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Abstract
The urban air mobility market is expected to grow constantly due to the increased interest in new forms of transportation.
Managing aerial vehicles fleets, dependent on rising technologies such as artificial intelligence and automated ground control
stations, will require a solid and uninterrupted connection to complete their trajectories. A path planner based on evolutionary
algorithms to find the most suitable route has been previously proposed by the authors. Herein, we propose using particle
swarm and hybrid optimisation algorithms instead of evolutionary algorithms in this work. The goal of speeding the route
planning process and reducing computational costs is achieved using particle swarm and direct search algorithms. This
improved path planner efficiently explores the search space and proposes a trajectory according to its predetermined goals:
maximum air-to-ground quality, availability, and flight time. The proposal is tested in different situations, including diverse
terrain conditions for various channel behaviours and no-fly zones.

Keywords Aerial robotics · Nature-inspired optimisation · Hybrid optimisation · Path planning · Channel model ·
Wireless communications

1 Introduction

Recent trends in aerial vehicle (AV) development show an
increasing interest in developing new urban transportation
forms. It is expected that the Urban Air Mobility (UAM)
market will continuously grow [12]. This market growth
will be shared among various UAM platforms: air taxis,
personal AVs, aerial cargo vehicles and air ambulances.
Moreover, these vehicles are expected to perform tasks
not only in urban environments but also in non-urban
environments, e.g., for search and rescue [44].

� Adrián Expósito Garcı́a
adrian.exposito garcia@airbus.com; adexgar@upv.es
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Among the main technologies needed to enable these
new types of vehicles are sense and avoid systems, auto-
mated ground control stations and artificial intelligence (AI)
[41]. Sense and avoid provide manoeuvre capability in tight
places without any prior knowledge of the environment.
It also ensures that AVs do not collide with nearby vehi-
cles and obstacles. Owing to the increase in the number of
AVs flying simultaneously, currently, centralised airspace
management means are insufficient and distributed ground
control stations will be required. Last but not least, AI is a
technology expected to enable this AV to perform all types
of tasks with little to no supervision.

Some enabling technologies, such as AI and automated
ground control stations, require constant communication
between an AV and ground control to exchange AV posi-
tions, and flight plans or perform collision avoidance
activities [35]. These operations will occur in an environ-
ment already known for causing communication problems.
Global navigation systems’ performance can be degraded
due to the canyon effect [51] caused by nearby buildings.
This type of structures can also produce shadowing, multi-
path and, together with the emitter’s movement, the Doppler
shift [21, 34].

The command and control (C2) link is used for operation
related communications and ensures a safe AV flight. This
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link operates based on communication transactions, and its
performance is described by the communication transaction
time, continuity, availability and integrity [9]. Channel
performance must be maximised to ensure safe flight
operations because it directly affects the C2 link parameters.
To the extent that even the maximum throughput of the
channel is insufficient to meet operational requirements, this
information can be given to flight operators, and decisions
can be made on that basis. These decisions could include a
change in the destination or revision of the mission.

The effect of the urban environment on the channel
performance has been studied before, but the effect of
using a ground network designed in favour of ground users
has received insufficient attention. Antennas are tilted to
the ground to improve reception quality on ground users,
making AVs in the sky connect under suboptimal conditions
[17]. For a system that heavily relies on communications,
mission completion can be endangered, and hazardous
situations can occur when the AV flies over areas with low
signal quality.

Our route optimisation for maximum air to ground (A2G)
channel quality can be applied to many situations. Among
these situations, Fig. 1 illustrates an AV with a simple
route departing from A and arriving at B. As seen in the
figure, along the route, there is an area with low received
power. Using our route optimisation, the AV finds a new
route with optimal flight time and uninterrupted connection
to the ground network. Other objectives, such as obstacle
avoidance, are implemented.

Simulations are a great tool that allows the easy and
low-cost modelling of the network’s behaviour in different
settings and situations. Thanks to these advantages, simu-
lated results will be used as the first approach to test the
optimisation algorithm. This simulation covers all aspects
of the optimisation: real flight dynamics, airframe shape,
channel modelling, and the optimisation algorithm. The
presentation of the simulation environment and a first

optimisation algorithm have been discussed in reference
[18]. Therefore, this work aims to extend what has been pre-
sented by studying alternatives to the previous optimisation
and selecting the one that provides better results and reduces
computational resources.

This work’s novelty proposes an optimisation algorithm
that outperforms the evolutionary approach used in [18].
Our contribution to the field is to propose the optimisation
algorithm and prove its performance under different chal-
lenging scenarios and against other promising optimisation
algorithms.

The remaining paper is organised as follows: Section 2
introduces the related work in channel modelling and route
optimisation for AVs and flying ad-hoc networks. Section 3
provides an overview of the necessary building blocks for
a successful optimisation. Section 4 presents the results
of using the particle swarm optimisation algorithm under
different conditions and scenarios. Hybrid optimisation is
proposed in Section 5, and results are discussed in the same
section. Section 6 is dedicated to the conclusions.

2 RelatedWork

The channel must be studied and characterised to mitigate
the environment’s effects on the wireless channel. Erik Haas
is the main contributor to the field of wireless channel
modelling. He uses the signal delay and Doppler distribution
to generate a new kind of A2G channel model in his main
work. David Matolak is the main contributor to the field
of channel modelling. He has co-authored several A2G
channel modelling publications for different environments
[32–34, 42, 47, 48]. With the results of these measurements,
he proposes a series of site-specific channel models. Despite
this extensive work on channel modelling, to the best of
the author’s knowledge there is no universal deterministic
channel model for AVs.

Fig. 1 optimised trajectory
avoiding areas with low channel
performance. The proposed
novel route optimisation
proposes new waypoints to
avoid low connectivity areas

Corrected Trajectory

Standard trajectory

P1

P2

P3

A

B

Best



J Intell Robot Syst          (2022) 105:31 Page 3 of 16   31 

Coverage enhancement in disaster areas is one of the
applications for AV that has received significant attention
from the community. Reference [19] proposes modifying
the AV position to reduce the end-to-end delay using a
control loop. In reference [50], those efforts are extended
by optimising the AV trajectory to serve multiple users in
a given 2D area. Convex optimisation is used in [53] to
maximise the end-to-end throughput. A common factor is
to treat the AV trajectory only in a two-dimensional space.
Reference [54] focuses on minimising the flight time and
keeps the signal-to-noise (SNR) under a defined threshold.

Optimisation of the route as a method to enhance sig-
nal reception and improve other mission parameters such as
obstacle avoidance or terrain-following has not been exten-
sively treated. MILP is used in [22] for route optimisation,
with the disadvantage that the success of the algorithm relies
on the trajectory used as a starting point. A potential risk
associated with mixed-integer linear programming (MILP)
optimisation is that the algorithm might focus on a local
minimum. References [13] and [10] also propose to apply an
evolutionary algorithm (EA) to realistic environments and
achieve to generate a trajectory that safely navigates the AV
through a hostile environment. Reference [24] coordinates
a swarm of AVs in a search and rescue mission using EA.
In this case, the objective is to lower the required time to
complete the mission and set up a communication path.

Nature-inspired optimisation algorithms such as the EAs
are a great tool when applied to a search field with many
local minima. The many applications that can benefit from
nature-inspired optimisation algorithms involve imaging as
in reference [28, 29, 46], structure optimisation as in refer-
ence [27] and one of the most common applications, search
for the shortest path [15]. Despite the popularity of these
methods in a stand-alone version, their performance can be
significantly improved by combining these algorithms with
direct search algorithms such as the Nelder-Mead simplex
algorithm [31], the Direct Search with Coordinate Rotation
(DSCR) or simulated annealing [25]. To the best of the
authors’ knowledge, the number of publications covering
hybrid optimisation is limited. The authors in [43] com-
bine the EA with a complex algorithm, a kind of direct
search method sensitive to the initial guess, applied to the
lunar soft landing trajectory optimisation problem. On lower
altitudes, [11] combines the simulated annealing with hill-
climbing to plan 4D aircraft trajectories and avoid collision
situations. In a 2D scenario, hybrid optimisation (EA and
simulated annealing) is applied to the speed trajectory of a
train in [45]. The authors of [37] compare the performance
of different hybridisation techniques combined with auto-
mated computed aided design tools to design microwave
waveguide filters.

From the literature review, it is manifested that evolution-
ary approaches have been applied to optimise the route of an

AV [10, 13, 40]. Furthermore, references [23, 33] and [48]
prove that effort is being made to improve link performance.
Our previous work [18] proposes a novel EA that maximises
A2G channel performance based on a channel model’s out-
put. This article aims to extend this work by proposing
a more suitable optimisation strategy that requires fewer
evaluations of the cost function with better-optimised trajec-
tories. The final cost function value and the compliance with
objectives and restrictions define the proposed AV route’s
performance.

The paper requires simulations to prove the convergence
of the proposed optimisation algorithm. It is worth ded-
icating a few lines to the challenges faced in an actual
implementation even though implementation won’t be cov-
ered in this work but might be covered in future ones. The
main one is how the algorithm copes with disturbances,
modelling errors, and uncertainties when incorporated in a
close loop control system. Authors in [38] solve the problem
by applying particle swarm to determine uncertainties in
the system. Neural network linea differential inclusion tech-
niques are used in reference [20] to linearise unknown non-
linear parameters. In [16], the method applied is to design a
robust fault detection filter to stabilise against external dis-
turbances. Last but not least, reference [52] uses adaptive
dynamic programming to solve optimal control problems in
dynamic systems. These could be potential solutions and
appear as research directions for future development in the
final section.

3MissionModelling

Laying down the scenario’s fundamentals is the first step
to achieve route optimisation. These fundamentals include
channel model (3.1), terrain profile (3.2), flight dynamics
(3.3), generation of the waypoints (3.4) and the characteri-
sation of the aircraft and the antennas used in the scenario
(3.5) [18].

3.1 Channel Model

Terrain profile, flight dynamics of the AV and antenna
characterisation are part of the channel model. This model
allows the optimiser to calculate the channel’s state at
any given point of the flight trajectory. The state of the
channel is calculated with Eq. 1. This equation represents
the radiated electric field at the receiver. Quantities such
as the position of the reflected ray (x, y, and z) are
obtained from the terrain profile and flight dynamics.
Parameters α and β represent the angles of arrival of the
wave on the horizontal and vertical planes, respectively.
The flight dynamics determine the speed (v) of the AV.
The term (2π/λ)v�t cos [α [t] − δ] cos

[
β [t]

]
constitutes
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the Doppler shift part of the equation, A [t] is the amplitude,
and ER [t] is the radiated field at the observation point.
Terms �n and ωc are the Doppler phase shift and carrier
angular frequency, respectively. Equation 1 is applied for
every reflection found on the terrain and the direct line of
sight ray.

ER [t] = A [t] exp

[
ωct − 2π

λ

[
x [t] cos [α [t]] cos

[
β [t]

]

+y [t] sin [α [t]] cos
[
β [t]

] + z [t] sin
[
β [t]

]
(1)

+v�t cos [α [t] − δ] cos
[
β [t]

]] + �n

]

3.2 Terrain Profile

The described channel model can be applied to all tested
scenarios because it considers the terrain profile and terrain
characteristics. Terrain models are used not only to calculate
the channel response but also to assess whether the AV is
within the allowed height. The necessary maps are achieved
by combining Google Maps [4–6] information and the
results of the TanDEM-X mission [39]. This data fusion
results in a map with terrain reflection properties and terrain
elevation.

3.3 Flight Dynamics

Analytical Graphics Inc. Systems Tool Kit (AGI-STK) [1]
is the selected simulator to obtain the AV’s position and
behaviour through the proposed route. As in our previous
work in [18], to ensure a compromise between granularity
and calculation times, the route is sampled 12 times per
minute. Due to this sampling rate, the number of points per
route (M) will always be greater than the number of points
(N). Position (x, y, z), attitude (φ, θ , ψ), and speed vector
(V x, Vy, V z) are computed and collected in Li and L. Li

represents the state vector of the AV on a given time. As in
Eq. 3, L represents the AV’s location, attitude, and speed
during the flight.

Li = [xi, yi, zi, φi, θi, ψi, V xi, Vyi, V zi] , i ∈ [1, M] (2)

L = {L1, L2, . . . , LM} (3)

3.4 Route Generation

The optimiser proposes a route to guide the flight of the AV.
The route optimiser uses azimuth (Az), elevation (Elev) and
range (R) values to determine the next waypoint. How Az,
Elev, and R translate into a waypoint can be found in Figure
3 of [18]. This method minimises the search space, but

modifying a waypoint will alter the route. Route alteration
can affect online planners but not our route planner as the
optimiser will generate the collection of waypoints for
evaluation at once.

This work uses a vertical takeoff and landing model for
the AV. As the name indicates, these AVs can takeoff and
land vertically, which results in a reduction of space because
no runway is needed. As every route starts at a certain
height, the initial waypoint (WP0) is always located 150 m
above the ground.

The straight-line route is the route used by the AV to go
from WPstart to WPend . R’s maximum value is defined as
one-third of the distance the AV covers on the straight line
route. This upper boundary is designed to keep proposed
trajectories close to the straight line route, minimising the
route’s time. R’s minimum value is 1 km to give the AV
enough distance to adapt to the next waypoint. Maximum
and minimum values for Az and Elev are ±30 and ±0.1
degrees, respectively. These values are designed to avoid
abrupt changes in the horizontal plane and height. The
algorithm uses certain restrictions and objectives to assess
how good is a route. One of the objectives is to have a route
with a length as close as possible to the straight-line route’s
length.

Route =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

WPstart

WP1(Az1, Elev1, R1)

WP2(Az2, Elev2, R2)
...

WPN(AzN, ElevN, RN)

WPend

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4)

3.5 Aircraft and Antenna Characteristics

The AV and antenna characteristics are the missing pieces
to finish the scenario’s fundamentals. AV characteristics are
its shape and the antenna used. The shape of the AV enables
the calculation of structural shadowing conditions. With this
information, the optimiser can avoid situations where the
shape of the AV itself obscures the signal. As for the antenna
characteristics, the antenna is located below the fuselage and
presents a dipole radiation pattern, as depicted in Fig. 2.

The ground segment follows a design commonly used
in wireless communication networks [14]. Typically, the
ground station’s radiation pattern is composed of 3 sectors
spaced 120 degrees. One of the assumptions explained
earlier is that the AV connects to a ground network
optimised for ground users. An antenna’s tilt is -15 degrees
to provide maximum coverage for those users. Figure 2
illustrates the resulting radiation pattern of the ground’s
station antenna.
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Fig. 2 UAS CAD Model, UAS
radiation pattern and ground
station radiation pattern used for
simulations

4 Optimisation Approaches

This section describes how optimisation approaches have been
designed. All approaches share the restrictions and objectives
(4.1) applied by the optimiser to evaluate a route. Based on
the literature review, the particle swarm algorithm is pro-
posed as an alternative to EA (4.2). The shortcomings of the
linear cost function (Eq. 5) are discussed, and a new, loga-
rithmic cost function is proposed in Section 4.3. Finally, two
hybridisation techniques are proposed and described (4.4).

4.1 Optimisation Restrictions and Objectives

Similar to our previous work in [18], the mission is fulfilled
when the cost function meets the restrictions and objectives
value is minimised. If restrictions are not satisfied, the
objectives are not considered. A restriction is satisfied
when its value is precisely zero. When the restrictions
reach this value, the cost function value decreases, and the
optimisation seeks to minimise objectives value.

The following text describes the cost function restrictions
that drive the optimisation. More detail on how these
restrictions and the following objectives are implemented
can be found in previous work [18].

– Altitude (r1): the AV trajectory L, as described in Eq. 3,
is not allowed to have points that are higher than the AV
higher limit and below the lower limit. This restriction
is bounded between 0 as best-case scenario (the AV
respects the altitude limits in all points of the trajectory)
and 1 as worst-case scenario (the AV is out of the
altitude limits in all points of the trajectory).

– Area (r2): the AV can only fly on the allowed airspace; it
cannot cross any no-fly zone (NFZ). The vehicle is also
not allowed to go beyond map limits. This restriction
is bounded between 0 as the best-case scenario (the
AV does not enter any NFZ) and 1 as the worst-case
scenario (all the trajectory is crossing an NFZ).

– Minimum received power (r3): the minimum receiver
power along the route must be improved above the
system’s sensitivity to improve the quality of the A2G

channel. This restriction is bounded between 0 as the
best-case scenario (received power in all points in the
trajectory is above the receiver sensitivity) and 1 as the
worst-case scenario (below sensitivity in all points of
the trajectory).

The three objectives, only tackled if restrictions reach the
zero value, are:

– Trajectory distance (a1): the distance covered by the AV
is minimised. The optimiser rewards trajectories with a
length as close as possible to the straight-line trajectory.
This objective is bounded between 0 as the best-case
scenario (straight trajectory) and 1 as the worst-case
scenario.

– Vertical variation (a2): this objective minimises height
variations. This objective is bounded between 0 as
the best-case scenario (no height variation along the
trajectory) and 1 as the worst-case scenario.

– Average received power (a3): this objective improves
the average power through the AV trajectory. It uses
the maximum received power on the straight-line
trajectory; the closer the average received power is
to this value, the lower the value of the objective.
This objective is bounded between 0 as the best-case
scenario (received power in all points of the trajectory
is the same, and therefore equal to the average received
power) and 1 as the worst-case scenario.

The A2G channel model’s complexity and multiple
restrictions and objectives determine that standard route
planning techniques are not suitable. Reference [49] states
that the problem to be solved is NP-Complete, and given the
optimisation nature, heuristic approaches are best suitable
to solve the problem.

4.2 Particle Swarm

Different optimisation approaches will be proposed and
studied to improve the results obtained in our previous work
[18]. All of these approaches are discussed to highlight
each one’s strengths and weaknesses and select the one
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that better performs among the designed scenarios. Based
on the literature review, the particle swarm algorithm is
the most promising candidate. This optimisation algorithm’s
foundations can be found in [26], which is a brief
description of the algorithm. A more detailed explanation
of the algorithm can be found in reference [36]. The main
parameters configuring particle swarm algorithm and its
implementation can be found in [8].

Particle swarm will find a local unconstrained minimum
for the cost function based on bird flocking, fish schooling,
and swarming theory. Swarming theory describes many
animal’s behaviours such as birds collaborating and finding
resources more efficiently. This algorithm starts with
a specific swarm size that explores the search space,
proposing new positions or waypoints for the AV to follow.
In our work, the number of particles that better perform is
50, ten times the number of waypoints. It is worth noting
that the number of individuals in the evolutionary method is
the same, 50 individuals. Other relevant parameters and its
implementation can be found in [3]. After the initialisation
phase, the particle swarm chooses new velocities based
on current velocity, best locations and neighbour’s best
locations. Iterations continue until a stopping criterion has
been reached. To ensure a fair comparison between particle
swarm optimisation and the EA used in our previous work,
the same cost function will be used as in Eq. 5.

c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

3

3∑

i=1
ai, if

3∑

j=1
rj = 0

1

3

3∑

i=1
ai + 1

3

3∑

j=1
rj + 10, otherwise

(5)

4.3 Logarithmic Cost Function

Further analysis of the current linear cost function as in
Eq. 5 shows that it has room for improvement. Figure 3a
displays the linear cost function issues in a simplified way.
Values have been given to the restrictions and objectives
between 0 and 1 to calculate the cost function’s possible
values in a simplified search space. It becomes clear that
the majority of the search space does not vary significantly
until the restriction takes a value of 0; only after that
are the objectives of any significance. With Eq. 6, we
introduce the logarithmic cost (LC) function, with a higher
gradient towards the cost function’s minimum theoretic
value. Figure 3b displays the values that the LC function
can take. This new function eases the cost function’s
minimisation and enables a higher interaction between the
restrictions and objectives.

c = 1

3

3∑

i=1

ai + log

⎡

⎣100

3

3∑

j=1

rj + 1

⎤

⎦ (6)

4.4 Hybridisation Techniques

The presented LC function has the potential to improve
results obtained with the linear cost function. Another
technique, hybridisation, is a suitable candidate and worth
applying to the route optimisation as in reference [37].
The basis of this approach is to combine two different
optimisation algorithms instead of using a single one. The
first algorithm performs an efficient global search and stops
when the cost function’s value reaches a threshold value
(0.25). When the value is reached, optimisation is stopped,
and the second optimisation algorithm starts. This second
optimisation algorithm, which is more eager in finding the
minimum in the cost function, and less exploratory of the
search space than particle swarm, uses the solution of the
first algorithm to search for a solution and finds the closest
optimum as quick as possible. The candidate optimisation
algorithms are the Nelder-Mead simplex algorithm and the
DSCR, both fall in the direct search optimisation methods
category. Readers can find other relevant parameters and the
implementation of the optimisation algorithms in reference
[7] and [2], respectively.

The first algorithm, the Nelder-Mead algorithm, can be
found in reference [30]. This optimisation algorithm should
not be confused with the simplex algorithm of Dantzig for
linear programming. The method used in this work focuses
on unconstrained optimisations and is one of the most used
for nonlinear optimisations. The second tested algorithm,
the DSCR, can also be used on non-continuous functions.
This algorithm varies the route by following successful
pattern moves.

The starting point of the optimisation workflow is the
initial trajectory; in our work, the straight trajectory is the
initial one. The state vector is obtained using the AV flight
dynamics and the route proposed by the optimiser. The
already described aircraft model, antenna radiation patterns,
AV state vector, terrain type and elevation, are used to
compute the channel’s state. The current route score is
obtained using the cost function, as in Eqs. 5 or 6. The
last step is for the optimisation algorithm to propose a
new trajectory. The optimisation algorithm’s output is a
new trajectory composed of N (Az, Elev and R)-triplets,
where N is the number of waypoints, leading to 3N design
parameters.

In order to ensure a fair comparison between results
obtained with different optimisation approaches, the
methodology of all simulations is the same. Each algo-
rithm relies on a random number generator to propose new
waypoints. The random number generator seed changes
on every simulation to ensure that each algorithm is non-
deterministic. Each algorithm uses the straight-line route
as a starting point for the optimisation. The scenario is
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Fig. 3 Cost functions
comparison

evaluated 10 times to assure that we have a good picture of
the optimisation algorithm’s possible outcomes.

5 Designed Test Scenarios

In this section, the four scenarios that will challenge the
optimisation approaches are shown. As in our previous work
[18], the selected scenarios represent various geographi-
cal locations, NFZs and ground network (GN) distribution.
The differences between the scenarios allow us to deter-
mine which optimisation approach performs better under
different conditions and restrictions.

Scenario 1 challenges the AV to avoid flying over a
temporal NFZ. This situation is particularly challenging
because the optimal trajectory with respect to flight time
crosses both NFZs. From a coverage point of view, the
southern part of the map is more favourable since more GNs
stations are available. For a route to be optimal, it must
avoid the NFZs while improving the straight line route’s
channel conditions. Figure 4 illustrates GN locations and the
described scenario.

Scenario 2 adds a further layer of complexity to the
optimisation; one of the GN base stations is malfunctioning,
as shown in Fig. 5 by the missing base station. The AV must
find a route that avoids the existing NFZs and improves the
channel conditions.

The Bavarian Alps (Scenario 3) are an environment with
deep valleys and high mountains. This scenario has no
NFZ, the significant variation of altitude challenges the
evolutionary and particle swarm optimisation algorithms.
Mountains have different side effects, namely the low
visibility and limited coverage; the AV will not see more
than one GN base station at a time, as depicted in Fig. 6.
The restrictions and objectives are the same as before: the

aircraft must avoid crashing into the ground and fly higher
than the 1200 m limit, and improve the channel performance
while reducing the flight time.

Finally, Scenario 4 displays our approach’s versatility by
optimising a route through two very different environments.
Figure 7 displays the GN coverage affected by signal
propagation over water and land. Since the ability to avoid
NFZ and terrain has been proven in previous scenarios, this
scenario focus solely on channel quality maximisation.

6 Results

This section is devoted to describing the obtained results
on the designed scenarios with the various optimisation
approaches. We start by comparing the EA and particle
swarm algorithm’s performance applied to the described
scenarios. The best algorithm is used to analyse how good
is the LC function and if the hybridisation provides better
results.

Optimisation algorithms are compared based on per-
formance evaluation indicators: calculation time [h], cost
function final value, cost function evaluations and average
received power improvement [%]. The first indicator, calcu-
lation time, determines which approach will require shorter
times to produce a result. The second indicator, cost func-
tion final value, is used together with the calculation time.
It is essential to obtain a route in a shorter time and obtain
one with the lowest cost function final value.

For the second part, the hybridisation, the analysis of
results requires a different set of performance evaluation
indicators. The main reason is that the optimisation algo-
rithms use various cost functions. Hence, the cost function
final value is no more a suitable indicator. Average receiver
power improvement is a quantity that better displays channel
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Fig. 4 Scenario 1: Munich
Airport to Munich central
station scenario [6]

Fig. 5 Scenario 2: Munich
Airport to Munich central
station with an antenna failure
scenario [6]

Fig. 6 Scenario 3: Flight on the
Bavarian alps scenario [5]
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Fig. 7 Scenario 4: Flight coast
to island scenario [4]

improvement. The analysis uses the number of evaluations
to display the number of iterations required to obtain a
result. The most suitable approach is the one compliant with
restrictions and objectives, which obtains a result with fewer
iterations and the one with maximum air to ground channel
quality.

6.1 Comparison Between Evolutionary Algorithm
and Particle Swarm

As shown in Table 1, the evolutionary and particle optimi-
sation methods use of the linear cost function as in Eq. 5.
Because they use the same cost function, they can be com-
pared, and a decision can be made on which algorithm
is best. The LC function, as in Eq. 6, and the hybridisa-
tion methods are applied to the resulting best optimisation
algorithm.

Table 1 gathers the result obtained through the 10 simula-
tions with EAs and the 10 simulations with particle swarm.

Interesting metrics are the number of iterations needed
until the algorithm stops, and the final value is achieved.
Due to space limitations, only the maximum (max),
minimum (min) and average (avg) values of the total calcu-
lation time in hours and the final value of the cost function
in each simulation are presented.

The first indicators that the particle swarm algorithm
outperforms in Scenario 1 are the cost function’s final
values. Said values are below 1 for the max and min,
which indicates that all restrictions have been satisfied in
all simulations. The EA does not achieve this performance.
Furthermore, some simulations end without satisfying
the restrictions. Not only the EA does not satisfy the
restrictions, but it also requires higher times to converge to
the final value.

In Scenario 2, evolutionary and particle swarm have a
similar performance in terms of the achieved cost function
value. Moreover, max, min and avg values are very close
to each other. The difference can be seen in the number of

Table 1 Results comparison between the evolutionary and particle swarm optimisation method for each scenario

Optimisation method Calculation time [h] Cost function final value

Max Min Avg Max Min Avg

Scenario 1 Evolutionary 18.6824 4.8749 9.0902 10.2524 0.1583 4.1856

Particle 14.3173 2.5868 5.4143 0.2103 0.1635 0.1827

Scenario 2 Evolutionary 5.3395 3.1762 4.3425 0.1636 0.1274 0.1460

Particle 4.5325 1.2945 2.7709 0.1556 0.1298 0.1396

Scenario 3 Evolutionary 4.5987 3.0829 3.7282 10.1871 0.1074 7.1381

Particle 12.5108 3.1496 5.7959 0.1168 0.0928 0.1036

Scenario 4 Evolutionary 10.1358 5.6554 7.6369 0.2268 0.1929 0.2054

Particle 5.6402 2.9157 4.5967 0.2386 0.1876 0.2155

Values have been obtained using the linear cost function as in Eq. 5
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iterations needed to converge. While EAs need a max of
5.34 and a min of 3.18 h, particle swarm requires a max
of 4.53 h. For this scenario, particle swarm finds similar
solutions with lower times.

The values in Table 1 for Scenario 3 highlight the
superiority of the particle swarm optimisation over the
EA. The min final cost function value is similar for both
algorithms. Nevertheless, the max final cost function value
is above one for the EA. Particle swarm optimisation
delivers results in similar max and min final cost function
values, both below one. A final value higher than one means
that the restrictions have not been satisfied, and an average
of 7.1381 implies that restrictions are not satisfied in several
simulations. An analysis of the calculation time shows that
particle swarm requires more time on average to converge
on a solution, but the minimum time required is similar
on both algorithms. This higher number of time can be
solved by modifying the function tolerance, so the particle
swarm algorithm finishes the optimisation earlier in case
of stalling.

In Scenario 4, the particle swarm algorithm shows a
better performance. An example of this higher performance
is that the particle swarm takes half the time than the
evolutionary approach. The max, min and avg values are
smaller for particle swarm optimisation. Final cost function
values for both approaches indicate that they achieve a
solution that complies with restrictions and improves the

objectives. Particle swarm optimisation achieves a better
result, although the difference is almost negligible.

6.2 Hybridisation on Particle Swarm

As said at the beginning of this section, the LC function and
hybridisation techniques are applied to the best optimisation
algorithm. Particle swarm has been shown to perform better
than the evolutionary approach presented in our previous
work [18]. Since different cost functions will be commented
on, comparing the cost function’s final values is not
appropriate. Channel improvement is used for comparison
instead, together with the number of iterations required for
convergence.

Table 2 collects the results obtained from the different
optimisation strategies used in Scenario 1. As in the
previous subsection, each row in Table 2 gathers the results
obtained after applying the optimisation method 10 times
to the corresponding scenario. Looking at the number of
iterations used by each optimisation algorithm, the LC
function applied to particle swarm optimisation brings no
improvement. On the contrary, the number of iterations
needed is increased. Figure 8a supports this view. The
median of the number of cost function evaluations (red
line) is one of the highest compared with other used
optimisation strategies and close to the number of cost
function evaluations of the EAs.

Table 2 Results obtained after applying particle swarm with the linear cost function (5), particle swarm with the LC function (6), particle swarm
with LC function plus simplex and particle swarm with LC function plus DSCR on each scenario

Optimisation method Cost function evaluations Average received power improvement [%]

Max Min Avg Max Min Avg

Scenario 1 Particle 10973 1940 4107 5.2395 2.5395 4.0679

Particle LC 7458 2493 4533 4.4093 −0.9819 2.0289

Particle LC Simplex 4491 1182 2428 4.2835 −0.5076 1.9855

Particle LC DSCR 4679 1429 2533 4.6488 0.2557 3.0768

Scenario 2 Particle 4225 2162 3458 3.6757 0.2281 2.0513

Particle LC 11494 2372 5016 3.8040 0.4744 2.1827

Particle LC Simplex 2326 1017 1698 4.1481 0.4971 2.0899

Particle LC DSCR 2152 948 1678 4.2101 0.4917 2.2649

Scenario 3 Particle 15294 3847 7083 32.0707 30.8897 31.3656

Particle LC 12875 3411 7291 32.2998 29.5095 31.3610

Particle LC Simplex 937 669 795 29.3207 27.5215 28.3835

Particle LC DSCR 1728 666 932 29.4115 27.5848 28.6093

Scenario 4 Particle 5541 1547 3348 4.7013 3.1495 3.7473

Particle LC 5768 3235 4195 4.0894 3.4459 3.8468

Particle LC Simplex 659 558 598 2.2709 −1.4652 1.0580

Particle LC DSCR 1020 542 698 3.3751 0.8613 1.8997
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Fig. 8 Number of evaluations to
achieve a solution for each
scenario and each optimisation
method described in Table 2
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Fig. 9 Average received power
improvement achieved for each
scenario, and each optimisation
method described in Table 2
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The LC function with particle swarm optimisation is
insufficient to improve previous results alone. Neverthe-
less, it becomes effective in hybrid optimisation. The first
proposed hybrid algorithm combines particle swarm, the
LC function, and the simplex method. This combination
improves the results already obtained; it requires half the
amount of iterations on average. Maximum and minimum
values are also improved with respect to previous optimisa-
tion strategies, as shown in Fig. 8a. There is no significant
variation in the number of iterations when the DSCR is
applied instead of the simplex algorithm.

Channel improvement values give an advantage to the
hybridisation with the DSCR algorithm. Not only the
average channel improvement is better but also the median
channel improvement too, as seen in Fig. 9a. Another point
favouring the DSCR algorithm is that the minimum value
obtained is above zero, which implies that there is always a
route that improves the average received power. A negative
value does not imply that restrictions are violated. Since the
shown channel improvement is calculated with the average
received power, the minimum value may be improved, but
the average is not.

In Scenario 2, the AV must fly from the airport to the city’s
centre with malfunctioning antennas. The obtained results
are shown in Table 2. The number of iterations required
by particle swarm with the LC function is one of the
highest, only surpassed by the EA. The maximum number
of iterations is the highest among all optimisation strategies.
The required number of iterations is shown in Fig. 8b.

As with Scenario 1, the LC function is most effective
with the simplex and DSCR hybridisation. The number of
iterations to converge is lower than those of the previous
three optimisation strategies (evolutionary, particle and
particle with LC). It is essential not only to achieve a
solution faster but also to achieve a better or at least equally
good solution. DSCR improves the average received power
on all simulations and with an average, maximum and
minimum value higher than the other tested optimisations.
This achievement is also displayed in Fig. 9b.

Previous scenarios focused on avoiding present NFZ
under different connectivity conditions. Scenario 3 focuses
on terrain avoidance and channel improvement. The results
obtained from the various simulations and optimisation
approaches are summarised in Table 2. On the one hand,
using particle swam with the new LC does not improve
the results when compared to the evolutionary optimisation
and the particle swarm that uses the linear cost function.
On the other hand, hybrid optimisation with simplex and
DSCR algorithm on average converges much faster than
the other optimisation strategies. Figure 8c also highlights
that the hybridisation algorithms outperform the rest of
the optimisation strategies in the number of cost function
evaluations.

One additional challenge in this scenario is that the
straight-line route has areas where no signal is received, a
challenge for the EA. A closer inspection of the proposed
hybrid algorithms results shows that all simulations are
compliant with the restrictions. Channel average received
power improvement, shown in Fig. 9c, indicates that the
simplex and DSCR algorithm have lower performance than
the others. This data, when compared with Fig. 8c, indicates
that both hybridisation combinations achieve similar results
with much lower cost function evaluations.

Scenario 4 is designed to test the ability to find a suitable
route under fewer restrictions. Table 2 summarises the
results obtained through the various simulations and optimi-
sation approaches. The results display the same behaviour as
in previous scenarios; when using the new LC function with
particle swarm optimisation, the number of cost function
evaluations is not reduced. Simplex and DSCR converge
with less than 700 cost function iterations on average, which
is lower than the 5507 or 3348 required by evolutionary or
particle swarm optimisation, respectively.

On the channel improvement, results are similar to those
in Table 2. Hybridisation using the simplex and DSCR
obtain improvement in the same order of magnitude as
previously tested optimisation algorithms. DSCR proves to
have a better performance than simplex since the later had a
negative improvement in this scenario. The average received
power loss of the hybridisation using the simplex algorithm
can be interpreted in Fig. 9d as an outlier.

7 Conclusion

Through this work, several optimisation methods have been
shown to optimise a route for maximum connectivity that
complies with the given objectives and restrictions. When
compared with our previous work in [18], particle swarm
optimisation achieves an optimal solution for all scenarios
and all simulations, simulations where the evolutionary
algorithm could not always find a solution compliant with
all objectives and restrictions. Two hybrid optimisation
approaches that combine particle swarm optimisation with
the Nelder-Mead simplex algorithm or the Direct Search
with Coordinate Rotation (DSCR) are proposed, and its
results studied. The new hybrid approach requires a new
cost function since the one used before is not suitable
any more. Results confirm that the new cost function is
necessary for the hybrid approach’s good performance.

The results show that the hybrid optimisation with
Nelder-Mead simplex or DSCR provides better and faster
results. Using a hybrid approach can reduce the number
of cost function evaluations by a factor of 10. Not only
the number of evaluations to convergence is critical, but
also the improvement on the average received power. This
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significant improvement in the number of evaluations before
achieving a solution reduces the time required to find a
suitable and compliant route.

The use of particle swarm combined with the DSCR is
the more suitable of the two hybrid optimisation strategies.
This combination has similar results to the combination with
the Nelder-Mead simplex. Nevertheless, the use of DSCR
always provides an improvement in the average received
power. The particle swarm algorithm combined with DSCR
always provides a flying route with the maximum connec-
tivity in any of the scenarios investigated in this paper. In
conclusion, through this work, we have proposed different
optimisation methods to outperform our previous work in
[18]. These methods have been applied to a plethora of sit-
uations and locations. The results have been studied, the
performance of the various optimisation methods have been
proved on critical scenarios, and particle swarm with DSCR
is proposed as the most suitable approach. With this pro-
posed optimisation approach, we have full filled the main
objective of this work; to find an optimisation approach that
outperforms the results obtained in our previous work.

Some aspects remain unclosed and constitute excel-
lent candidates for further studies and development of
the‘optimisation approach. First of all, new scenarios can
be designed to test the system’s robustness against dis-
turbances, modelling errors and uncertainties. We have
identified possible research directions to be followed con-
cerning this topic. The next topic is the validation of the
proposed routes as part of the necessary activities to validate
the simulation. At least, the straight, best and worst routes
should be flown and compared with the results obtained in
the simulation to verify it. Verification of the results, along
with the time required to obtain a route, air traffic man-
agement and technology readiness level of some elements,
constitute limitations to the applicability of the proposed
method. Undoubtedly, the optimisation approach can be fur-
ther improved; candidate techniques to be studied in the
future include other metaheuristic techniques such as tabu
search or simulated annealing.
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Tridon, D., Bräutigam, B., Bachmann, M., Schulze, D., Fritz,
T., Huber, M., Wessel, B., Krieger, G., Zink, M., Moreira, A.:
Generation and performance assessment of the global TanDEM-X
digital elevation model. ISPRS J. Photogram. Remote Sens. 132,
119–139 (2017). https://doi.org/10.1016/j.isprsjprs.2017.08.008,
https://linkinghub.elsevier.com/retrieve/pii/S092427161730093X

40. Sahingoz, O.K.: Generation of bezier curve-based flyable tra-
jectories for multi-UAV systems with parallel genetic algorithm.
J. Intell. Robot. Syst. Theory Applic. 74(1-2), 499–511 (2014).
https://doi.org/10.1007/s10846-013-9968-6

41. Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Vukadinovic,
V., Andre, T., Bettstetter, C., Rinner, B., Khan, A., Hellwagner,
H.: An autonomous multi-UAV system for search and rescue. In:
DroNet 2015 - Proceedings of the 2015 Workshop on Micro Aerial
Vehicle Networks, Systems, and Applications for Civilian Use
(2015). https://doi.org/10.1145/2750675.2750683

42. Schneckenburger, N., Matolak, D., Jost, T., Fiebig, U.c., del
Galdo, G., Jamal, H., Sun, R.: A geometrical-statistical model
for the air-ground channel. In: 2017 IEEE/AIAA 36th Digital
Avionics Systems Conference (DASC), pp. 1–6. IEEE (2017).
https://doi.org/10.1109/DASC.2017.8102054, http://ieeexplore.
ieee.org/document/8102054/

43. Sha, J., Xu, M.: Applying hybrid genetic algorithm to constrained
trajectory optimization. In: Proceedings of 2011 International
Conference on Electronic Mechanical Engineering and Informa-
tion Technology, vol. 7, pp. 3792–3795 (2011)

44. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z.,
Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M.:
Unmanned Aerial Vehicles (UAVs): A Survey on Civil Appli-
cations and Key Research Challenges. https://doi.org/10.1109/
ACCESS.2019.2909530 (2019)

45. ShangGuan, W., Yan, X., Cai, B., Wang, J.: Multiobjective
optimization for train speed trajectory in ctcs high-speed railway
with hybrid evolutionary algorithm. IEEE Trans. Intell. Transp.
Syst. 16(4), 2215–2225 (2015)

https://doi.org/10.4236/ijcns.2013.67035
https://doi.org/10.4236/ijcns.2013.67035
https://doi.org/10.1109/ACCESS.2020.3037075
https://doi.org/10.1109/MNET.2016.7389838
https://doi.org/10.1109/COMCAS.2017.8244753
https://doi.org/10.1007/s10846-011-9619-8
https://doi.org/10.1109/25.994803
http://ieeexplore.ieee.org/document/994803/
https://doi.org/10.1109/ICRA.2017.7989656
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1109/VTCFall.2014.6965861
https://doi.org/10.1109/VTCFall.2014.6965861
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6965861
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6965861
https://doi.org/10.1109/TVT.2017.2659651
https://doi.org/10.23919/EuCAP.2017.7928054
https://doi.org/10.1109/AERO.2018.8396575
https://doi.org/10.1109/AERO.2018.8396575
https://doi.org/10.1016/j.swevo.2011.10.001
https://doi.org/10.1016/j.swevo.2011.10.001
http://www.sciencedirect.com/science/article/pii/S2210650211000538
http://www.sciencedirect.com/science/article/pii/S2210650211000538
https://doi.org/10.1016/j.isprsjprs.2017.08.008
https://linkinghub.elsevier.com/retrieve/pii/S092427161730093 X
https://doi.org/10.1007/s10846-013-9968-6
https://doi.org/10.1145/2750675.2750683
https://doi.org/10.1109/DASC.2017.8102054
http://ieeexplore.ieee.org/document/8102054/
http://ieeexplore.ieee.org/document/8102054/
https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/10.1109/ACCESS.2019.2909530


   31 Page 16 of 16 J Intell Robot Syst          (2022) 105:31 

46. Singh, S., Mittal, N., Thakur, D., Singh, H., Oliva, D., Demin, A.:
Nature and biologically inspired image segmentation techniques.
Archives of Computational Methods in Engineering, 1–28 (2021)

47. Sun, R., Matolak, D.W.: Air-ground channel characterization
for unmanned aircraft systems part II: Hilly and mountainous
settings. IEEE Trans. Veh. Technol. 66(3), 1913–1925 (2017).
https://doi.org/10.1109/TVT.2016.2585504

48. Sun, R., Matolak, D.W., Rayess, W.: Air-ground channel
characterization for unmanned aircraft systems-part IV: Airframe
shadowing. IEEE Trans. Veh. Technol. 66(9), 7643–7652 (2017).
https://doi.org/10.1109/TVT.2017.2677884

49. Szczerba, R.J.: Threat netting for real-time, intelligent route plan-
ners. In: 1999 Information, Decision and Control. Data and
Information Fusion Symposium, Signal Processing and Com-
munications Symposium and Decision and Control Symposium.
Proceedings (Cat. No.99EX251), pp. 377–382 (1999)

50. Wu, Q., Zeng, Y., Zhang, R.: Joint trajectory and communication
design for multi-UAV enabled wireless networks. IEEE Trans.
Wireless Commun. 17(3), 2109–2121 (2018). https://doi.org/
10.1109/TWC.2017.2789293, http://arxiv.org/abs/1705.02723,
http://ieeexplore.ieee.org/document/8247211/

51. Xie, P., Petovello, M.G.: Measuring GNSS Multipath Distribu-
tions in Urban Canyon Environments. IEEE Trans. Instrum. Meas.
64(2), 366–377 (2015)

52. Xin, X., Tu, Y., Stojanovic, V., Wang, H., Shi, K., He, S., Pan, T.:
Online reinforcement learning multiplayer non-zero sum games
of continuous-time markov jump linear systems. Appl. Math.
Comput. 126537, 412 (2022)

53. Zeng, Y., Zhang, R., Lim, T.J.: Throughput maximization for
mobile relaying systems. 2016 IEEE Globecom Workshops.
GC Wkshps 2016 - Proceedings 64(12), 4983–4996 (2016).
https://doi.org/10.1109/GLOCOMW.2016.7849066

54. Zhang, G., Wu, Q., Cui, M., Zhang, R.: Securing UAV communi-
cations via trajectory optimization. 2017 IEEE Global Communi-
cations Conference GLOBECOM 2017 - Proceedings 2018-Janua,
pp. 1–6. https://doi.org/10.1109/GLOCOM.2017.8254971 (2018)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Adrián Expósito Garcı́a received the degree in aerospace engineering
from the Polytechnic University of Valencia (UPV), Spain, in 2014.
He holds a masters degree in space technologies from the Julius-
Maximilians-Universität in Wurzburg. Adrian worked at the central
research and technology department of Airbus, Munich, Germany
as a PhD candidate. He works as cyber security architect in
Airbus, Munich. His research interests include reliable communication
networks, channel modelling, flight guidance and control, aircraft
trajectory tracking and route optimisation.
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