
Engineering Applications of Artificial Intelligence 107 (2022) 104515

A
c
A
a

b

A

K
O
D
F

1

d
f
c
a
b
v
r
o

i
t
b
e
t
d
2
p
a

s
1
d
a
a
h

h
R
A
0
(

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

daptive polyhedral meshing for approximate dynamic programming in
ontrol
ntonio Sala a,∗, Leopoldo Armesto b

Instituto Universitario de Automática e Informática Industrial (AI2), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Valencia, Spain
Instituto de Diseño y Fabricación (IDF), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Valencia, Spain

R T I C L E I N F O

eywords:
ptimal control
ynamic programming
unction approximation

A B S T R A C T

This work proposes a new criterion for adaptive meshing in polyhedral partitions which interpolate a value
function in Approximate Dynamic Programming (ADP) in optimal control problems. The criterion adds new
points to a simplicial mesh, based on: a user-defined initial condition probability density function which
determines ‘influential’ regions of the state space, uncertainty (variance) propagation, and temporal-difference
error. A collection of lemmas justifies the algorithmic proposal. Comparative analysis with other options in
literature highlights the advantages of our proposal. The developed methods are applied to simulation examples
and an experimental robotic setup.
. Introduction

Optimal control laws for discrete-time dynamic systems can be
esigned via various techniques: dynamic programming (DP), rein-
orcement learning (RL) and other techniques such as model predictive
ontrol (MPC). DP will be understood as a model-based approach with
ll transitions, rewards and states assumed explicitly available; RL will
e addressed to solving similar problems in the absence of a model,
ia ‘‘experimentation’’ (actual or simulated) of state transitions and
ewards (Maggipinto et al., 2020; Busoniu et al., 2018); MPC carries
ut on-line optimization (Altan and Hacıoğlu, 2020).

The goal of this work is restricted to the first of the frameworks,
.e., dynamic programming: model-based DP avoids on-line computa-
ional burden of MPC at the expense, of course, of incurring in such a
urden in the controller design phase. If the state space is finite and
ach state has an associated value function parameter, it is well known
hat standard policy iteration (PI) and value iteration (VI) techniques
o converge to the optimal solution under mild assumptions (Bertsekas,
017). In the case of continuous state spaces, approximate dynamic
rogramming (ADP) is needed in all but a few simple cases, but in such
case, convergence guarantees may be lost (Busoniu et al., 2010).

One popular setting in which ADP convergence is guaranteed is the
o-called fuzzy, interpolated or gridded approach (Davies, 1996; Grüne,
997; Busoniu et al., 2010). Basically, the continuous state space is
iscretized and a finite-state MDP problem is solved on the discretized
pproximation. This is, too, related to the aggregation/disaggregation
pproaches to ADP (Bertsekas, 2018). Other ADP approaches might not
ave the required contractiveness requirements for PI/VI convergence

∗ Corresponding author.
E-mail address: asala@isa.upv.es (A. Sala).

and alternative solutions may be needed, such as linear program-
ming (De Farias and Van Roy, 2003; Díaz et al., 2020) or numerical
minimization of the Bellman error (fitted policy iteration), see Antos
et al. (2006), Timmer and Riedmiller (2007) and Díaz et al. (2020);
however, the computation time requirements the latter options are
significantly larger compared to the aforementioned interpolated ones.

Once an ADP solution is found, there are approaches in litera-
ture modifying the function approximation structure, trying to find
a more accurate approximation in later repetitions of the PI/VI step,
see Grüne (1997), Munos and Moore (2002), Keller et al. (2006) and
Whiteson (2006). The most naive option would be uniform state–space
discretization with finer granularity in a simplicial interpolation mesh,
for instance; increasing the granularity of the action-space might also
be considered (Buşoniu et al., 2018; Farquhar et al., 2020). Of course,
uniform gridding renders impractical as the density of sample points
increases, this issue being exacerbated with the dimension of the state
space. However, non-uniform simplicial (or, in general, polyhedral)
meshes are an interesting option for ADP and, in fact, this manuscript
will concentrate on their refinement as its main objective.

Notwithstanding, for completeness of the literature review, there
are other possible approaches in order to adapt the ADP function ap-
proximators: Keller et al. (2006) discusses a regression-based approach
in with basis functions (features) are automatically added, evolving
neural network architectures are proposed in Whiteson (2006), tile-
coding structures appear in Whiteson et al. (2007), and multi-scale
kd-trees in Gomez Plaza et al. (2017). Specialized mesh-refinement
algorithms for particular optimal control problem cases are also a
ttps://doi.org/10.1016/j.engappai.2021.104515
eceived 30 July 2021; Received in revised form 22 September 2021; Accepted 14
vailable online 29 October 2021
952-1976/© 2021 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by-nc-nd/4.0/).
October 2021

s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.engappai.2021.104515
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2021.104515&domain=pdf
mailto:asala@isa.upv.es
https://doi.org/10.1016/j.engappai.2021.104515
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

i

m
e

𝑉

𝑉

w
d

𝑇

N

𝜋

E
U
a
p
k
c
2

2

i
a
2
2

𝜖

T
p

𝜃

w

possible option: for instance, in Yershov and Frazzoli (2015), special-
izations to the shortest-path problem in robotic planning are proposed,
nevertheless, they do not apply to a general DP setting. Last, in a
continuous-time setting, the Hamilton–Jacobi-Bellman equation at the
core of DP is actually a first-order partial differential equation that can
be solved by, say, collocation methods: the works (Liu et al., 2015,
2017) exploit such an option; nevertheless, the result is obtained in
the time domain (meshing is done in time intervals, interpolation of
control actions in between the intervals is done with, say, Legendre
polynomials of varying degree) so their developments do not obtain
value functions 𝑉 (𝑥), being thus more related to open-loop control
computations. The mentioned neural, evolving, problem-specific or
PDE-collocation approaches will not be considered in the scope of this
work, due to their computational costs or lack of applicability to generic
closed-loop optimal control.

Hence, motivated on the sensible computational cost and intuitive
interpretation of the interpolation setups, we will be focusing in sim-
plicial mesh refinement criteria for value function and state-feedback
control computation. Non-uniform polyhedral meshes for interpolation
will be the chosen tool in this work, because they preserve the favor-
able properties for ADP convergence and, at least in theory, they can
account for the different mesh density needs in different regions of
the state space, depending on the variations of the smoothness of the
approximated value function.

In order to generate non-uniform regressor arrangements, there
exist naive approaches such as logarithmically-spaced options (Busoniu
et al., 2010); other possible options are based only in a function
approximation paradigm (Cohen et al., 2012), disregarding the fact
that the approximated function comes from a DP setup. However, in
a dynamic programming setting, introducing specific measures related
to optimal control performance proves advantageous (Grüne, 1997).
The cited work, and the refinements in Grüne and Semmler (2004),
Armesto and Sala (2022), propose a splitting criterion based on the
Bellman temporal-difference error (TDE). In Munos and Moore (2002)
and Cervellera and Macciò (2017) the importance of adapting the
meshing (or sample points, in the second case) to the distribution of
state trajectories is acknowledged, identifying influential regions of
the state space (Gottesman et al., 2020). The work Munos and Moore
(2002) is a very comprehensive one in which a plethora of options
for adaptive meshing in DP problems are compared in different test
benches. Comparative discussion of our proposal and those in the
above-cited works will be carried out in later examples and discussion
sections in this manuscript.

The main objective of this paper is proposing a splitting criterion
for polyhedral interpolation meshes used in ADP, improving upon the
above-cited literature proposals on this topic. The algorithmic choices
are justified by a collection of lemmas on uncertainty/influence propa-
gation in dynamic programming problems. In particular, we propose
a mixture random variable framework giving a probabilistic inter-
pretation to the square of the value function approximation error
(decomposed as bias plus variance terms); also, we propose adding
spatial-dependent weights (influence) to adapt computation accuracy
to a given probability distribution of initial conditions. The validity
of these ideas will be discussed, comparing them with prior literature,
and illustrated in some examples, including a robotic experiment on
path-planning in configuration space.

The structure of this work is as follows: next section discusses
preliminaries, notation and problem statement; Section 3 discusses
the main result and lemmas supporting it; Section 4 provides some
examples; comparative analysis and discussion appear in Section 5, and

a conclusions section closes the paper. u

2

2. Preliminaries and notation

Let us consider a discrete-time dynamic system:

𝑥+ = 𝑓 (𝑥, 𝑢) (1)

where 𝑥 ∈ X is the state vector, 𝑢 ∈ U is the input (manipulated
variable, U being the set of valid control actions) and 𝑥+ ∈ X∪T denotes
the next (successor) state. The state space X ⊂ R𝑛 will be assumed to
be a compact polyhedron, where T ⊆ R𝑛 ∼ X is denoted as terminal set.

A stationary policy 𝑢 = 𝜋(𝑥) (i.e., a time-invariant state-feedback
controller) is a function X → U that represents a control law such
that the closed-loop system achieves the time-invariant dynamics 𝑥+ =
𝑓 (𝑥, 𝜋(𝑥)). The cost 𝑉 𝜋 ∶ X∪T ↦ R, associated to a policy 𝜋(𝑥) starting
from an initial state 𝑥0 will be defined as:

𝑉 𝜋 (𝑥0) ∶= 𝑉T(𝑥𝑡𝑇 (𝑥0)) +
𝑡𝑇 (𝑥0)−1
∑

𝑘=0
𝛾𝑘𝐿(𝑥𝑘, 𝜋(𝑥𝑘)), (2)

being 𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝜋(𝑥𝑘−1)) the state at time instant 𝑘 ≥ 1, and 𝑡𝑇 (𝑥0) is
the time instant in which 𝑥𝑡𝑇 (𝑥0) reaches T; if no such time instant exists,
then 𝑡𝑇 (𝑥0) = ∞ and 𝑉T(⋅) will be irrelevant to the cost computation.
Note that if 𝑥0 ∈ T then 𝑡𝑇 (𝑥0) = 0 and only the terminal cost is
evaluated.

In the above expression 𝐿 ∶ X×U → R is a scalar function, bounded
n X×U, also known as ‘‘immediate’’ or ‘‘stage’’ cost and 0 < 𝛾 < 1 is a

discount factor, and 𝑉T ∶ T → R is denoted as ‘‘terminal cost’’.
The goal of dynamic programming is finding an optimal policy 𝜋∗(𝑥)

inimizing 𝑉 𝜋 (𝑥). The cost of an arbitrary policy must satisfy Bellman
quation (Bertsekas, 2017):
𝜋 (𝑥) = 𝐿(𝑥, 𝜋(𝑥)) + 𝛾𝑉 𝜋 (𝑓 (𝑥, 𝜋(𝑥))) ∀𝑥 ∈ X. (3)

The value function of the optimal policy, denoted as 𝑉 ∗(𝑥), verifies:

∗(𝑥) = 𝑇𝑉 ∗(𝑥), (4)

here the Bellman operator 𝑇 acting on a function 𝑉 ∶ X ∪ T ↦ R is
efined as the function 𝑇𝑉 ∶ X ↦ R given by:

𝑉 (𝑥) ∶= min
𝑢∈U

(𝐿(𝑥, 𝑢) + 𝛾𝑉 (𝑓 (𝑥, 𝑢))) . (5)

ow, from 𝑉 ∗(𝑥), the optimal policy can be obtained:
∗(𝑥) = argmin

𝑢∈U

(

𝐿(𝑥, 𝑢) + 𝛾𝑉 ∗(𝑓 (𝑥, 𝑢))
)

. (6)

xact dynamic programming. If both the state space X and action space
are finite, under mild assumptions, the operator 𝑇 is a contraction

nd the value iteration algorithm 𝑉𝑘(𝑥) = 𝑇𝑉𝑘−1(𝑥) converges to a fixed
oint which is coincident with the optimal value function; other well-
nown algorithms, such as policy iteration and linear programming,
an also be successfully used in the finite case (De Farias and Van Roy,
003; Busoniu et al., 2010; Bertsekas, 2017).

.1. Approximate dynamic programming

Now, let us consider a function approximator 𝑉 (𝑥, 𝜃) where 𝜃 ∈ R𝑚

s a vector of adjustable parameters. Based on Bellman’s Eq. (3), given
policy 𝜋(𝑥), if we define the Bellman residual (Lagoudakis and Parr,

003), also denoted as temporal-difference error (TDE) (Maei et al.,
009), as:
𝜋 (𝑥, 𝜃) ∶= 𝑉 𝜋 (𝑥, 𝜃) − 𝐿(𝑥, 𝜋(𝑥)) − 𝛾𝑉 𝜋 (𝑓 (𝑥, 𝜋(𝑥)), 𝜃). (7)

hen, the approximate least-squares solution to the ‘‘policy evaluation’’
roblem, given a policy 𝜋(𝑥), is given by:

̂𝜋 ∶= argmin
𝜃

‖𝜖𝜋 (𝑥, 𝜃)‖2, (8)

here ‖𝜖𝜋 (𝑥, 𝜃)‖2 ∶= ∫X 𝜖𝜋 (𝑥, 𝜃)2. Obviously, the integral should be

nderstood as a sum in discrete (finite) state spaces; also, in continuous



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

f

𝜋

𝜖

2

o
t
i
o
M

2

b
r
a
t

a
c
s
p
v
o

a
c
i
r
f
c

state–spaces, to avoid numerical integration steps, the integral is often
understood as the sum of 𝜖𝜋 (𝑥𝑘, 𝜃)2 over a set of available fitting
(training) points {𝑥1,… , 𝑥𝑁}, see Antos et al. (2007), for instance.

The motivation to the above optimization problem (8) lies in the
act that, if 𝜖𝜋 (𝑥) = 0 for all 𝑥 ∈ X, then (3) is fulfilled, so we

have accurately computed the value function of the policy. Of course,
checking the whole state space X can only be done in a finite case, but
a low fitting error (8) with a large 𝑁 should reasonably approach the
ideal perfect-fit situation.

In order to find an approximate optimal value function (and its
associated policy), we can redefine (7) as:

𝜖(𝑥, 𝜃) ∶= 𝑉 (𝑥, 𝜃) − min
𝑢∈U

(𝐿(𝑥, 𝑢) + 𝛾𝑉 (𝑓 (𝑥, 𝑢), 𝜃)) (9)

and try to obtain 𝜃 that minimizes ‖𝜖(𝑥, 𝜃)‖2.
In the sequel, from (6), for a given (maybe sub-optimal) value

function 𝑉 (𝑥, 𝜃), we will define the policy associated to 𝑉 (𝑥, 𝜃) as:

̂(𝑥, 𝜃) ∶= argmin
𝑢∈U

(𝐿(𝑥, 𝑢) + 𝛾𝑉 (𝑓 (𝑥, 𝑢), 𝜃)) . (10)

As mentioned in the introduction, in a generic case, the so-called
(fitted) Policy Iteration (PI) and (fitted) Value iteration (VI), which are
popular algorithms to solve the ADP problem (Díaz et al., 2020; Munos
and Szepesvári, 2008), do not converge with arbitrary parametriza-
tions. Only in very particular scenarios, where the composition of the
Bellman operator 𝑇 in (5), plus ‘‘projection’’ (8) to the space of func-
tions that can be represented by the chosen parametrization, is contrac-
tive, we can guarantee convergence to a given ‘‘fixed point’’ (Busoniu
et al., 2010; Bertsekas, 2017). Contractiveness has been only proved
in some particular cases, such as using a Look-Up-Table (LUT) with as
many regressors as available data, see Busoniu et al. (2010) for details.
Apart from regular discretizations of the state space (which easily fall
into the curse of dimensionality for high dimensional systems), other
approximation options such as fuzzy interpolation, tile coding (White-
son et al., 2007; Sherstov and Stone, 2005), simplicial/polyhedral
partitions (Grüne, 1997; Munos and Moore, 2002), etc. also fulfill the
contractiveness requirement. In this work, we will restrict to refinement
of simplicial/polyhedral interpolation structures, to be described next.
Some proposals in this manuscript might be amenable to being used,
too, in other of the above function approximation options, but this has
been left for future work.

2.2. Polyhedral partitions for function approximation

Polyhedral partitions. We will assume that we have a finite set of known
‘vertex’ points in a source dataset D = {𝑥1,… , 𝑥𝑁}. Let us consider the
state–space X partitioned in a collection of polyhedral ‘‘cells’’ 𝐻𝑚, so
X =

⋃

𝑚 𝐻𝑚, with 𝑖𝑛𝑡(𝐻𝑖) ∩ 𝑖𝑛𝑡(𝐻𝑗 ) = ∅ ∀𝑖, 𝑗, disjoint interiors, with all
vertices of 𝐻𝑚 belonging to D and, vice-versa, each 𝑥𝑖 in D belonging
to at least one 𝐻𝑚, see Fig. 1.

Barycentric coordinates. We will assume that there exist interpolation
functions ℎ𝑘(𝑥) ∶ X ↦ R+, for 𝑘 = 1,… , 𝑁 , such that 𝑥 ≡

∑𝑁
𝑘=1 ℎ𝑘(𝑥)⋅𝑥𝑘,

with 0 ≤ ℎ𝑘(𝑥) ≤ 1, ∑𝑁
𝑘=1 ℎ𝑘(𝑥) = 1 for every 𝑥 ∈ X. The assumption is

trivially true for the above-described polyhedral partition, due to the
convexity of each of the cells, details left to the reader. A polyhedral
partition is said to be simplicial if the number of nonzero ℎ𝑘(𝑥) is at most
𝑛 + 1 for all 𝑥 ∈ X, such as the one in Fig. 1, with 𝑛 = 2. In intelligent
control literature, ℎ𝑘(⋅) are sometimes denoted as ‘membership’ or
‘activation’ functions.

Local patch. Given a point 𝑥𝑘 ∈ D, its local patch 𝑘 will be defined as
the support of ℎ𝑘(𝑥), i.e., 𝑘 ∶= {𝑥|ℎ𝑘(𝑥) > 0}.

Interpolation. If the values of a function at the partition vertex points
𝑉𝑘 ∶= 𝑉 (𝑥𝑘) are known for all 𝑥𝑘 ∈ D, and ℎ𝑘(𝑥𝑘) = 1, the function at
intermediate points will be assumed to be interpolated as

𝑉 (𝑥, 𝜃) ∶=
𝑁
∑

𝑘=1
ℎ𝑘(𝑥) ⋅ 𝑉𝑘, (11)
where the parameter vector is 𝜃 ∶= {𝑉1,… , 𝑉𝑁}.

3

Fig. 1. Example 25-point simplicial mesh: the red dot can be expressed as ℎ7𝑥7 +
ℎ3𝑥3 + ℎ9𝑥9, with ℎ7 = 0.69, ℎ3 = 0.18, ℎ9 = 0.13, the rest of barycentric coordinates
being zero; the dashed red polygon delimits the local patch of 𝑥2. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Interpolated TDE. Under this assumption, the ADP temporal-difference
error (9) will be written as:

𝜖(𝑥, 𝜃) =
𝑁
∑

𝑘=1
ℎ𝑘(𝑥)𝑉𝑘 − min

𝑢∈U

(

𝐿(𝑥, 𝑢) + 𝛾
𝑁
∑

𝑘=1
ℎ𝑘(𝑓 (𝑥, 𝑢))𝑉𝑘

)

. (12)

In the sequel, we will omit the parameterized notation with argument
𝜃, and we will denote the left-hand side of (11) and (12) as 𝑉 (𝑥) and
(𝑥), respectively, if 𝜃 is clear from the context.

.3. Adaptive meshing

Once a successfully converged ADP value function 𝑉 (𝑥) has been
btained, accuracy information may be extracted from it in some ways,
o guide future modifications to the partition/regressor setup. Basically,
n adaptive polyhedral partition setups, some ‘‘cells’’ are split based
n a given criterion, which may be classified, according to Munos and
oore (2002), for instance, as:

• local: in which a Bellman error (Grüne, 1997; Whiteson et al.,
2007), slope or curvature measure (Munos and Moore, 2002), or
policy disagreement between different vertices of a cell (Munos
and Moore, 2002) can be obtained by looking at a cell’s vertices
or a handful of close points,

• global: where the accumulation of error or uncertainty along
trajectories is taken into account so discounted-sum formulae for
such criteria (purposely resembling (2), the actual cost index) can
be proposed (Munos and Moore, 2002).

.4. Problem statement

Concentrating on local-only adaptive meshing criteria above might
e misled by discontinuities or sharp value function changes in small
egions of the state space that might be not so relevant for a given
pplication, this is why global considerations are of interest, motivating
his work.

In this paper we will propose a criterion for addition of points in
daptive meshing taking into account the influence of a given candidate
ell splitting on the propagation of a quadratic error measure. The
aid propagation will be computed taking into account a given set (or
robability distribution) of initial conditions where good accuracy in
alue function estimation is pursued. Comparative analysis with other
ptions in literature will be also carried out.

This work will only discuss addition of points to the mesh; of course,
daptive meshing methods may be more efficient if they include a
lean-up step where deletion of a point (and a possible re-triangulation)
s decided if it induces a low fitting error. As these error ideas are
elated to plain function approximation, not particularly dependent on
eatures of dynamic programming problems, mesh coarsening is not
onsidered in the scope of this work, for brevity.



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

𝛽

𝐿

a
T

t
a
l
o
a
𝜖
T
t
𝜋
p
i

L
s
n
p

𝑉

P
b

𝑉

b
s
i

n
M
i
i
M
m

C
c

3. Main result

3.1. Problem discretization

Let us assume that we have a polyhedral partition of the continuous-
time state space, as discussed in Section 2.2. Now, let us also assume
that we have a finite set of points in a source dataset D = {𝑥1,… , 𝑥𝑁},
a finite set of control actions U = {𝑢1,… , 𝑢𝑀} and the associated
successors for all state and control combinations 𝑥+𝑖𝑗 = 𝑓 (𝑥𝑖, 𝑢𝑗 ). Of
course, each of these successors who lies in X can be expressed in
barycentric coordinates 𝑥+𝑖𝑗 =

∑𝑁
𝑘=1 ℎ𝑘(𝑥

+
𝑖𝑗 )𝑥𝑘 with 0 ≤ ℎ𝑘(𝑥+𝑖𝑗 ) ≤ 1 and

∑𝑁
𝑘=1 ℎ𝑘(𝑥

+
𝑖𝑗 ) = 1. For convenience, notation ℎ𝑘,𝑖𝑗 ∶= ℎ𝑘(𝑥+𝑖𝑗 ) will be used

in the sequel, i.e., 𝑥+𝑖𝑗 =
∑𝑁

𝑘=1 ℎ𝑘,𝑖𝑗𝑥𝑘.
Now, consider the approximate Bellman equation for the optimal

policy at source points

𝑉 (𝑥𝑖) = min
𝑗

(

𝐿(𝑥𝑖, 𝑢𝑗 ) + 𝛾𝑉 (𝑥+𝑖𝑗 )
)

𝑥𝑖 ∈ D, (13)

which, using the simplicial approximator (11), if 𝑥+𝑖𝑗 ∈ X, renders equal
to:

𝑉 (𝑥𝑖) = min
𝑗

(

𝐿(𝑥𝑖, 𝑢𝑗 ) + 𝛾
𝑁
∑

𝑘=1
ℎ𝑘,𝑖𝑗𝑉 (𝑥𝑘)

)

. (14)

When 𝑥+𝑖𝑗 ∉ X, i.e., 𝑥+𝑖𝑗 ∈ T, successors in the terminal set T
need separate handling, of course, using 𝑉T(𝑥+𝑖𝑗 ) in (14) instead of the
barycentric coordinates in such a case. Abusing the notation, this will
be implicitly assumed in the sequel, instead of complicating notation
in (14) and similar expressions with terminal vs. non-terminal cases,
leaving such details to the reader.

If we intentionally switch to considering ℎ𝑘,𝑖𝑗 as probabilities (in-
stead of deterministic barycentric coordinates), we can reinterpret the
above ‘‘deterministic’’ Bellman equation, now considering it to be the
Bellman equation of a discrete stochastic Markov Decision Process
(MDP) 𝑥+𝑖𝑗 = 𝑧(𝑥𝑖, 𝑢𝑗 ) being 𝑧(𝑥𝑖, 𝑢𝑗 ) a random variable that takes value
𝑥𝑘 ∈ D with probability ℎ𝑘,𝑖𝑗 . Indeed, such Bellman equation is

𝑉 (𝑥𝑖) = min
𝑗

𝐸
[

𝐿(𝑥𝑖, 𝑢𝑗 ) + 𝛾𝑉 (𝑥+𝑖𝑗 )
]

, (15)

where 𝐸[⋅] denotes mathematical expectation and, indeed, it actually
amounts to (14) once the expectation is replaced by the summation
that computes it. This reinterpretation from barycentric coordinates
to probabilities is what in DP literature is named as (approximate)
discretization.

The ‘‘exact’’ value iteration on the above discrete MDP converges
and, of course, it is numerically equivalent to the ‘‘approximate’’ dy-
namic programming solution of VI over a continuous domain X ob-
tained with a simplicial function approximator (Busoniu et al., 2010;
Bertsekas, 2018).

Continuous initial state (partial discretization). In later developments, we
will ‘‘discretize’’ our continuous MDP after the first step, i.e., in order to
approximate properties of the original continuous-state optimal control
problem. Indeed, we will compute some statistical properties of an MDP
such that the initial state is in X, but its successor will be assumed
to be a point in the finite source set D, by reinterpreting barycentric
coordinates of 𝑥+ = 𝑓 (𝑥, 𝑢) =

∑𝑁
𝑘=1 ℎ𝑘(𝑓 (𝑥, 𝑢)) ⋅ 𝑥𝑘 as probabilities, 𝑥+ =

𝑧(𝑥, 𝑢) being 𝑧 a random variable that takes value 𝑥𝑘 with probability
ℎ𝑘(𝑓 (𝑥, 𝑢)), in an analogous way as done with points in D earlier on,
but keeping 𝑓 to be a function of continuous-valued arguments.

3.2. Bellman temporal-difference error and approximation accuracy

Lemma 1. Given a dataset D, consider the discretized solution of (14)
over it and its interpolation 𝑉 (𝑥) for arbitrary points in X given by (11).
Denote as �̂�(𝑥) the approximation to the optimal policy associated to 𝑉 (𝑥)
obtained from (10). Also, denote as 𝑉 �̂�(𝑥) the true value function of �̂�(𝑥).

̂ �̂�
Then, the approximation error 𝛽(𝑥) ∶= 𝑉 (𝑥) − 𝑉 (𝑥) between the true

4

value function of said policy and the value-iteration approximation 𝑉 (𝑥)
verifies:

𝛽(𝑥) = 𝜖(𝑥) + 𝛾𝛽(𝑓 (𝑥, �̂�(𝑥))), (16)

where 𝜖(𝑥) is given in (12).

Proof. The true value function of �̂�(𝑥) fulfills the Bellman equa-
tion 𝑉 �̂� (𝑥) = 𝐿(𝑥, �̂�(𝑥)) + 𝛾𝑉 �̂� (𝑥+), with 𝑥+ = 𝑓 (𝑥, �̂�(𝑥)). Thus, the
approximation error fulfills:

𝑉 �̂�(𝑥) =
(

𝑉 (𝑥) − 𝛽(𝑥)
)

= 𝐿(𝑥, �̂�(𝑥)) + 𝛾
(

𝑉 (𝑥+) − 𝛽(𝑥+)
)

. (17)

This gives:

(𝑥) = −𝐿(𝑥, �̂�(𝑥)) − 𝛾𝑉 (𝑥+) + 𝑉 (𝑥) + 𝛾𝛽(𝑥+). (18)

Note now that, by definition of �̂�(𝑥),

(𝑥, �̂�(𝑥)) + 𝛾𝑉 (𝑥+) = min
𝑗

(

𝐿(𝑥, 𝑢𝑗 ) + 𝛾
𝑁
∑

𝑘=1
ℎ𝑘(𝑓 (𝑥, 𝑢𝑗 ))𝑉𝑘

)

(19)

nd, henceforth, the term −𝐿(𝑥, �̂�(𝑥)) − 𝛾𝑉 (𝑥+) + 𝑉 (𝑥) is equal to the
DE, 𝜖(𝑥), defined in (12). □

The basic (informal) idea, then, is realizing that minimizing the
emporal-difference error (TDE) 𝜖(𝑥) will minimize 𝛽(𝑥), because TDE
ccumulates along trajectories, in a similar way to the actual cost: a
arge 𝜖(𝑥) in one of the successors of a given 𝑥0 will entail a large 𝛽(𝑥0),
f course taking into account the discount factor. The focus of the mesh
daptation should consider adding points, say 𝑥𝑛𝑒𝑤, at the places where
(𝑥𝑛𝑒𝑤) is largest: adding them to D will automatically make zero its
DE after a new value iteration step. This will benefit the accuracy of
he value function approximation of all predecessors of 𝑥𝑛𝑒𝑤 under policy
̂(𝑥): a large error in value function estimation accuracy at a particular
oint may be due to TDE at points far away from said point. This key
dea will be refined in subsequent developments.

emma 2. Consider the partial discretization MDP with continuous initial
tate proposed in Section 3.1. Let 𝑥 ∈ X be an arbitrary point, not
ecessarily in the vertex dataset D. The true value function of the said
artial-discretization MDP, for every 𝑥 ∈ X is:

̂ ∗(𝑥) ∶= min
𝑗

(

𝐿(𝑥, 𝑢𝑗 ) + 𝛾
𝑁
∑

𝑘=1
ℎ𝑘(𝑓 (𝑥, 𝑢𝑗 ))𝑉𝑘

)

. (20)

roof. Indeed, as ℎ𝑘(𝑓 (𝑥, 𝑢)) are the transition probabilities, (20) can
e understood as

̂ ∗(𝑥) = min
𝑗

𝐿(𝑥, 𝑢𝑗 ) + 𝛾𝐸
[

𝑉 ∗(𝑥+)
]

ecause 𝑉𝑘 attain the optimal values at vertex points in D, as their
uccessors are also vertex points and, hence, the solution of (14),
.e., (15), is exact. □

The above lemma gives a new interpretation to the solution of (14),
ot only in terms of a MDP with a finite set of states, but in terms of an
DP where the initial condition lies in a continuous state space X, even

f its successor does lie in a finite set, later on. The referred solution is,
n both cases, optimal. The optimal policy for the partial-discretization
DP arising from (20) will be denoted as �̂�∗(𝑥), 𝑥 ∈ X, i.e., the 𝑢𝑗
inimizing the right-hand side of (20).

orollary 1. The Bellman temporal difference error 𝜖(𝑥) from (12) is
oincident with the approximation error 𝑉 (𝑥) − 𝑉 ∗(𝑥).

Proof is straightforward from definitions, omitted for brevity.



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

∑

r

3.3. Variance of the partial-discretization MDP

The reinterpretation from barycentric coordinates to probabilities
in the discretization allows us to obtain statistical descriptions of the
resulting DP problems.

Lemma 3. Let us denote the actual value of the cost (2) attained by a
trajectory starting in 𝑥 ∈ X with policy �̂�∗(𝑥) in the partial-discretization
MDP as 𝐽𝑥; note that the latter is a random variable, whereas in the original
continuous state–space (2) was deterministic (with deterministic 𝜋(𝑥)).

The expected quadratic error between the interpolated approximator
𝑉 (𝑥) and 𝐽𝑥 will be denoted as 𝛿2(𝑥) ∶= 𝐸[(𝐽𝑥 − 𝑉 (𝑥))2]. The expected
quadratic error fulfills the following Bellman-like equation:

𝛿2(𝑥) = 𝜖2(𝑥) + 𝜈(𝑓 (𝑥, �̂�∗(𝑥))) + 𝛾2
𝑁
∑

𝑘=1
ℎ𝑘(𝑓 (𝑥, �̂�∗(𝑥)))𝛿2(𝑥𝑘), (21)

where 𝜈(𝜉), to be informally understood as ‘immediate variance’, is:

𝜈(𝜉) = 𝛾2
𝑁
∑

𝑘=1
ℎ𝑘(𝜉) ⋅

(

𝑉𝑘 −
∑

𝑗
ℎ𝑗 (𝜉)𝑉𝑗

)2

. (22)

Proof. As 𝐸[𝐽𝑥] = 𝑉 ∗(𝑥) by definition of the value function, we have
that

𝛿2(𝑥) = 𝐸[(𝐽𝑥 − 𝑉 (𝑥))2] = (𝑉 ∗(𝑥) − 𝑉 (𝑥))2 + 𝜎2(𝑥) (23)

where 𝜎2(𝑥) ∶= 𝐸[(𝐽𝑥 − 𝑉 ∗(𝑥))2] denotes the variance of the ran-
dom variable 𝐽𝑥. This is a well-known bias–variance decomposition.
Corollary 1 allows then writing (23) as:

𝛿2(𝑥) = 𝜖2(𝑥) + 𝜎2(𝑥) (24)

Now, we can realize that

𝐽𝑥 = 𝐿(𝑥, �̂�∗(𝑥)) + 𝛾𝜁𝑥, (25)

where random variable 𝜁𝑥 is governed by mixture distribution selecting
random variable 𝐽𝑥𝑘 with probability ℎ𝑘(𝑓 (𝑥, �̂�∗(𝑥))). Hence, from stan-
dard formulae of the variance of mixture distributions, we can assert
that the variance of 𝜁𝑥 is:

𝜎2𝜁𝑥 =
𝑁
∑

𝑘=1
ℎ𝑘(𝑓 (𝑥, �̂�∗(𝑥)))

⎛

⎜

⎜

⎝

𝜎2(𝑥𝑘) +

(

𝑉𝑘 −
𝑁
∑

𝑗=1
ℎ𝑗 (𝑓 (𝑥, �̂�∗(𝑥)))𝑉𝑗

)2
⎞

⎟

⎟

⎠

. (26)

Thus,

𝜎2(𝑥) = 𝛾2𝜎2𝜁𝑥 = 𝛾2
𝑁
∑

𝑘=1
ℎ𝑘(𝑓 (𝑥, �̂�∗(𝑥)))𝜎2(𝑥𝑘) + 𝜈(𝑓 (𝑥, �̂�∗(𝑥))) (27)

Now, jointly with (24) and the fact that 𝛿2(𝑥𝑘) = 𝜎2(𝑥𝑘) for points
𝑥𝑘 ∈ D because 𝜖(𝑥𝑘) = 0, allows us to write (21). □

Note that, in order to explicitly compute 𝛿2(𝑥) for 𝑥 ∉ D we need
to first compute 𝜎2(𝑥𝑘) for points in D. Using shorthand notation 𝜎𝑘 ∶=
𝜎(𝑥𝑘), we can write a Bellman-like equation only evaluated for points
in D:

𝜎2𝑗 = 𝛾2
𝑁
∑

𝑘=1
ℎ𝑘(𝑓 (𝑥𝑗 , �̂�∗(𝑥𝑗 )))𝜎2𝑘 + 𝜈(𝑓 (𝑥𝑗 , �̂�∗(𝑥𝑗 ))), 𝑗 = 1,… , 𝑁 (28)

which can be solved by, say, value iteration, see variance computation
in Munos and Moore (2002). Note that the partial-discretization MDP
allows us, generalizing the cited work, to extend the definitions of 𝜎2(𝑥)
and 𝜈(𝑥) to the whole continuous state space X instead of applying them
only to vertex points in D.

Analyzing expression (21), some interpretations can be made when
returning to the original continuous state–space problem:

1. The ‘‘bias’’ term 𝜖2(𝑥) is made zero if 𝑥 is added to the dataset

D, because after VI, 𝜖(𝑥) = 0 for all 𝑥 in D.

5

2. The ‘‘immediate variance’’ term 𝜈(𝑓 (𝑥, �̂�∗(𝑥))) is made zero if
𝑥+ = 𝑓 (𝑥, �̂�∗(𝑥)) is added to the dataset D, as in such a case
ℎ(𝑥+) will consist on a zero vector except a single element equal
to one; in this case, after VI has converged again, 𝜈(𝑥+) will be
equal to zero, from its definition (22).

3. The last term (cumulative variance of vertices of the simplex
where successor lands) depends on the whole trajectories start-
ing at said vertices. In principle, we will assume, as an approx-
imation, that this long-term effect does not significantly change
by inserting either 𝑥 or 𝑥+ onto the vertex dataset.

The above discussion will inspire choosing 𝜖2(⋅) and 𝜈(⋅) as key
elements in the mesh adaptation criterion in later sections. However,
the idea needs to be further refined, in order to consider different needs
for accuracy of the value function estimate in certain regions of interest,
in a global sense.

3.4. Influence over a region of interest

As just hinted, in an ADP problem there may exist a given ‘‘region
of interest’’ where increased accuracy of the value function estimate
is needed, whereas accuracy in other regions may be less important.
The said region of interest usually might be coincident with the region
of initial conditions that are assumed to be more likely in practice. For
instance, in later examples, we will consider of interest a neighborhood
of the downwards equilibrium of an inverted pendulum, or the ‘valley’’
equilibrium in a mountain-car setup.

In summary, a high-accuracy estimate over whole state space X
might require a lot of vertex points in D but, if we assume that
initial conditions lie in a known set 𝛺, for a given policy, then there
will be regions of X, not visited by the trajectories starting in 𝛺,
where accuracy may be diminished with no deleterious effect on actual
performance. For instance, in later examples, concentrating on a given
circle of initial conditions will make adaptive meshing to focus only on
regions covered by trajectories starting in said circle, see Fig. 7.

The initial condition set idea may be generalized to a initial-
condition probability density function 𝜙(𝑥) ∶ X ↦ 𝑅+. The formal-
ization of the above ideas roots in the concept of influence (Munos and
Moore, 2002), to be extended and adapted to our problem setting next.

3.4.1. Weighted influence
Given an initial-condition probability distribution with density 𝜙(𝑥),

and a policy 𝜋(𝑥), the expected cost for repeated experiments will be

𝑉 𝜙 ∶= ∫X
𝜙(𝑥)𝑉 𝜋 (𝑥) 𝑑𝑥

and the influence of a point 𝑥𝑘 ∈ D on said 𝑉 𝜙, understood as 𝜕𝑉 𝜙

𝜕𝐿𝑘
,

with 𝐿𝑘 as shorthand to 𝐿(𝑥𝑘, 𝜋(𝑥𝑘)), see Munos and Moore (2002, Eq.
(8)), will be:

𝐼𝜙(𝑥𝑘) ∶=
𝜕𝑉 𝜙

𝜕𝐿𝑘
= ∫X

𝜙(𝑥)
𝜕𝑉 𝜋 (𝑥)
𝜕𝐿𝑘

𝑑𝑥. (29)

If, according to the assumptions in this paper, we use a polyhe-
dral partition for function approximation, we will assume 𝑉 𝜋 (𝑥) =

𝑁
𝑗=1 ℎ𝑗 (𝑥) ⋅ 𝑉𝑗 , for some 𝑉𝑗 , after approximate policy evaluation has

been carried out. Thus, we have:

𝐼𝜙(𝑥𝑘) = ∫X
𝜙(𝑥)

𝑁
∑

𝑗=1
ℎ𝑗 (𝑥)

𝜕𝑉𝑗
𝜕𝐿𝑘

𝑑𝑥 =
𝑁
∑

𝑗=1

(

∫X
𝜙(𝑥)ℎ𝑗 (𝑥) 𝑑𝑥

)

⋅
𝜕𝑉𝑗
𝜕𝐿𝑘

, (30)

where 𝜕𝑉𝑗
𝜕𝐿𝑘

coincides with the influence 𝐼(𝜉𝑘|𝜉𝑗 ) defined in Munos and
Moore (2002). We will denote 𝛽𝑗 ∶=

(

∫X 𝜙(𝑥)ℎ𝑗 (𝑥) 𝑑𝑥
)

, so (30) can be
ewritten as: 𝐼𝜙(𝑥𝑘) =

∑𝑁
𝑗=1

𝜕𝑉𝑗
𝜕𝐿𝑘

𝛽𝑗 .



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

b
d
a
f


r

3

q
p
o
i
f

𝐶

t
i
𝐶
e
s

p
t
s

s
a
r
p
t
f
s

I
s

s
m
t
p

Lemma 4. Given an initial-condition probability distribution with density
𝜙(𝑥), and a policy 𝜋(𝑥), the influence of vertex points in D, verifies:

𝐼𝜙(𝑥𝑘) = 𝛾 ⋅
𝑁
∑

𝑗=1
ℎ𝑘(𝑓 (𝑥𝑗 , 𝜋(𝑥𝑗 )))𝐼𝜙(𝑥𝑗 ) + ∫X

𝜙(𝑥)ℎ𝑘(𝑥) 𝑑𝑥 (31)

Proof. Following (Munos and Moore, 2002, section $8.4), the operator
𝛤𝜉 defined in the cited work, on a finite dataset D, is linear, and
can be expressed as a matrix whose element at row 𝑘, column 𝑗 are
𝛾ℎ𝑘(𝑓 (𝑥𝑗 , 𝜋(𝑥𝑗 ))); the whole 𝑘’th row of such matrix 𝛤𝜉 represents the
terms that multiply influences in 𝛾 ⋅

∑𝑁
𝑗=1 ℎ𝑘(𝑓 (𝑥𝑗 , 𝜋(𝑥𝑗 )))𝐼

𝜙(𝑥𝑗 ) in (31).
Then, Munos’ work proves that the influence, defined as 𝐼(𝜉𝑘|𝜉𝑗 ) ∶=
𝜕𝑉𝑗
𝜕𝐿𝑘

, coincides with the element at row 𝑘, column 𝑗 of matrix (𝐼−𝛤𝜉 )−1.
If we denote as 𝑊 ∶= (𝛽1, 𝛽2,… , 𝛽𝑁 )𝑇 , then the solution of (31) is
(𝐼 −𝛤𝜉 )−1 ⋅𝑊 , which coincides with the element at the right-hand side
of (30). □

Note that, instead of inverting a (large) matrix, computation of
𝐼𝜙(𝑥𝑘) can be carried out iteratively, with the same cost as computing
the value function of a discounted Markov chain, see Munos and Moore
(2002) for details.

It is important to remark that Munos’ equation (11) replaces 𝛽𝑘 with
just one or zero in (31), depending on 𝑥𝑘 being inside or outside of the
region of interest (in Munos’ case, such region of interest is based on
a policy disagreement criterion). This breaks the connection with (29),
whereas our integral form of 𝛽𝑘 adapts to the density of the dataset
points in the region of interest, implicitly incorporating considerations
about the ‘‘volume’’ of each point’s local patch: our modification to
Munos’ proposal reduces the influence of a given point as meshing
progresses if its local patch gets smaller; for instance, if 𝜙(𝑥) were a
uniform distribution 𝛽𝑘 would be proportional to the volume of the
local patch of 𝑥𝑘.

3.4.2. Influence estimation for candidate new points
The developments in Section 3.4.1 compute the influence 𝐼𝜙(𝑥𝑘) of

points 𝑥𝑘 in the dataset D. Therefore, if the value function estimate at
a given point of D changes, it would be ‘‘propagated’’ to 𝑉 𝜙 multiplied
by said influence. However, value function estimates will change in
adaptive meshing only when vertices are added or removed.

Therefore, if we now consider an arbitrary point 𝑥𝑛𝑒𝑤 as a can-
didate to be added to the dataset D, we might wish to approximate
its ‘‘influence’’ over the average value function estimate 𝑉 𝜙. Clearly,
the exact way of computing such influence would be modifying the
triangulation and recomputing (31). However, that has the same cost as
a value iteration step, so the computational cost of repeating it for every
candidate point is unaffordable, as many of them may be evaluated at
each mesh refinement step, as discussed in next subsection.

Our proposed approximation, then, consists on freezing the influ-
ences of points already in D and solving (31) in Lemma 4 only for the
influence of 𝑥𝑛𝑒𝑤, assuming a re-triangulation of the simplex  in which
𝑥𝑛𝑒𝑤 lies, see Fig. 2. Evaluating (31) for 𝑥𝑛𝑒𝑤 considering 𝑁 + 1 points
(those in D plus 𝑥𝑛𝑒𝑤) results in:

𝐼𝜙(𝑥𝑛𝑒𝑤) = 𝛾ℎ̂𝑛𝑒𝑤(𝑓 (𝑥𝑛𝑒𝑤, 𝜋(𝑥𝑛𝑒𝑤)))𝐼𝜙(𝑥𝑛𝑒𝑤)

+𝛾 ⋅
𝑁
∑

𝑗=1
ℎ̂𝑛𝑒𝑤(𝑓 (𝑥𝑗 , 𝜋(𝑥𝑗 )))𝐼𝜙(𝑥𝑗 ) + ∫X

𝜙(𝑥)ℎ̂𝑛𝑒𝑤(𝑥) 𝑑𝑥, (32)

i.e.:

𝐼𝜙(𝑥𝑛𝑒𝑤) =
𝛾 ⋅

∑𝑁
𝑗=1 ℎ̂𝑛𝑒𝑤(𝑓 (𝑥𝑗 , 𝜋(𝑥𝑗 )))𝐼

𝜙(𝑥𝑗 ) + ∫X 𝜙(𝑥)ℎ̂𝑛𝑒𝑤(𝑥) 𝑑𝑥

1 − 𝛾ℎ̂𝑛𝑒𝑤(𝑓 (𝑥𝑛𝑒𝑤, 𝜋(𝑥𝑛𝑒𝑤)))
, (33)

eing ℎ̂𝑛𝑒𝑤(⋅) the component associated to 𝑥𝑛𝑒𝑤 of the barycentric coor-
inates of successor points in the modified triangulation. Obviously, in
ctual implementation, summation in (33) needs to be carried out only
or these 𝑗 such that 𝑓 (𝑥𝑗 , 𝜋(𝑥𝑗 )) belongs to the re-triangulated simplex

and, likewise, denominator would be unity if 𝑓 (𝑥𝑛𝑒𝑤, 𝜋(𝑥𝑛𝑒𝑤)) ∉ ,
details left to the reader.
6

Fig. 2. Conceptual sketch for influence computation in Eq. (33); in the figure, 𝑥+𝑛𝑒𝑤 =
𝑓 (𝑥𝑛𝑒𝑤 , 𝜋(𝑥𝑛𝑒𝑤)), and 𝑥+𝑗 = 𝑓 (𝑥𝑗 , 𝜋(𝑥𝑗 )). The original simplex , triangle in solid line, is
etriangulated after adding 𝑥𝑛𝑒𝑤 (dashed gray lines).

.5. Summary: proposed criterion for point addition in adaptive meshing

The previous section has detailed how to obtain the expected
uadratic error of the value function approximation at an arbitrary
oint 𝑥 ∈ X, see (21) in Lemma 3, as well as influence of such error
ver a region of interest (formally, given a probability distribution of
nitial conditions, over an average value function 𝑉 𝜙), see (33) derived
rom Lemma 4.

Our proposed criterion to sort a set of candidate points is

(𝑥) = (𝐼𝜙(𝑥))2 ⋅ (𝜖2(𝑥) + 𝜈(𝑥)). (34)

Indeed, if 𝑥 is added to the dataset D, both the ‘‘bias’’ term 𝜖2(𝑥) and
he ‘‘immediate variance’’ term 𝜈(𝑥) are made zero after a new value
teration step; note that points already in D will render a zero value of
(𝑥). As influence has a gradient interpretation, the expected quadratic
rror in a point 𝑥 would propagate to 𝑉 𝜙 multiplied by the square of
uch influence.

Therefore, in summary, our proposal consist in asserting that the
oint (or points, if so wished) with largest 𝐶(𝑥) should be added
o D and value iteration plus influence computations repeated for
ubsequent mesh refinement steps.

Of course, finding the maximizer of the criterion in all of the
tate space X may be cumbersome; in actual implementations of our
lgorithms in Section 4, the criterion is evaluated only in a number of
andom points in X, plus the barycenters of the simplicial cells plus
oints close to the edge’s midpoints (one barycentric coordinate equal
o zero), inspired in Grüne (1997). The random exploration helps in
inding ‘‘bad’’ transitions particularly in initial iterations where the
tarting volume of partition cells may be large.

ntuitive interpretation of the refinement criterion. Our proposal gives a
ensible justification of polyhedral splitting based on:

1. Large Bellman error 𝜖2(𝑥), accumulating value function estima-
tion errors on the predecessors of 𝑥, Lemma 1.

2. Large value of 𝜈(𝑥), Lemma 3, Eq. (22); this detects, for instance,
points near the barycenter of simplices with large differences
between the value function in the vertices.

3. Modulating the above factors with the influence over the average
cost 𝑉 𝜙 with a given probability distribution of initial condi-
tions, Lemma 4: (𝑎) simplices with large volume in regions of
high-probability initial states have points with large influence,
because these points yield a large value of ∫X 𝜙(𝑥)ℎ̂𝑛𝑒𝑤(𝑥) 𝑑𝑥
in (33), (𝑏) If we consider points such that many trajectories
(starting in high-probability initial states) pass near them, these
will also be influential points.

Note that (34) might, at first glance, seem reminiscent of the
quare of Munos’ criterion Std⋅Influence (Munos and Moore, 2002)
ethod, but neither influence nor standard deviation are computed in

he way we are proposing in this work. Comparative discussion will be
rovided at the end of the example section.



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

s
n
s
t

m
a

m
o
p

i
d

4. Simulation and experimental results

This section will present examples on well-known benchmarks
(mountain-car and inverted pendulum), and compare our adaptive
meshing criterion with proposals in earlier literature. At the end of
the section, we show an experimental result on the application of the
proposed method on a robot arm and also discuss about it.

A ‘‘reference’’ value function and associated (approximate) optimal
controller is obtained by setting up a 51 × 51 uniform grid on the
state space and a Delaunay triangulation. The goal of the examples
will be improving over such ‘‘dense’’ uniform grid with a significantly
lower number of vertex points in D. The performance figures will be
computed by adding up the cost of all trajectories starting from the
2601 validation-set points of the same 51x51 grid, obtained by actual
simulation, so there is no ‘‘approximation’’ in that policy evaluation
step. The benchmark performance values in later plots (Figs. 4 and 9)
will be the cost difference between the above ‘‘reference’’ 2601-point
controller and the one arising from alternative meshing refinement
options:

1. Regular grid meshing (11 × 11, 21 × 21, 31 × 31, 41 × 41 and
51 × 51);

2. |𝑇𝐷𝐸|⋅Area (Armesto and Sala, 2022), based on Grüne’s work
(Grüne, 1997) with a minor modification of the criterion that
multiplies the TD error 𝜖 by the area of the simplex, to avoid
getting stuck at discontinuities as pointed out by Munos and
Moore (2002);

3. Munos Std⋅Influence method, given that it is the one that
Munos and Moore (2002) finally recommends after an extensive
comparative analysis;

4. Our proposed selection criterion (34).

Thus, reaching the value of zero performance in said plots will mean
equaling the validation-set performance of the densest of the tried grids,
but with a lower number of mesh points.

In order to obtain comparable results between different methods,
all mesh refinement steps in the four above options have been im-
plemented by splitting a triangle by its edge mid-points, and adjacent
triangles are also divided to ensure that the value function is continuous
(see Grüne (1997, Fig. 1)). For brevity and clarity of exposition, no
point removal criterion has been implemented in the comparisons.

4.1. Example 1: Mountain-car

Let 𝑥 = [𝑝 𝑣]𝑇 be the state of the mountain-car system, see
Fig. 3, Knox et al. (2011), being 𝑝 the position of the car and 𝑣 its
velocity and with the following dynamics �̇� = 𝑣 and �̇� = −𝑔 sin(𝑎𝑝+𝑏)+𝑢,
being 𝑔 the gravity magnitude; 𝑎 = 3𝜋

80 m-1 and 𝑏 = 𝜋
80 define the

sinusoidal shape of the mountain and 𝑢 is the control action expressed
in m/s2. The state 𝑥 = (𝑝, 𝑣) is limited to the range 𝑥 ∈ X = [−10, 10] ×
[−15, 15], while the control action is assumed to be in the discrete set
𝑢 ∈ U = {−4,− 8

3 ,−
4
3 , 0,

4
3 ,

8
3 , 4} m∕s2. The immediate cost is set to

𝐿(𝑥, 𝑢) = 6 and discount factor is 𝛾 = 0.99. The penalization or terminal
cost for being outside the region X is 4000, except when a target set,
defined as 𝑝 ≥ 10 and 𝑣 ≥ 0, is reached: in that case terminal cost is 0,
ee Fig. 3; for convenience in implementation steps, the state has been
ormalized so that 𝑥 maps into a normalized region X̃ = [0, 1] × [0, 1],
o from now on, the state is expressed in normalized coordinates. Thus,
he goal is to reach the normalized position �̃� ≥ 1, �̃� ≥ 0.5.

Fig. 4 shows the performance of the previously enumerated meshing
ethods as the number of points increases. In this example, the prob-

bility distribution of initial conditions 𝜙(𝑥) in Section 3.4.1 was set to
a constant (uniform distribution) in our proposal.

As it can be seen in the figure, the performance of |𝑇𝐷𝐸|⋅Area
ethod and our criterion are even better than the 2601-point reference

ne (zero is reached by the |𝑇𝐷𝐸|⋅Area method after 700 points, our

roposal here reaches zero after 200 points). Munos’ method starts with

7

Fig. 3. Mountain Car representation (left) and terminal set definition (normalized
coordinates, right).

Fig. 4. Mountain-Car benchmark comparative results. Zero indicates the same
performance level as a regular grid with 2601 points.

a sharp improvement but gets quickly stuck and ceases improving the
performance of the resulting mesh.

In Fig. 5, the value function of our proposal is shown (color map),
as well as the vertex points in D (black ×). In addition to this, the
figure shows the phase plot of trajectories starting at normalized points
[0.4, 0.5]𝑇 , [0.5, 0.5]𝑇 , [0.6, 0.5]𝑇 , [1, 0.5]𝑇 , [1, 0.4]𝑇 , [1, 0.3]𝑇 , [1, 0.2]𝑇 ,
[1, 0.12]𝑇 , [1, 0.1]𝑇 . These points where selected so that the car starts,
in the first three of them, close to the bottom of the mountain at zero
speed – 0.5 after normalization –, or it starts close to the top of the
mountain, but with a negative velocity (last six). The last of the points,
for instance, has a too large initial (negative) speed so that overrunning
the left extreme (�̃� < 0) is unavoidable because of ‘braking’ saturation.

Fig. 6 shows the control map derived from such value function that
has been used to simulate such trajectories. The figure shows that our
adaptive meshing tends to concentrate points along the value func-
tion discontinuities for better approximation accuracy, as intuitively
expected.

If, instead of a uniform initial condition distribution 𝜙 we consid-
ered 𝜙(𝑥) as a uniform distribution in a circle, the adaptive meshing
would progress as shown in Fig. 7, plots (b) and (c); the effect of
‘‘influence’’ is clear, as the mesh points are concentrated along the
trajectories emanating from said circles: all the effort (see Fig. 5) in
refining accuracy at the discontinuities, at the left of said Fig. 7, ceases
being relevant in Fig. 7(b,c) for the given initial condition sets.

4.2. Example 2: Inverted pendulum

Let 𝑥 = [𝛼 �̇�]𝑇 be the state of an inverted pendulum, being 𝛼 the joint
angle (𝛼 = 0 represents the unstable upward configuration) and �̇� the
joint angular velocity. Dynamics is �̈� = 𝑎 sin(𝛼)+𝑏𝑢, being 𝑎 = 42.269s−2,
𝑏 = 24.206Kg−1m−2 and 𝑢 is the torque applied to the joint. The state
s limited to 𝑥 ∈ X = [−𝜋, 𝜋] × [−10𝜋, 10𝜋]. The goal is optimizing a
iscounted quadratic cost with immediate cost 𝐿(𝑥, 𝑢) = 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢,



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

t
e
b
t

Fig. 5. Phase Plot of optimal mountain-car trajectories from different initial states.

with 𝑄 = diag{10, 0.1}, 𝑅 = 1 and discount factor 𝛾 = 0.999. As in the
previous example, the state space will be normalized to [0, 1] × [0, 1].

Note that, if the state is close to the (unstable) equilibrium point, we
may approximately solve the optimal control problem via linearization,
or, for a non-infinitesimal region around said equilibrium, with sector-
nonlinearity models and linear matrix inequalities (LMIs), Tanaka and
Wang (2001) and Robles et al. (2019). Hence, as we have efficient
computational tools to obtain a solution in said region, we will intro-
duce a terminal ellipsoid around the origin, with an LMI-based terminal
controller and associated terminal cost. This avoids wasting resources in
a region where a quasi-optimal solution is well known. The LMIs and
constraints involved in the specification of the terminal ellipsoid and
terminal controller are detailed in Appendix.
8

As the terminal ellipsoid is determined considering the saturation
bound of the terminal control law, intuitively, the optimal controller
with continuous 𝑢 will be saturating in most of the state space far away
from the origin (outside the terminal ellipsoid). For that reason, we
will assume that, outside the terminal ellipsoid, the control action will
be saturated, taking only two possible values 𝑢 ∈ U = {−1, 1} Nm, in
order to speed up dynamic programming computations with negligible
performance loss.

As discussed at the start of the example section, the reference design
to compare with is a regular 51 × 51 grid. However, to properly take
erminal ingredients into account, points in the grid inside the terminal
llipsoid have been removed from such grid, and 16 points in the
oundary of said ellipsoid have been added (the green points in Fig. 8);
hese ellipsoid points have been added in all tested regular grid meshes.

In this second example, initial conditions have been assumed to lie
in a circle of radius 0.05 (in normalized coordinates) around the bottom
stable equilibrium (the goal is to swing the pendulum up and stabilize
its position around 𝛼 = 0‘). All adaptive meshing algorithms have been
initialized with an 11 × 11 regular grid plus terminal ellipsoid (green)
and 26 initial condition points (cyan), see Fig. 8.

Fig. 9 shows a benchmark of the performance error (difference
with respect to the performance of the 51 × 51 regular grid) when
simulations are started at the above-referred set of 26 initial condition
points close to the bottom equilibrium (instead of simulating the whole
2601 points as in Example 1). As it can be seen in the figure, the pro-
posed criterion, in solid magenta line, compares well against the other
alternative options in consideration: it obtains the best performance of
all methods after adding 2601 points. Fig. 10 shows the final control
map and a perspective view of the estimated value function. Note
that, as the objective is a good estimation along trajectories starting
at cyan points in Fig. 8. Indeed, Fig. 10(b) does not necessarily capture
the features of the value function over the whole state space: this is
intentional, to avoid adding unnecessary points, which can be seen as
Fig. 6. Control Map associated to the Value Function (mountain-car).
Fig. 7. Evolution of the Mountain-car problem’s triangulation when reaching 500 points under various initial condition influence settings (uniform in all state space versus uniform
in small circles).



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

f
m
m
r

𝑞

w
c
c
4

U
d

o
g
m
u
t
t
c
p
i
T
0
h
a
f

5

p
t

I
c
I
t
p
M
m
a
f
t

I
t
h
p
p
d
c
t
I
p
t

Fig. 8. Example 2 (inverted pendulum): value function with phase plot trajectories
rom 26 initial conditions (cyan dots). Magenta+ green+ cyan dots represent initial
esh points, while black crosses indicate the additional points that conform the final
esh. (For interpretation of the references to color in this figure legend, the reader is

eferred to the web version of this article.)

Fig. 9. Inverted Pendulum benchmark comparative performance. Zero indicates the
same performance level as a regular grid with 2601 points.

an advantage of our proposal (no points at high velocities – away from
0.5 – have been added apart from those in the initial 11 × 11 grid).

4.3. Experimental results

The proposed method will be experimentally validated using the
low-cost robot arm meArm (UPV version) (Armesto, 2021a) depicted
in Fig. 11. Kinematics of this particular robot is governed by:

̇ (𝑡) = 𝐽 (𝑞(𝑡)) ⋅ 𝑢(𝑡), (35)

where 𝑞(𝑡) is the robot configuration (joint angles), 𝐽 (𝑞(𝑡)) is the end-
effector robot Jacobian matrix and 𝑢(𝑡) is the control action (joint
velocities); see Armesto (2021b) for details.

The robot has three degrees of freedom (DoF), one for rotating the
wrist of the robot that allows to point to a specific direction, while
the other two DoF form a parallelogram structure that controls the
height and displacement of the robot gripper. Thus, the first DoF is used
to point towards an object, while the other two DoFs will be used to
place the gripper at the correct position, simplifying the problem to a
coplanar case.

We are interested in the coplanar motion planning problem, so
the aim is to provide references for the second and third joints, here
denoted as 𝑞2 and 𝑞3 respectively, conforming a state 𝑥 ∶= [𝑞2 𝑞3]𝑇 for
the dynamic programming setup.

The goal of the experiment is driving the robot from home configu-
ration 𝑥 ∶= [ 𝜋 𝜋 ]𝑇 to a goal configuration 𝑥 ∶= [3.009 𝜋 ]𝑇 , without
0 2 2 𝑇 2 b

9

colliding with the box, floor or even itself (see Fig. 11), in minimum
time.

We have reproduced the experimental setup on a simulation envi-
ronment based on CoppeliaSim (Rohmer et al., 2013) where a sweep
on the configuration space X = [ 85𝜋180 , 𝜋] × [ 20𝜋180 , 𝜋] has been carried
out to precompute which configurations are free of collisions, usually
denoted as 𝑓𝑟𝑒𝑒 ⊂ X. The aim is optimizing a discounted minimum
time problem with immediate cost defined as:

𝐿(𝑥, 𝑢) =
{

1 𝑥 ∈ 𝑓𝑟𝑒𝑒
4000 otherwise , (36)

ith 𝛾 = 0.999 and as terminal cost 𝑉T(𝑥) = 4000 if 𝑥 ∉ X, plus the goal
onfiguration that takes 𝑉T(𝑥𝑇 ) = 0. In summary, exiting the allowed
onfiguration space or colliding with objects is penalized with a cost of
000 units.

Control actions are joint speeds, defined with a discrete set as
= [− 50𝜋

180 ,
50𝜋
180 ] × [− 50𝜋

180 ,
50𝜋
180 ] with a regular grid of 5 actions on each

imension.
Fig. 12(a) shows the results of our adaptive meshing algorithm,

btained after applying the proposed method to an initial regular
rid of 9 × 9 of configurations plus the goal state (82-point initial
esh, Delaunay triangulated). We have depicted in red the config-
ration obstacle set1, that is, 𝑜𝑏𝑠 = R2 ⧵ 𝑓𝑟𝑒𝑒. As it can be seen,
he mesh after 500 points specializes the partitions along the optimal
rajectory between the home configuration (in normalized coordinates
orresponds to the point �̃�0 = [0.0526 0.4375]𝑇 depicted as a magenta
oint in the Figure) and the goal configuration (�̃�𝑇 = [0.92 0.44]𝑇

n normalized coordinates depicted as a green point in the Figure).
he initial-condition region is depicted with a magenta circle of radius
.05 in normalized coordinates around the point �̃�0. In Fig. 12(b) we
ave depicted the state and control action trajectories obtained after
pplying the resulting controller, while images shown in Fig. 11 are
rames of the experiment performed with the actual robot.

. Discussion

The two above-discussed examples show good performance of our
roposal compared to prior art. The main reasons of this, supported by
he lemmas in Section 3, are:

mproved behavior in discontinuities. Local TDE-only methods can get
aught in discontinuities (or sharp transitions) of the value function.
ndeed, simplicial meshes provide a continuous function approxima-
or, thus, they cannot capture discontinuities so they keep adding
oints at very close places; this was already pointed out in Munos and
oore (2002). This is the motivation of including an heuristic ‘‘area’’
odification in our preliminary work (Armesto and Sala, 2022), to

void endless splitting of conflictive simplices. Using other continuous
unction approximators (neural networks, . . . ) would in principle share
his inherent discontinuity problem.

mproved adaptation to given initial conditions. A way to improve over
he ‘‘area’’ heuristic in prior works is the weighted influence proposed
ere, as shown in performance plots. The influence idea was initially
roposed in Munos and Moore (2002), but without weights (only
oint-counting), and using as source states the points with control-map
iscontinuities. In this sense, we refined Munos’ ideas in Section 3.4
onsidering the probability distribution of initial conditions 𝜙(𝑥) and
he approximation of the influence of new candidate points to be added.
n summary, improvements come because influence provides a ‘‘global’’
erspective of the relevance of a point, considering high-likelihood
rajectories instead of ‘‘local’’ features (error, smoothness, . . . ).

1 box walls have been enlarged 2 mm so that when the robot passes close
y the obstacle region it does not collide with it.



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515
Fig. 10. Control map and value function for the inverted pendulum example.
Fig. 11. meArm robot experimental results: sequence of frames, being home configuration at top-left, and goal configuration at bottom-right figures.
Fig. 12. Results of our proposed algorithm and meArm robot simulation. The task is moving the robot from home configuration �̃�0 = [0.0526 0.4375]𝑇 , magenta dot, to goal
configuration �̃�𝑇 = [0.92 0.44]𝑇 , green dot, without colliding with the box, the table and itself, in minimum time. The obstacle mapping to the configuration space appears in red
and the initial conditions region is depicted with a magenta circle around the point �̃�0. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Improved estimation of error bias/variance propagation. Our criterion
roots on the propagation of quadratic error in Lemma 3. Again, Munos
and Moore (2002) computes an ‘‘Standard Deviation’’ figure based on
the ‘‘variance’’ at database points, solution of (28). However, in the
same way as the TDE accumulates to yield value function estimation
errors ( Lemma 1), a large value of such variance depends on the
accumulation of ‘‘immediate variance’’ 𝜈(𝑥) along trajectories, defined
in (22), so 𝜈 is the quantity that is reduced by splitting a simplex,
10
instead of 𝜎2𝑘 in the cited work. In fact, Lemma 3 shows that the sum
of squared TDE plus immediate variance 𝜈(𝑥) is what actually needs to
be considered in the simplex-splitting criterion.

The third remark, jointly with the weighted-influence considera-
tion (second remark) is what builds up our proposal, with a clearer
theoretical justification and good comparative performance over prior
proposals.



A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515

o

𝐴

f

𝐾

6. Conclusions

This paper has proposed a criterion for mesh refinement in approxi-
mate dynamic programming using polyhedral partitions. A criterion for
addition of points to a mesh is proposed, based on a series of lemmas
regarding error propagation in approximate dynamic programming
using polyhedral partitions as underlying piecewise-linear function
approximator.

The paper discusses the reasons on why the proposed ideas yield
performance improvement compared to prior literature, combining
quadratic error propagation with the introduction of influence over
initial condition probability distribution.

A couple of academic examples show good performance of the pro-
posed criterion compared to alternative options, and a robotic experi-
ment has been also provided showing good performance in a motion-
planning problem.

Future research will combine these ideas with mesh coarsening
options and efficient implementation, in order to apply these ideas to
higher-dimensional problems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Authors are grateful to the financial support of grant PID2020-
116585GB-I00 funded by MCIN/AEI/10.13039/501100011033, Agen-
cia Estatal de Investigación (Spanish government).

Appendix. LMI-based terminal ingredients

The inverted pendulum in Example 2 is modeled as a Takagi–Sugeno
system 𝑥𝑘+1 =

∑2
𝑖=1 𝜇𝑖(𝑥𝑘)𝐴𝑖𝑥𝑘+𝐵𝑖𝑢𝑘, via sector non-linearity in a range

f angular positions, assuming |𝛼| ≤ 𝛼𝑚𝑎𝑥, with 𝛼𝑚𝑎𝑥 = 20𝜋
180 . Using Euler

discretization, we have model vertices as:

𝐴1 =
(

1 𝑇
𝑎𝑇 1

)

𝐵1 =
(

0
𝑏𝑇

)

(A.1)

2 =

(

1 𝑇
𝑎 sin(𝛼𝑚𝑎𝑥)

𝛼𝑚𝑎𝑥
𝑇 1

)

𝐵2 =
(

0
𝑏𝑇

)

. (A.2)

Any policy 𝑢 = 𝜋(𝑥) and value function estimate 𝑉
𝜋

satisfying the
ollowing inequality:

𝑉
𝜋
(𝑥) ≥ 𝐿(𝑥, 𝜋(𝑥)) + 𝛾𝑉

𝜋
(𝑓 (𝑥, 𝜋(𝑥))) (A.3)

is a policy with guaranteed cost, i.e., the actual value function of the
policy fulfills 𝑉 𝜋 (𝑥) ≤ 𝑉

𝜋
(𝑥). If we enforce a quadratic expression

𝑉
𝜋
(𝑥) ∶= 𝑥𝑇 𝑃−1𝑥, and control law 𝜋(𝑥) = −

∑2
𝑖=1 𝜇𝑖(𝑥)𝐹𝑖𝑃𝑥, then a

sufficient condition for (A.3), using Tuan relaxation (Tuan et al., 2001),
are the following LMIs (Tanaka and Wang, 2001; Díaz et al., 2020) in
decision variables 𝑃 , 𝐹1, 𝐹2:

𝐿𝑀𝐼(𝑖, 𝑗) ∶=

⎛

⎜

⎜

⎜

⎜

⎝

𝑃 𝑃 𝐹𝑗
√

𝛾(𝐴𝑖𝑃 − 𝐵𝑖𝐹𝑗 )𝑇

𝑃 𝑄−1 0 0
𝐹𝑗 0 𝑅−1 0

√

𝛾(𝐴𝑖𝑃 − 𝐵𝑖𝐹𝑗 ) 0 0 𝑃

⎞

⎟

⎟

⎟

⎟

⎠

(A.4)

0 ≤𝐿𝑀𝐼(1, 1) (A.5)

0 ≤𝐿𝑀𝐼(1, 1) + 𝐿𝑀𝐼(1, 2) + 𝐿𝑀𝐼(2, 1) (A.6)

0 ≤𝐿𝑀𝐼(2, 2). (A.7)
11
In this case, maximizing the trace of 𝑃 , we obtain:

≡ 𝐾1 = 𝐾2 = [4.7245 0.6717] (A.8)

𝑃−1 =
(

259.94 21.93
21.93 3.08

)

. (A.9)

The ellipsoid {𝑥 ∶ 𝑥𝑇 𝑃−1𝑥 ≤ 𝑉𝑚𝑎𝑥} defines the terminal ellipsoid
considered in the example, where 𝑉𝑚𝑎𝑥 is obtained via another LMI
in decision variable 𝑉𝑚𝑎𝑥, to be maximized, with the following two
inequalities:

𝑃−1 − 𝐾𝑇𝐾
𝑢2𝑚𝑎𝑥

𝑉𝑚𝑎𝑥 ≥ 0, 𝑃−1 −

( 1
𝛼2𝑚𝑎𝑥

0

0 0

)

𝑉𝑚𝑎𝑥 ≥ 0, (A.10)

as a consequence of imposing that the control action must be smaller
or equal than its maximum admissible value |𝑢| ≤ 𝑢𝑚𝑎𝑥 and the angle
of the pendulum must be inside the interval |𝛼| ≤ 𝛼𝑚𝑎𝑥.

References

Altan, A., Hacıoğlu, R., 2020. Model predictive control of three-axis gimbal system
mounted on UAV for real-time target tracking under external disturbances. Mech.
Syst. Signal Process. 138, 106548.

Antos, A., Munos, R., Szepesvári, C., 2007. Fitted Q-iteration in continuous action-space
MDPs. Adv. Neural Inf. Process. Syst. 20.

Antos, A., Szepesvári, C., Munos, R., 2006. Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path.
In: International Conference on Computational Learning Theory. Springer, pp.
574–588.

Armesto, L., 2021a. meArm robot (UPV version). https://www.thingiverse.com/thing:
4589531. (Accessed 15 September 2021).

Armesto, L., 2021b. YouTube: Robotics systems (principles and foundations). https://
www.youtube.com/playlist?list=PLjzuoBhdtaXOyB5ufadoxEfdsLfAFbSjd. (Accessed
15 September 2021).

Armesto, L., Sala, A., 2022. Volume-weighted Bellman error method for adaptive
meshing in approximate dynamic programming. Rev. Iberoam. Autom. Inform. Ind.
(in press).

Bertsekas, D.P., 2017. Dynamic Programming and Optimal Control, Vol. 1, fourth ed.
Athena Scientific, Belmont, MA, USA.

Bertsekas, D.P., 2018. Abstract Dynamic Programming. Athena Scientific Nashua, NH,
USA.

Busoniu, L., Babuska, R., De Schutter, B., Ernst, D., 2010. Reinforcement Learning and
Dynamic Programming Using Function Approximators. CRC Press, Boca Raton, FL,
USA.

Busoniu, L., de Bruin, T., Tolic, D., Kober, J., Palunko, I., 2018. Reinforcement learning
for control: Performance, stability, and deep approximators. Annu. Rev. Control 46,
8–28.

Buşoniu, L., Páll, E., Munos, R., 2018. Continuous-action planning for discounted
infinite-horizon nonlinear optimal control with Lipschitz values. Automatica 92,
100–108.

Cervellera, C., Macciò, D., 2017. A novel approach for sampling in approximate
dynamic programming based on 𝐹 -discrepancy. IEEE Trans. Cybern. 47 (10),
3355–3366.

Cohen, A., Dyn, N., Hecht, F., Mirebeau, J.-M., 2012. Adaptive multiresolution analysis
based on anisotropic triangulations. Math. Comp. 81 (278), 789–810.

Davies, S., 1996. Multidimensional triangulation and interpolation for reinforcement
learning. Adv. Neural Inf. Process. Syst. 9, 1005–1011.

De Farias, D.P., Van Roy, B., 2003. The linear programming approach to approximate
dynamic programming. Oper. Res. 51 (6), 850–865.

Díaz, H., Armesto, L., Sala, A., 2020. Fitted Q-function control methodology based on
Takagi-Sugeno systems. IEEE Trans. Control Syst. Technol. 28 (2), 477–488.

Díaz, H., Sala, A., Armesto, L., 2020. A linear programming methodology for
approximate dynamic programming. Int. J. Appl. Math. Comput. Sci. 30 (2).

Farquhar, G., Gustafson, L., Lin, Z., Whiteson, S., Usunier, N., Synnaeve, G., 2020.
Growing action spaces. In: International Conference on Machine Learning. PMLR,
pp. 3040–3051.

Gomez Plaza, M., Arribas Navarro, T., Sanchez Prieto, S., 2017. Introducing MultiScale
technique with CACM-RL. Int. J. Adv. Robot. Syst. 14 (1), 1729881417694289.

Gottesman, O., Futoma, J., Liu, Y., Parbhoo, S., Celi, L., Brunskill, E., Doshi-Velez, F.,
2020. Interpretable off-policy evaluation in reinforcement learning by highlighting
influential transitions. In: International Conference on Machine Learning. PMLR,
pp. 3658–3667.

Grüne, L., 1997. An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman
equation. Numer. Math. 75 (3), 319–337.

Grüne, L., Semmler, W., 2004. Using dynamic programming with adaptive grid scheme
for optimal control problems in economics. J. Econom. Dynam. Control 28 (12),
2427–2456.

http://refhub.elsevier.com/S0952-1976(21)00363-8/sb1
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb1
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb1
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb1
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb1
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb2
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb2
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb2
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb3
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb3
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb3
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb3
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb3
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb3
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb3
https://www.thingiverse.com/thing:4589531
https://www.thingiverse.com/thing:4589531
https://www.thingiverse.com/thing:4589531
https://www.youtube.com/playlist?list=PLjzuoBhdtaXOyB5ufadoxEfdsLfAFbSjd
https://www.youtube.com/playlist?list=PLjzuoBhdtaXOyB5ufadoxEfdsLfAFbSjd
https://www.youtube.com/playlist?list=PLjzuoBhdtaXOyB5ufadoxEfdsLfAFbSjd
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb6
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb6
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb6
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb6
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb6
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb7
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb7
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb7
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb8
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb8
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb8
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb9
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb9
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb9
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb9
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb9
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb10
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb10
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb10
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb10
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb10
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb11
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb11
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb11
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb11
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb11
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb12
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb12
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb12
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb12
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb12
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb13
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb13
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb13
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb14
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb14
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb14
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb15
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb15
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb15
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb16
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb16
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb16
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb17
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb17
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb17
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb18
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb18
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb18
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb18
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb18
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb19
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb19
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb19
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb20
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb20
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb20
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb20
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb20
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb20
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb20
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb21
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb21
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb21
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb22
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb22
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb22
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb22
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb22


A. Sala and L. Armesto Engineering Applications of Artificial Intelligence 107 (2022) 104515
Keller, P.W., Mannor, S., Precup, D., 2006. Automatic basis function construction for
approximate dynamic programming and reinforcement learning. In: Proceedings of
the 23rd International Conference on Machine Learning. pp. 449–456.

Knox, W.B., Setapen, A.B., Stone, P., 2011. Reinforcement learning with human
feedback in mountain car. In: 2011 AAAI Spring Symposium Series.

Lagoudakis, M.G., Parr, R., 2003. Least-squares policy iteration. J. Mach. Learn. Res. 4
(Dec), 1107–1149.

Liu, F., Hager, W.W., Rao, A.V., 2015. Adaptive mesh refinement method for optimal
control using nonsmoothness detection and mesh size reduction. J. Franklin Inst.
B 352 (10), 4081–4106.

Liu, F., Hager, W.W., Rao, A.V., 2017. Adaptive mesh refinement method for optimal
control using decay rates of Legendre polynomial coefficients. IEEE Trans. Control
Syst. Technol. 26 (4), 1475–1483.

Maei, H.R., Szepesvari, C., Bhatnagar, S., Precup, D., Silver, D., Sutton, R.S., 2009. Con-
vergent temporal-difference learning with arbitrary smooth function approximation.
In: NIPS. pp. 1204–1212.

Maggipinto, M., Susto, G.A., Chaudhari, P., 2020. Proximal deterministic policy
gradient. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IROS, IEEE, pp. 5438–5444.

Munos, R., Moore, A., 2002. Variable resolution discretization in optimal control. Mach.
Learn. 49 (2–3), 291–323.
12
Munos, R., Szepesvári, C., 2008. Finite-time bounds for fitted value iteration. J. Mach.
Learn. Res. 9 (5), 815–857.

Robles, R., Sala, A., Bernal, M., 2019. Performance-oriented quasi-LPV modeling of
nonlinear systems. Internat. J. Robust Nonlinear Control 29 (5), 1230–1248.

Rohmer, E., Singh, S., Freese, M., 2013. CoppeliaSim (formerly V-REP): a versatile and
scalable robot simulation framework. In: Proc. of the International Conference on
Intelligent Robots and Systems. IROS.

Sherstov, A.A., Stone, P., 2005. Function approximation via tile coding: Automating
parameter choice. In: International Symposium on Abstraction, Reformulation, and
Approximation. Springer, pp. 194–205.

Tanaka, K., Wang, H.O., 2001. Fuzzy Control Systems Design and Analysis: A Linear
Matrix Inequality Approach. John Wiley & Sons.

Timmer, S., Riedmiller, M., 2007. Fitted Q-iteration with CMACS. In: 2007 IEEE In-
ternational Symposium on Approximate Dynamic Programming and Reinforcement
Learning. IEEE, pp. 1–8.

Tuan, H., Apkarian, P., Narikiyo, T., Yamamoto, Y., 2001. Parameterized linear matrix
inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9 (2),
324–332.

Whiteson, S., 2006. Evolutionary function approximation for reinforcement learning. J.
Mach. Learn. Res. 7.

Whiteson, S., Taylor, M.E., Stone, P., 2007. Adaptive Tile Coding for Value Function
Approximation. Tech. Report. AI-TR-07-339, Univ. of Texas at Austin.

Yershov, D.S., Frazzoli, E., 2015. Asymptotically optimal feedback planning: FMM meets
adaptive mesh refinement. In: Algorithmic Foundations of Robotics XI. Springer, pp.
695–710.

http://refhub.elsevier.com/S0952-1976(21)00363-8/sb25
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb25
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb25
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb26
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb26
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb26
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb26
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb26
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb27
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb27
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb27
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb27
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb27
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb29
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb29
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb29
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb29
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb29
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb30
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb30
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb30
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb31
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb31
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb31
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb32
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb32
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb32
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb34
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb34
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb34
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb34
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb34
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb35
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb35
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb35
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb36
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb36
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb36
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb36
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb36
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb37
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb37
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb37
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb37
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb37
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb38
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb38
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb38
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb39
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb39
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb39
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb40
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb40
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb40
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb40
http://refhub.elsevier.com/S0952-1976(21)00363-8/sb40

	Adaptive polyhedral meshing for approximate dynamic programming in control
	Introduction
	Preliminaries and notation
	Approximate dynamic programming
	Polyhedral partitions for function approximation
	Adaptive meshing
	Problem statement

	Main result
	Problem discretization
	Bellman temporal-difference error and approximation accuracy
	Variance of the partial-discretization MDP
	Influence over a region of interest
	Weighted influence
	Influence estimation for candidate new points

	Summary: proposed criterion for point addition in adaptive meshing

	Simulation and experimental results
	Example 1: Mountain-car
	Example 2: Inverted pendulum
	Experimental results

	Discussion
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix. LMI-based terminal ingredients
	References


