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ABSTRACT The objective of this paper is to show how inductive quadruplets with diagonal cross-couplings
can be used as building blocks for filters in rectangular waveguide. Starting with the coupling matrix
synthesis, we show how very general transfer functions can be easily implemented with a very simple
step-by-step procedure. In addition to coupling matrix theory, we also describe distributed networks that
can be effectively used to carry out the transition from coupling matrix descriptions to actual waveguide
structures. Several filter design examples are also described in detail. Finally, measured results are also
discussed showing excellent agreement with simulations, thereby fully validating both the new family of
filter structures and the related design procedures.

INDEX TERMS Circuit synthesis, coupling matrix, diagonal cross-coupling, distributed parameter circuits,
doublets, filters, inductive waveguide filters, quadruplets, space mapping.

I. INTRODUCTION
From the very early days of microwaves, the design and
development of waveguide filters has always motivated a
great deal of research [1]. This is because waveguide filters
have always been, and still are, one of the key components
of all communication systems for both ground and space
applications [2]. Satellite communication systems, in particu-
lar, have always required complex filtering and multiplexing
networks. Recently, however, the architecture of communi-
cation satellites is evolving from the traditional bent-pipe
configuration to complex multi-beam systems, where the
hardware complexity is moved to the satellite front end [3].
As a consequence, more advanced filter structures need to be
developed that are suitable for integration with other front end
components [4], [5].

The basic configuration used throughout this article is
a quadruplet with one diagonal cross-coupling (see Fig. 1
left). The routing diagram of the modified quadruplet (MQ)
is indeed similar to one of the modified doublet (MD)
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(see Fig. 1 right). The main difference between the two is that
non-resonating nodes (NRNs) in the doublet are substituted
by resonant nodes (RNs) in the quadruplet.

The objective of this paper is to discuss in detail the design
of a new family of inductive waveguide filters in rectangular
waveguide based on cascaded MQs. The key building block
of the structures that we describe is a single-mode induc-
tive quadruplet in rectangular waveguide that includes also
a diagonal cross-coupling. However, before discussing the
filter structures that we propose, we find it appropriate to first
review the state-of-the-art of classical doublet configurations.

A review of past contributions discussing basic doublets
indicates that early configurations, such as the one described
in [6], did not include the cross-coupling connecting nodes 1
and 4 in Fig. 1 (right side). As a result, NRNs 1 and 4 were not
directly connected. With this configuration, the basic doublet
can only produce one transmission zero (TZ). The main
feature of the topology discussed in [6] is the TZ switching
property. Namely, that a TZ can be moved from one side to
the other of the passband. This result was achieved by mod-
ifying only the resonator frequencies, without changing the
couplings. However, one of the four couplings of the doublet
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FIGURE 1. Basic modified quadruplet (left), where all nodes are RNs.
Basic modified doublet (right), where nodes 1 and 4 are NRNs.

needed to have opposite sign with respect to the others. The
concept was extended to other coupling topologies in [7].

The first time that the modified doublet (MD) has been
discussed in the literature is in [8]. In that contribution, it was
shown that it is indeed possible to generate two TZs. How-
ever, in [8] only the synthesis part of the isolated MD was
discussed, and mixed signs in the coupling scheme were still
required.

It is important to remark at this point that practical
waveguide implementations of doublets based on dual-mode
configurations without source-load couplings, were already
reported in previous works, namely, [9] and [10], but with-
out using an explicit term for the topologies. Furthermore,
an additional contribution based on a rectangular waveguide
dual-mode resonator as a basic doublet, where all couplings
are implemented with inductive posts, can be found in [11].

Further works on advanced coupling topologies for dou-
blets, and their practical realizations, can also be found in
the literature. For instance, the extended doublet, based on
connecting an additional resonant node to the node 2 of
the basic MD in Fig. 1, (right), as well as the cascaded or
conjoined connections of this new basic building block, were
successfully discussed in [12]. Waveguide implementations
using TM dual-mode cavities, where the two resonant modes
of each cavity are properly excited with rotated irises, were
proposed in [13]. Rectangular waveguide cavities loadedwith
central posts, where two closely resonant modes are used in
each cavity, were also recently described in [14].

The possible implementation of doublets in substrate inte-
grated waveguide (SIW) technology has also been widely
investigated. In [15], for instance, the SIW implementation
of a basic doublet structure, based on the waveguide solution
discussed in [10], is described. An important additional con-
tribution given in [15] is that the authors demonstrate how it is
also possible to obtain a dual-band filter response by inserting
a TZ in the center of the pass band.

The practical realization of MDs in SIW technology has
also been successsfully proved in [16], where a transversal
filter with high selectivity is proposed. Finally, an alterantive
SIW structure that is partially filled with air, has also been
proposed to implement a MD [17].

More recently, novel 3D structures based on additive man-
ufacturing techniques have also been investigated [18]–[20],

where the basic building block is a doublet or a modification
thereof.

All the filters mentioned up to this point require specific
coupling techniques to implement the desired doublet struc-
tures, including, sometimes, the presence of two resonances
in one cavity (in the case of dual-mode cavities) that need
to be controlled simultaneously. Moreover, the final design
and tuning of the resulting filters can become rather difficult,
due to the simultaneous effects of one physical dimension on
several coupling values. Additionally, when using MDs, it is
normally observed that the coupling levels required between
RNs and the source (and load) are typically very strong [13],
due to the presence of NRNs. This coupling requirement,
that becomes even more demanding for filters with wider
bandwidth, can be alleviated with the use of a MQ where all
nodes are resonant.

It would therefore be very convenient if simpler structures
could be found to easily implement the MQ topology. A solu-
tion that addresses this problem in planar microstrip tech-
nology has indeed been recently proposed in [21]. However,
to the authors’ knowledge, no contribution can be found in
the technical literature where a simple, all inductive struc-
ture in rectangular waveguide technology is proposed for
implementing quadruplets with a diagonal cross-coupling.
The presence of the cross coupling is a small but very
significant detail, because it is indeed this cross coupling
that allows the quadruplet structure to become the basis
for the implementation of a very large variety of transfer
functions.

The main advantages of realizing MQs, like the one shown
in Fig. 1 left, with all inductive rectangular waveguide struc-
tures, with respect to the other implementations discussed
are:

1) AMQ can produce two more poles per quadruplet than
a doublet. This increases the overall selectivity of the
filter response.

2) The inductive waveguide implementation, based on
single-mode resonators, produces simple structures
that are easy to design, fast to simulate with high pre-
cision, and easy to manufacture with standard milling
techniques.

3) Couplings and resonant frequencies are controlled by
individual geometrical features. As a consequence, the
filters can be rapidly optimized, and the sensitivity
of the manufactured filter to mechanization errors is
significantly lower.

4) Flexible transfer functions are easily achieved with TZs
at either side of the passband, based on basic sections
that can then be cascaded or conjoined.

5) Reasonable coupling values and physical dimensions
are obtained for the layout, even for demanding speci-
fications.

6) The mixed signs in the topology can be implemented
always with an overall all-inductive structure. More-
over, negative signs in the coupling matrix (CM) can
be reduced to a minimum.
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In this context, therefore, the objective of this paper is
to further extend the state-of-the-art of advanced filtering
structures based on the quadruplet topology in rectangular
waveguide by discussing:

1) A systematic, step-by-step procedure to go from a
set of specifications to a CM description for MQ
configurations.

2) The detailed procedure to go from the CM represen-
tation to equivalent circuits based on distributed ele-
ments. This step will allow the definition of the starting
the physical dimensions with a systematic procedure
using a low number of variables in the optimization
stage.

3) A number of design examples to illustrate in detail the
variety of complex filtering transfer functions that can
be implemented with the structures that we propose.

4) The comparisons between simulations and measured
results for two filter breadboards realized following our
design procedure.

The value of the results presented in this paper is, in our
opinion, in the fact that the filters discussed are implemented
using simple inductive structures in rectangular waveguide.
As a result, they are very simple to simulate, manufacture, and
integrate with other waveguide components. Furthermore,
they allow for the implementation of virtually any advanced
filter transfer function, thereby becoming ideal candidates for
the implementation of modern payloads for both ground and
space applications.

This article is organized as follows: Section II provides the
guidelines to obtain the coupling matrix and routing diagrams
from the specifications. Section III shows how to derive the
distributed models for the filters. Section IV deals with the
design of two prototypes, and the measured results are shown
in section V. Section VI outlines the conclusions of this
work. In appendix A the required formulas for the impedance
scaling are derived. Finally, appendix B has been added to
provide a comprehensive list of acronyms used throughout
this article.

II. COUPLING MATRIX MODELS
The starting point for the synthesis of the CM is the set of
desired filter performance specifications. The next step is
normally the definition of a polynomial representation of the
filter transfer function that satisfies the given specifications.
Once the polynomials are defined, a canonical form must
be chosen to operate the transformations producing the final
topology. These transformations make use of pivots and angle
rotations (in terms of the elements Mij of the CM) in the
classical form as described in detail in [2], for instance. The
work described in this paper relies on the arrow form that is
also described in [2]. From the arrow form, suitable trans-
formations are applied to produce a topology of conjoined
triplets shown in Fig. 2, where four conjoined triplets are
shown as an example. A more detailed description of all the
required computations can be found in [2] and [22].

FIGURE 2. Coupling/routing schematic after the creation of 4 conjoined
triplets from an arrow form.

FIGURE 3. Cascaded modified quadruplet formation. (a) Cascaded
quadruplets with two diagonal cross-couplings. (b) Annihilation of M23
and M67 to form two cascaded modified quadruplets.

Further rotations may now be applied to merge pairs
of adjacent triplets to form quadruplets [23]. For example
the first two triplets 123 and 345 may be merged into the
quadruplet 1234 by a rotation at pivot [3, 4] and angle θ =

arctan(M (5)
35 /M

(5)
45 ), so annihilating M (5)

35 . Similarly triplets
567 and 78L may be merged into the quadruplet 5678 by
a rotation at pivot [7, 8] and angle θ = arctan(M (5)

7L /M
(5)
8L ),

so annihilatingM (5)
7L (see Fig. 3(a)).

Now each quadruplet with two diagonal cross-couplings
may be transformed into a modified quadruplet by one
further rotation. For the first quartet this means annihi-
lating M23 with a cross-pivot rotation at [2, 3] and angle
θ = 0.5 arctan[2M23/(M33 −M22)], similarly for the second
quadruplet with a pivot at [6, 7], and so on (see Fig. 3(b)).

Conjoined modified quadruplets may be formed by pulling
the second pair of triplets up the diagonal by one extra posi-
tion before forming the quadruplet with two diagonal cross-
couplings (Fig. 4(a)). Now the quadruplets share a common
node (node 4), before the modified quadruplets are formed by
annihilatingM23 andM56 with cross pivot rotations [2, 3] and
[5, 6] respectively (Fig. 4(b)). Note that the conjoined form
only needs a 7th degree characteristic to realize 4 TZs.

A. ILLUSTRATIVE EXAMPLE
An example is given of the design of a modified quadru-
plet pair realizing an asymmetric seventh degree char-
acteristic, with 23 dB return loss and with four TZs

FIGURE 4. Conjoined modified quadruplet formation. (a) Conjoined
quadruplets with two diagonal cross-couplings. (b) Annihilation of M23
and M56 to form two conjoined modified quadruplets.
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FIGURE 5. 7-4 asymmetric modified quadruplet pair. (a) Coupling matrix.
(b) Coupling/routing diagram.

at −j1.9442, −j1.3517, −j1.1731 and −j1.1162 to give
four 60 dB rejection lobes on the lower side of the
passband. After synthesizing the arrow coupling matrix,
four triplets are formed on the diagonal of the coupling
matrix, merged in pairs and then the couplings M23 and
M56 annihilated. The resultant coupling matrix and cor-
responding coupling and routing diagram are shown in
Fig. 5, and the rejection and RL performance are shown
in Fig. 6.

FIGURE 6. 7-4 asymmetric modified quadruplet pair. Rejection and return
loss performance.

In the coupling matrix of Fig. 5, positive or negative
mainline and cross-couplings are realized with appropriately
dimensioned and positioned aperture and resonator widths as
will be explained in Section IV-A. The signs and values of the
self-couplings on the diagonal of the CM are realized with
offsets from the filter center frequency of the resonant fre-
quencies of the cavities: a negative value for the self-coupling
means a resonant frequency offset above the filter center
frequency for the corresponding resonator, and vice versa.

B. REVERSAL OF THE FILTERING CHARACTERISTIC
The reversal (mirroring about center frequency) of a filter’s
characteristic is sometimes used for the design of contiguous-
channel diplexers, being useful in that the first filter design
may be used for the second diplexer filter, requiring only a

FIGURE 7. Sign changes for filtering characteristic reversal. Any coupling
on the dashed diagonal lines will change sign but not value.

retuning of the resonators and the change of sign of some of
the couplings of the second filter. Otherwise their absolute
values are the same.

For any bandpass or bandstop prototype, it is possible to
reverse its filtering characteristics simply by retaining the
original absolute value but changing the sign of any self- or
inter-resonator coupling value in the matrix whose indices
add to an even integer. For example coupling M22 (a self-
coupling) or M24 (a cross-coupling) would change sign, but
M12 (a main-line coupling) or M14 would not. For this pur-
pose, index ‘S’ is replaced with zero and index ‘L’ with
‘N + 1’. This procedure may be visualized by drawing the
principal diagonal on the coupling matrix, and then alternate
parallel diagonals until the upper-right and lower-left corners
of the matrix are reached (see Fig. 7).

This means that the self-couplings always change
sign (conjugate) whilst main-line couplings retain their orig-
inal sign. For a triplet one cross coupling will change sign,
whilst two will change in a modified quadruplet. These
coupling sign changesmay bemoved to other couplings in the
matrix or reduced in number by the method of enclosures [2].

III. DISTRIBUTED MODELS
The MQ cell can be directly translated into a distributed
model (DM), or network, using admittance inverters and
lengths of transmission lines. This distributed network then
becomes a very effective tool to perform the transition from a
CM description to an actual waveguide device. The transition
can, in fact, be accomplished by using the DM to obtain a
number of reference curves for portions of the network. The
various reference curves can then be used to obtain the initial
dimensions of a real waveguide structure. The DM that we
propose to use to represent the MQ is shown in Fig. 8.

It is important to note that, in Fig. 8, all inverters and
transmission lines have the same common ground that is,
therefore, omitted in the drawing. The connection to ground
in the transmission lines means that they are terminated
with a short circuit. Furthermore, all internal lines have the
same characteristic impedance. Finally, the input and output
lines can also have the same characteristic impedance if JS1
and J4L are suitably scaled. In fact, the whole circuit can be
impedance scaled to have all lines with Z0 = 1�, if required.
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FIGURE 8. Distributed model for a modified quadruplet (4 RNs with 1-4
coupling).

As we can see in Fig. 8, the total length of resonator 3 is
one wavelength, whereas the other three resonators are half
wavelength long. This is done, as will be explained in more
detail later on, to implement the negative coupling required
in the basic MQ cell.

Next, we show how the DM can be easily transformed into
a lumped element network, and how the values of the DM
elements are related to the entries of the CM of the MQ cell.

A. THE EQUIVALENT NETWORK OF
A TRANSMISSION LINE
It is well known that distributed transmission lines with
lengths λ/4 and λ/2 can be represented by the lumped ele-
ment networks shown in Fig. 9, where

Lp =
4Z0
πω0
; Cp =

πY0
4ω0
; Ls =

πZ0
2ω0
; Cs =

2Y0
πω0

(1)

The formulas in (1) are derived following the same
approach explained in detail in [24]. The transformer
accounts for the phase reversal of the signal in a
half-wavelength transmission line. This phase behavior is
crucial since it allows to implement the negative couplings
required in the MQ using only positive admittance inverters
in the DM.

It is important to note that resonators 1 and 4 in Fig. 8 are
half-wavelength long. The phase reversal that they introduce
could be included in JS1 and J4L but, since the sign on
these inverters can be changed arbitrarily without changing
the response (method of enclosures [2]), we can ignore this
phase reversal. Furthermore, the short circuits at the end of
the quarter-wavelength transmission lines cancel one of the
parallel resonators, as well as the inverters of the lumped
element networks in Fig. 9. Another approximation that we
have used is to neglect the series resonators Ls − Cs, since
we assume that the inverter values are small for practical
filters.

Finally, therefore, the resulting (approximate) lumped
element network that we obtain from the DM is shown

FIGURE 9. Equivalent circuits for quarter-wavelength and
half-wavelength transmission lines near resonance.

FIGURE 10. Lumped element equivalent network obtained from the DM.

in Fig. 10, where the phase reversal due to resonator 3 has
been embedded in the inverter J34. The reason for having
resonator 3 longer than resonator 2 is to implement the neg-
ative coupling that is required by the modified quadruplet
topology. As a consequence, all inverters in the DM can be
positive, while the couplings in the lumped element model
have different signs. For the sake of clarity, the total length
of any resonator in the DM gives the mode used for the
corresponding resonance: resonators with length λg/2 use the
TE101, resonators with length λg use the TE102 and so on.
The capacitance and inductance values of the resonators

in Fig. 10 are different for each resonator since, in general,
every resonator resonates at its own ω0i. We can therefore
write:

ω0i =
1
√
LiCi

, i = 1, 2, 3, 4 (2)

where

Li =
4

πω0i
, Ci =

π

4ω0i
, i = 1, 2, 3, 4 (3)

Note that, for the sake of clarity, we have assumed that
Z0 = 1� without loss of generality.
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FIGURE 11. Equivalent circuit representing the resonators in the coupling
matrix (left). Equivalent resonator without FIRs (right).

B. SCALING THE MODEL
Once all resonators are replaced by lumped elements, we are
ready to identify the elements of the circuit in Fig. 10 with
the elements of the CM. To do that, we first assume that
the CM produces an equivalent circuit with resonators in the
form of parallel lumped elements with normalized values for
the capacitors in the low-pass model. The transition from
low-pass to bandpass is then given by the usual lowpass-to-
bandpass transformation, resulting in the equivalent circuit
shown in the left of Fig. 11. We now note that B is the value of
the frequency independent reactance (FIR), that comes from
the diagonal elements of the CM corresponding to the res-
onators, and is not affected by the frequency transformation.

The next step is to eliminate the FIRs (see Fig. 11 right).
The procedure is straightforward. Since we have two ele-
ments L and C we need the two usual conditions: the same
resonant frequency ω0 and the same slope parameter B. The
slope parameter of the circuit in the left side of Fig. 11 is
given by

B =
ω0

2
d={Yin}
dω

∣∣∣∣
ω=ω0

=
ω0C0

2
+

1
2ω0L0

=
1

ω0L0
−
B
2

=
B
2
+ ω0C0 (4)

where ω0 cancels the imaginary part of the admittance of the
resonator, that is B + ω0C0 − 1/(ω0L0) = 0, while for the
circuit on the right side of Fig. 11 we have simply B = ω0C
and ω0 = 1/

√
LC . Equating both expressions for the slope

parameter, we have

C =
1
ω0

(
C0ω0 +

B
2

)
L =

1
ω0

(
C0ω0 +

B
2

)−1
(5)

We now note that the values of C0 and L0 are the usual ones
given by the lowpass-to-bandpass transformation applied to a
capacitor of value equal to 1 F, so that

C0 =
1
1ω

L0 =
1ω

ω2
0

(6)

where 1ω = 2πBW and BW is the filter frequency band-
width.

FIGURE 12. Resonator obtained from the CM with adjacent inverters
(top). Resonator obtained from the simplification of the distributed
model with adjacent inverter (bottom).

The last step is to identify the lumped element model given
by the CM and the lumped element model obtained after
simplifying the DM. In this context, it is enough to identify
each block inverter-resonator-inverter to obtain the proper
scaling. Let us use the subscript ‘dis’ for the block coming
from the distributed model, and the subscript ‘CM’ for the
circuit coming from the coupling matrix. We now write

CCM =
1
ω0

(
ω0
1ω
+

B
2

)
Cdis =

π
2ω0

(7)

where Cdis is the value of the capacitor for the half-
wavelength resonators. If the resonator has length λg, then the
expression of Cdis in (7) has to be multiplied by two as shown
in Fig. 10. The expressions of LCM and Ldis are obtained
imposing the resonance at ω0, namely L = 1/(Cω2

0).
To obtain the admittance looking into port i = 1, 2 (see

Fig. 12), we assume a short circuit termination at the other
access, as it is customary to obtain an admittance matrix.
Enforcing the same admittance values, we obtain

Y (i)
in =

J2 (i)CM

jωCCM +
1

jωLCM

=
J2 (i)dis

jωCdis +
1

jωLdis

=
1

jω
CCM

J2 (i)CM

+
1

jωLCMJ
2 (i)
CM

=
1

jω
Cdis

J2 (i)dis

+
1

jωLdisJ
2 (i)
dis

(8)

Identifying terms we write

CCM

J2 (i)CM

=
Cdis

J2 (i)dis

(9)
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So that we can now solve for our unknown, obtaining J (i)dis

J (i)dis = J (i)CM

√
Cdis

CCM
(10)

A term like (10), therefore, appears in each inverter due to
one of the adjacent resonators. If one inverter has a resonator
at each side, we can write the full set of equations for the
relevant modified quadruplet, taking into account expressions
in (7), as follows

JS1 = MS1
√
S1

J4L = M4L
√
S4

Jij = Mij
√
SiSj i, j = 1, 2, 3, 4 (11)

where

Si =
π/2

1/Wi +Mii/2
(12)

The above equations are applicable to half-wavelength res-
onators. For full-wavelength resonators, however, the numer-
ator of (12) should be replaced by π , and one of the adjacent
inverters should have a sign that is the opposite of the corre-
sponding CM element, to account for the phase reversal. Note
that, for each TEM resonator Wi = 1ω/ω0i. However, for
waveguidemodes the guide-wavelength fractional bandwidth
Wλi should be used instead [1]. The formulas obtained in (11)
are also valid for the cascaded and/or conjoined connections
of any number (without limitation) of MQs.

In order to complete our derivation, it is also important
to obtain the resonant frequency of each resonator in the
CM (Fig. 11 left). This is required in order to compute the
corresponding Wi or Wλi. The value of the ω0i, in terms of
the bandpass values L0, C0 and B, is given by

ω0i =


B
2C0

(√
1+

4C0

L0B2
− 1

)
, B > 0

−
B
2C0

(
1+

√
1+

4C0

L0B2

)
, B < 0

(13)

where both cases provide a positive value for ω0i. The values
for B = Mii, L0 and C0 are provided by (6). One may argue
that (11) and (12) have been obtained assuming that we have
only one inverter at each side of a resonator. In our DM,
however, there are junctions (e.g. at the output of resonator 1)
where several inverters are connected in parallel. The formu-
las are still the same ones, as it is proven in Appendix Awhere
the scaling at certain node is obtained with any number of
inverters connected in parallel to it.

C. ILLUSTRATIVE EXAMPLE
As a simple application example for the formulas derived
in the previous section, we now derive the element values
for the distributed model of an asymmetric 4-2 filter with
return loss RL = 23 dB, upper-band rejection of 30 dB, with
f0 = 11GHz, and with BW = 200MHz. The distributed
model will be extracted for a standard waveguide WR-75 in

all resonators. The coupling matrix for this filter is (14), as
shown at the bottom of the next page.

The distributed circuit is shown in Fig. 8. The resonant
frequency for each resonator is given next:

f01 = f04 = 10.9838GHz

f02 = 11.0036GHz

f03 = 11.1033GHz (15)

and the inverter values are

JS1 = 0.2710 = J4L
J12 = 0.0549 = J24
J13 = 0.0256 = J34
J14 = 0.02153 (16)

where all inverter values are positive, as expected. The M13
was originally negative but, the sign inversion is provided
by resonator 3 (having a length of λg3). We could have
indifferently assigned a change of sign to J13 or J34 (but not to
both simultaneously). The simulation of the lumped element
circuit given by the coupling matrix is compared with the dis-
tributed model response in Fig. 13. It is remarkable that such
a good agreement is obtained without using any optimization.
The reason is that the approximations shown in Fig. 9 are very
good near resonance and, therefore, for narrowband appli-
cations these approximations are indeed of the same order
as the ones used to obtain the classical formulas for in-line
filters [1]. Therefore, the same limitations apply: approxima-
tions worsen when the number of resonators increases, and
when the relative bandwidth increases. However, for practical
orders and moderate bandwidths, (11) and (12) work with
outstanding precision.

FIGURE 13. Electrical response of the lumped circuit given by the
coupling matrix (solid lines) compared with the distributed circuit
performance (dotted).

As reported in section II-B, it is very easy to obtain
the reversal of the response given in Fig. 13. We have to
change the couplings whose indices add to an even integer.
Therefore, M13 and M24 will change sign in addition to all
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elements of the main diagonal (17), as shown at the bottom
of the page.

Additionally, as the minus sign is implemented with a λg
resonator, the distributed model will be like the one in Fig. 8,
but with the resonator 2 with length λg2 and the resonator 3
with length λg3/2.

Therefore, the distributed model will have the following
resonant frequency for the resonators:

f01 = f04 = 11.0162GHz

f02 = 10.9964GHz

f03 = 10.8977GHz (18)

and the inverter values are

JS1 = 0.2706 = J4L
J12 = 0.0775 = J24
J13 = 0.0183 = J34
J14 = 0.02146 (19)

The simulation of the lumped element circuit given by the
coupling matrix is compared with the distributed model
response in Fig. 14, showing again a very good agreement.

IV. DESIGN EXAMPLES
The next step in the design process, after having derived a
DM, is to obtain the physical dimensions of the real waveg-
uide structure. In this work, we have chosen to implement our
filters in rectangular waveguide, an the performance of all the
filter structures we discuss will be obtained using full-wave
electromagnetic simulators (EM model). The purpose of this
section is to provide the guidelines to obtain the physical
dimensions of the EM model from the DM derived in the
previous section.

In this context, it is important to mention that we will
use FEST3D for all the EM simulations. One particular
feature of FEST3D is that the user can choose the set of
computational parameters that determine the accuracy of
the computations. Naturally, more accurate results require

FIGURE 14. Electrical response of the lumped circuit given by the coupling
matrix (solid lines) compared with the distributed circuit performance
(dotted). This is the filter with the reversal response of Fig. 13.

more computation time. For the design examples discussed
in this paper, FEST3D has been used in both low accuracy
mode (LA) and in high accuracymode (HA). The correspond-
ing computational parameters are as follows:

• Accessible modes = 5 (LA), 25 (HA)
• Basis Functions = 15 (LA), 75 (HA)
• Terms in the kernel = 150 (LA), 750 (HA)

More information about the meaning of these parameters is
given in [25].

A. EXAMPLE 1: 4-2 ASYMMETRIC FILTER
The simplest filter example is the basic MQ with the DM
shown in Fig. 8. We will first discuss the asymmetric
case with a transfer function equal to the one in Fig. 14
(f0 = 11GHz and BW = 200MHz, two TZs to the left). The
waveguide layout we are aiming for is the simple inductive
structure (constant height) in WR-75 (a = 19.05mm and
b = 9.525mm) shown in Fig. 15.

M =


0 1.11971 0 0 0 0

1.11971 0.16222 0.93803 −0.31075 0.36747 0
0 0.93803 −0.03582 0 0.93803 0
0 −0.31075 0 −1.02780 0.31075 0
0 0.36747 0.93803 0.31075 0.16222 1.11971
0 0 0 0 1.11971 0

 (14)

M =


0 1.11971 0 0 0 0

1.11971 −0.16222 0.93803 0.31075 0.36747 0
0 0.93803 0.03582 0 −0.93803 0
0 −0.31075 0 1.02780 0.31075 0
0 0.36747 0.93803 0.31075 −0.16222 1.11971
0 0 0 0 1.11971 0

 (17)
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FIGURE 15. Waveguide structure (top view) implementing the DM
of Fig. 8.

The first objective in our design process is to obtain a
low accuracy (LA) EM model, that is computationally very
efficient and that gives the exact same response as the DM.

To this end, we decompose the DM into three partial
models (PMs). The PMs will be used to generate design
curves representing the target performance for the corre-
sponding LA PMs in waveguide (WMs). The procedure can
be divided into the following steps:

Step 1: Design resonator 2. The DM1 model shown in
Fig. 16 (top) is implemented with the WM1 struc-
ture show in Fig. 16 (bottom). The WM1 is then
optimized to give the same performance of the par-
tial DM1. The optimization requires only two vari-
ables: the window apertures (w12), and the width
of resonator 2 (a2). The width has been chosen
as an optimization parameter in order to have a
fixed length for the central part of the structure. The
responses of both circuits are compared in Fig. 17.

Step 2: Design resonator 3. The DM2 model in Fig. 18
(top) is implemented with WM2 shown in Fig. 18
(bottom). The optimization requires again only
two variables: the window apertures (w13) and the
lengths (r3). The responses of both circuits are com-
pared in Fig. 19.

Step 3: Design resonator 1. The DM3 model shown in
Fig. 20 (top) is implemented with the WM3 shown
in Fig. 20 (bottom). The optimization requires again
only three variables: the length r1, the window aper-
turesws1 andw14. The responses of both circuits are
compared in Fig. 21.

We can now assemble all WMs to obtain the initial com-
plete LA model in waveguide. Fig. 22 shows the initial

FIGURE 16. DM1 (top) and WM1 (bottom).

FIGURE 17. Electrical responses for the structures in Fig. 16.

response of the LA model (iter 0). Only 3 iterations of the
classic Space Mapping (SM) algorithm (based on the evalu-
ation of the Broyden matrix [26]) are now enough to obtain
the response shown in Fig. 22 (iter 3).

The next step is to obtain a high accuracy (HA) model
from the LA model. It is important to note that both models
use the same physical structure and the same variables for
the optimization. The only difference is the accuracy of the
computations.

The optimization of the HA model is again carried out
using the SM algorithm, but now the Broyden matrix is
always equal to the identity matrix, as discussed in [27]. This
procedure leads, in one single step, to the solution shown
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FIGURE 18. DM2 (top) and WM2 (bottom).

FIGURE 19. Electrical responses for the structures in Fig. 18.

in Fig. 23. As we can see, we now have an excellent agree-
ment between the HA and the DM simulations.

B. EXAMPLE 2: SYMMETRIC 7-4 FILTER
Increasing the complexity, the next structure we discuss is a
symmetric 7-4 filter centered at f0 = 11GHz with bandwidth
BW = 400MHz, return loss RL = 23 dB and 60 dB
rejection lobes on both sides of the passband. This example
requires a pair of MQs. The routing diagram for this filter
is shown in Fig. 5 (b). The responses of the coupling matrix
and the DM model (see Fig. 24) are shown in Fig. 25 (top).
It is interesting to note that the DM has a small deviation
inside the passband, more pronounced in the lower side. This
difference is due to the approximations introduced in the DM

FIGURE 20. DM3 (top) and WM3 (bottom).

FIGURE 21. Electrical responses for the structures in Fig. 20.

derivations, and to the dispersion introduced by the WR75.
We can, indeed, recover the equiripple behavior with a fast
optimization, as shown in Fig. 25 (bottom), however, we now
have a small shift in the location of the lower TZ.

We must also note that, for mechanical reasons, res-
onator number 4 is one wavelength long. This has,
indeed, been taken into account in the DM, as shown
in Fig. 24.

We are now ready to build the LA model for this filter,
following the same procedure already described in the pre-
vious example. The first steps are exactly identical, namely,
we need to match the responses of the PMs with the WMs for
this filter (they are identical to the ones shown in Fig. 16, 18
and 20, respectively). However, the same process must be
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FIGURE 22. Low accuracy (LA) response for the whole filter once all parts
are joined together (iter 0). After 3 iterations of SM optimization,
we obtain the response in dashed line. The dotted line shows the DM
response.

FIGURE 23. High accuracy (HA) response of the overall filter compared
with the response of the DM model.

FIGURE 24. Distributed model for a 7-4 filter.

used twice since we now have two MQs. The next step, once
the PMs and the WMs give the same response, is to cut the
DM of the complete filter in the center of resonator number 4
(see Fig. 24), and match the performances of the two new
DMs obtained with the responses of the respective WMs.
The results obtained with three SM iterations are shown
in Fig. 26.

The next step is to assemble the two halves of the filter (the
structure is shown in Fig. 27) and simulate the performance

FIGURE 25. Comparison of the CM response with the DM response (top)
using analytical formulas. CM vs. DM responses after recovering the
equiripple in the DM through optimization (bottom).

of the complete structure. Fig 28 shows that the structure
does give a good initial response (LA initial). A slight opti-
mization is, however, needed to recover the desired response
(LA final).

Finally, the HA model is obtained from the LA model
following the process already discussed for the previous
example. Also in this case, only one iteration is enough to
obtain a compliant response. Fig. 29 shows the final HA
performance compared to the DM performance.

V. EXPERIMENTAL VERIFICATION
In this section, we show the measured results obtained
manufacturing the design examples discussed in the previ-
ous sections, namely, the 4-2 asymmetric filter described
in subsection IV-A, and the 7-4 symmetric filter described
in subsection IV-B.

Fig. 30 shows the 4-2 asymmetric filter. The filter has been
manufactured using milling, and is composed of a body and a
top cover. The presence of round corners, due to mechaniza-
tion effects, has been considered in the HA model. It is worth
mentioning that the filter does not use tuning elements, which
was concluded after performing a sensitivity analysis. Fig. 31
shows the comparison between the measured response and
the high accuracy simulation. As we can see, the measured
response shows a very good agreement with the simulated
results.

The second filter (subsection IV-B) has a more complex
layout, and has also been manufactured using milling with
a body and a top cover. In this case, the sensitivity analysis
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FIGURE 26. Electrical response LA (iteration 0 and iteration 3) of each
half of the symmetric 7-4 filter compared with the DM.

FIGURE 27. Waveguide structure (top view) implementing the DM
of Fig. 24.

revealed the need of using tuning elements in all cavities and
coupling windows. Screws are also used to fasten the two

FIGURE 28. Electrical response of the complete 7-4 filter in LA compared
with the DM model.

FIGURE 29. Electrical response of the 7-4 filter in HA compared with
the DM.

FIGURE 30. Manufactured 4-2 asymmetric filter.

filter’s parts. The prototype (separated body and cover) is
shown in Fig. 32.
Fig. 33 shows the filter performance as compared to the

high accuracy simulations. The measured response is again
very close to simulated data, including the very selective band
edges.
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FIGURE 31. Performance of the 4-2 asymmetric filter compared with the
high accuracy simulation.

FIGURE 32. Manufactured 7-4 symmetric filter. Top cover (left) and body
(right).

FIGURE 33. Measured response of the 7-4 symmetric filter compared
with the high accuracy simulation.

From the design procedure and the results obtained, we can
highlight some advantages over the state-of-the-art designs:
the procedure is simple even for high-order filters because
cascading several MQs does not add significant complex-
ity to the design process. The couplings are very easy to
control since the structure is not overmoded, thus produc-
ing a strong independence among the different part of the
filter. This also leads to a very easy segmented optimiza-
tion avoiding a high number of simultaneous variables in
the optimization algorithm. The prototypes are rather sim-
ple to manufacture because the structure is all-inductive.

FIGURE 34. Admittance Y connected to multiple inverters.

Moreover, technical feasibility could be achieved even for
very high frequencies.

VI. CONCLUSION
The objective of this paper is to describe in detail a new family
of filters based on cascaded Modified Quadruplets (MQs)
with diagonal inter resonator cross-couplings. Starting from
the specifications, a coupling matrix is derived. Next, the
coupling matrix is transformed into the canonical arrow form,
and all the MQs are extracted explicitly. A lumped element
circuit is then used to obtain all the parameters of a dis-
tributed model with the same performance of the original
coupling matrix. The distributed model is then used to build
the final full-wave EM model using a step-by-step design
procedure. All the steps required to build the EM model are
discussed in detail. In addition to theory, the design of two
examples of increasing complexity is also discussed. Finally,
two filter prototypes are designed, fabricated and measured.
The measured results show an excellent agreement with the
simulations, thereby fully validating the new filter family and
the complete design procedure.

APPENDIX A
SCALING A NODE WITH INVERTERS IN A STAR
CONFIGURATION
Let us assume that we want to normalize to unity an admit-
tance Y that is connected to many inverters J0, J1, . . . , Jn in
a star configuration, as shown in Fig. 34. Each inverter has a
load admittance YLi.
The input admittance seen at the input of any inverter is

Yini, i = 1, . . . , n and we know that

Yini =
J2i
YLi
, i = 1, 2, . . . , n (20)

Therefore, to compute Yin0 we write

Yin0 =
J20

Y +
n∑
i=1

Yini

=
J20

Y +
n∑
i=1

J2i
YLi

(21)
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TABLE 1. List of acronyms used in this article.

which can be rewritten as

Yin0 =
J20 /Y

1+
n∑
i=1

J2i /Y

YLi

=
J ′20

1+
n∑
i=1

J ′2i
YLi

(22)

where the new values of the inverters when the admittance is
normalized to 1 are given by

J ′i =
Ji
√
Y

i = 0, 1, . . . , n (23)

Since inverter J0 has no special features, we would have
obtained the same result using the input admittance of any
other inverter looking from the load towards the admittance
Y . Therefore, no matter how many inverters are connected
to an admittance, the normalizing factor for node scaling is
always

√
Y . If we want to normalize a capacitor, C as in

section III-B, then the factor
√
C appears in the denominator

of the expression of any adjacent inverter.

APPENDIX B
ACRONYMS
Due to the extensive use of abbreviations in this work, a table
with the acronyms is provided for the reader’s convenience.
Table 1 provides the meaning for all acronyms in alphabetical
order.
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