compensation
for some known disturbances. In fact, in the simulated polymer extrusion film
blowing process, the air temperature T, refers to the air ambient temperature.
In such a case, this process condition cannot be manipulated but it is a ma-
jor process known disturbance affecting cooling conditions and hence, quality
properties. In addition to that, the cooling air flow rate hy is manipulated by
a feedforward controller to compensate for some variations in the ambient air
temperature T,,. To identify these variations as explained in Section 6.6, an in-
termediate block D must be added. In this case, since there is only one known
disturbance, the intermediate block is defined as vector d. The goodness of fit
for the SMB-PLS model, R?, for each one of the input blocks, Z, d and X,
and the output block, y, and each component, is presented in Figure 6.8.

[ LviEs Lv3 B 1V4 [doin, Xeorr,)
T V2P [Zdeorr, Xeorr,) | IR LV5 X,

1Tuu
80

60 |-
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40 |

20
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Figure 6.8: Explained Z, d, X and y variability for the SMB-PLS model depending on
either the number of latent variables (LVs) or the three blocks of latent variables (LVI1-LV3
explain the first block [Zdcorry Xcorrz|, LV4 explains the second block [dorth Xeorry], and
LV5 explains the last block Xor¢n)-

Figure 6.8 shows that three components were found sufficient to capture the
impact of raw material properties (and correlated disturbances and process
variations) on y in the first modelling step explaining 74.89% of the information
in Z, 4.89% of the information in d and 30.70% of the information in X, to
explain a high percentage of the response variability (86.22%). One additional
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Figure 6.9: Raw Material High-Confidence Design Space prior to knowing 7T, by showing
the projection of the new raw material batch as a red triangle:

component was also needed in the second modelling step to model the effect
of orthogonal variations in disturbances (and correlated process variations) on
the remaining variations in y. This component shows that the 95.11% of the
variation in d, not related to Z, is able to explain 42.83% of X and 7.02% of the
response variability. The latter represents variations in d affecting y, but not
compensated by the controller. Finally, one component was used to capture
the orthogonal variations in process variations on the remaining variations in
y showing that the 8.28% of variation in X, not related to Z and d, is able to
explain 3.27% percentage of the response variability.

The most common case is that the ambient air temperature T, is not known
when receiving a raw material batch. Therefore, it is assumed that, for exploit-
ing the model, this disturbance remains on average with respect to the past
and, hence, the confidence limits are calculated disregarding the disturbance
block. Thus, Figure 6.9 shows the Raw Material HC DS prior to knowing
T, without improved control (Figure 6.9a), and by considering the possibil-
ity to modify process conditions (Figure 6.9b), using Equations 6.9 and 6.10,
respectively.

Figure 6.9 shows that the Raw Material HC DS is slightly expanded when
considering the possibility to modify process conditions for compensating raw
material variations. Indeed, the new raw material batch illustrated in the
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Subsection 7.5 would be on the border of the Raw Material HC DS, since
there is no control action that allows being within the HC DS. This happens
because only 3.27% of the response variability can be inferred as the effect of
8.28% of the variation in X not related to Z and d. The latter may not be
sufficient to carry out effective improvement in the control action.

6.8 Conclusions

In this chapter, we propose a novel approach for defining analytically the mul-
tivariate raw material specification region by considering the possibility to
modify process conditions to compensate for raw material properties varia-
tions. This methodology is based on the SMB-PLS model inversion where
prediction uncertainty is back-propagated. The most remarkable advantages
of the proposal approach are:

e It can be used with historical data (i.e., daily production data not coming
from any experimental design but with varying raw material properties,
typical from Industry 4.0 environment).

e [t considers a multivariate approach providing much insight into the cor-
related nature of raw material properties and process conditions. Besides,
the SMB-PLS does identify the variation in process conditions uncorre-
lated with raw material properties and known disturbances, which is cru-
cial to implement an effective process control system attenuating most
raw material variations.

e [t allows expanding the multivariate raw material specification when con-
sidering the possibility to modify process conditions and, hence, one may
potentially be able to accept lower cost raw materials that will yield prod-
ucts with perfectly satisfactory quality properties.

Definitely, this methodology takes advantage of the variation in process con-
ditions uncorrelated with raw material properties and known disturbances to
expand the raw material specification. However, this variation may result in-
sufficient to carry out effective improvement. In such a case, process excitation
would be needed by running design of experiments on process operating con-
ditions.
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Appendices

6.A SMB-PLS weights transformed to be independent
between components

This appendix is applicable to blocks, Z and X, (hereinafter called B). The

weights matrix, Wg, do not directly relate the matrix B to the score matrix

Tg, as B is deflated after each component by the loading matrix Pg. However,

the weights, Wg, can be transformed to W5 by M (Equation 6.A.1) and, thus,
W5 does directly relate B to Tg, (Equation 6.A.2).

Wi, = WM (6.A.1)
Tg = BWj, = BWgM (6.A.2)

If multiplying both sides of Equation 6.A.2 by the transpose of the super score
matrix, T, the M matrix can be expressed asEquation 6.A.3.

M = (TLBWg) ' (T4 Tg) (6.A.3)

On the other hand, Tt are good “summaries” of B according to the loading
matrix Pg (Equation 6.A.4).

B = TP} + Ep (6.A.4)

where Eg is the residual matrix. Then, multiplying both sides of Equa-
tion 6.A.4 by the transpose of T, the Equation 6.A.5 is obtained.

T1B =T TyPg + T1Eg = T TP} (6.A.5)

Note that, the super scores columns vectors of Tt are orthogonal to Eg.
Substituting Equations 6.A.3 and 6.A.5 in Equation 6.A.1, the relation between
W35 and W is obtained according to Equation 6.A.6.

Wi, = Wi (TATPLWg)  (TET5) (6.A.6)
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6.A SMB-PLS weights transformed to be independent between components

Note that, regarding the block X o, the matrix A = Ty TPy Wx_  may
be rank-deficient as more latent variables could be extracted than the rank of
Xorr and, hence, A would not be invertible. In such a case, X,,,, and Tx

cannot be directly related by Wi

corr

corr
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Chapter 7

Latent space-based multivariate
capability index

Part of the content of this chapter has been included in:

[19] J. Borras-Ferris, D. Palaci-Lopez, C. Duchesne, and A. Ferrer, “A latent
space-based Multivariate Capability Index: A new paradigm for raw material
supplier selection in Industry 4.0,” 2023, SUBMITTED
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7.1 Introduction

Capability indexes (CIs) are used to estimate how likely is a given supplier of
raw materials to meet consumer’s requirements for these raw materials. It is
therefore usually used as a criterion for selecting process’s raw material sup-
pliers [94]. When the process must be able to attain specification limits for
multiple raw material properties, the use of independent univariate Cls for
each one of them is often used with the implicit assumption that these proper-
ties are independent from one another. However, the use of this approach can
lead to misinterpretation because the capability of each property is analyzed
independently assuming that specifications are hyperrectangles, namely with-
out considering its correlation to other properties of the raw material. Hence,
different approaches were recently proposed to develop multivariate Cls which
quantify with a single index the goodness of a raw material supplier by consid-
ering multiple properties simultaneously [95]. To the authors’ knowledge, all
of them assume that the specifications are hyperellipsoids defined in the origi-
nal space of raw material properties without considering a precise relationship
to the CQAs. Nevertheless, these specifications may result meaningless, i.e.,
based on these specifications, accepted raw material batches, once processed,
the manufactured product is out of CQAs specifications. This may force the
customer to be more restrictive (i.e., narrowing the raw material specification
region) with the underlying assumption that accepting minimal variations in
raw materials results in minimal fluctuations in CQAs. However, this would
increase the costs in the acquisition of raw material batches with tighter vari-
ations in their properties [78]. But would it be feasible to define meaningful
multivariate raw material specifications considering a precise relationship to
the CQAs? This would allow increasing the number of potential suppliers,
by allowing a wider range of raw material properties (Z), without compromis-
ing the Critical Quality Attributes (CQAs) of the final product (Y). In this
sense, in Chapter 5 a novel approach has been proposed to define an analyti-
cal expression for defining the High-Confidence Design Space (HC DS) of raw
materials, i.e., the High-Confidence Raw Material Specification Region (HC
RMSR) where there is assurance of quality with a certain confidence level for
the CQAs of the final product. The logical extension of defining meaningful
specifications is to measure how far suppliers can consistently operate inside
such latent space-based raw material specifications (i.e., HC-RMSR). This is
the purpose of the novel Latent Space-based Multivariate Capability Index
(LSb-MC,y,) proposed in this chapter. The LSb-MC,, provides information
on the ability of each supplier of a particular raw material to produce a cer-
tain percentage of the final product within its CQAs specifications. And this
information can be obtained at the reception of the supplier ‘s raw material,
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before producing a single unit of the product, and it can be used for ranking
and selecting suppliers.

This chapter is organized as follows. Data requirements for defining the La-
tent Space-based Multivariate Capability Index (LSb-MC,y) are first discussed
(Section 7.2). The proposed LSb-MC,, is then presented (Section 7.4), fol-
lowed by the description of diagnosing assignable causes (Section 7.5). Finally,
all methodology is summarized by a scheme (Section 7.6), and then illustrated
by a case study Section 7.7.

7.2 Data requirements

The data required for developing the LSb-M C, involves two blocks, Z (N x M)
and Y (N x L) (as in Chapter 5) to define firstly the multivariate raw material
specification region in the latent space. Then, only a set of raw materials from
a given supplier is required to define its respective LSb-MCpy.

7.3 Supplier’s raw material operating space (RMOS)

The purpose of this section is to define the so-called supplier’s Raw Material
Operating Space (RMOS), that is, a region in the latent space connecting
the raw material properties with the Critical Quality Attributes (CQAs) of
the product manufactured that will contain the batches of a particular raw
material supplier at a certain confidence level. Thus, the RMOS refers to the
space where the supplier’s raw material samples are expected to be located in
the latent space connecting the properties of these raw material samples with
the CQAs of the corresponding manufactured product.

To provide a reliable definition of the RMOS, a number of raw material sam-
ples for a particular supplier are required. As in any statistical estimation
procedure, the larger the sample size, the better. Based on the authors’ ex-
perience a minimum of 30 samples is recommended!. As the RMOS for any
supplier is calculated from an empirical model, it is required to check if the
supplier behaves in the same way as the historical raw material samples used
to fit the PLS model. This is done by projecting the set of supplier’s raw
material samples into the PLS latent space and calculating the SPE statistics
(Equation 2.6). Then, if it is acceptable to consider that the samples from this

INote that, given a supplier’s raw material, the appropriate sample size will be conditioned by the
degree of uncertainty of the estimated parameters used for defining the RMOS. If this uncertainty
is higher than what is acceptable, the sample size should be increased.
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supplier meet the correlation structure from the past (SPE < SPE;,), the
variability of the projected samples into the latent space (i.e., scores) can be
modelled under the assumption that these scores follow a multivariate normal
distribution (since they are linear combination of random variables [96]). In
fact, this multivariate normal distribution in the latent space is characterised
by the centroid vector (7¢) and the covariance matrix (S) of the scores obtained
from the set of raw material samples.

Hence, given a certain confidence level, a region where we expect to operate
the process according to the supplier is defined. This region is called Raw
Material Operating Space (RMOS) and it is represented by the equation of an
ellipsoid (Equation 7.1).

(r—76)' S (r—71¢) < (7.1)

where 7 is any score belonging to the RMOS, and ¢? represents the size of the
elliptical region. The latter is the estimated squared Mahalanobis distance of
any point belonging to the envelope of this ellipsoid to the centre, and can be
considered distributed as [30]:

, A(S+1)(5-1)
T S(S—A)

Fas_a (7.2)

where S is the number of raw material samples. When considering a certain
confidence level (), the value of ¢? is calculated as follows:

A(S+1)(S— 1)
Cffa = S (S — A) F(l—(x);A,S—A (73)

7.4 Latent space-based multivariate capability index

Once the HC-RMSR and the RMOS are defined, the proposed Latent Space-
based Multivariate Capability Index (LSb-M C,;) can be calculated in an anal-
ogous way as it is done in the univariate case. This index quantifies the capacity
of each supplier of the raw material of providing assurance of quality with a
certain confidence level for the CQAs of the manufactured product.

Figure 7.1 shows graphically the similarity between the latent space-based
multivariate capability index, LSb-MC,;,, assuming a two-component model,
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Figure 7.1: Graphical interpretation of:

and the classical univariate capability index in the original space, C,y, for a
particular supplier.

As commented above, the C);, only focuses on one raw material property where
its specifications are not model-linked to the CQAs (Figure 7.1a). This index
measures how much "natural variation" a process experiences relative to its
specification limits, and it is a ratio of the distance between the average of the
raw material property (u) and its closer specification limit (SL) and half the
“natural variation” (oz;_, /2) for a certain confidence level 1 — «:

Cop = man{| SL — p |} (7.4)

OZ1—a/2

where o is the standard deviation of the raw material property, and z;_,/2
is the percentile of a standard normal distribution corresponding to a given
confidence level of 1 — «/2. Per contra, LSb-MC,,, focuses on a multivariate
specification region in the latent space considering not just one but all raw
material properties related to CQA (Figure 7.1b). Besides, analogously to
Cpr, LSb-MC), compares two terms:
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e the minimum statistical distance between the multivariate specification
limit (7p51) and the RMOS centroid (i.e., T7¢), which is calculated taking
into account the estimated covariance matrix (S) of the scores of the raw
material properties of the particular supplier,

e and the statistical distance of the RMOS envelope (¢;_,) given a certain
confidence level (1 — a).

by using the following expression:

L5y, — My (s = 0)" 8 (russ — )

(7.5)

Cl—u

Considering the minimum statistical distance between 73,57 and T¢ equals to
enlarge (if LSb-MC,, > 1) or shrink (if if LSb-MC,,, < 1) the ellipsoid defined
by Equation 7.1 until it intersects with the 7ys. LSb-MC)py, lower than 1 is
generally considered a poor capability index, as it suggests that the supplier
cannot consistently operate within the HC-RMSR.

7.5 Diagnosing assignable causes

PLS models provide a great capability for diagnosing assignable causes [93].
By using contribution plots [97] the underlying PLS model can be interrogated
to reveal the group of regressor variables making the greatest contributions to
the deviations in the SPE and/or the scores. Although these plots will not
unequivocally diagnose the root causes of the deviations, they will provide a
great insight to find them.

For instance, a high value of the SPE (SPE > SPEy,,) for a particular
sample could indicate that it is statistically different from the samples used to
build the PLS model in the sense that it contains new sources of variability
that have not been captured by the model (i.e., there is a breakage in the
correlation structure) [82]. Therefore, the PLS model would be unsuitable for
assessing this sample. In this case, the SPFE contribution plot for each sample
would show the contribution of each one of the raw material properties to
the respective SPFE value, giving insight into what is different with these raw
material samples with respect to those used in the historical data base. These
could be of great help to suppliers to try to achieve a profound understanding
of these deviations.
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On the other hand, if it is desired to diagnose an assignable cause for a poor
LSb-MCpr (LSb-MC,. < 1), we propose to use the score contribution plots.
For that, we consider two scenarios: i) LSb-MC, < 0and ii) 0 < LSb-MCpy, <
1. The first scenario means that centroid of the RMOS (i.e., average operating
point) is outside the HC-RMSR. In that case, it is of great interest to reveal
the group of raw material properties making that deviation. This can be done
by calculating the contribution from the centroid of the HC-RMSR (i.e., ideal
point) to the centroid of the RMOS. In the second scenario the centroid of the
RMOS is inside of the HC-RMSR and, hence, on average one would expect
to yield a manufactured product meeting CQA specifications. In that case,
it seems to be more valuable to reveal what variability direction inside the
RMOS is most likely to yield samples outside the HC-RMSR. The latter can
be done by calculating the contribution from the centroid of the RMOS to the
minimum statistical distance between T),s;, and 7¢ (considering S).

7.6 Proposed methodology

In this section we illustrate a schematic methodology, by a simple example
(Figure 7.2), to rank and select suppliers for a particular raw material used in
a manufacturing process. In this example, it is assumed that there are three
raw material properties, the focus is on the I-th CQA, a PLS model is fitted
using two components, and both lower and upper specification limits for the
[-th CQA are considered.

The steps of the proposed methodology follow:

1. To build a PLS model from a rich database with historical information of
the several properties measured for a particular raw material along with
the CQAs of the corresponding manufactured product.

2. To define the High-Confidence Raw Material Specification Region (HC-
RMSR) in the latent space connecting input and output spaces where
the prediction uncertainty is considered, thus, this region is expected to
provide assurance of quality with a certain confidence level for the CQAs.

3. To define the supplier’s Raw Material Operating Space (RMOS), a region
in the latent space where the supplier’s raw material samples are expected
to be located, at a certain confidence level, from a number of raw material
samples that respect the correlation structure from the past (SPE <
SPE)).
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Figure 7.2: Schematic methodology of the proposal to define the LSb-MCp, and assess
suppliers.

4. To calculate the latent space-based multivariate capability index, LSb-M C,y,
quantifying the capacity of each raw material supplier to produce a cer-
tain percentage of final product within its CQAs.

5. If it is required, to calculate the SPE and score contribution plots allowing
the diagnosis of assignable causes.

7.7 Industrial case study

The present industrial case study refers to the maize cereal extraction pro-
cess already presented in Section 5.5.1. To clearly illustrate this section, it is
taken as a starting point the High-Confidence DS defined previously defined
in Section 5.5.1 with at least 90% confidence level (Figure 5.8).

On the other hand, since historical data is mostly composed of three different
suppliers, it is feasible to take advantage of the same data to assess them. First,
we must check if these suppliers respect the correlation structure from the
past by calculating the proportion of observations with SPE within SPFE,,
(Table 7.1).
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Table 7.1: Proportion of observation with SPE within the 99% SPE confidence limit for
each supplier.

Proportion of observation with SPE
within the 99% SPE confidence limit

Supplier 1 0.93
Supplier 2 0.90
Supplier 3 0.99

From Table 7.1 is acceptable to consider that all of them respect the correlation
structure from the past as most observations are within the SPE confidence
limit. Then, the projections of these observations (i.e., the scores) are modelled
assuming a multivariate normal distribution with a 99% confidence level as
shown in Figure 7.3.

Figure 7.3c shows that the centroid of the supplier 3 is outside the HC RMSR.
A priori, we should not be interested in using its raw materials. Indeed, a
negative capacity index would be expected from this supplier. Conversely, the
centroids of suppliers 1 and 2 are within the HC RMSR, and, apparently, the
Euclidean distances between the centroid of the RMOS for each supplier and
the multivariate specification limit are similar. However, the RMOS is quite

different when comparing suppliers 1 and 2 and, therefore, it is crucial to assess
them by the LSb-MC)y, in the latent space (Table 7.2).

Table 7.2: Multivariate capability index (LSb-MCly) for three suppliers.

LSb-MC,y,
Supplier 1 0.12
Supplier 2 0.35
Supplier 3 <0

Table 7.2 shows that supplier 2 presents a higher LS0-MC,, than supplier 1.
Thus, the expected ability to obtain a yield superior or equal to 69% is higher
when accepting raw materials from the supplier 2. However, all suppliers still
present a LSb-MC, lower than 1. In all these cases, diagnosing assignable
causes results very useful to isolate the deviating variables (Figure 7.4).

Since the Supplier 3 presents a LSb-MC,, lower than 0, Figure 7.4c shows
the score contribution plot from the centroid of the HC RMSR (diamond in
Figure 7.3c) to the centroid of the Supplier 3 RMOS (circle in Figure Fig-
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