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Summary 
 

The natural course of tumors matches the progressive 

accumulation of genomic alterations, triggering a cascade of 

events that results in genomic instability (GI). This phenomenon 

includes copy number alterations and constitutes a genomic 

hallmark that defines specific outcomes beyond histology and 

other molecular features of the tumor. 

In the context of gynaecologic oncology research, GI has gained 

strength in the last years allowing the stratification of patients 

according to prognosis and response to certain DNA-damaging 

agents, such as platinum-based therapies and PARP inhibitors.  

Particularly in ovarian and endometrial cancers, it has been 

described a molecular subgroup characterized by high copy 

number alterations (CNA) related to good prognosis and better 

response to chemotherapy. This relationship highlights GI as a 

predictive and prognostic biomarker. Hence, a GI-based model 

translated into clinical practice would constitute a tool for 

optimizing clinical decision-making.  

The era of personalised medicine arrived together with the 

coming of integrative studies, where results of high-throughput 

techniques are combined to obtain a comprehensive molecular 

landscape of the diseases, bringing a new paradigm to 



 

 
 

characterize the tumors beyond classical anatomic and 

histological characteristics. 

This thesis proposes a global study of the phenomenon of GI as 

a prognostic and predictive biomarker of treatment response in 

gynaecological cancers, mainly focused on high-grade ovarian 

cancer and endometrial cancer.  Through the development of 

an NGS-based strategy with the adaptation of available 

pipelines of analysis, we obtained GI profiles on formalin-fixed 

paraffin-embedded samples in a reliable, portable, and cost-

effective approach, with the combination of Machine Learning 

tools to fit prognostic and predictive models based on the 

integration of omic data.  

Based on that premise, we fit and validated, in well-

characterized clinical cohorts, three single-source models and 

an integrative ensemble model (Scarface Score) that proved to 

be able to predict response to DNA-damaging agents in a 

clinical scenario of High-Grade Serous Ovarian Cancer.  In 

addition, a mutational-based algorithm (12g algorithm) with 

prognostic impact was developed and validated for 

endometrial cancer patients. This algorithm achieved a GI-

based stratification of patients. Finally, a panel of ovarian 

cancer cell lines was characterized at the response, genetic and 

genomic level, interrogating homologous recombination repair 



 

 
 

pathway status and its associated GI profiles, completing the 

molecular landscape, and establishing the basis and breeding 

ground of future preclinical and clinical studies. 

The results reported in this Doctoral Thesis provide valuable 

clinical management tools in the accomplishment of a reliable 

tailored therapy. Additionally, future studies in different tumor 

types and drugs for implementation of the predictive model 

can be planned, using as a base the defined one but re-

establishing new and specific cut-offs. 

  



 

 
 

  



 

 
 

Resumen 
 

El curso natural de los tumores va acompañado de la 

acumulación progresiva de alteraciones genómicas,  

propiciando una cadena de eventos que resultan en 

inestabilidad genómica (IG). Éste fenómeno, caracterizado por 

alteraciones en el número de copias, constituye un hallmark 

genómico con impacto pronóstico más allá de la histología y 

otras características moleculares del tumor. 

En el ámbito de la investigación en oncología ginecológica, la IG 

ha ganado fuerza en los últimos años, permitiendo la 

estratificación de pacientes de acuerdo al pronóstico y la 

respuesta a agentes que dañan el ADN, como las terapias 

basadas en platinos y los inhibidores de PARP. En el cáncer de 

ovario, en particular, se ha descrito un subgrupo molecular 

caracterizado por alta incidencias de alteraciones en el número 

de copias relacionado con un mejor pronóstico y respuesta a 

quimioterapia. Esta correlación presenta la IG como un buen 

marcador predictivo y pronóstico. Así, un modelo basado en la 

IG trasladable a la práctica clínica constituirá una herramienta 

útil para la optimización de la toma de decisiones. 

La era de la medicina personalizada llegó de  la mano de los 

estudios integrativos, donde las técnicas de alto rendimiento se 



 

 
 

aplican de manera combinada para obtener una visión 

molecular global de los tumores, completando y 

complementando la caracterización clásica a nivel anatómico e 

histológico.   

Esta tesis propone un estudio global de la IG como biomarcador 

pronóstico y predictivo de respuesta en cáncer ginecológico, 

haciendo hincapié en el cáncer de ovario seroso de alto grado y 

cáncer de endometrio. A través de la aplicación de estrategias 

basadas en NGS con la adaptación de pipelines de análisis 

disponibles obtuvimos los perfiles de IG de muestras de tejido 

fijadas en formol y embebidas en parafina, de una manera 

fiable, portable y coste efectiva, combinando herramientas de 

machine learning para ajustar modelos predictivos y 

pronósticos. 

Partiendo de esta premisa, ajustamos y validamos, en cohortes 

clínicas bien caracterizadas, tres modelos a partir de los datos 

ómicos individuales  y un modelo integrativo (Scarface Score) 

que demostró la capacidad de predecir la respuesta a agentes 

que dañan el ADN en un escenario clínico concreto de 

pacientes con cáncer de ovario seroso de alto grado. 

Paralelamente, desarrollamos y validamos un algoritmo basado 

en el perfil de mutaciones, con impacto pronóstico, en cáncer 



 

 
 

de endometrio. Éste algoritmo consiguió una estratificación 

que respondía al perfil de IG de los pacientes.   

Finalmente, se caracterizó un panel de líneas celulares de 

cáncer de ovario a nivel de respuesta, genético y genómico. Se 

interrogó el estatus de la vía de recombinación homóloga y su 

asociación a patrones de IG, completando el perfil molecular y 

estableciendo las bases para futuros estudios preclínicos y 

clínicos. 

Los resultados obtenidos en esta tesis doctoral presentan 

herramientas de gran valor para el manejo clínico en cuanto a 

la búsqueda de una medicina personalizada. Adicionalmente, 

diferentes estudios para trasladar el modelo predictivo a otros 

escenarios clínicos pueden ser planteados, usando como base 

el planteado pero restableciendo puntos de corte nuevos y 

específicos. 

  



 

 
 

  



 

 
 

Resum 
 

El curs natural dels tumors va acompanyat de l'acumulació 

progressiva d'alteracions genòmiques, propiciant una cadena 

d'esdeveniments que resulten en inestabilitat genòmica (IG). 

Aquest fenomen, caracteritzat per la presencia de alteracions 

en el nombre de cópies, constitueix un hallmark genòmic amb 

impacte pronòstic més enllà de la histologia i altres 

característiques moleculars del tumor. 

En l'àmbit de la recerca en oncologia ginecològica, la IG ha 

guanyat força en els últims anys, permetent l'estratificació de 

pacients d'acord amb el pronòstic i la resposta d'agents que 

danyen l'ADN, com les teràpies basades en platins i els 

inhibidors de PARP. En el càncer d'ovari en particular, s'ha 

descrit un subgrup molecular caracteritzat per una alta 

incidència d'alteracions en el nombre de còpies relacionat amb 

un millor pronòstic i resposta a quimioteràpia. Aquesta 

correlació presenta la IG com un marcador predictiu i pronòstic 

adeqüat. Així, un model basat en la IG traslladable a la pràctica 

clínica constituirà una eina útil per a l'optimització de la presa 

de decisions. 

L'era de la medicina personalitzada va arribar de la mà dels 

estudis integratius, on les tècniques d'alt rendiment s'apliquen 



 

 
 

de manera combinada per a obtenir una visió molecular global 

dels tumors, completant i complementant la caracterització 

clàssica a nivell anatòmic i histològic. 

Aquesta tesi proposa un estudi global de la IG com a 

biomarcador pronòstic i predictiu de resposta en càncer 

ginecològic, posant l'accent en el càncer d'ovari serós d'alt grau 

i càncer d'endometri. A través de la aplicación d'estratègies 

basades en NGS amb l'adaptació de pipelines d'anàlisis 

disponibles, vam obtenir els perfils de IG de mostres de teixit 

fixades en formol i embegudes en parafina d'una manera fiable, 

portable i cost efectiva, combinant eines de machine learning  

per a ajustar models predictius i pronòstics. 

Partint d'aquesta premissa, vam ajustar i validar, en cohortes 

clíniques ben caracteritzades, tres models a partir de les dades 

omiques individuals i un model integratiu (Scarface Score) que 

va demostrar la capacitat de predir la resposta a agents que 

danyen l'ADN en un escenari clínic concret de pacients amb 

càncer d'ovari serós d'alt grau. 

Paral·lelament, desenvoluparem i validarem un algoritme basat 

en el perfil de mutacions amb impacte pronòstic en càncer 

d'endometri. Aquest algoritme va aconseguir una estratificació 

que responia al perfil de IG dels pacients. 



 

 
 

Finalment, es va caracteritzar un panell de línies cel·lulars de 

càncer d'ovari a nivell de resposta, genètic i genòmic. Es varen 

interrogar l'estatus de la via de recombinació homòloga i la 

seua associació a patrons de IG, completant el perfil molecular i 

establint les bases per a futurs estudis preclínics i clínics. 

Els resultats obtinguts en aquesta tesi doctoral presenten eines 

de gran valor per al maneig clínic en quant a la cerca d'una 

medicina personalitzada. Addicionalment, diferents estudis per 

a traslladar el model predictiu a altres escenaris clínics poden 

ser plantejats, usant com a base el propost però restablint 

punts de tall nous i específics. 
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1. Introduction 

Cancer is one of the leading causes of death worldwide (Figure 1) 

constituting one of the main health problems that need to be 

addressed. In 2020 It has been described an incidence of 

approximately 19.3 million of new cases and a mortality near 10 

million. The rapid increase in incidence and mortality mainly reflects 

aging and growth of population but also modification of prevalence 

and distribution of risk factors, mostly related to socioeconomic 

status. In fact, prediction rise up to 28.8 million cases in 2040, 

meaning a 47% increase compared to 2020, becoming a growing 

threat to global health1. 

 

 

Figure 1: Global distribution of deaths caused by Cancer malignancies (GLOBOCAN 

2020)
1
. Ranking of Cancer as a Cause of Death at Ages <70 Years in 2019. The 

legend contains the number of countries included in each level.  
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1.1. Gynaecological Cancers 

1.1.1. Epithelial Ovarian Cancer 

1.1.1.1. Epidemiology 

Epithelial Ovarian Cancer (EOC) presented 313,959 new cases and 

causes 207,252 deaths worldwide during 20202. The tendency in 

Spain is quite similar to those observed in Europe, being the 8th most 

commonly diagnosed cancer among women and the most lethal 

gynaecological malignancy with an incidence and mortality of 3513 

and 2106 cases respectively (Figure 2) in 2020. 

 

Figure 2: Incidence and mortality stratified by tumor type across global female 

population (https://gco.iarc.fr/today/home, WHO, last access November 20222). 

Proportion of the total number of cases and deaths for the 8 most common cancers 

for women in 2020. 
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1.1.1.2. Diagnosis 

Three different cell types exist in the ovary: surface epithelium, 

stromal cells and germ cells, having the three of them the potential 

of malignant transformation. Depending on cell origin, the diagnosis, 

clinical management, and prognosis of arising tumours will be 

completely different. EOC represents the most common subtype of 

ovarian cancer (OC), constituting approximately the 90% of all OC 

cases3.  

Clarifying the pathogenesis in early cancer development is 

fundamental to identify biomarkers of early detection and to define 

cost-effective strategies for cancer prevention. This task represents 

an unmet need in those cancers lacking an effective screening 

strategy like the case of OC4. 

The diagnosis of EOC constitutes a difficult task for clinicians due to 

the natural evolution of the disease. This type of malignancy, 

normally asymptomatic, starts with a series of non-specific symptoms 

including abdominal bloating, early satiety, nausea, abdominal 

distension, change in bowel function, urinary symptoms, back pain, 

fatigue, and weight loss5. However, when those symptoms appear, 

patients already present advanced stage with regional or distant 

spread in the 75% of cases, dramatically decreasing the 5-year 

survival rate from 93% in early-stage detection to 29%6. Even though 

there is enough space for huge improvements regarding early 
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diagnosis, currently there is no established screening test for OC 

patients, thereby hindering early-stage detection of this disease. 

Diagnosis of EOC should combine the evaluation of previous 

symptoms, risk factors, familiar and personal clinical history of 

gynaecological or other cancer types, physical exam, laboratory tests7 

(The most extensively studied tumor marker used in screening for OC 

is CA-125, a high molecular weight glycoprotein recognized by the 

murine CA-125 monoclonal antibody as an immunogen8) and 

radiographic imaging. Physical exam and imaging tests of the 

abdomen and pelvis are usually recommended as an initial step in the 

diagnosis and will often lead to the identification of a pelvic mass. 

Testing patients for CA-125 biomarker will also help when there is a 

suspicion of EOC. Even if CA-125 is not specific of EOC condition 

(could be elevated in benign conditions or other tumor types), it will 

support clinical decisions.  Detection of serum HE4, a protease 

inhibitor member of whey acidic four-disulfide core (WFDC) family, 

overexpressed in OC tissue, is also another potential biomarker for 

OC9. In addition, in 2010 was approved by the Food and Drug 

Administration (FDA) the ROMA algorithm, a multivariate index 

which combines both biomarkers, CA-125 and HE4, and menopausal 

status in a logistic regression model, improving the individual 

predictive values10,11. In any case, the final diagnosis of ovarian 

malignancy currently requires pathologic assessment after surgery or 

biopsy12,13. 
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1.1.1.2.1. Histopathological classification 

Anatomically, EOC is characterized by early intraperitoneal 

dissemination with seeding of pelvic structures, abdominal organs, 

and peritoneal surfaces. Molecularly and morphologically, EOC is a 

heterogeneous group of diseases stratified according to histological 

subtypes in serous, endometroid, clear cell, mucinous, malignant 

Brenner tumours and mixed (Figure 3). These subtypes have different 

patterns of genomic variation, each carrying different prognostic 

implications. Serous histology is found as the most common, 

followed by clear cell and endometrioid. Mucinous, on the contrary, 

is the less common14.  

Classically, EOC has been grouped as Type I and Type II. Type I 

tumours include low-grade serous, low-grade endometrioid, clear cell 

and mucinous carcinomas while Type II comprises high-grade serous, 

high-grade endometrioid and carcinosarcomas. Clinically, Type I 

tumors are usually diagnosed at an early stage of the disease while 

Type II present papillary, glandular and solid patterns. They are highly 

aggressive and commonly diagnosed at an advanced stage. Type II 

tumors represent the 75 % of EOC, being High-Grade Serous Ovarian 

Cancer (HGSOC) the most usual subtype. Regarding the known 

molecular characteristics, Type I tumors are genetically more stable, 

occasionally harboring microsatellite instability (MSI) and frequently 

present mutations in KRAS, NRAS, ARID1A, CTNBB1  and PTEN; 

whereas Type II tumors are characterized by TP53 mutation in more 
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than 80 % of the cases, CCNE1 amplification and high genomic 

instability (GI) principally caused by alterations in the Homologous 

Recombination DNA-Repair machinery (HRR)15. 

 

Figure 3: Classification of OC tumors. Clinicopathological-based stratification; 

differentiation of tumors in Type I and Type II. Information regarding molecular and 

pathological features specific for each histological subtype are described. 

 

1.1.1.2.2. Staging and grading 

While early-stages have similar frequencies independently from the 

histology, in advanced stages, serous histology is overrepresented. 

Endometroid, mucinous and clear cell histologies, however, are 

normally diagnosed at an early-stage still confined to the ovary15.  
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Table 1: FIGO staging system. 2014 FIGO ovarian, fallopian tube, and peritoneal 

cancer staging system
16

. 

Stage I Growth limited to the ovaries 

IA 
Tumor limited to the ovary, capsule intact, no tumor on surface, 
negative washing 

IB Tumor involves both ovaries, otherwise like IA 

IC Tumor limited to one or both ovaries 

IC1 Surgical spill 

IC2 Capsule rupture before surgery or tumor on ovarian surface 

IC3 Malignant cells in the ascites or peritoneal washing 

Stage II 
Tumor involves one or both ovaries with pelvic extension (below the 
pelvic brim) or primary peritoneal cancer 

IIA Extension and/or implant on uterus and/or fallopian tubes 

IIB Extension to other pelvic intraperitoneal tissues 

Stage III 
Tumor involves one or both ovaries with cytologically or 
histologically confirmed spread to the peritoneum outside the pelvis 
and/or metastasis to the retroperitoneal lymph nodes 

IIIA 
Positive retroperitoneal lymph nodes and/or microscopic metastasis 
beyond the pelvis 

IIIA1 Positive retroperitoneal lymph nodes only 

IIIA1(i) Metastasis ≤10 mm 

IIIA1(ii) Metastasis ≥10 mm 

IIIA2 
Microscopic, extrapelvic (above the brim) peritoneal involvement 
±positive retroperitoneal lymph nodes 

IIIB 
Macroscopic, extrapelvic, peritoneal metastasis ≤2 cm ± positive 
retroperitoneal lymph nodes. Includes extension to capsule of 
liver/spleen 

IIIC 
Macroscopic, extrapelvic, peritoneal metastasis >2 cm ± positive 
retroperitoneal lymph nodes. Includes extension to capsule of 
liver/spleen 

Stage IV Distant metastasis excluding peritoneal metastasis 

IVA Pleural effusion with positive cytology 

IVB 
Hepatic and/or splenic parenchymal metastasis, metastasis to extra-
abdominal organs (including inguinal lymph nodes and lymph nodes 
outside to the abdominal cavity) 
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The stratification of tumours according to anatomic location and 

pathologic characteristics, establishing tumor grade and stage, is an 

initial key step in oncologic diagnosis. Reproducible histopathologic 

diagnosis of tumor is essential for successful treatment given that 

this will determine the clinical course of the disease. 

In OC, tumor grade is assessed at two different levels: nuclear and 

architectural, in a scale from 1 to 3, being the most poorly 

differentiated part the reference to fix overall tumor grade. Briefly, 

grade I tumours present mildly enlarged, uniformed nuclei, dispersed 

chromatin, very small nucleoli and they are well-differentiated with 

predominant glands content. Grade II tumours show moderately 

enlarged nuclei, varying in size and shape, small but evident nucleoli 

and variable mitotic activity. Architecturally, they are moderately 

differentiated. Lastly, Grade III tumours are characterized by 

markedly enlarged and pleomorphic nuclei, irregular coarse 

chromatin, and prominent nucleoli. In addition, mitosis with atypical 

forms is usually exhibited. These tumours are normally poorly 

differentiated and they are formed predominantly by solid areas17. 

Regarding staging of tumours, the Tumor-Node-Metastasis (TNM) 

system is the reference criteria. This classification includes tumor size 

and local growth (T0 and T4), extent of lymph node metastases (N0 

and N3), and occurrence of distant metastases (M0 and M1). 

Nevertheless, gynaecological cancers have the International 

Federation of Gynecology and Obstetrics (FIGO) staging system16, a 
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staging system, comparable to TNM, which stratifies tumours as 

detailed in Table 1.  

Implementing grading and staging information combined with the 

remaining clinical data, clinicians can build the final diagnosis, guiding 

treatment and predicting clinical outcomes18,19.  

 

1.1.1.3. Risk factors 

Different risk factors have been described in EOC, however, only a 

few have proved to have a real impact on the development of the 

disease (Table 2). Principally, there are four types of risk factors: 

reproductive factors, the intake of oral contraceptives or/and 

Hormone Replacement Therapy (HRT) and family and personal 

cancer history. Reproductive history influences OC risk and is related 

to exposure to oestrogen and progesterone20. Among factors related 

to lifetime ovulations, some of them are associated with lower OC 

risk, such as the use of oral contraceptive, pregnancy and 

breastfeeding risk21,22, due to the decreased in the number of 

ovulation cycles. However, those that involve a higher number of 

menstrual cycles, such as nulliparity, increase the risk23. In this 

regard, infertility also represents a negative factor for EOC24. Other 

risk factors have also been evaluated, failing in demonstrating a real 

impact on the evolution of the disease. Between them; we can find 

body complexion (height, weight and body mass), HRT or length of 
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menstrual life (early age at menarche and late age at 

menopause)25,26.  

Table 2: OC risk factors
27

. Environmental and personal factors that entail an 

increase (predisposing), decrease (protective) or controversial risk of developing 

OC. 

Factors Protective Predisposing Controversial 

Demographic Age  X  

Reproductive 

Menstrual-related 
factors 

 X  

Age of menarche and 
menopause 

  X 

Parity X   

Pregnancy 
characteristics 

  X 

Higher age of child 
birth 

X   

Gynaecologic 

Pelvic Inflammatory 
Disease 

  X 

Endometriosis   X 

Hormonal 

Contraceptive 
methods 

 X  

Hormone  
Replacement Therapy 
(HRT) 

 X  

Infertility Treatments  X  

Genetic 

Family History  X  

BRCA mutations  X  

Lynch Syndrome  X  

Lifestyle 

Nutrition and Diet   X 

Obesity and physical 
activity 

  X 

Alcohol, caffeine and 
cigarettes 

  X 

Others 

Lactation X   

Lower socioeconomic 
status 

  X 
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In addition to these, which are commonly found among all 

histologies, there are others limited to one of them. It is the case of 

tobacco smoking, associated only  with Mucinous Ovarian Cancer28 or 

endometriosis, associated with 15-20 % of clear-cell and 

endometrioid histologies29.  

Finally, genomic predisposition as well as familiar and personal 

cancer history represents the most determinant risk factor. OC has 

been related with different cancer-predisposing hereditary 

syndromes such as Hereditary Breast and Ovarian Cancer (HBOC) and 

Lynch Syndrome (LS). In this sense, women with EOC history harbours 

higher probability of developing this kind of tumours, resulting in a 

risk three times greater when presenting one affected first-degree 

relative and even higher if they have been diagnosed before the age 

of 5030,31.  HBOC syndrome is mainly characterized by the presence of 

mutations in BRCA genes, even if they are also present in patients 

without the syndrome/family history. BRCA1 has an estimated 40-

50% risk of developing OC by age of 70 while BRCA2 has 10-20%32. 

Most of these tumours associated with BRCA mutations are HGSOC. 

Other genes also confer a moderately or low risk, predominantly 

related with HRR pathway, such as BRIP1, RAD51, BARD1, CHEK2, 

RAD50, PALB2 and ATM33,34. People with HBOC syndrome may also 

have an increased risk of other types of cancer, including pancreatic 

cancer, prostate cancer, and melanoma. LS, however, is characterized 

by mutations in DNA mismatch repair (MMR) genes, supposing a 3% 
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to 17% lifetime risk of developing OC, particularly non-serous cancers 

as clear-cell and endometroid35,36. 

 

1.1.1.4. Therapeutic approaches 

Primary cytoreductive surgery followed by platinum-based 

chemotherapy has become the standard of care for patients with 

advanced stage EOC. Achieving no residual tumor (R0) remains as the 

most important prognostic factor. With this aim, surgical 

cytoreduction should be done by an experienced gynaecologic 

oncologist5. 

Given that EOC is often presented with advanced stage at the time of 

diagnosis, for optimal cytoreduction, surgical approach should 

consider including bowel resection and/or appendectomy, diaphragm 

or peritoneal stripping, splenectomy, partial cystectomy and/or 

ureteroneocystostomy, partial hepatectomy, partial gastrectomy, 

cholecystectomy, and/or pancreatectomy. In case optimal 

cytoreduction is unlikely or it could carry high morbidity and 

mortality for the patient, neoadjuvant chemotherapy should be 

considered as a treatment option37.  

Fertility conservation surgery could be studied in young woman with 

early-stage IA or IC disease, unilateral ovarian involvement and 

favorable histology. In this case, uterus and contralateral ovary will 
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be left in place. These clinical scenarios should be carefully evaluated, 

balancing benefits and risk for the patient38.    

Regarding systemic treatment, the administration of chemotherapy 

to early-stage patients has been largely discussed39,40. Hence, only 

patients that were sub-optimally staged or optimally staged as high-

risk (stage IB-C grade 2, any grade 3 or stage IC clear cell histology) 

demonstrated clinical benefit of receiving systemic treatment41. In 

case of EOC staged II-IV, all cases should be treated with 

chemotherapy after surgery. Standard treatment includes 

intravenous administration of carboplatin and paclitaxel every 3 

weeks, usually for 6 cycles. The combination of paclitaxel and 

cisplatin is equally effective but carries high toxicity, not being 

considered a standard of treatment42. 

Concerning relapse, therapeutically options are chosen based on 

patient general state, time of recurrence, tumor histology and 

disease biology. Secondary debulking surgery would be evaluated as 

a first option43. If there is no surgical option, then, systemic therapy 

will be used to control the disease and avoid spreading. In the 

platinum-sensitive recurrence setting, re-challenge with platinum 

chemotherapy is a standard of care. 

Since the arrival of first line therapeutic options that assures better 

outcome such as the combination of carboplatin plus paclitaxel, 

radiotherapy (RT) has been reserved to a small number of clinical 
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scenarios. The first scenario is oligometastatic disease setting, where 

RT represents a reliable and effective treatment option with a mild 

toxicity. The second is its usage as palliative treatment. Due to its 

capacity to significantly decrease abdominal masses, it will properly 

work to reduce symptoms, predominantly vaginal bleeding and pain 

relief44. 

 

1.1.1.4.1. Targeted therapy and future approaches 

In addition to first-line standard treatment, there is a growing range 

of options that will also play a crucial role in the evolution of the 

disease. Newly developed targeted therapies aim to improve 

performance of chemotherapy while decreasing its side effects by 

combination or maintenance treatment as well as working as an 

alternative when resistances or toxicities appear.  

In EOC, the development of new targeted therapies has been focused 

on HGSOC subtype, due to its high incidence (75% of all EOC) and 

specific molecular characteristics. In this regards, two different 

classes of therapies have been included in the clinical practice. Firstly, 

the anti-angiogenic drugs, such as Bevacizumab, a humanized 

monoclonal antibody against VEGF. On the other hand, PARP 

inhibitors (PARPi) also have strongly entered in the equation. 

Different clinical trials demonstrated the efficacy of the drug in 

combination as well as in maintenance in distinct clinical scenarios. 
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Finally, Bevacizumab is approved in first line in combination with 

standard of care followed by maintenance until progression. Relapse 

EOC, both platinum-sensitive and resistant, can also receive 

Bevacizumab plus chemotherapy followed by maintenance. 45-47. 

On the other hand, PARPi have been successfully implemented in 

recurrent HGSOC by leveraging inherent defects in HRR pathway 

present in around 50% of HGSOC5. Different drugs have been 

approved for different clinical scenarios and administered as single 

agent and maintenance, between them, the most remarkable are 

Olaparib (fist approved PARPi), Rucaparib and Niraparib (Figure 4)48-

50.  
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Figure 4: PARPi through the years in OC. Timeline of drug discovery, development, 

approval and application in clinical routine of different PARPi (Olaparib, Rucaparib 

and Niraparib) in this particular scenario since 2014. Adapted from Ngoi, N. Y. L., 

and Tan, D. S. P
51

. 

 

1.1.1.5. Molecular biology of EOC: HGSOC 

As above mentioned, EOC is a heterogeneous group of diseases that 

differs from cell origin to histopathological and molecular features, 

having a direct impact on the prognosis and evolution of the tumor. 

Together with the advance of science, molecular landscape of EOC is 

being deciphered and, hence, the term “histotype” is beginning to be 
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deprecated. Even though the mainstay still depends on conventional 

histomorphology, complementary molecular tests are being 

increasingly integrated into clinical decision-making scenarios. Due to 

HGSOC is the most common subtype of EOC and the main histology 

studied on this research, from now on the information is going to be 

focused on this entity. 

One of the biggest projects, which work as a starting point on the 

high-throughput molecular biology studies regarding oncology, is The 

Cancer Genome Atlas (TCGA). The TCGA established the molecular 

basis of different tumors, performing thorough studies at different 

levels and working as a hypothesis generator to following researches.  

In 2011, the TCGA published the first integrated analysis of EOC52. 

This study showed a huge mutational heterogeneity and low 

recurrent gene mutations in this tumor. The highest mutational ratio 

is presented by TP53, the gene that encodes p53 tumor suppressor 

protein. This gene is the most frequently mutated among tumors and 

it is altered on approximately the 90% of HGSOC. That shows the 

essential role of TP53 in the course of the disease, probably working 

as a driver mutation53.  

In contrast with the relative lack of point mutations across HGSOC 

patients, it has been described a large and recurrent Somatic Copy 

Number Aberrations (CNV). Among the 63 regions of punctual 

recurrent SCNAs, those involving CCNE1, MYC and MECOM were the 
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most common focal amplifications52. Particularly, CCNE1 has been 

found to be amplified in HGSOC and it has shown a strong correlation 

with platinum resistance54,55. The same amplified region of CCNE1, 

19q12, also implicates the amplification of another anti-apoptotic 

oncogene, C19orf2, that has been related to platinum resistance as 

well56,57. The incidence of directly follows CCNE1 and it is mutated or 

deleted in 10.8 % of the patients52. 

The other group of genes that were described as characteristically 

altered in HGSOC was the HRR genes. Until now, BRCA1 and BRCA2 

have been considered as the directors of the orchestra. However, it 

has been shown that, additionally to well-known BRCA genes, there 

are other alterations directly implicated in the deficiency of HRR 

pathway (Figure 5). Alterations in this pathway, due to the inability of 

cells that carry them to repair DNA double-strand breaks (DSBs), are 

the main responsible of high rate of platinum sensitivity in HGSOC. 

This phenomenon, due to common clinical and tumoral effects is 

known as “BRCAness”58,59. Homologous Recombination Repair 

Deficiency (HRD) can be caused by alterations at both somatic and 

germline level, including mutations, epigenetic silencing, and big 

rearrangements. Recent studies have shown a germline mutation 

rate of BRCA1/2 around 23% and somatic mutations can also be 

found in approximately 11% of patients60,61. Additionally, other HRR 

genes have also been involved, including: RAD51, RAD54, DSS1, 

RPA1, NBS1, ATR, ATM, CHEK1, CHEK2, FANCD2, FANCA, and 
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FANCC62. Apart from those genes, PTEN loss was also related to 

deficiency in HRR pathway. However, the result of this alteration is 

still under discussion63-65. Finally, amplification of EMSY was 

described in 8 % of sporadic HGSOC66. Due to its role as an 

endogenous transcriptional repressor that interacts with the N 

terminus of BRCA2, silencing its activation, EMSY has a determinant 

role in OC. It is exclusively nuclear and relocalizes to sites of DSB 

following DNA damage67. Since overexpression/amplification of EMSY 

and deletion of BRCA2 have a similar effect, it has also been reported 

in association with worse survival68. 

Summarizing, the subset of patients that carry HRD represents near 

the 50 % of diagnosed HGSOC and that is why this alteration depicts a 

huge impact biomarker that need to be further studied. 

 

Figure 5: Mutational landscape of HGSOC. Distribution of molecular alterations 

described in HGSOC in the context of comprenhensive studies (TCGA and AOCS 

project)
52,69 
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1.1.2. Endometrial Cancer 

1.1.2.1. Epidemiology 

EC represents the most common gynecological malignancy and the 

fourth cancer regarding incidence in women population, accounting 

with more than 417,000 cases worldwide. Mortality rate, however, is 

much lower than previously mentioned OCs, with 97,370 deaths in 

20202 (Figure 2). 

 

1.1.2.2. Diagnosis 

The diagnosis of EC, due to the appearance of early symptoms, 

results less challenging than other gynecological malignancies. Hence, 

the 67 % of women with EC are diagnosed at initial stages, with 

disease still confined to the uterus and only 21 and 8 % of cases 

present regional and distant metastasis respectively70. However, an 

increase in mortality rate is occurring, probably as a result of a rise in 

advanced-stage cancers and high-risk histologies throughout the 

diagnosis of the disease71.  

The main symptom that prevents women of a possible EC is 

abnormal uterine bleeding, often found in postmenopausal period. 

Even though the most suitable diagnostic technique is still under 

discussion, there is a recommended way to follow when diagnosing 

EC. Endometrial biopsy is the first approach, normally providing 

enough information to the process. When the biopsy resulted 
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negative, in symptomatic patients, fractional dilation and curettage 

(D&C) is advisable. Additionally, hysteroscopy could be helpful when 

looking for endometrium lesions. Other imaging tests, such as 

Computed Tomography (CT), Magnetic Resonance Imaging (MRI) 

and/or Positron Emission Tomography (PET)/CT will be helpful for 

detection of distant metastasis and evaluation of tumor 

spreading70,72. 

 

1.1.2.2.1. Histopathological classification 

EC is classically grouped in Type I and II tumors based on pathologic 

information, including histologic type, tumor grade, stage and 

lymphovascular and myometrial invasion. Nine different EC 

histologies have been described, being distributed between both 

groups (Figure 6). Endometroid and serous histologies represent 

most of them. Hence, sporadic endometrial carcinomas, around 70-

80%, are mainly designated as type I carcinomas73. 

Type I tumors are characterized by hyperestrogenism by association 

with endometrial hyperplasia, obesity, hormone-receptor positivity, 

and favorable prognosis. At molecular level, PTEN mutations have 

been described as an early event. MSI is also typical of this subtype, 

being present in a third part of them. Most tumors show 

endometroid differentiation and presented low grade. In addition, 

mucinous histology is also considered as type I tumors73. 
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Figure 6: Classification of EC tumors.  Clinocopathological-based stratification; 

differentiation of tumors in Type I and Type II. Information regarding molecular 

features specific for each histological subtype are described. 

 

Type II tumors, however, are typically diagnosed in non-obese older 

women and associated with atrophic endometrium. They present 

infrequent MSI and mutation mainly in TP53, followed by inactivation 

of p16 and e-cadherin together with the amplification of her2/neu 

oncogene. These tumors are normally high-grade carcinomas of non-

endometrioid differentiation, principally serous and clear cell, with an 

aggressive clinical course and poor prognosis. Small cell, 
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undifferentiated and squamous cell carcinomas are also classified as 

type II74.  

 

1.1.2.2.2. Staging and grading 

Cancer staging and grading are fundamental pathologic 

determination with a huge importance in clinical management of 

cancer patients, representing a key prognostic and predicting factor. 

Regarding stage, in EC it is generally assessed according to the FIGO 

classification. Even if a new staging system was published on 2009 

(Table 3), the information here found is mainly based on the version 

of the system from 198375. Surgical staging, now implemented 

instead of classical clinical stage, allows a more accurate assessment 

of extent of disease. Complete surgical staging should include total 

hysterectomy with bilateral salpingo-oophorectomy and pelvic and 

paraaortic lymphadenectomy.  

After tumor staging, the most informative prognostic feature is the 

grade, especially the differentiation between grade 1 and 2 tumors 

and grade 3 tumor, considered low and high-grade tumor 

respectively in a binary classification. Currently, FIGO grading system 

divides tumors between 3 grades, based on degree of glandular 

differentiation. Grade 1 tumors exhibit ≤5% solid non-glandular, non-

squamous growth; grade 2 tumors from 6% to 50%; and grade 3 

tumors >50%. However, this grading system is only applied to 



 

 
26 

 

Endometroid and mucinous ECs. The remaining histologies, due to its 

pathologic characteristics, present an intrinsic high-grade76,77,78. 

Table 3: FIGO Staging of Uterine Corpus Carcinoma and Carcinosarcoma. Based on 

staging established by the International Federation of Gynecology and Obstetrics 

(FIGO) update of 2021
79

 

Stage I Tumor confined to the corpus uteri 

IA No or less than half myometrial invasion 

IB Invasion equal to or more than half myometrium 

Stage II 
Tumor invades cervical stroma but does not extend beyond the 
uterus 

Stage III Local and/or regional spread of the tumor 

IIIA Tumor invades serosa of the corpus uteri and/or adnexae 

IIIB Vaginal and/or parametrial involvement 

IIIC Metastasis to pelvic and/or para-aortic lymph nodes 

 IIIC1 Positive pelvic nodes 

 IIIC2 
Positive para-aortic lymph nodes with or without positive pelvic 
lymph nodes 

Stage IV 
Tumor invades bladder and/or bowel mucosa and/or distant 
metastasis 

IVA Tumor invasion of the bladder and/or bowel mucosa 

IVB 
Distant metastasis including intra-abdominal and/or inguinal lymph 
nodes 

 

1.1.2.3. Risk factors 

The protective and risk factors related to the development of EC are 

still under discussion. While some of them present a high confidence 

level, others present weak significance. Obesity and other metabolic 

syndromes such as diabetes or polycystic ovary syndrome were 

found to be risk factors80-82. Other factors also play a role in the 
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predisposition of women to suffer EC, such as excess of estrogen due 

to natural causes or HRT. Tamoxifen, classical treatment of breast 

cancer has also demonstrated to be a risk factor, increasing two 

times the risk and even four times when administered more than 5 

years83-85. On the contrary, two factors presented protective role to 

EC development. These are parity and the usage of oral 

contraceptives, which achieve a reduction of risk by 30 to 40% and 

the protective effect can increase with longer period of use86,87.  

Even if sporadic cancers represent most of ECs, there is also an 

approximately 5 % that are caused by a hereditary 

component/genetic predisposition. These cancers normally appear 

between 10 and 20 years before sporadic cancers and they are 

mainly related to Lynch Syndrome (LS) and Cowden syndrome88. LS 

related-tumors are characterized by mutations in MMR genes, which 

are MLH1, MSH2, MSH6, or PMS2. The lifetime risk of developing ECs 

for patients that carry mutations in those genes is ranged between 

32-6089. Due to its increased risk, screening should be considered in 

all patients with EC90. On the other hand, there is also a percentage 

of patients which harbor mutations in PTEN, main characteristic of 

Cowden syndrome91. In this case, the risk of developing EC is up to 

19-28% by age of 7092. 

Lastly, family history of EC has been associated with a two-to-

threefold increased risk of developing the disease93. Recent studies 

have shown further EC susceptibility candidate genes independently 
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from LS-associated genes, such as POLD1, POLE NTHL1, MUTYH and 

BRCA1 78,94,95. 

 

1.1.2.4. Therapeutic approaches 

Surgery plays the main role in the initial treatment of EC. Classically, 

surgery has been preceded by RT, however, this therapeutic 

approach has been replaced by initial surgical staging of patients, 

aiming to avoid unnecessary RT. Hence, initial surgery of EC consists 

on a total hysterectomy with bilateral salpingo-oophorectomy (Figure 

7)96. The role of lymphadenectomy, even if lymphatic dissemination 

is the main route of spread in EC patients, is still under discussion for 

early stages. Some authors have reported this approach to be 

associated with improved survival and providing important diagnostic 

information97-101.  

 

Figure 7: Available cytoreductive approaches for patients with EC. In accordance 

with clinical recommendations, different types of surgeries, from less to more 

radical, could be performed depending on tumor nature and personal preferences. 
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Surgical approach can be done by different methodologies, between 

them; laparotomy, laparoscopic-assisted vaginal hysterectomy, total 

laparoscopic hysterectomy or robotic total hysterectomy with pelvic 

and paraaortic lymphadenectomy102. Laparoscopic, a minimally 

invasive procedure has been associated with longer operating time 

but faster recovery, shorter hospital staying and lower morbidity103. 

Therefore, most gynecologic oncologists recommend this approach 

when appropriate and feasible.  

There are some clinical exceptions to the standard treatment. Only in 

specific cases of medical comorbidities, vaginal approach will be 

followed. Primary radiation will also be considered in non-operable 

tumors104. For serous and clear-cell subtypes is recommended an 

omentectomy along with peritoneal and upper abdominal biopsies, 

similar to OC. Finally, for those patients that have not completed 

childbearing or that are diagnosed at a younger age, preservative 

surgery could be considered. Uterus and ovarian preservation will be 

performed in carefully selected patients to avoid surgical menopause 

or allow completing a pregnancy. In these cases, tight follow-up is 

mandatory since recurrences are a common event105-107. 

After initial surgery, approximately the 75% of patients will be 

classified as early-stage disease. For patients with this presentation of 

the disease no adjuvant therapy is recommended due to its low rate 

of recurrence excepting from Intermediate risk scenario, where 

vaginal brachytherapy has proven its efficacy108-110. 
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The remaining 25%, classified as advanced stage may need additional 

chemotherapeutic or radiotherapeutic treatment77. Adjuvant 

chemotherapy, based on cisplatin, doxorubicin, and paclitaxel 

combination, is now the mainstay of treatment for patients with 

stage III and IV EC. 

Regarding the recurrent disease scenario, EC presented a highly 

heterogeneous manifestation, from isolated vaginal relapse to 

widespread disease. Hence, treatment will depend on multiple 

features such as original stage, location of the recurrence and 

previous treatments. Surgery, radiation, chemotherapy, and 

hormonal therapy are all a clinical option. Whole pelvic radiation and 

vaginal brachytherapy will be the chosen option for patients with 

relapse at vaginal level, as long as no RT line has been previously 

received111. For systemic disease, hormonal therapy has been 

presented as an option due to its low toxicity rate. Combine 

chemotherapy of cisplatin, doxorubicin and paclitaxel can be used as 

first line treatment for advance disease as well as for recurrence after 

hormonal therapy. Additionally, radical surgical approaches could be 

applied to carefully selected patients with locally advanced disease 

for whom cure would be possible112,113. 
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1.1.2.4.1. Targeted therapy 

There is an unmet need of suitable and effective treatments for EC 

capable of directly target defects of tumor cells, achieving the 

development and introduction of personalized therapies in the 

clinical scenario. In the last few years, a huge number of studies have 

refined molecular characterization of EC, leading to the development 

and use of new targeted therapies and, consequently, improving 

clinical outcome of patients. As a result of these studies, a large 

number of gene abnormalities and/or pathway deficiencies have 

been shown as promising targets.  

Among the investigated targets and drugs, antiangiogenic and 

mTOR/PI3K pathway inhibitors have demonstrated clinical activity in 

different studies and still continue to be under research114,115. Other 

targeted pathways are showing interesting results, those include 

glucose metabolism by metformin, EGFR family and Cell-cycle 

through Cyclin-Dependent Kinases116,117.  

However, the most promising and interesting targetable pathway 

regarding this study are those that involved DRR pathways and 

immune-related pathways118,119. In the field of immunotherapy, 

response in ECs has been related to phenotypes characterized by 

POLE and MSI-H, groups defined as hyper and ultra-mutated in TCGA. 

In this regards, the main available immunotherapy options are 

Dostarlimab120 and Pembrolizumab121, checkpoint inhibitor that 

targets the PD-1/PD-L1 pathway for patients with recurrent or 
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advanced EC harboring dMMR, MSI high or high tumor mutational 

burden (TMB). However, there are a wide range of other strategies 

under discussion that sooner than later will burst into clinical routine.  

The other promising target, even if there is no approved option yet is 

the HR pathway. This pathway presents a key role in the maintenance 

of GI, working as a nexus between DNA repair and DNA replication. 

Opposite to HGSOC, high SCNAs or HRD phenotypes have been 

correlated with adverse outcome in EC, showing the promising role 

and likely improvement of the use of PARPi in this clinical scenario122. 

In addition, several clinical trials are on-going to evaluate the 

strategic role of the combination between PARPi and other targeted 

drugs in EC based on preclinical data119. 

 

1.1.2.5. Molecular biology of EC 

Like in the case of EOC, the TCGA project, that globally characterized 

the EC, marked a milestone in the evolution and knowledge of these 

tumors. The integrative analyses performed by the consortium based 

on genomic, transcriptomic and proteomic data using array and 

sequencing technologies achieve new molecular-based classification 

that stratified patients in four prognostic groups: POLE ultramutated, 

MSI hypermutated, copy-number low (CNL)  and copy-number high 

(CNH)66. The reclassification of EC tumors has an impact on the 
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treatment scheme of patients, directly affecting the clinical course 

and management of the disease (Figure 8).  

 

 

Figure 8: Molecular-based classification from EC-TCGA
66

. A) Integrative Prognostic 

classification of EC into four groups, from best to worse prognosis: POLE, MSI, CNL 

and CNH. B) Incidence of 12 most-altered genes across four prognostic groups. 

 

The first group and the most promising one was the POLE 

ultramutated. The main characteristic of this group is the presence of 

mutations in POLE, gene that encodes the major catalytic subunits of 

the DNA polymerase epsilon enzyme complex and is involved in 

replication and repair of the genetic material. Mutations tend to 

occur in the Exonuclease Domain (EDM), mostly V411L and P286R 

hotspots, described in 5-8% of EC. These mutations resulted in one of 

the highest TMB found across human cancers, leading to high 

neoantigen load and immune-rich microenvironment123. On the 

contrary, neither CNV nor MSI are commonly found. Other genes 

frequently mutated in this sub-group are PTEN (94%), PIK3R1 (65%), 

A B 
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PIK3CA (71%) and KRAS (53%). Regarding clinical and pathological 

data, tumors grouped as POLE are younger patients with 

preferentially endometrial histology, high tumor grade and favorable 

clinical outcome. 

The second group, the MSI hypermutated, presents MSI (mainly as 

result of MLH1 promoter hypermethylation) and, like the POLE 

group, high TMB and low CNV. KRAS is frequently altered in this 

subtype while TP53 is rarely found mutated. This group is form by 

low and high-grade carcinomas.  

The third group, in order from better to worse prognosis, is the CNL. 

Tumors belonging to this subtype are those with no POLE mutation or 

MSI presenting low number of CNV. Normally, these tumors harbor 

mutations in PTEN and CTNBB1. 

Finally, the CNH group shows the worst prognosis. This subtype is 

characterized by high number of CNV, low number of mutations and 

the greatest transcriptional activity through cell cycle deregulation. 

The gene most altered is TP53. Concerning pathological features, 

tumors classified as CNH are mostly serous and high-grade 

(25%)73,124. This group is also of particular clinical interest due to its 

similarities to HGSOC subtype. TCGA found analogous CNV patterns, 

transcriptomic activity and TP53 mutation, what could mean new 

opportunities for overlapping treatment paradigms, such as the 

administration of iPARPs in serous-like EC. 
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Due to the clinical implication of this new classification and the 

methodological and economic difficulties to translate it into the 

diagnostic routine, different research groups have developed 

simplified approaches to reproduce the prognosis stratification of 

patients (Figure 9)125. The first one, called the scheme ProMisE 

(Proactive molecular risk classifier for EC), which consisted on the 

sequential testing of MMR proteins by immunohistochemistry (IHC), 

sequencing to detect POLE-EDM mutations and final determination 

of p53 abnormalities by IHC126,127. Parallelly, Stello and colleagues 

developed another classifier inside PORTEC and transPORTEC clinical 

trials, with similar aim to ProMisE work, stratifying patients as POLE 

mutated, MSI high, TP53 mutant and non-specific molecular 

profile128,129. Even if both approaches fail to totally reproduce TCGA 

classification and presented some caveats due to applied 

methodologies, achieve similar prognostic classification of EC130. 
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Figure 9: Clinically-validated surrogates of the 4-groups prognostic EC-TCGA 

classification.   Two main simplified approaches based on IHC and molecular data 

achieve prognostic significance, reproducing TCGA stratification; PROMISE
126,127

  

and PORTEC
128,129

 algorithms. 

 

1.2. Genomic Instability 

1.2.1. Genomic Instability and cancer (leading causes) 

GI is defined as a process of genomic changes or an increased 

tendency of alterations in the genome during life cycle of cells, 

working as a driving force of tumorigenesis. Hence, GI, as a hallmark 

of cancer confers to the tumor cell an advantage above the others 

and promotes tumor development and progression131. Even though 

GI is inherent characteristic of a cancer cell, it varies dramatically 

between different tumor types. Particularly, some subtypes display 
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highly instable phenotypes, being characterized by global aneuploidy, 

amplifications, deletions, loss of heterozygosity (LOH), homozygous 

deletions, translocations and inversions between others132. The 

presence of a high GI and its underlying cause opens a window of 

new therapeutic opportunities, taking advantage of an innate 

genomic feature of tumor cells to combat them. 

 

1.2.2. Leading causes of genomic instability 

All human cells have a complex network of interlinked pathways 

responsible of the maintenance of genome integrity and repair of 

DNA damage.  Throughout the cell cycle, spontaneous and induced 

DNA damage are going to inevitable occur133.  

Among DNA lesions, single-strand breaks (SSBs) represent the vast 

majority (75%). However, DSBs, less frequent and much more 

dangerous for cells, could appear by evolution of SSBs134. In order to 

control and repair these type of damage, cells present a wide variety  

of DNA-damage response (DDR) pathways aiming to recover genome 

integrity (Figure 10)135. The existence of different repair pathways 

enables the fixation of each type of DNA break with a particular 

approach. In case of SSBs, generally generated from oxidative 

damage, at basic sites or from erroneous activity of the DNA TOP1 

enzyme136,137 , the pathway in charge are Base-Excision Repair (BER), 

when fixation of modified bases is needed, Nucleotide-Excision 

Repair (NER) for removal of DNA bulky adducts and MMR, 
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responsible for mis-incorporated bases during replication. All of them 

based their repair mechanisms on the excision of the damaged region 

and insertion of bases to fill the gap. On the other hand, DSBs, 

typically induced by various chemical and physical DNA damaging 

agents138, are repair by two distinct pathways: error-free HRR and 

error-prone Non-homologous end joining (NHEJ) (Figure 11). HR 

performed the repair of the damage by exchanging equivalent 

regions of DNA between homologous or sister chromosomes 

whereas NHEJ did not used any template, commonly leaving 

insertion and deletion at the breakpoint139.  

 

 

Figure 10: Overview of main DNA lesions and their related DDR pathways. Specific 

types of DNA damage (SSBs, abasic sites, oxidation, uracil addition, mismatch 

bases, bulky adducts, intrastrand crosslinks, DSBs, interstrand crosslinks) activate 

specific DDR pathways (BER, NER, MMR, HR and NHEJ) and signalling cascade.  
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It is well established that GI mainly arises from dysregulation of these 

pathways and/or genotoxic stress, originated from cellular processes 

overwhelming the DNA repair machinery. Alterations in DDR 

pathways that lead to a different high GI phenotypes in tumors have 

been extensively studied140. A good example of a highly instable 

tumors are BRCA associated breast and ovarian cancers141. 

Particularly, in these tumors, GI has been mainly associated with 

defects in the HR pathway, where BRCA1 and BRCA2 genes play a 

central role coordinating the repair of DSBs. However, there are also 

other genes involved in HRR which alterations can cause a deficiency 

in the pathway and hence high GI profile142. 

To repair the damage, this pathway requires a homologous sequence 

that will serve as a template for the repairing process. This allows the 

recombination machinery to restore any missing genetic information 

in the vicinity of the break site, using the sister chromatid as the 

repair template. This restricts recombination to cell cycle stages 

when the sister chromatid is available, which includes the S and G2 

phases. HR is capable of repairing both one- and two-ended DSBs143. 
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Figure 11: Schematic representation of HRR pathway and it participants. 

Homologous recombination plays essential roles in the repair of DNA double strand 

breaks (DSBs). The fundamental reaction in homologous recombination is the 

exchange of strands between a single-stranded DNA and a homologous double-

stranded DNA. In response to DSBs, sensors detect the damage, and signalling 

mediators recruit or activate effectors that repair the damage. BRCA1-complexes 

are crucial mediators of the DNA damage response. The CtIP complex associates 

with the MRN complex, senses DSBs and is responsible for DSB resection. The 

BRCA1–PALB2–BRCA2 mediates RAD51-dependent HRR. The BRCA1–TOPBP1 

complex is associated with DNA repair during replication and may help mediate 

ATR–CHK1 signalling. DNA damage is also recognized by ATM and ATR kinases, 

which mediate signalling to form macro-complexes and activate cell cycle 

checkpoints. Adapted from Macmillan Publishers Ltd: Nature Reviews Cancer
144

. 
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1.2.3. Clinical implications of genomic instability 

In the field of oncology there is a growing interest on personalized 

medicine, aiming to improve treatment outcome by matching specific 

biological characteristics of a tumor with the most appropriate 

therapeutic option. For that reason, describing HR defects and being 

able to use GI as a surrogate of that has generated the appearance of 

new therapeutic promising approaches with a huge clinical impact. 

Such a complex biomarker as the GI reflects the advance in the use of 

Next-Generation Sequencing (NGS). Not only a number of point 

mutations in HR genes will be identified but also GI based on SCNAs, 

a pattern of lasting and detectable “genomic scars”145. 

As above mentioned, detecting GI has direct implications in patient 

prognosis as well as patient management, specifically regarding the 

choice of therapeutic agents51. For that reason, different algorithms 

have been being developed aiming to identify tumors with high GI. 

Hence, patterns of GI could be applied as predictive and prognosis 

biomarker, stratifying patients according to predicted sensitivity to 

DNA damaging agents as platinum-based chemotherapeutics and 

PARPi. These studies have revealed that the proportion of tumors 

carrying this phenotype is much higher than previously described146.  

Considering its importance in diagnosis and treatment stratification, 

many studies have focused on defining clinically relevant surrogate 

markers of HRD. In this regard, in 2012, three signatures, each 

measuring a specific type of genomic scars, were published147. The 
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first group proposed Telomeric Allelic Imbalance (TAI), chromosomal 

aberrations that involved the presence of sub-telomeric regions with 

allelic imbalance, which starts beyond the centromere and extend to 

the telomere. High levels of TAI were associated with platinum-based 

chemotherapy sensitivity in Triple-Negative Breast Cancer (TNBC) and 

HGSOC cohorts148. The following approach was to determine the 

number of Large-Scale Transition events (LST), chromosomal breaks 

between adjacent regions of at least 10 Mb. This study achieved to 

predict the status of BRCA1 based on genomic features in basal-like 

subtype of invasive ductal breast carcinomas149. Finally, HRD score 

based on the detection of LOH events, considering regions with LOH 

larger than 15 Mb but shorter than the whole chromosome, was also 

presented as a candidate biomarker. In this case, the HRD score was 

strongly associated with HRD status. The correlation of HRD score 

and HR deficiency was validated in two independent EOC data sets, 

as well as breast and pancreatic cancer cell lines150. All the signatures 

were based on Single-Nucleotide Polymorphism (SNP) data. 

The measurement of all three genomic scar-based signatures exposes 

an underlying deficiency of DNA repair. Hence, the combination of 

them will provide a more comprehensive view of genomic landscape 

of the tumor147. These findings sooner promoted the appearance of 

commercial solutions, between them; the two most accepted in 

clinical use are from Myriad Genetics and Foundation Medicine 

(Figure 12). 
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Myriad Genetics solution, myChoice®CDx, determines HRD status by 

detecting BRCA1 and BRCA2 (sequencing and large rearrangement) 

variants and assessing the three genomic scars: LOH, TAI and LST. 

Foundation Medicine, for its part, developed FoundationOne®CDx, a 

test that detect and quantify LOH, in addition to TMB and mutational 

status of a wide gene panel. Both tests are suitable for formalin-fixed 

paraffin-embedded (FFPE) OC tissue samples and ready to use in 

diagnostic routine, as specified in its corresponding technical 

information datasheet (myChoice®CDx: https://bit.ly/3eM4Xud and 

FoundationOne®CDx: https://bit.ly/3rQpXDU). 

Nevertheless, commercial solutions have two main problems, on one 

hand, the lack of control about what is being done over the tumor 

samples and the complete row data obtain from them. On the other 

hand, and not less important, the excessive prices that have to be 

paid for these tests. For that reason, a suitable and simpler academic 

approach to be perform in the lab setting is something that should be 

look for. 
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Figure 12: Commercial solutions to establish HRDscore. Clinically-validated 

approaches from FoundationOne and Myriad based on single or multiple-genomic 

scar parameters as a surrogate of GI to predict PARPi response. 

 

1.2.4. Methodological approaches to determine deficiencies in 

DDR pathways 

Deciphering GI profiles as a surrogate of HRD requires genome-wide 

approaches that capture alterations at different levels (Figure 13). In 

this sense, a huge number of tools have been described so far, not 

achieving the category of gold standard any of them. From directly 

sequencing gene-causing disease, such as BRCA1/2 or multi-genes 

panel, simpler and less comprehensive approaches, to Whole-
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Genome Sequencing (WGS) based on the detection CNV to detect 

genomic scars, there is a wide range of available options that could 

be adapted to each particular situation. However, only a few have 

been clinically validated. While some approaches, such as targeted 

panels and larger-scale panels are now incorporated in diagnostic 

routine, a plethora of other more complex methodologies are 

increasingly gaining force in this field51. 

 

Figure 13: Methodological approaches to detect defects in the HR pathway. 

Available test examine the different levels of regulation to determine the status of 

the pathway, interrogating both the causes and the consequences of the 

deficiency.  

 

Detecting BRCA1/2 gene mutation is the standard strategy when 

screening HRD in OC, both at germline and somatic level. Because of 

BRCA alterations over the HR pathway, it is logical to think that 

tumors with lack of function of other HR components would present 
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similar response to DNA damaging agents. In fact, there have been 

described other HR genes as potential biomarkers of HRD, correlating 

their mutations with clinical sensitivity. Between them PALB2, 

BARD1, BRIP1, RAD52B, RAD51C, ATM, CHEK2, FANCE and FANCM 

However, the low frequency at where the alterations are found 

together with the unknown functional impact of the majority, cause 

difficulties when using them as a predictive biomarker151. For that 

reason, efforts have been focused on the development of most 

comprehensive and consequence-showing approaches to determine 

HRD.  

Looking for a suitable methodology to detect the consequences of an 

HRD phenotype independently from the component of the pathway 

that is affected, technologies able to determine whole-genome CNV 

where developed. Hence, “genomic scars” that this deficiency leaves 

the cancer genome could be quantify and used as a biomarker. 

Currently, “genomic scars” are determine by different high-

throughput genomic profiling techniques including array-based 

comparative genomic hybridization (aCGH), SNP genotyping and 

NGS152. 

Detection of SCNAs had been performed by cytogenetic techniques 

such as Fluorescent In Situ Hybridization (FISH) or Karyotyping. 

However, differences in the type of alteration that needed to be 

detected, the current methodologies did not present enough 

resolution. Hence, techniques able to detect SCNAs at higher 
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resolution started to appear in the research context. Firstly, array-

based techniques such as the aCGH (100 kb) and later on SNP array 

(20 kb) were developed153,154. However, these methodologies still 

had several limitations that needed to be addressed, between them 

those related to hybridization noise, genome coverage and the 

inability to detect mutations155. 

The arrival of NGS-based methodologies opened a window of 

opportunities in the study of SCNAs, radically changing the way to 

proceed in their detection. These new technologies presented 

several advantages when compare with array-based approaches. The 

possibility of simultaneously interrogate point mutation and SCNAs is 

one of the biggest advances. There are also other not less important 

such as greater coverage, higher resolution, and accuracy of CN 

estimation in a faster and cheaper way. Additionally, whole-genome 

approaches are not limited to genomic regions because of the use of 

randomly sampled short read in their experimental protocol156-158. 

Taking advantage of the better performance of these techniques, 

several numbers of tools, each one interrogating different features 

extracted from NGS data, have been developed at both 

methodological and analytical level159. 

Nevertheless, whole-genome approaches also present some caveats, 

mainly related to the incorporation to the clinics due to unaffordable 

costs, generation of huge amount of data and the complexity of the 

bioinformatics analysis. Attempting to overcome them, clinical 
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laboratories have opted for the use of targeted panels, designed to 

interrogate smaller proportion of the genome with greater 

coverage160. Point mutations and SCNAs are still able to be detected 

through these types of techniques, while dealing with more cost-

effective and less complex approaches161.  

On the other hand, transcriptomic profiling also appears as a suitable 

technique capturing changes in genomic content through gene 

expression levels, using it to identify HRD tumors. From expression 

arrays to RNAseq methodologies, the aim was to establish an 

expression pattern able to predict deficiency in the HR pathway being 

possible to use it as a predictive biomarker. Different profiles based 

on distinct gene selection where tested and some of them showed a 

favourable result162-164. The most representative one regarding 

transcriptomic studies was the BRCAness profile described by 

Konstantinopoulos et al, distinguishing patients according to 

platinum sensitivity165. However, currently none of the tests based on 

expression profiles have been accepted in clinical diagnostic routine. 

The last type of approach, based on the evaluation of functional 

status of the pathway, will be possible to measure single downstream 

event that would reflect the proficiency of multiple components of 

HR. The most studied one has been the expression of RAD51 through 

quantification of protein loci by immunofluorescence166. The lack of 

formation of distinct sub nuclear RAD51 foci after the administration 

of DNA-damaging agents responds to the inability of tumor cells to 
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repair DSBs, due to the existence of HRD, making it a feasible 

biomarker. In the case of functional assays, the limitations respond to 

other parameters. The quantification of loci in FFPE samples, the 

existence of a baseline level of expression and the difficulties of post-

treatment biopsies are the most crucial ones. For that reason, even 

the promising applicability, there are several challenges that need to 

be addressed before incorporating it into clinical routine.  

The development of a gold standard biomarker to stratify patient 

harbouring HRD and, hence, presenting higher sensitivity to DNA-

damaging agents will be a key step in the field of HRD-targeted 

therapies. However, it is unlikely that a single biomarker is sufficient 

for the establishment of a credible HRD phenotype. Due to the 

regulation of the pathway at different levels, an HRD scoring that 

integrates two or more strategies to evaluate the status of the 

pathway will be highly recommendable167,168.  

 

1.3. In vitro cellular models 

Cell line models are essential tool regarding basic science but even 

more when developing and testing new drugs. Between the multiple 

applications that a cell line model has, the identification of new 

targets, testing new therapies, performing drug screening, wide the 

knowledge about the molecular characteristics of the disease as well 

as events such as tumor growth, migration, invasion, angiogenesis, 
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drug delivery and metastasis are some of them. For that reason, the 

existence of a well-characterized and suitable in vitro platform that 

accurately represents the different histological and molecular 

subtypes is mandatory in order to correctly establish the basis of 

every cancer research169,170.  

Even though the great efforts done to generate a huge number of cell 

lines that cover the landscape of existent tumor types and the 

improvements concerning methodologies, there are still limitations 

to establish high-quality, permanent cell lines from human primary 

tumors with high efficiency. Particularly, in the case of OC cell line, 

the main problems are related to poorly defined origin and hence, 

lack of information regarding histological and molecular features121. 

Additionally, better performances when culturing of high-grade 

subtypes resulted in a collection of cell lines that do not reproduce 

the real spectrum of tumors, being some of them 

underrepresented122.  

Hence, comprehensive molecular and histological characterization of 

available cell lines as well as drug sensitivity profiling is highly 

recommendable to clearly know the type of model you are working 

with to make the best choice for each specific study and disease171-

173. 
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2. Hypothesis and main objectives 

2.1. Hypothesis 

Gynecological cancers represent a worldwide health problem 

nowadays. The availability of therapies that directly target molecular 

features of tumors means a great advantage and advance in the 

guidance of treatment/clinical routine. Comprehensive molecular 

characterization of tumors, describing and analyzing known and new 

molecular hits is imperative to correctly understand and treat 

tumors. 

 

Particularly, the molecular characterization of the main gynecological 

tumors at GI level is especially relevant due to the implication of this 

phenomenon as a prognostic and predictive biomarker. The 

development of models capable of providing this valuable 

information based on molecular input could facilitate the 

stratification and clinical guidance of gynecological patients, 

candidates to DNA damaging agents. 

 

2.2. Main objectives 

Thus, the aim of this PhD project is to develop a comprehensive 

methodological and analytical approach to determine GI status, 

overcoming the limitations of current techniques and studying the 

underlying mechanisms of this phenomenon.  With this information, 

a reliable prognostic and response-predictive classification of 
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patients relying on generated genomic and transcriptomic data will 

be determined. Due to the nature of the studied diseases, which 

differ in many ways, the applied strategies will be different as well.  

 

Specific objectives 

 

Cohort 1 

I. Optimization of technical and analytical workflows to obtain 

whole-genome CNV profiles from a CNV and SNPs using custom 

strategy. Optimization and personalization of bioinformatics 

pipelines to obtain GI (based on CNV data) profiles.  

  

Cohort 2: 

 

II. Fitting and clinical validation of single-source and integrative 

platinum-response predictive models based on multi-omic data 

(SNPs, CNV and transcriptomic data), establishing a predictive 

biomarker of response.  Optimization and validation of in silico 

detection of CN at gene level of CCNE1, EMSY and PTEN. 

 

Cohort 3: 

 

III. Independent clinical validation of a previously defined in house 

approach in a clinical trial cohort and different clinical scenario. 

Correlating the findings in real OC population in prognostic and 
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response rate levels to PARPi and evaluation of the suitability of 

the technical approach. 

 

Cohort 4: 

 

IV. Fitting a prognostic classifier by Random Forest (RF) algorithm 

based on TCGA-EC genomic data in a real EC cohort. 

V. Validation of mutational-based RF classification in a subpopulation 

of EC patients obtaining GI profiles.  

 

Pre-clinical studies 

 

I. Drug-response characterization of OC cell lines to different DNA 

damaging agents and PARPi (Olaparib, Niraparib y Talazoparib) in 

monotherapy and in combination. 

II. Generation and molecular characterization of Lurbinectedin-

resistant (PM01183) OC cell line.  

III. Evaluation of the inhibitory role of ascites in OC cell lines treated 

with Lurbinectedin.  

IV. Establishment of GI profiles and genotyping of HRR-genes and 

correlation with response rate to different therapies. 
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3. Materials and methods 

3.1. Patients cohorts 

3.1.1. COHORT 1 

Cohort 1 (Table 4) is composed by 45 FFPE-samples from patients 

diagnosed with HGSOC and collected from 1999 to 2016. All patients 

signed an informed consent form approved by our Institutional 

Review Board in 2014 (ACO-COE-3012-02). Informed consent of 

patients was obtained in accordance with ethical and legal 

regulations of the institution. Criteria for inclusion in the study were: 

age over 18 years; tumours with serous histology; high grade and all 

stages. Median age at diagnosis being 56.5 years (27.8-81.6 years) 

and median follow-up of 80.3 months (8.8-249.7 months). The 

median progression-free survival (PFS) was 18.0 months (2.0-189.0 

months) and the median overall survival (OS) 62.6 months (8.5-196.5 

months). This cohort will be used to accomplish objective 1 following 

the approach established in Figure 14.   
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Table 4: Clinicopathological characteristics of cohort 1 

Characteristics N % 

Stage 

             I 1 2.2 

             II 7 15.55 

             III 30 66.7 

             IV 7 15.55 

Exitus 

            No 23 51.1 

            Yes 22 48.9 

Relapse 

            No 7 15.6 

            Yes 38 84.4 

Clincal BRCAness 

            No 13 28.9 

            Yes 20 44.4 

            NA 12 26.7 
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Figure 14: Methodological strategy in cohort 1. Cohort 1 has been used to achieve 

objective 1, establishing the basis of CNV evaluation and model fitting, setting up 

methodological and analytical approaches. 
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3.1.2. COHORT 2 

The cohort included 190 HGSOC samples ambispectively collected 

from 2007 to 2020. All patients signed an informed consent form 

approved by the required Ethics Committees and the study was 

approved by the EC of Instituto Valenciano de Oncología (IVO) in 

2021 (LBM-02-20, SCARFACE). The informed consent of patients was 

obtained in accordance with institutional, ethical, and legal 

regulations. The inclusion criteria in this study were: age ≥ 18 years at 

inclusion, HGSOC tumors and patients that have received treatment 

with platinum-based chemotherapy at first-line (Table 5). FFPE tumor 

blocks of 190 HGSOC patients were analyzed. The median age of the 

cohort was 59.21 years (27.8-81.6 years) with median follow-up of 

31.03 months (5.87-159.27 months). The median platinum-free 

interval (PFI) after first-line was 16.28 months (0-83.33 months), 

presenting a recurrence rate of 52.11% (99/190) and a median PFS to 

PARPi of 11.03 months (1.03-64.63 months). Deaths occurred in 

19.80% of patients at the time of data analysis, with a median OS of 

31.03 months (5.87-159.29 months). This cohort will be used to 

accomplish objective 2 and 3 following the approach established in 

Figure 15. 
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Table 5: Clinicopathological features of Cohort 2. A) Pathological parameters and 

B) Treatment and outcome-related parameters. 

A)

Clinical parameter N % 

Histology HGSOC 190 100 

Stage 

IA 7 3.68 

IC1 6 3.16 

IC2 9 4.74 

IIA 4 2.11 

IIB 6 3.16 

IIIA1 8 4.21 

IIIA2 5 2.63 

IIIB 10 5.26 

IIIC 77 40.53 

IVA 12 6.3 

IVB 27 14.21 

NA 19 10 

Stage 
(aggregated) 

Localized (I-IIB) 34 17.89 

Locally Advanced 
(III-IVA) 

120 63.16 

Metastatic (IVB) 36 18.95 

Type of biopsy 

Excisional 132 69.47 

Incisional 35 18.42 

Tru-Cut 23 12.11 

BRCAg 

Wildtype 141 71.21 

VUS 13 6.84 

Pathogenic 36 18.95 
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B) 

Clinical parameter N % 

Surgery 
Yes 167 87.89 

No 23 12.11 

Primary debulking durgery 
Yes 114 68.26 

No 53 31.74 

Residual disease after primary 
debulking surgery 

Yes 18 15.79 

No 96 84.21 

First-line platinum therapy All 190 100 

Relapse after first-line therapy 
Yes 99 52.11 

No 91 47.89 

Recived PARP 
Yes 59 31.05 

No 131 68.95 

Progression with PARPi 
Yes 29 49.15 

No 30 50.85 

Death 
Yes 39 20.53 

No 151 79.47 
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Figure 15: Methodological strategy in cohort 2. Cohort 2 will be used to achieve 

objective 2 and 3, analysing multi-omic data from 190-FFPE samples to test and 

validate the response-predictive model to DNA-damaging agents (Scarface Score). 
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3.1.3. COHORT 3 

Cohort 3 (Table 6) belong to a phase II open-label and non-

randomized clinical trial (NCT02684318, EudraCT 2015-001141-08, 

03.10.2015)174,175, which recruited patients from 6 centres in Spain.  

The POLA trial is the first phase 2 to assess the efficacy and toxicity of 

lurbinectedin and olaparib in previously treated gynecological tumors 

and their correlation with molecular characteristics, specifically GI 

(Figure 16). The study was approved by the ethics committee of the 

Hospital Vall d’Hebron and was conducted in accordance with the 

Declaration of Helsinki, ICH Good Clinical Practice guidelines and the 

current legislation. Written informed consent was obtained from all 

patients before study-specific procedures. Detailed inclusion and 

exclusion criteria are explained in Annex 1. Regarding outcome and 

response parameters, treatment-free interval (TFI) in first line was 

15.86 months (0.23-50.37). During the clinical trial, 42.11% died as 

consequence of the  disease; the median PFS to administered 

treatment was 3.68 months (0.03-17.69 months) and the median OS 

58.67 years (15.4-192.93). This cohort will be used to accomplish 

objective 4 following the approach established in Figure 16.  
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Table 6: Clinicopathological characteristics of cohort 3. A) EC series and B) OC 

series. 

A) 

Characteristics N %  

Histology 

             Serous 3 15.79 

             Endometroid 9 47.37 

             Carcinosarcoma 2 10.53 

             Others (mixed or non-
specified) 

5 26.32 

Stage 

             I 8 42.11 

             II 0 0 

             III 2 10.53 

             IV 7 36.84 

            NA 2 10.53 

Grade 

             I  3 15.79 

            II  4 21.05 

           III  12 63.16 

Exitus 

            No 8 42.11 

            Yes 11 57.89 

Relapse 

            No 0 0 

            Yes 19 100 
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B) 

Characteristics N %  

Origin 

Ovary 33 89.19 

Fallopian tube 2 5.41 

Peritoneum 2 5.41 

Histology 

             Serous 34 91.89 

             Endometroid 3 8.11 

Stage 

             I 3 8.11 

             II 2 5.41 

             III 18 48.65 

             IV 9 24.32 

            NA 5 13.51 

Grade 

High 31 83.78 

NA 6 16.22 

Exitus 

            No 16 43.24 

            Yes 21 56.76 

Relapse 

            No 0 0 

            Yes 37 100 
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Figure 16: Methodological strategy in cohort 3. Cohort 3 will be used to achieve 

objective 4, by validating the methodological and analytical approach to 

interrogate CNV patters in a clinical-trial scenario with PARPi response as an 

endpoint. 
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3.1.4. COHORT 4 

This study includes 96 EC patients prospectively collected from 2010 

to 2019 within the context of the institutional projects ACOG0901 

and ACOG1602 (Table 7). Experimental protocols were approved by 

Instituto Valenciano de Oncología Institutional Review Board in 2009 

and 2016 respectively.  At the time of the study, our prospective 

institutional EC database contained a total of 187 patients. The 

criteria for inclusion in this study were: age over 18 years; tumors 

with serous or endometrioid histology; grade I to III and stage I, II and 

III. A total of 149 fulfilled these criteria, from which 96 were selected 

according to the best ranked DNA quality and concentration. This 

cohort will be used to accomplish objective 5 and 6 following the 

approach established in Figure 17.  

Median age at diagnosis being 62 years (range: 36.4-87) and median 

follow-up of 35.02 months (range: 2.1–91.2 months). During follow-

up, 15.2% of the patients recurred, and 10.7% died as consequence 

of the disease; the median PFS being 33.65 months (range: 2.1-91.2) 

and the median OS, 35 months (range: 2.1-91.2 months). 

 

  



 

 
71 

 

Table 7: Clinicopathological features of Cohort 4. A) TCGA and B) Our series. 

 

A) 

  Endometrioid Serous  

Stage Grade 1 Grade 2 Grade 3 All Total 

I 78 (23) 83 (24) 70 (21) 17 (5) 248 (73) 

II 3 (1) 9 (3) 6 (2) 5 (1) 23 (7) 

III 7 (2) 12 (4) 26 (8) 25 (7) 70 (21) 

Adjuvant therapy 

RT 12 (3) 28 (8) 22 (6) 7 (2) 69 (19) 

Chemo 2 (1) 6 (2) 14 (4) 13 (4) 35 (10) 

ChemoRT 2 (1) 9 (3) 18 (5) 17 (5) 46 (13) 

Unknown 70 (20) 61 (17) 57 (16) 16 (5) 204 (58) 

Total 86 (24) 104 (29) 111 (31) 53 (15) 354 (100) 

 

 

B) 

 Endometrioid Serous  

Stage Grade 1 Grade 2 Grade 3 All Total 

I 40 (42) 24 (25) 6 (6) 7 (7) 77 (80) 

II 0 (0) 1 (1) 0 (0) 1 (1) 2 (2) 

III 5 (5) 3 (3) 4 (4) 5 (5) 17 (18) 

Adjuvant therapy 

RT 21 (22) 8 (8) 2 (2) 1 (1) 32 (33) 

Chemo 2 (2) 1 (1) 2 (2) 7 (7) 12 (13) 

ChemoRT 3 (3) 3 (3) 6 (6) 3 (3) 15 (16) 

Unknown 2 (2) 1 (1) 0 (0) 2 (2) 5 (5) 

Total 28 (29) 13 (13) 10 (10) 13 (13) 64 (67) 
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Figure 17: Methodological strategy in cohort 4. Cohort 4 will be used to achieve 

objective 5 and 6, building an independent model to establish GI profiles in a 

different clinical scenario of EC patient. 
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3.2. Immunohistochemistry analysis 

IHC has become a clinical routine, being mostly used to guide 

diagnosis in conjunction with tumor morphology but also helping to 

answer other questions including characterization of the neoplastic 

diseases or determination of some pathway alteration, as in the case 

of MMR proteins. The basis of this methodology is the use of specific 

antibodies that, conjugated to enzymes, catalyse a reaction when the 

recognition antibody-antigen is achieved that derivates in the 

formation of detectable compounds to visualize and localize specific 

antigens in a tissue sample.  

The IHC study was performed in whole 5M-sections from FFPE 

tissue samples. Microscopic slides (hematoxylin-eosin) from the 

selected cases were reviewed and confirmed by a gynaecology 

pathologist.  

For IHC analysis, standard protocol was applied. Antigen retrieval was 

performed by pressure cooker boiling at 1.2 atmospheres for 3 min in 

10 mol/L citrate buffer (pH 6.0). Labelled Streptavidin–Biotin (LSAB) 

staining method was done, followed by revelation with 3,30-

diaminobenzidine. The panel of markers and specific conditions used 

in the analysis are presented in Table 8.  

In regards to interpretation of IHC results, immunoreactivity was 

defined as negative in absence of staining while presence was 

interpreted as positive in all proteins except from p53. For p53, 
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according to the protocols for Gyneacological Cancer Biomarkers 

from the College of Pahtologists (https://www.cap.org/protocols-

and-guidelines/cancer-reporting-tools/cancer-protocol-templates) 

the immunostaining was interpreted as normal (between 1-90% of 

cells express p53) or aberrant (lack of nuclear or cytoplasmic 

expression, strong, diffuse nuclear expression in greater than 90% of 

cells or diffuse cytoplasmatic staining) .  

 

Table 8: IHC antibodies applied to interrogate MMR and p53 status in EC.  

Protein Dilution Clone Manufacturer 

MLH1 Prepared to use IRO79 DAKO 

PMS2 Prepared to use EP51 DAKO 

MSH2 Prepared to use FE11 DAKO 

MSH6 Prepared to use EP49 DAKO 

TP53 Prepared to use DO-7 DAKO 

 

3.3. Genomic approaches 

The ability of sequencing the genome of oncologic patients has 

revolutionized the way of understanding clinical routine and 

treatment guidance. From simpler and low-throughput technologies 

based on capillary electrophoresis, such as Sanger sequencing and 

fragment analysis to high-throughput NGS-based technologies, which 

allow parallelization of wide number of samples and genes. While 
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NGS technologies play a main role in oncology, capillary 

electrophoresis continue being of importance, principally in 

sequencing validation and targeted sequencing, simplifying and 

cheapening concrete genomic studies. 

 

3.3.1. DNA extraction, quantification and quality control 

NGS-based technologies are high DNA-quality demanding, sometimes 

limiting the application of these methodologies in routine samples as 

FFPE. To ensure that samples fulfil needed requirements, in addition 

to classical fluorimetric and spectrophotometrically quantification 

methods, more precise approaches, such as qPCR and genomic 

profiling with a bioanalyzer will be applied. 

DNA extraction was performed using the QIAmp DNA FFPE Tissue kit 

(Qiagen, Valencia, CA) following the manufacturer’s instructions. 

Three FFPE blocks sections of 20 µm-thin were used when tumor 

content was higher than 30%. In case the sample did not achieve the 

specified percentage, punch samples were obtain from the block, 

assuming a 100% of tumoral content in further analysis.  The final 

DNA concentration was measured by two different methods: 

Spectrophotometrically, by NanoDrop ND1000 (Thermofisher; 

Waltham, MA, USA) and fluorometrically using PicoGreen™ reagent 

with a QuantiFluor® dsDNA System (Promega). Additionally, quality 

and related size of genomic DNA were assessed by the microfluidics-
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based platform Agilent 4200 Tapestation with Genomic D1000 Kit 

(Agilent, Santa Clara, CA) or by qPCR-based approach (QC Illumina kit) 

(Illumina, San Diego, CA) depending on chosen NGS-protocol. 

Electropherograms were visualized with the TapeStation Software 

Analysis A.02.01 SR1 including data collection, peak detection, and 

interpretation of the different profiles. 

 

3.3.2. Truseq Low Input 

The first applied NGS approach was the TruSeq Custom Amplicon 

Low Input Kit (Illumina, San Diego, CA), an amplicon-based assay for 

targeted resequencing in FFPE samples. The design of the custom 

panel, consisting on 13 genes; POLE, PTEN, TP53, ARID1A, ARID5B, 

FBXW7, PPP2R1A, CTCF, CTNNB1, RPL22, KRAS, PIK3CA, PIK3R1, was 

performed by DesignStudio tool, (Illumina, San Diego, California). 

Genes were selected based on the results from the EC-TCGA66, 

choosing those that best discriminate between the 4 defined groups, 

based on relative and absolute frequency of each gene among them. 

This selection aims to improve the feasibility of the future model.  

The recommended initial amount of DNA to construct the library 

ranged from 10 to 100 ng. In some cases, available DNA did not 

achieved the recommended quantity, hence, maximum available 

quantity was assigned to these samples. Finally, used samples 

presented a median DNA concentration of 49.91 ng/l (8.77-189.538 
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ng/l). Samples were subjected to dual-pool (in order to improve 

sensitivity) amplicon-based PCR library preparation according to 

manufacturer’s protocol, following the standard steps of: 

hybridization, amplification and clean up. Subsequent sequencing of 

pooled libraries was performed in a NextSeq 550 sequencing 

platform as specified by Illumina, using a 300 cycles High Output 

FlowCell (Illumina, San Diego, California). 

 

NGS data processing and variant filtering 

Data analysis, including alignment to the hg19 human reference 

genome and variant calling, was done using CASAVA pipeline 

(Illumina, San Diego, CA). Variants were then annotated by the 

Illumina VariantStudio v3.0 data analysis software (Illumina, San 

Diego, CA). Integrative Genomic Viewer (IGV, Broad Institute) was 

used to visualize the sequence and check the presence of 

mutations176,177.  

 

3.3.3. SureSelect XT HS +Oneseq Backbone 1 mb 

The second NGS approach was a hybrid capture-based target 

enrichment protocol from Agilent (Santa Clara, CA, USA), which 

combines SureSelect-XT HS and Oneseq Backbone Kit. This approach 

allows us to simultaneously interrogate Single-Nucleotide Variant 
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(SNV) and indels in a custom panel constituted by 35 DNA damage 

response genes and CN changes, based on the analysis of 147.000 

SNPs homogenously distributed along the whole genome. DNA 

damage response genes included in the custom panel were: BRCA1, 

BRCA2, BARD1, BRIP1, CHEK1, CHEK2, FAM175A, NBN, PALB2, ATM, 

MRE11A, RAD51B, RAD51C, RAD51D, RAD54L, FANCI, FANCM, 

FANCA, ERCC1, ERCC2, ERCC6, REQL, XRCC4, HELQ, SLX4, WRN, ATR, 

PTEN, CCNE1, EMSY, TP53, MLH1, MSH2, MSH6 and PMS2. Given that 

the tumor types of the series have been described to present PTEN 

loss and EMSY and CCNE1 amplification, the panel was reinforced in 

these regions with more probes. 

Methodologically,  a starting concentration of extracted DNA ranged 

between 10-200 ng was enzymatically fragmented to a size between 

150 to 200 bp. DNA integrity and fragment size were determined by 

Genomic DNA assay in the  TapeStation 4200 (Agilent, Santa Clara, 

CA). Each library was then hybridized according to protocol. Pooled 

library were sequenced in a High-output 300 cycles flow cell (100 bp 

paired-end) on a NextSeq550 (Illumina, San Diego, CA, USA).  

 

NGS data processing and variant filtering 

Data resultant from the sequencing process needs to be processed 

and analysed. The first step was to convert BCL files into fastq by the 

software Bcl2fastq. Once fastq files have been obtained, Aligment 
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and Variant calling steps need to be addressed. BWA-MEM and 

Haplotypecaller algorithms, from the Broad Institute were used for 

this aim. Finally, Variant studio 4.0 (Illumina) and SureCall 4.2 

(Agilent) were applied for variant annotation (SNVs and Indels). 

Variants were selected after a filtering process based on the 

following analytical parameters: coverage > 100x (covered in forward 

and reverse sense); allelic frequency (AF) above 5 % and classification 

of variants, including pathogenic (P), likely pathogenic (LP) or Variant 

of unknown significance (VUS) with the prediction of pathogenicity in 

ClinVar, frameshift variants as well as variants with both Polyphen 

and SIFT predictors an notated as damaging or pathogenic. 

 

3.3.4. Microsatellite instability 

MSI testing is based on a PCR amplification of DNA regions containing 

microsatellite repeats and a subsequent capillary gel electrophoresis, 

detecting abnormal lengths for these sequences. 

MSI was performed on 2-3 ng of DNA from paired FFPE and blood 

samples using the Type-it Mutation Detect PCR Kit (Qiagen) in a Veriti 

thermocycler (Applied Biosystem, Foster City, CA). Specific primers 

for the following STR regions: NR27, NR21, NR24, BAT26, BAT25, 

D5S346, D2S123 and D17S250178,179 were used. Primers were labelled 

with the fluorophores FAM, HEX or NED. PCR conditions were: 5’ 

initial denaturing at 95ºC followed by 35 cycles at 95ºC of 30’’, 1’30’’ 
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at 60ºC and 30’’ at 72ºC with a final 10’ extension at 68ºC. PCR 

products were denatured with formamide for 5’ at 95ºC and analysed 

by capillary electrophoresis in the ABI3130xl Genetic Analyzer 

(Applied Biosystem, Foster City, CA). In addition, the GeneScan™ 500 

LIZ™ Dye Size Standard is used as an internal size standard. For 

visualization, GeneMapper v4.0 software (Applied Biosystem, Foster 

City, CA) was used. MSI High was considered when at least 30% of 

STR regions presented an MSI pattern, while Microsatelite stable 

(MSS) presented a total lack of instable patterns.   

 

3.3.5. Sanger Sequencing 

Aiming to confirm POLE mutations described by NGS, Sanger 

sequencing was performed. To sequence exons 9–14 of POLE, specific 

primers were designed (Table 9) and PCR products were amplified 

with the input of 200 ng FFPE derived DNA. Considered reference 

sequence was NM_006231.4. Sequencing was performed using 

BigDye v3.1 terminator cycle sequencing chemistry on the ABI3130XL 

Genetic Analyzer (Applied Biosystem, Foster City, CA). Variant 

analysis was performed using Sequencing Analysis Software v5.2 

(Applied Biosystems). 
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Table 9: Primer sequences for Sanger sequencing of POLE EDM in EC series.  

Exon Primer sequence 
Product 

length (bp) 
Tm (ºC) 

Exon 9 
GTGTTCAGGGAGGCCTAATG 

248 57.5 
GGGCAGATGCTGCTGTAGTA 

Exon 11 
ACTTTGGGAGAGGAATTTGG 

250 59.5 
CCCTAAGTCGACATGGGAAGC 

Exon 13 
CATCCTGGCTTCTGTTCTCA 

298 59.5 
GAGCGGGCTGGCATACAT 

Exon 14 
ACCCTGGGCTCTTGATTTTT 

247 57.5 
CACCTCCATTCAGCTCCCAGT 

 

 

3.3.6. Multiplex Ligation-dependent Probe Amplification 

To validate the in silico assessment of CN amplification and losses at 

gene level, a Multiplex Ligation-dependent Probe Amplification 

(MLPA) analysis was performed. MLPA, based on a multiplex PCR, is 

the gold standard methodology when evaluating CNV at gene-level. 

For that reason, that was the chosen technique for validation. MLPA 

reaction can be divided into five main steps: (1) DNA denaturation 

and probes hybridization; (2) ligation reaction; (3) PCR amplification; 

(4) separation of amplification products by electrophoresis; (5) data 

analysis180. Particularly, CN in CCNE1, PTEN and EMSY genes 

(previously described in OC population) were evaluated using SALSA® 

MLPA Probemix p225-E1 and P078-D2 Breast tumor assays.  The 

protocol was performed following the manufacturer’s instructions 

(MRC Holland). Amplified products were separated using an 

ABI3130XL Genetic Analyzer (Applied Biosystem, Foster City, CA) and 
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interpreted with GeneMapper Software v4.0 (Applied Biosystems, 

Foster City, CA). Quantification of the results of fragment analysis 

was performed using the Coffalyser software as described by the 

manufacturer (MRC Holland). Different normal control samples from 

healthy FFPE tissue were used to normalize the allele dosage.  

 

3.4. Transcriptomic approaches 

3.4.1. HTG Oncology Biomarker Panel 

Transcriptome analysis was performed with HTG Edgeseq technology 

(HTG Molecular Diagnostics, Tucson, USA), a very novel technique 

based on RNA-seq with high sensitivity, requiring low sample input 

(5m FFPE section and an area of 15 mm2) and proved robustness. 

Opposite to other approaches, HTG Panels are specifically designed 

for each application not analysing the whole tranascriptome but 

focusing on target genes. In this case, the Oncology biomarker Panel 

(OBP) was selected. This panel is constituted by 2549 mRNAs from 24 

tumor-related pathways.  

Methodologically, FFPE slides were scraped based on hematoxilin-

eosin preparations and lysated. Once samples were primarily 

processed, pre-hybridization step was performed. This step was done 

by using specific probes and a quantitative nuclease protection assay 

(qNPA). Libraries were then amplified by PCR with illumina adapters 

and quantified using KAPA Library Quant Kit Universal qPCR Mix 
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(KAPA Biosystems, Wilmington, MA, USA) by ABI 7500 Fast Real-Time 

PCR System (qPCR). Following final clean up, libraries were ready to 

be sequenced in a NextSeq 550 System, using a High Output Flowcell 

(75 cycle) from Illumina.  Fastq files obtained after primary analysis 

were parsed with HTG Parser Software running Bowtie2 in the 

backend (Figure 18). 

 

Figure 18: HTG protocol. Step by step methodological protocol to perform targeted 

transcriptomic analysis, consisting on; sample preparation, Quantitative Nueclease 

protection, addition of tags and barcodes, clean-up, library quantification, NGS and 

parsing. 

 

Data processing and DE Analysis  

Once sequencing data has been generated from RNAseq protocol, 

total read counts need to be processed and analysed in order to 

obtain biologic understandable conclusions. The starting point to do 
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that will be the Principal Components Analysis (PCA), a useful 

technique for exploratory data analysis, available as an R function. 

PCA allows the visualization of the overall variation of the data, 

identifying common profiles between them. 

The Heatmap, similar to PCA, helps to initially visualize the results, 

grouping samples that present similar gene-expression patterns. To 

do this, Heatmap2 package from R will be applied over normalized 

counts. Additionally, this function will also be useful after differential 

expression analysis, to illustrate resultant gene-selection. 

Following to basic/starting visualization tools, DE analysis will be 

performed. DESeeq2181, an R package, will model the raw counts, 

using normalization factors (size factors) to account for differences in 

library depth. Then, it will estimate the gene-wise dispersion and 

shrink these estimates to generate more accurate estimates of 

dispersion to model the counts. DESeq2 will fit the negative binomial 

model and perform hypothesis testing using the Wald test or 

Likelihood Ratio Test. This tool will return differentially expressed 

genes between studied conditions. 

Finally, aiming to extract all the information available in the 

transcriptomic analysis, Gene Set Enrichment Analysis (GSEA)182 will 

be performed. GSEA is a powerful analytical computational method 

for interpreting gene-expression data.  This method drives its power 

by focusing in gene sets that hare common biological function, 
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determining its statistically significant differences between two 

biological states. The used GSEA method was Generally Applicable 

Gene-set Enrichment (GAGE)183. 

Pathway analysis and functional annotation with Gene Ontology (GO) 

categories were performed with DESeq2 package, coupled with GAGE 

and pathview packages from R/Bioconductor. All these analyses were 

performed with R v4.0.3. 

 

3.5. Bioinformatics Analysis 

3.5.1. Copy-Number Variation pipelines 

Bioinformatics analysis to obtain CNV, for its part, was independently 

carried out by the implementation of two in-house pipelines and the 

available commercial solution from Agilent (Figure 19).   

The first approach, based on CNVKit algorithm184, Different from 

other pipelines, uses both on-target reads and the non-specifically 

captured off-target. While the off-target reads alone, due to its low 

coverage, do not provide enough coverage to call SNVs and other 

small variants, they can provide useful information on copy number 

at a larger scale. On– and off-target read depths are combined and 

normalized to a reference derived from a panel of 10 peritumoral 

control samples to obtain the values in terms of log2 copy ratios. For 

the segmentation step, Circular Binary segmentation (CBS) was used. 
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In this case, the variant calling step was performed by Mutect2185. 

Results can be used for visualization and further analysis.  

The second approach based on saasCNV R package186.  This 

algorithm, based on a joint segmentation algorithm, uses two data 

dimensions simultaneously, total read depth and Bi-allelic frequency 

(BAF), incorporating both quantities to  improve power and accuracy 

in identifying and characterizing CNV. SaasCNV follows the steps of 

SNPs recalibration; alignment, and variant calling, performed 

according to good practices from Broad Institute (GATK)187. For the 

normalization step, a single control sample was used.  

Finally, SureCall software was applied with default parameters 

(Version 4.1.1.5).  

To calibrate the thresholds levels among the numerous CNV derived 

parameters comparisons at distinct levels were performed. While 

saasCNV and SureCall are limited to slightly personalization, CNVkit 

has a greater number of analytical parameters.  

Complementary to CN pipelines analysis, scarHRD188, an R package 

which determines pre-established genomic scars (TAI, LOH and LST) 

from NGS data was applied. 

In addition to whole-genome CNVs and mutations, we are able to 

obtain in silico CN at gene-level. Thus, due to the importance of 

PTEN, CCNE1 and EMSY in this regard, the custom panel has been 
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reinforced in probes in these regions. To analyze it, Panel.mops189 

package from R has been used. This pipeline is designed to detect 

CNVs from targeting sequencing data and it is built upon cn.MOPs. 

The approach consists of 6 basic steps: Read counting, quality control 

(QC), control sample selection, normalization, CN detection and 

segmentation.
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Figure 19: Tested CNV analysis pipelines step by step. A) CNVkit
184

 and B) saasCNV
186

. 

A B 



 

 
89 

 

3.5.2. Data mining in OC cohort 

Three sources of raw data have been used to fit the model: raw read 

counts, GI parameters derived from CNVkit algorithm and HTG gene 

expression panel data (Figure 20). 

 

Figure 20: Different tested algorithm to build the model. Each feature selection 

algorithm and model fitting were subsequently perform to achieve the best 

performing model. 
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Due to the complexity and diversity of the data that constituted the 

levels of the predictive model, different approaches where tested for 

cleaning of the data to avoid the over-fitting of models, feature 

selection and model fitting. The first step was cleaning the data and 

denoising, through which non-informative or redundant predictors 

are removed. The next step was feature selection. This step is 

performed to reduce the number of input variables, aiming to 

decrease the computational cost, to avoid over fitting and, to 

improve the performance of the model. Thus, features with the 

strongest relationship with the target variable will be selected 

measured with not adjusted univariant inference. There are a wide 

number of methods to do that, however, the suitability of them 

depends on the data type of both the input and output variables. In 

this case, the tested methodologies for feature selection were; 

Anova, Signal to noise (S2N), Binomial negative lineal model and 

logistic regression. Briefly, ANOVA test compares inter and intragroup 

variance; S2N ratio compares a level of signal power to a level of 

noise power. It is the quotient between the subtraction from the 

mean of the groups and the sum of its variances; Binomial negative 

linear model is a generalization of Poisson regression which loosens 

the restrictive assumption that the variance is equal to the mean 

made by the Poisson model and logistic regression is a machine 

learning (ML) model studies and adjusts to a line the residuals of the 

data points.  Finally, hyper parameter selection and model training 

step was performed. In this step, the best performer model with 
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correspondence selected features and hyper parameters were fit. In 

this step, the tested methods were: Support Vector Machine (SVM), 

RF and Neural Network (NN). Summarily, SVM algorithms are 

particular linear classifiers which are based on the margin 

maximization principle. The SVM accomplishes the classification task 

by constructing, in a higher dimensional space, the hyper plane that 

optimally separates the data into two categories. It uses a set of 

mathematical functions that are defined as the kernel. The kernel 

functions return the inner product between two points in a suitable 

feature space. NNs, for its part, are a set of algorithms that are 

designed to recognize patterns. They are inspired by the biological 

NN in the brain. The basic computational unit of a NN is a neuron or 

node. It receives values from other neurons and computes the 

output. Each neuron is associated with weight (w). This value is given 

as per the relative importance of that particular node. The activation 

function determines how the weighted sum of the input is 

transformed into an output from a node or nodes. Its choice has a 

large impact on the capability and performance of the NN. RF was 

aforementioned. 

In the first approach, raw read counts from 170080 SNPs obtained 

from NGS-panel were used to feed the model. These parameters are 

polymorphisms uniformly distributed along the entire genome. In 

order to reduce the dimensionality of the data frame, different 

strategies were applied: SNPs counts were selected sorting the p-
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values obtained from an ANOVA test, highest s2n ratios; the 

significant discriminant SNPs in a binomial negative linear model and 

in a logistic regression regularized with elastic net. 

After feature selection, chosen SNPs were adjusted with SVM 

applying radial kernel, RF or NN algorithms, performing hyper 

parameters tuning as follows: a) In SVM the assayed values of the 

penalty factor for margins violation (cost, C) were 1, 10, 50, 100, 500, 

700, 1000, 1500, whereas Gaussian Width, represented by Sigma in 

the kernel of SVM equation, takes values of 0.0001, 0.001, 0.01; b) In 

the RF algorithm, the considered number of variables randomly 

selected at each split (mtry) were 2, 5, 10 and the used split rule was 

Gini index; c) In the NN tuning, sizes of 5, 10, 15, 20, 40 layers and 

values of 0.01 and 0.1 in decay in the weights of the loss function 

were considered. 

The second approach applies GI parameters derived from CNVKit 

algorithm. Due to the lower number of parameters, this approach 

presents a less stringent feature selection, simplifying the filtering 

strategy. Parameters derived from a decision tree were curated by an 

expert in the field with the aim of endowing the dataset with clinical 

significance. The depurated data frame comprised 28 variables: 

Number of events, Mb of altered genome, Percentage of altered 

genome, Number of events excluding copy numbers between 0.5 and 

3, Mb of altered genome excluding copy numbers between 0.5 and 3, 

Percentage of genome altered excluding copy numbers between 0.5 
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and 3, Total number of gain events, Mb of genome altered by gains, 

Percentage of genome altered by gains, total number of gain events, 

Mb of genome altered by gains and percentage of genome altered by 

gains between 0.5 and 3, total number of loss events, Mb of genome 

altered by losses,  percentage of genome altered by losses, total 

number of LOH events, mb of genome altered by LOHs, percentage of 

genome altered by LOHs, total number of LOH>15 Mb, Mb of 

genome altered by LOHs>15 Mb, percentage of genome altered by 

LOHs>15 Mb, total number of LOH>10 Mb, Mb of genome altered by 

LOHs>10 Mb, percentage of genome altered by LOHs>10 Mb and 

LOH, LST, TAI and scoreHRD from scarHRD package. 

The third strategy assesses the expression of 2559 genes related with 

oncology analysed with HTG OBP. Feature and algorithms selection 

was analogous to the SNPs scheme. Logistic regression was excluded 

as a feature selection method considering that only two genes 

presented discriminant power. 

Ensemble of the best performer models comprises: NN (100 SNPs) 

with greater s2n ratio, SVM with radial kernel with 30 human curated 

decision trees based on instability parameters and SVM with the 25 

HTG genes carrying the lowest ANOVA p-values.  
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3.5.3. Random Forest Algorithm  

The ability to precisely classify observations is extremely valuable in 

the clinical setting.  RF is one of the most-used supervised algorithms 

due to its simplicity and versatility. It is a ML algorithm that can be 

used for both classification and regression purposes. RF is an 

ensemble method based on the construction of multiple decision 

trees (building blocks of the RF), extraction of each prediction and 

selection of the best solution.  In a RF, trees are not only trained on 

different sets of data (bagging) but also use different feature 

selection in each one (feature randomness), avoiding over fitting 

issues. Hence, a large number of relatively uncorrelated models 

(trees) operating as a committee will outperform any of the 

individual constituents’ models. 

Given the nature of the data, this type of algorithm was the chosen 

one aiming to obtain a surrogate of GI to classify CN-based EC-TCGA 

subgroups. Thus, the EC dataset from TCGA was used in training and 

validation steps, while our dataset was used to independently 

validate the pre-established prognostic model. Dichotomous and 

categorical variables including mutational status of the studied genes 

and clinical and pathological parameters such as histology, stage and 

grade were implemented in the model. Furthermore, a standard 

bagging approach is applied. To correctly adjust the RF model, the 

TCGA dataset was randomly split in two cohorts, consisting of 62 

patients for the training set and 86 for the validation set.  
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To train the model, genotyping of 12 genes was included as 

categorical dichotomous variables. Prior to the adjustment of the RFA 

model, the number of variables per level on each split was optimized 

to pre-train the model. The model was validated with 5-fold cross-

validation and bagging. The number of trees was empirically 

estimated to 1000. R v3.4.3 patched was used to build and test all the 

predictive models. 

 

3.6. In vitro studies 

To better understand biology of tumors and its translation in the 

clinical management scenario it is imperative to obtain 

representative in vitro models that resemble the different 

histological and molecular biotypes. In this sense, cell lines constitute 

an essential tool for basic science and excellent pre-clinical models 

for developing and testing new drugs. Hence, well-characterized cell 

lines are desirable to correctly establish the basis of translational 

cancer research (Figure 21). 
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Figure 21: Schematic summary of performed in vitro studies. Cell line panel 

characterization at genomic and in vitro level. 

 

3.6.1. Cell lines and culturing 

A total of 18 OC cell lines, provided by Dr. Marta Mendiola, from La 

Paz Hospital, were analysed (Annex 2). The complete panel was 

constituted by:  A2780, A2780CIS, PEO1, PEO4, PEO6, TOV112, 

OVCAR-3, SKOV-3, SCCOHT1, BIN67, PEA1, 59M, TO14, PEO14, PEO23 

and PEA2. All cell lines were obtained from the European Collection 

of Authenticated Cell Cultures (ECACC) and the American Type 

Culture Collection (ATCC).  Short Tandem Repeat (STR) profiles were 

verified (AmpFlSTR® Identifiler® PCR Amplification Kit, 
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AppliedBiosystem)(Annex 3). Six cell lines were cultured for testing 

treatment schemes. These cells grew as monolayers and were 

maintained at 37ºC in an incubator with humidified air with 5% CO2. 

Disaggregation of the attached cells was performed by trypsinization 

between passages. A2780, A2780 CIS, OVCAR3 and SKOV3 were 

cultured in RPMI1640, supplemented with Fetal Bovine Serum (FBS) at 

10%, 1% ml of Sodium Pyruvate at 100 mM and 1% Glutamine. 

OVCAR3 was also supplemented with 1% Hepes 10 mM, 2.5 mg/ml of 

glucose and 20% FBS. PEO1, PEO4 y PEO6 were cultured in DMEM 

with FBS at 10%. TOV112D cell were grown in a 1:1 MCDB 105 and 

Medium 199 with 15% FBS supplemented with 1% Glutamin and 

1/1000 Penicilin/streptamicin. 

 

3.6.2. Treatment schemes, drug-sensitivity assays and 

combination treatment 

In vitro tumor models are a necessary tool for assessing the 

effectiveness of new and available drugs. A broad spectrum of 

cytotoxicity and cell viability assays are currently in use. Between 

them, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) is the colorimetric assay most commonly used and the chosen 

approach for this study. This assay determines principally cell viability 

through determination of mitochondrial function of cells by 

measuring activity of mitochondrial enzymes such as succinate 

dehydrogenase. In this way, reagent will develop a colour in response 
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to viability, allowing measurement via spectrophotometer in a cheap, 

reliable and reproducible short-term way. The determination of the 

cytotoxic activity of several chemotherapeutic agents and 

identification of variations in susceptibility of different target cells 

will be performed.  

Response curves were generated for Lurbinectedin (PM00183) 

facilitated from Pharmamar (Madrid, Spain) and PARPi: Olaparib 

(AZD2281, Ku-0059436), Nirapaib (MK-4827) and Talazoparib (BMN 

673), all from Selleck Chemicals GmbH (Munich, Germany). Prior to 

perform cytotoxic assays, different concentration ranges and 

exposition times were tested. Cells were continuously exposed to 

growing concentration of the PARPi in the M scale during 72, 96 and 

120 hours. When referring to PM01183, however, exposition times 

were 1, 24 and 72 hours and the concentrations used were on the 

nanomolar range. Finally, the cell lines were cultured in the presence 

of drugs, both PARPi and PM01183, for 72 hours with concentration 

ranged as specified in Table 10.  

To study possible synergistic effects between PM01183 and different 

PARPi, cell were simultaneously treated with PM01183 at increasing 

concentrations specified in Table 10 and fixed dose, consisting on the 

Inhibitory Concentration (IC) 10 and IC30, of the corresponding PARPi 

following the same treatment scheme of monotherapy assays. 
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Table 10. Tested range of drug-concentrations during cytotoxic assays. Different 

concentrations used during monotherapy and combined treatment assays to 

obtain dose-response curves for Lurbinectedin, Olaparib, Niraparib and 

Talazoparib. 

 

The MTT colorimetric assay, that measured the metabolic activity of 

cells by evaluating their capability to reduce the MTT into formazan, 

its insoluble form, was the methodology applied to determine the 

chemosensitivity of the cell lines. Response curves were generated 

for the above-mentioned drug in monotherapy and in combination, 

looking for synergistic effects. For drug-combination assays, cells 

were cultured in presence of growing concentrations of PM and fixed 

PARPi concentration, specific for each cell line and drug 

(corresponding to IC30 and IC10). Experiments were performed in 

triplicates. Control cells were treated with appropriated medium. 

Drug Molarity Range 

Olaparib 
100-1,5625M (Dilution factor 2) 

25-0,0343M (Dilution factor 3) 

 
Niraparib 

25-0,0343M (Dilution factor 3) 

Talazoparib 25-0,0343M (Dilution factor 3) 

Lurbinectedin (PM01183, 
PM) 

10-0,15625M (Dilution factor 2) 

Lurbinectedin (PM01183, 
PM) 

In combination 

2-0.0625 nM (Dilution factor 2) 
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Absorbance was measured at 570 nM in an Ultra reader (Tecan 

Group). 

 

3.6.3. Generation of PM01183-Resistant Cell line 

The development of resistance is a crucial mechanism for the evasion 

of tumor cells. However, the mechanisms that result in develop 

resistance have not been elucidated yet.  Preclinical studies provide a 

key contribution to identify molecular bases of resistance. During this 

study, Lurbinectedin-resistant cell line was generated and 

characterized at different level to extend the understanding of the 

potential mechanisms of resistance. Induction of resistance was done 

over A2780 cell line. 

To generate resistant cell lines, two main approaches could be 

followed: clinically relevant (one-shot) and high-level laboratory 

models. The selection of the methodology should rely on the aim of 

the study and the characteristics of the dug and cell line. Basically, 

the first approach consists on pulses of treatment follow by recovery 

in free medium, mimicking the cycles of chemotherapy. This strategy 

generates a low-level and unstable resistance casing small molecular 

changing but resembles more reliably the clinical scenario. The 

second approach, however, consists on continuous exposure 

escalated doses of the drug. Even if is less relevant to the clinic, this 
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strategy is useful when studying the mechanisms of resistance, 

promoting bigger molecular changes easier to identify. 

Both treatment strategies were tested to obtain the in vitro resistant 

model.  One-shot strategy consisted of a 1h exposure to highly-

concentrated PM01183 (10 nM) and following drug elimination and 

addition of fresh medium. After 72 hours cells were sub cultured. 

Concurrently, a second treatment approach was performed. Cells 

were exposed to concentrations equivalents to IC30 values of 

PM01183 during 72 hours, when cells were sub cultured with fresh 

medium and same drug concentration. 

 

3.6.4. Characterization of resistant cell line 

The first step to evaluate the evolution of the induced resistance to 

PM01183 was to determine changes on IC50. As previously 

mentioned, a drug-response curve was performed over the newly 

resistant cell line. 

 

3.6.4.1. Cell cycle evaluation 

To study the molecular basis of the resistance, the impact of 

lurbinectedin on cell cycle regulation was studied.  As a consequence 

of the intrinsic ability of lurbinectedin to bind the minor groove of 

DNA, the drug interferes with the cell cycle, delaying progression 
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through the S-phase. Lurbinectedin rapidly promoted a cell cycle 

arrest in the S-phase and the activation of the DNA damage response. 

To evaluate the type of resistance induced in the A2780 cells, a cell 

cycle analysis was applied. 

The most common method for cell cycle analysis is flow cytometry. 

This methodology will enable the identification of the cell distribution 

during the phases of the cell cycle, recognizing the different stages: 

the G1, S (DNA synthesis phase), G2/M (mitosis). Briefly, the 

fluorescent dye, which binds to DNA, is incubated with a cell 

suspension of permeabilized or fixed cells. Since the dye binds to 

DNA stoichiometrically, the amount of fluorescent signal is directly 

proportional to the amount of DNA, enabling the distinction of the 

different phases. 

 To evaluate the impact of the resistance over cell cycles process, 

response to PM01183 after 24, 48 and 72 h of exposure to IC30 

concentration was assessed on non-resistant and resistant A2780 cell 

lines. Once cells were seeded and treated during different time-

exposures, they were trypsinized, washed and suspended in 1 ml of 

Phosphate-buffered saline (PBS).  Then, 3 ml of 96% iced ethanol was 

added drop by drop in continuous shaking to fix the cells. Ten 

minutes centrifugation at 850g, discarding the supernatant and 

washing on PBS + 5% FBS was done. Finally, 600l of PBS with 

propidium iodide (50 ng/ml, 50l/ml) plus 1 mg/ml of RNase 

(Ribonuclease A) were added to cells and incubated overnight in the 
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dark at 4°C. Following incubation, results were readed in the 

cytometer. Stained nuclei were analysed with an LSRFortessa system 

(Becton-Dickinson), data were analyzed and processed with the 

FlowJo software (Tree Star Inc). 

 

3.6.4.2. Doubling time assay 

In addition to cell cycle analysis by flow cytometry, variations in the 

dynamics of the development and growing of cells in culture were 

also evaluated by doubling time assay. In this way, A2780, A2780 CIS 

and A2780 resistant to PM01183 were compared. Cells were seeded 

at the same starting concentration. Then, they were counted by 

trypan blue methodology at four different times: 24, 48, 72 and 96 h. 

  

3.6.4.3. Western Blot analysis 

Continuing with the characterization of the resistant cell line, a 

western blot assay was performed. Western blot is used in research 

to separate and identify proteins and it works as a valuable semi 

quantitative tool to better understand molecular events, signalling 

pathways and mechanisms involved in the acquired resistance. 

In this technique a mixture of proteins is separated based on 

molecular weight through gel electrophoresis. Then, the resultant is 

transferred to a membrane and incubated with labels antibodies 
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protein-specific. The bound antibodies are then detected by 

developing the film. The thickness of the band corresponds to the 

amount of protein present. 

Specifically in this study, to assess fluctuations at protein level after 

treatment with PM01183, protein lysates were analyzed after 72 

hours of treatment. Evaluated cell lines were: A2780, A2780 CIS and 

A2780 PM and interrogated proteins were H2AX, RAD51 and PARP 

(Table 11). 

Table 11: Western Blot antibodies applied to interrogate HRR functionality in cell 

lines. 

Antibody Host Dilution Application 
Manufacturer 
and reference 

anti-RAD51 
rabbit 

polyclonal 
antibody 

1:1000 (WB) IF/WB 
(PA5-27195, 

Thermofisher) 

Anti-phospho-

histoneH2A.X 

mouse 
monoclonal 

antibody 
1:5000 (WB) IF/WB 

(Ser139, clone 
JLW301, MERCK) 

Anti--tubulin  1:500 WB  

Anti-PARP 
Rabbit 

monoclonal 
antibody 

1:1000 WB 
46d11 9532, Cell 

Signaling 

Anti-RAD51 
Rabbit 

polyclonal 
antibody 

1:100 WB H-92:
SC-8349 

H2AX 

Rabbit 
polyclonal 
antibody 

1:1000 
(Biotinilado) 

En TBS-T/BSA 
WB 

A300-081A-M 
Bethyl laboratory 



 

 
105 

 

The cell pellet was lysed by adding 50-100 µl of lysis buffer (25 mM 

Tris-HCl pH 7.5, 1 mM EDTA pH 8 and 1% SDS supplemented with 

cocktail of protease and phosphatase inhibitors; leupeptin, pepstatin, 

and phenylmethylsulfonyl fluoride (PMSF). Cells were incubated for 

10 minutes at 95ºC and centrifuged for 10 minutes at 16000g. The 

entire process was performed maintaining cells on ice. Once the 

lysate was obtained, protein content was quantified using the 

commercial BCA PierceTM kit (ThermoFisher) following the 

manufacturer's instructions. Starting quantities of 40 µg of proteins 

per sample were used. Proteins were separated on a 14% SDS-PAGE 

gel at 100V. Once finished, proteins were transferred to a 

nitrocellulose membrane. Transference was carried out at 4°C, 30 V 

for 3 hours. Subsequently, the membranes were blocked for 1 hour in 

5% milk in Tris-Buffered Saline with Tween (TBS-T) buffer. Then, they 

were incubated overnight with primary antibody in 5% milk at 4°C. 

After primary antibody incubation, four TBS-T washes were 

performed for a total of 30 min. Finally, the membrane was 

incubated at room temperature with secondary antibody for 1 hour 

and washed four times with TBS-T. 

Membrane was revealed using the ECL ™ transfer system (Sigma 

Aldrich) according to the manufacturer's instructions. For 

normalization of protein concentrations, the membrane was also 

incubated with the selected housekeeper (control).  
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3.7. In vitro data processing 

Dose-response curves were generated with GraphPad Prism 6 

software. Statistical significance was determined applying 

unidirectional and bidirectional ANOVA test or two-tailed t-student 

test. Image processing and quantification of western blots was done 

by Quantity One software. 

CompuSyn (CompuSyn, Inc), based on Chou-Talalay method, was 

employed to establish synergistic or antagonistic combinations 

between tested drugs and to obtain specific combination indexes 

(CI). 

 

3.8. Statistics 

3.8.1. Descriptive statistics 

A Chi-square test and Fisher´s exact test were used to compare 

categorical GI and clinical and pathological variables. For continuous 

variables, non-parametric Wilcoxon and Kruskal-Wallis tests were 

applied.  

 

3.8.2. Parameters of clinical response 

The lack of an optimal gold standard to determine response to 

different chemotherapeutic and targeted treatments has promoted 

the use of a wide number of variables, aiming to establish the most 
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suitable in each clinical scenario. Due to that, the analysis has been 

performed considering all the response variables that were available 

during the study. Evaluation of platinum response has been done 

based on PFI defined as the time-lapse between end of platinum-

based treatment and relapse. Response is categorized is three levels; 

refractory patients (PFI<6 months), partially sensitive (PFI>=6 and <12 

months) and sensitive (PFI>=12 months).   

Aiming to evaluate the response to PARPi, two additional concepts 

were used: Overall response rate (ORR), which is the proportion of 

patients in a study who presented partial or complete response (CRs) 

to the treatment within a certain period of time. ORR is generally 

defined as the sum of CRs, the disappearance of all signs of cancer in 

the body, no detectable evidence and partial responses (PRs) – 

decrease in the size of a tumor or in the amount of cancer in the 

body.  On the other hand, Clinical Benefit Ratio (CBR), percentage of 

patients who achieved a CR, PR, or had stable disease for 6 months or 

more.  

Lastly, two general and commonly used parameter to test the 

predictive and prognostic value of different biomarkers or 

approaches are PFS/Disease-Free Survival (DFS), defined as the 

length of time during and after the treatment of a disease, such as 

cancer, that a patient lives with the disease but it does not get worse, 

and OS, which is the period of time from the diagnosis until the exitus 

date. 
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3.8.3. Survival analysis 

For time-to-event variables (i.e. PFI) Survival analysis was performed 

using Kaplan Meier estimation and signification was obtained by log-

rank test. Statistical signification was considered at p<0.05. All tests 

were two-tailed. Statistical analysis was performed using R studio (R 

version 4.0.3)  
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4. Results 

4.1. Characterization of genomic Instability  

Due to the clinical relevance of high GI phenotype, working as a 

suitable prognostic and predictive biomarker, the establishment of GI 

status has become a major challenge for the selection of patients.  

 

4.1.1. Establishing the basis of GI: tuning methodological and 

analytical approaches 

Despite the advance of high throughput techniques, that have 

provided insights in cancer characterization and are allowing the 

unveiling of the genetic landscape of tumors, the analysis of GI still 

represents a challenge.  

In this section, the optimization of methodological, analytical and 

bioinformatics workflows to achieve whole-genome CN profiles from 

a CNV and SNVs will be explained (Objective 1). For this purpose a 

series of 45 cases (Cohort 1) was analysed at three different levels as 

indicated in Figure 14.  

 

4.1.2. Multi-gene NGS panel to determine HRD and clinical 

impact of molecular classification 

Mutational analysis was performed based on the results of a custom 

NGS-Panel that interrogates 35 DDR genes. Although HRR genes are  
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overrepresented in the panel, other genes belonging to the Base 

Excision Repair (BER), NER, and MMR pathways were also included. 

The whole series was analyzed in two different batches on which 

sequencing metrics were comparable. Sequencing metrics are 

summarized in Annex 4. 

A median of 99.5 alterations per case (range: 57-459) was reported 

(Annex 5). After variant selection, a median of 2 alterations per case 

(range: 0-4) remained. These variants had a median AF of 53 % 

(range: 8.2%-94.4%) and a median coverage of 805 reads (range: 114-

3406 reads). One of the samples (CO1) was not evaluable for 

mutational analysis; hence, it was not included for the following 

statistics. As expected, the most frequently mutated gene was TP53, 

84.1% (37/44), followed by BRCA1 and BRCA2, with an incidence of 

27.3% (12/44) and 18.2 % (8/44) respectively. Other HRR genes were 

also found to be altered with a lower incidence, including: PALB2 9.1 

% (4/44), RAD54L 4.5 % (2/44), BRIP1 4.5 % (2/44), ATM 4.5 % (2/44), 

ATR 2.3 % (1/44) and SLX4 2.3 % (1/44). Additionally, alterations in 

other DDR genes were also identified: PMS2 4.5 % (2/44), HELQ 2.3 % 

(1/44) and ERCC6 2.3 % (1/44) (Figure 22). Germline BRCA mutations 

for those cases are reported in Annex 6. Mutational data was then 

used to stratify patients between Homologous Recombination Repair 

Proficient (HRP), absence of mutation in the HRR-related genes, and 

HRD, presence of an alteration in any of the HRR-related genes, not 

referencing in any case to the GI status. Hence, 59.1 % (26/44) of 
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patients were established to be HRD, harbouring mutations in 

BRCA1/2 and other HRR genes in 45.5 % (20/44) and 13.6 % (6/44) of 

patients respectively (Figure 22). Additionally, CCNE1 amplification 

(CCNE1amp) was also obtained from sequencing data. Among all 

cases, 5/44 (11.4 %) presented amplification. 

 

Figure 22: Molecular landscape of Cohort I. Distribution of gene alterations and 

stratification of patients based on HRR mutational status.  

 

The Log-Rank test was used to evaluate the potential of mutational 

analysis to predict response to platinum-based drugs. This test 

revealed differences between HRR groups in PFI when comparing 

nonHRD and HRD (12.7 and 30.6 months respectively, p=0.02) and 

nonHRD, BRCA HRD and nonBRCA HRD (12.7, 19.5 and 36.8 

respectively, p=0.045) demonstrating its prognostic impact (Figure 

23). 
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Figure 23: Log-Rank test and Kaplan-Meier plots. A) Two levels corresponding HRD 

mutated cases (including BRCA1 and BRCA2) and non HRD mutant cases. B) 

Analysis stratifying population in BRCA HRD as cases with mutations only in BRCA1 

and BRCA2, non-BRCA HRD cases with mutations in HRD excluding BRCA genes, and 

non-HRD cases without mutations in HRR pathway. 

 

4.1.2.1. Optimization of Genomic Instability detection by 

tuning selected algorithms  

The detection of CNV, due to its complexity, was performed by using 

three different pipelines; CNVkit, saasCNV and SureCall. To calibrate 

the thresholds levels among the numerous CNV derived parameters 

comparisons at distinct levels were performed. While saasCNV and 

SureCall are limited to slightly personalization, CNVkit has a greater 

number of analytical parameters. In this case, segmentation pipeline 

(CBS or FLASSO), p-value cut-off, personalized or pre-established 

tumor content of the sample and post analytical filtering were 

evaluated. Firstly, Segmentation pipelines were evaluated. 

Differences basically appeared in total number of CN events, higher 

in CNVkit, while presenting a lower median length. However, the 

A B 
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total percentage of altered genome was not significantly different 

(Figure 24).  

 

Figure 24: Differences in GI parameters according segmentation used in CNVkit 

pipeline. Non-parametric tests evaluating performance of CBS and FLASSE 

regarding A) Total number of events. B) Percentage of altered genome. C) Median 

length of event 

 

The selected segmentation pipeline, due to higher reliability of 

events of greater length and the suitability to perform the following 

analysis to call LOH events, was CBS. A tuning of CNVkit pipeline 

parameters was performed as follows: A most restrictive of p value in 

Segmentation algorithm was assayed (p=0.001), in this scenario, 

fragments of greater length are built by segmentation algorithm 

(p=0.00035). The selection of these events caused no differences 

regarding total number of events while percentage of genome 

altered was significantly higher (p=0.00036) (Figure 25).  

A B C 
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Figure 25: Differences in GI parameters adjusting p-value in CNVkit pipeline. Non-

parametric tests evaluating  distint p-value filter regarding A) Total number of 

events. B) Percentage of altered genome. C) Median length of event 

 

Due to the fact that using a restrictive filter does not mean losing 

CNV information while obtaining more reliable results, p-value of 

0.001 was chosen for the following analysis. Regarding the tumor 

content, we evaluated if it was decisive in the analysis of CNV. To do 

that, establishment of values of 50, 80 and 100 % of tumor content 

for the same sample were applied during the analysis. Results 

showed significant differences when applying different tumoral 

content in total number of events (p=0.00046), as well as tendency in 

percentage of tumor altered and CN length (Figure 26).  
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Figure 26: Differences in GI parameters according tumor burden in CNVkit 

pipeline. Non-parametric tests evaluating the impact of tumor burden regarding A) 

Total number of events. B) Percentage of altered genome. C) Median length of 

event 

Hence, establishing and applying its own tumor content per each 

case will be essential for following analysis. Finally, the case of post-

analytical filter was slightly different. Filter based on median or 

quartile CNVkit assigned weight of events were applied after the 

analysis, followed by another filter by 1 mb in length (Figure 27).  

 

Figure 27: GI parameters according pre-filtering step in saasCNV pipeline. Non-

parametric tests evaluating the impact of CNV size filtering regarding A) Total 

number of events. B) Percentage of altered genome. C) Median length of event 

A B C 
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Performing the filtering process before that, resulted on no 

differences due to the median and 1st quartile value were both 

below 1 mb. However, considering the high number of total events 

obtained and trying to simplify following analysis, we decided to 

apply above median filter after the 1 mb length filter. On the 

contrary, saasCNV and SureCall were easily adjusted to the nature of 

the data. For saasCNV, was only evaluated the pre-filtering step 

during the analytical process. In regards to that, total number of 

events was considerably lower when not applying pre-filtering steps. 

Then, the decision was to perform this step, looking for more reliable 

and handle results. On the other hand, SureCall was applied using the 

default parameters and chosen healthy control of the performed 

data. 

The final selection of parameters was to apply CBS190 to incorporate: 

true tumor content from the sample, instead of its estimation based 

on sample ploidy; to use a more astringent p-value of 0.001; and to 

filter results by median weight and fragment size, selecting those 

shorter than 1 Mb to increase specificity in the CNV calling for 

CNVkit. SaasCNV adjustment was limited to perform a prefiltering 

step whereas SureCall was not customized at all. 

4.1.2.2. CNVkit: best performing algorithm in GI determination 

Once the pipelines were fitted, the ability of each pipeline to assess 

GI was evaluated. Firstly, values of different GI parameters obtained 

from the studied pipelines were compared. Significant differences 
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appeared in all performed comparisons, mainly showing a higher 

percentage of altered genome in SureCall results, followed by 

saasCNV and ending with CNVkit, which carries the lowest values 

(Figure 28).  

 

Figure 28: Comparison of GI parameters between implemented pipelines; CNVkit, 

saasCNV and SureCall.  The result of these non-parametric test highlights the 

weakness and strengths of the pipelines due to differences in the assessment of 

each feature. (*P < 0.05, **P < 0.01, ***P < 0.001). 

 

Even though all GI parameters followed this hierarchy between 

pipelines, three differences stood out over the others. CNVkit had 

worse detection performance of losses in favour of LOHs, probably 

caused by the analysis methodology to identify this type of 

alterations, since the baseline to detect heterozygosity loci was 
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established with a panel of samples. On the other hand, in the case of 

saasCNV, difficulties appeared in the identification of gain events. 

Here, there was hardly any gain event detected, showing a weakness 

of the pipeline. Lastly, Surecall presented a different distribution of 

LOH events according to size. Whereas saasCNV and CNVkit showed a 

higher number of LOH larger than 15 mb, SureCall presented more 

LOH events above 15 mb, having an opposite distribution in size. 

Since we lack an objective and robust technical benchmark to 

compare studied pipelines, the accuracy to determine GI patterns 

was measured according to clinical outcome, particularly PFI, to 

endow our findings with clinical significance. Hence, the correlation 

between each GI parameter from different pipelines and response to 

platinum was obtained. saasCNV pipeline showed the lowest 

statistical power in all the evaluated parameters. Among all the 

established GI parameters, the total number of LOH events 

presented the highest correlation with clinical outcome in all three 

pipelines. However, CNVkit continues to lead in this regard. On the 

contrary, SureCall and CNVkit presented higher statistical significance 

than saasCNV, each one presenting a correlation with different GI 

parameters. While CNVkit showed a higher correlation when 

comparing PFI with global GI (total number of events and percentage 

of genome altered) as well as LOH events, Surecall presented higher 

accuracy with parameters related to gains and losses (Annex 7). In all 

cases, a higher number of CN events, as well as genome altered, 
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were correlated with longer responses to platinum-based 

chemotherapy (Figure 29). 

 

Figure 29: Differences in PFI between evaluated pipelines. Log-rank test 

interrogating the power to assessed A) Percentage of altered genome and B) Total 

number of LOH events detected by CNVkit C) Percentage of altered genome and D) 

Total number of LOH events detected by SureCall.  

 

In addition, mutations in HRR genes were faced with GI parameters 

(Annex 8). Even though not all GI parameters correlated with the 

presence of mutations, higher global GI had been shown in HRD 

patients, particularly in those that harbored mutations in BRCA1/2 

(Figure 30). 
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Figure 30: Comparison of percentage of altered genome between HRR-based 

groups. Differences, assessed by non-parametric tests, were analysed in both 

pipelines, A) CNVkit B) SureCall.  

 

Finally, CNVkit was chosen according to best performance, higher 

number of customizable parameters, advantageous use of on-target 

and off-target read counts, widening the coverage of the panel, and 

suitability to medium size NGS panels. Hence, following analysis to 

perform and adjust the predictive model were done using CNVkit 

pipeline. The relationship between GI parameters and survival is 

described in Annex 9. 

4.1.2.3. scarHRD pipeline 

Complementary to the establishment of GI by CNVkit, the pre-

defined genomic scars (LOH, LST and TAI) were also obtained. 
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Genomic Scars has been correlated with response to DNA-damaging 

agents and presence of BRCA1/2 mutations, used as a surrogate of 

HRR deficiency. However, annotation data from a clinically validated 

approach was not available at the time of the study. For that reason, 

we decided to infer it from our sequencing data by using scarHRD 

package from R188. Genomic scars, except from LOH parameter, 

together with the HRDscore resulted significant when faced to PFI 

intervals (Figure 31).  

      

Figure 31: Distribution of different genomic scars and integrative HRDscore 

between PFI-based stratification. Non-parametric tests evaluating the Incidence of 

events of A) LOH, B) LST, C) TAI and HRDscore between PFI groups. 

 

Comparisons between Genomic Scars and HRDscore and HRR 

mutation were also performed. Similar to PFI results, all parameters 

A B 
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except from LOH were significantly correlated with the presence of 

HRR mutations (Figure 32).  

      

Figure 32: Distribution of different genomic scars and integrative HRDscore 

between HRR mutations-based stratification. Non-parametric tests evaluating the  

incidence of events of A) LOH, B) LST, C) TAI and HRDscore between HRR status-

based groups. 

 

4.1.3. Predictive model fitting and validation to predict 

response to DNA-damaging agents  

Once optimized the approach to determine GI parameters, we 

outline a useful academic tool (integrative model) to predict 

response for DNA-damaging agents in the clinical scenario of HGSOC 

and, potentially, other HRR deficient tumours in an independent 
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series of 190 patients as showed in Figure 15 (Objective 2 and 3, 

Cohort 2). 

In order to adjust a ML method to predict response to Platinum-

derived therapy, data from three different sources was used to feed 

the model. 

The first one derives from the raw NGS coverage information of 

170080 SNPs, while the third model contains gene expression data of 

2549 genes obtained from targeted RNAseq experiments. First step in 

the protocol was denoise the raw data by feature selection as 

explained in Materials and Methods section. On the other hand, the 

second model studied the most representative parameters of the GI 

phenomenon, not being subjected to feature selection due to the 

reduced number of them. Then, each set of selected parameters was 

tested coupled with a data mining algorithm. Every possible 

combination between the algorithm and selected features was 

checked.  

The best-individualized performance models comprise SVM with 8 

SNPs (Annex 10), SVM with 28 GI parameters and NN with the 

expression of 7 genes (Annex 11). Results for each adjusted model 

are shown in Table 12. Among the three single-source models, the 

best performance was obtained by the GI model, with an accuracy of 

0.8909. Finally, the ensemble model was based on an SVM algorithm, 

using as an input the 43 previously mentioned selected attributes. 
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The model was trained with a bootstrapping of 500 iterations, 

obtaining an accuracy of 0.991 and a kappa index of 0.981, 

outperforming all the three single-source models. 

Table 12: Performance of the single-source and ensemble model. Differences 

between models regarding capability to predict response to PFI.    

 TP/TN/FP/FN 
Accuracy 
(95 % CI) 

Sensitivity 
Specificity 

Kappa 

SNPs Model 29/13/5/5 
0.8077 

(0.6747-0.9037) 
0.7222 
0.8529 

0.5752 

HTG Model 25/17/1/9 
0.8077 

(0.6747-0.9037) 
0.9444 
0.7353 

0.6154 

GI Model 35/14/2/4 
0.8909 

(0.7775-0.9589) 
0.8750 
0.8974 

0.7450 

Ensemble Model 34/16/2/0 
0.9615 

(0.8679-0.9953) 
0.8889 
1.0000 

0.9128 

*TP: true positive, TN: true negative, FP: false positive, FN: false negative 

 

In addition, the clinical prognostic of each model was tested by using 

a log-rank test with PFI as a time-to-event variable. All four models, 

including the ensemble, presented a significant p-value below 0.0001 

(Figure 33). While HTG-based model was the one with the lowest 

predictive power, otherwise, the highest statistical significance was 

obtained in the ensemble model (p>2x10-16). 
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Figure 33: Correlation between PFI and fitted models. Log-rank tests evaluating 

the performance of:  A) SNPs-based model. B) GI-based model. C) HTG-based 

model. D) Integrative ensemble model. 

 

The goodness-of-fit of the predictive algorithms was also evaluated 

by ROC curves, showing how well each predictive model 

discriminates between patients with PFI under or over 12 months. 

The comparison was carried out in terms of the extracted values of 

Area under the Curve (AUC). As expected, the highest discriminant 

power was obtained with the ensemble model, with an AUC of 0.962 

and sensitivity and specificity of 0.929 and 0.945 respectively (Figure 

34). 
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Figure 34: ROC curves comparing performance single-source and ensemble 

model.  

 

Albeit the algorithms were trained to predict response to platinum-

based chemotherapy, the definitive purpose of the study was to fit a 

model able to establish the candidates for PARPi therapies. Hence, 

the capability of the models to discriminate the best responders to 

this type of drug was also tested by log-rank test in a sub-series of 58 

patients. Performance of the models was faced with BRCA mutation-

based stratification, as a gold standard method to select patients to 

receive PARPi. In this case, the ensemble model outperformed BRCA-

based classification (p=0.0048) with a p-value of 0.00077 (Figure 35), 

improving the discriminant power of this gold standard. 
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Figure 35: Log-rank tests evaluating the performance of different tested 

molecular classifiers to predict PFS to PARPi. A) BRCAmutation-based 

classification, B) Integrative ensemble model C) PFI, D) HRR-based classifier E) SNP-

based model, (F) GI-based model and G) HTG-based model regarding PFS to PARPi 
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The impact of the predictive model over OS was also evaluated. All 

models reached statistical significance, headed by the ensemble 

model (Figure 36).  

 

Figure 36: Log-Rank tests evaluating the implication of mutational-based 

classifiers and predictive models with OS. (A) BRCA1/2-based classifier (B) HRR-

based classifier (C) SNP-based model, (D) GI-based model, (E) HTG-based model 

and (F) Ensemble model 
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In addition to model performance, a multivariate analysis was 

performed in order to evaluate the contribution of different 

clinicopathological and mutational parameters to the stratification of 

patients. The most discriminant parameter was the ensemble model 

prediction (HR=0.12). However, other parameters such as tumor 

extension (Locally advanced; HR=2.18, Metastatic; HR=3.18) and HRR 

mutation (HR=0.36) also contributed to risk assessment (Figure 37).  

 

Figure 37: Multivariate analysis in terms of PFI.  Analysis performed by Cox 

regression for clinicopathological parameters, HRR alteration and three-source 

model performance in addition to ensemble model. 

 

Additional cox analysis was performed, evaluating higher number of 

variables (Figure 38). 
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Figure 38: Multivariate analysis in terms of OS. Analysis performed by Cox 

regression for clinicopathological parameters, HRR alteration and three-source 

model performance in addition to ensemble model. 

 

4.1.4. Another clinical scenario: POLA phase II cohort  

On the other hand, the clinical scenario of PARPi and its correlation 

with GI was also explored through a series of OC and EC patients 

enrolled in Phase II clinical trial (POLA: NCT02684318, EudraCT 2015-

001141-08, 03.10.2015). 

4.1.4.1. Distribution of Genetic Alterations and Clinical Impact 

Genetic studies were performed on a total of 57 samples that passed 

the quality and quantity requirements, corresponding to 19 (33.3%) 

EC and 38 (66.7%) OC patients. Among all of the mutated genes, 

considering both cancer types, TP53 and PTEN presented the highest 

mutational ratios, with 34/57 (59.6%) and 9/57 (15.8%), respectively. 

TP53 alterations were mainly present in OC (70.6%), specifically in 

HGSOC histology, while PTEN was preferentially altered in EC (88.9%). 
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Regarding the HRR pathway, a total of eight genes presented 

alterations, including BRCA1 (3, 5.3%), BRCA2 (1, 1.8%), ATM (2, 

3.5%), RAD5L (1, 1.8%), ATR (1, 1.8%), NBN (1, 1.8%), SLX (1, 1.8%), 

and WRN (1, 1.8%). Overall, HRR gene alterations were reported in 

10/57 (17.5%) cases homogeneously distributed between EC and OC, 

and they were used in the following analysis as an HRD status 

subrogates. Additionally, mutations in the Fanconi Anemia genes, 

FANCM (1, 1.8%) and FANCA (1, 1.8%), were also found. Finally, 

alterations in the MMR genes were described in two EC cases (Figure 

39). 

 

Figure 39: Molecular landscape of Cohort 2. Oncoplot of genetic and genomic 

alterations across the 35 genes of the custom panel, related to HRR and other DNA 

repair pathways across the EC (n = 19) and OC (n = 38) cohorts. The Oncoplot 

shows SNVs and CN at the gene level in CCNE1. 
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We studied the possible relationship between HRD status and 

response to treatment. No correlations were found between study 

treatment ORR or CBR, and HRR mutations. The different GI 

parameters were compared with the mutation-based stratification. In 

the whole population, HRD status was associated with losses (p = 

0.0038) and the percentage of the genomes affected by losses (p = 

0.034) (Figure 41A and B). Considering that GI caused by HRR gene 

mutations has been principally described in the OC population, we 

studied GI patterns according to cancer type (Figure 40).  

 

 

 

Figure 40: Comparison of GI patterns between cancer types. A) Total number of 

events, B) Total number of gains, and C) Total number of losses. Non-parametric 

Wilcoxon Signed Ranks Test was used. 

 

The OC cohort (n = 38) showed a significant correlation between HRD 

status and the total number of events (p = 0.0059), loss events (p = 

0.0013), and percentage of the genome affected by losses (p = 0.014) 
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(Figure 41C, E and F).  LOH did not correlate with HRR status (p = 

0.091).  On the other hand, the EC cohort (n = 19) did not show any 

significant results. 

       

Figure 41: Non-parametric tests (Wilcoxon signed rank test) comparing the GI 

parameters and HRD status in the whole population.  A) loss events  and B) 

Percentage of altered genome by losses and in the OC population (n = 38) in  C) 

Total number of events, D) LOH events, E) loss events and F) Percent of altered 

genome by losses. 
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4.1.4.2. Characterization of Copy Number Patterns across the 

Clinical Trial Population: Clinical Impact of Genomic 

Instability-Based Classification 

Finally, the GI parameters were evaluated as a predictive biomarker 

for the combination of Olaparib and Lurbinectedin. First, in terms of 

duration of response, Long-Term Responders (LTRs) were assessed. 

When evaluating the OC population specifically (n = 27), we observed 

a trend towards an association between LTRs and total LOH events, 

which did not reach statistical significance with the current sample 

size (p = 0.055) (Figure 42B). Second, the relationship between GI and 

ORR was also evaluated. The total number of LOH events was not 

associated with ORR (p = 0.074) (Figure 43A).  
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Figure 42: Clinical implication of the GI parameters in the OC population (n = 38). 

A) Total number of events regarding overall response rate; B) total number of LOHs 

in LTRs C) survival analysis stratification due to the total number of events. Non-

parametric and log-rank tests were used. 
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Figure 43: Clinical implication of GI parameters regarding ORR. A) Global 

population and B) EC population CBR C) Total number of events and D) total 

number of gains. Non-parametric Wilcoxon Signed Ranks Test was used. 

 

We observed a significant correlation between ORR and the 

percentage of genome altered by losses (p = 0.021), although only 

two cases qualified as responders with HGS histology (Figure 43A). In 

the EC population, the percentage of the total genome that was 

altered was not associated with ORR (p = 0.07) (Figure 43B). Finally, 

the classification of responses as CBR was studied, but did not yield 

significant associations, for example, with the total number of events 

(p = 0.063) and gains (p = 0.088) (Figure 43C and D).  
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In the HGS population (n = 38), a higher number of events was 

significantly associated with longer PFS (p = 0.036). Although the GI 

parameters were correlated with the PARPi response in the non-

parametric tests, only few parameters showed significance in the 

univariate survival analysis, and multivariate analysis was not 

significant. However, the results showed a correlation between 

higher GI and outcome, which raises the possibility of developing this 

parameter as a predictive marker. In addition, genomic scars, 

obtained as mentioned before, were tested in the population. Any of 

them showed statistical significance with response or HRR mutation. 

 

4.1.4.3. Assessing CN amplification and losses at gene level 

In addition to the GI profiling, custom panel was also designed to be 

able to interrogate for CN at gene level. Hence, CN data analyzed by 

panel mops package were used. A total of 6 and 1 amplification were 

detected in CCNE1 and EMSY respectively, while 5 patients presented 

PTEN loss among the EC population. Concerning CCNE1 

amplifications, 4 were found in EC and 2 in OC, any of them 

coinciding with HRR mutation, being mutually exclusive. PTEN was 

also found in the two subpopulations, 2 events in EC and 3 in OC. 

These alterations were validated by MLPA, the gold standard 

technique, to assess CN at gene level. While amplification was 

confirmed in all cases, the validation of PTEN loss was not possible. 

Cases harboring these alterations have not shown correlation with 
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response to PARPi. Additionally, a sub analysis stratifying OC patients 

according to the presence of CCNE1 amplification, HRR mutation or 

none of them was performed, also lacking significant results.  

 

4.1.5. OC Cell line Panel 

Due to the undeniable importance of this biomarker, genomic 

characterization at CNV and SNV level was performed in a panel of 

EOC cell lines, looking for better defined in vitro model systems with 

consistency to valid clinical phenotypes. 

4.1.5.1. Genomic characterization: Punctual mutation and 

Copy-number alterations 

A panel of 18 OC cell lines has been analyzed by NGS technology. The 

sequencing panel is specially designed to determine the mutational 

status of the HRR pathway, highly involved in this type of tumor, 

particularly regarding the sensitivity to PARPi, previously tested in 

this study. Additionally, other DNA-damage repair genes were 

interrogated. The most commonly mutated gene was TP53, present 

in 11 of the 18 (61.1%) evaluated cell lines, ten of them 

corresponding to HGSOC histology. Alterations in the HRR pathway 

were detected in 8 cell lines (44.4%): BRCA2 4/18 (22.2%), BARD1 

2/18 (11.1%), CHEK2 1/18(%) and ATR 1/18 (5.6%). Among them, two 

correspond to reversions of a pathogenic mutation in BRCA2 (PE04 

and PEO6), recovering the functionality. Other genes were found to 
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be altered, between them: MSH6 4/18 (11.1%), EMSY 1/18 (5.6%) 

and CCNE1 amplification in OVCAR3 (Figure 44).   

 

Figure 44: Molecular landscape of OC cell line panel. Distribution of genetic and 

genomic alterations, showing mutational patterns and incidence of GI through 

percentage of altered genome parameter.  *Alterations not previously described in 

the bibliography. 
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Among all the described alterations, 5 of them have not been 

previously described in the bibliography. Two cell lines were deleted 

from the study due to possible cross-contamination, TO14 and 

PEO23. 

The analysis of CNV patterns showed two main clusters of cell lines, 

grouping those with HGSOC and mixed histologies (C2) and 

endometrioid and small-cell (C1) (Figure 45).  

 

 

Figure 45: Representation of CNV patterns across OC cell line panel. Heatmap 

representing distribution and incidence of different GI parameters and its 

correlation with previously reported histologies.  
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 C1 presented a highly-enriched CNV profile (percentage of genome 

altered between 25-50%) different from C1 (percentage of genome 

altered between 5-14%). The lowest GI values, with 6% and 5% of 

genome altered were obtained from SCCOCHT1 and BIN67 

respectively, cell lines from small-cell carcinomas. 

Additionally, the presence of GI in the HGSOC cell lines is particularly 

interesting.  The case of PEO1 is a good example to explain 

correlation between GI and HRD.  PEO1, carrier of BRCA2 mutation 

presented high GI, while its related cell lines, clinical resistance and 

terminal stage of the disease from the same patient, with acquired 

reversion mutation of BRCA2, showed lower level of GI, possibly 

implying loss of sensitivity to certain DNA-damaging drugs. On the 

other hand, in the case of PEA1 and PEA2 cell lines (both from the 

same patient at initial and relapse stage) also carriers of HR mutation 

(BARD1) without reversion, maintain high levels of GI over time 

(Figure 46). However, these data must be carefully considered, since 

due to the GI inherent to the immortalization and maintenance 

process of a cell line, this phenomenon can be influenced by many 

factors. 
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Figure 46: Exemplifying GI in HRR defective cell lines over time. Incidence and 

distribution of GI between two related cell lines and sub-lines (PEO1/PEO4/PEO6 

and PEA2/PEA1).  
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4.2. 12g prognostic model in EC cohort 

The importance of molecularly stratified patients regarding its 

prognostic or predictive value is evident. Particularly, in the field of 

gynaecological oncology, the GI has gained force as a classifying 

feature. Therefore, the development and validation of a reproducible 

RF model (12g-algorithm) based on mutational data to classify EC 

according to its GI profile, complementing the four prognostic-group 

classification, was performed. 

 

4.2.1. Selection of the multigene-NGS panel and mutational 

analysis 

The EC data set from TCGA66 defines 48 genes with differential 

mutation frequencies across the four prognostic groups. A subset of 

13 genes, corresponding to those with the highest differences in 

terms of frequencies between groups, was selected: POLE, PTEN, 

TP53, ARID1A, KRAS, ARID5B, FBXW7, PPP2R1A, CTCF, CTNNB1, 

RPL22, PIK3CA and PIK3R1. Two separate sequencing runs, containing 

48 dual-pool libraries each were performed. The coverage, quality 

parameters and statistics were comparable between both runs, 

hence it was possible to merge the data for analysis. Sequencing 

metrics for analyzed samples are summarized in Annex 12. 

A median of 40 genetic alterations per case (range: 13-171) were 

found (Annex 13). Variants were classified as mutated if they were 
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already reported in ClinVar or if appeared as predicted pathogenic, 

likely pathogenic or VUS by PolyPhen and SIFT predictors. Benign and 

likely benign variants were not considered for the analysis. The 

presence of mutation was treated as categorical dichotomous 

variable (presence/absence of mutation). 

 

 

Figure 47: Molecular landscape of Cohort 3. Frequency of gene mutations in EC 

patient’ series determined by NGS 13 genes panel. *Hotspot POLE (p.P286R and 

p.V411L) 5.2% (5.6% in TCGA population) 

 

The most frequently affected genes in our series were PTEN (55.2%), 

followed by ARID1A (49.0%) and ARID5B (43.8%), whereas KRAS 
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mutations (9.4%) represent the lowest frequency (Figure 47). MSI 

was observed in 15 of 96 patients (15.6%): 14 of 15 with 

endometrioid histology (93.3%), and in just 1 of 13 serous cases 

(7.7%).  The median number of mutations per patient that passed the 

annotation filter was 9.5 (range: 2-64).  

Clinical parameters of stage, grade and histology were faced to gene-

mutations by univariate analysis at gene level. The most relevant 

relationships were POLE mutation, which showed a correlation with 

early stage in EC (p=0.040), PTEN mutations, enriched in EC with 

endometrioid histology (p< 0.001) and low-grade tumors (p< 0.001). 

In addition, EC with serous histology harbored more TP53 mutations 

(p=0.021). Finally, RPL22 mutation showed higher frequency in 

endometrioid histology (p=0.005) and low-grade tumors (p=0.004). 

KRAS (p=0.035) and CTCF (p=0.05) mutations were also significantly 

correlated with low-grade tumors (Table 13A). 
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Table 13: Correlation between mutational status of analysed genes and clinicopathological and outcome parameters.  A) Main clinical 

and pathological parameters in EC using Chi-square test B) PFS and OS measured by log-rank test 

A) 

  
 

Histology Stage Grade 

  
 

Endometrioid Serous p-value Early-stage Advanced-stage p-value I II III p-value 

 

 

mutated 15 1 
N.S. 

16 0 
0.040 

10 5 1 
N.S. 

non-mutated 68 12 63 17 35 23 22 

PTEN  
mutated 53 0 

<0.001 
44 9 

N.S. 
30 20 3 

<0.001 
non-mutated 30 13 35 8 15 8 20 

TP53  
mutated 24 8 

0.021 
24 8 

N.S. 
12 8 12 

0.050 
non-mutated 59 5 55 9 33 20 11 

KRAS  
mutated 8 1 

N.S. 
9 0 

N.S. 
8 0 1 

0.035 
non-mutated 75 12 70 17 37 28 22 
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Histology Stage Grade 

  
 

Endometrioid Serous p-value Early-stage Advanced-stage p-value I II III p-value 

CTCF  
mutated  25 1 

N.S. 
22 4 

N.S. 
16 7 3 

0.050 
non-mutated 58 12 57 13 29 21 20 

RPL22  
mutated  40 1 

0.005 
34 7 

N.S. 
17 19 5 

0.004 
non-mutated 43 12 45 10 28 9 18 
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B) 

  
DFS OS 

  
Univariate Multivariate Univariate Multivariate 

Stage 

Early 
37.40 

(2.067-
91.2) 

0.006 N.S. 

42.57 
(2.067-
91.20) 

0.004 N.S. 

Advanced 
15.37 
(4.87-
91.00) 

34.47 
(6.30-
91.00) 

Grade 

I 
50,33 
(2.07-
91.02) 

0.003 N.S. 

52.83 
(2.067-
91.20) 

<0.001 
8.26 

(62.50-
1.10) 

0.04 II 
30.28 
(9.70-
79.57) 

33.10 
(9.70-
79.57) 

III 
26.38 
(4.87-
67.60) 

32.50 
(6.30-
67.60) 

Histology Endome-
43.63 
(5.47-

<0.001 8.90 
(29.90-

<0.001 44.23 
(2.067-

<0.001 N.S. 
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trioid 37.40) 2.71) 91.20) 

Serous 
21.47 

(2.067-
91.20) 

29.53 
(6.30-
38.6) 

TCGA 
groups 

POLE 
55.4 

(24.27-
77.43) 

0.004 N.S. 

55.4 
(24.27-
77.43) 

0.03 N.S. 

MSI 
38.33 
(11.9-
74.93) 

38.6 
(11.9-
74.93) 

CNL 
34.43 

(2.067-
91.00) 

42.57 
(2.067-
91.00) 

CNH 
27.7 (4.87-

91.2) 

30.53 
(6.30-
91.2) 
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Regarding the prognostic value of individual gene mutations in our 

series, mutations in POLE, PTEN PIK3R1, ARID5B and PPP2R1A are 

correlated with better patient outcome as seen in Table 13B. MSI, 

which was more frequent in early stages: 11/15 (73.3%) stages I-II vs. 

4/14 (26.7%) stages III-IV (p=N.S), lacked prognostic value both for 

PFS and OS (Annex 14).  

 

4.2.2. Impact of 12 genes RF model in the clinical stratification 

of the disease 

RF predictive model for a dichotomous variable (CNL or CNH) was 

trained using the mutational profile of the 13 selected genes from 

148 patients analyzed by the EC TCGA project. To train the model, 

genotyping of 12 genes was included as categorical dichotomous 

variables (the so called 12g-model) (Table 14 and Table 15). The POLE 

and MSI groups were directly defined by the presence of POLE 

mutations and MSI respectively. 

Our series of 96 EC patients was stratified into the four TCGA 

prognostic groups based on the genotyping data of the 12-gene NGS 

panel, MSI status, grade, stage and histology: POLE, 16/96 (16.7%); 

MSI high, 12/96 (12.5%); CNH, 20/96 (20.8%); and CNL, 48/96 

(50.0%). As mentioned above, CNH and CNL groups were classified 

with our RF adjusted model.  
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Table 14: Contribution of evaluated parameters to 12g-model. The importance of 

each parameter is measured as the mean decrease of the Gini index of the 

variables in the models. 

Parameter 12g-model 

TP53 12.4658 

PTEN 6.094 

CTNNB1 3.4884 

ARID1A 1.8658 

PPPR1A 1.5958 

CTCF 1.1435 

PIK3CA 0.5644 

KRAS 0.3994 

FBXW7 0.4852 

PIK3R1 0.4506 

ARID5B 0.2425 

RPL22 0 
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Table 15: Performance parameters of the 12g model in the validation series.  

 12g-model RFA 

Accuracy (95% CI) 0.9753 (0.9136-0.997) 

No Information Rate 0.6049 

Kappa 0.9483 

McNemar’s test p-
value 

1 

Sensitivity 0.9688 

Specificity 0.9796 

Positive Predictive 
Value 

0.9688 

Negative Predictive 
Value 

0.9796 

Prevalence 0.3951 

Detection Rate 0.3827 

Detection prevalence 0.3951 

Balanced accuracy 0.9742 
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Figure 48: Surrogate of tumor mutational burden (TMB) across four EC prognostic 

subtypes evaluated by non-parametric test. CNH group shows the lowest 

mutational rate, whereas POLE mutational rate is the highest. 

 

The POLE group was characterized by a POLE EDM mutation in all 16 

cases and by the presence of MSI in 3 of the 16 cases (18.7%). This 

group presented the highest mutational ratio with a median of 94 

variants/case (range: 31-171) compared with the other groups 

(p<0.001). MSI group was characterized by the presence of MSI in 

100% of the cases and had no POLE mutations. This group presented 

a lower median of alterations than POLE with 40 variants per case 

(range: 19-93). Among these alterations, the most affected genes 

were PTEN (75.0%), ARID1A (58.3%) and RPL22 (83.3%). CNH 

presented a median of 32 variants per case (range: 19–96) and was 
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characterized by mutations in TP53 (75%), low frequency of PTEN 

mutations (5%) and alterations in PPP2R1A (45%). Finally, CNL 

showed a median of 37 variants per case (range: 13–138) (Figure 48). 

Gene by gene analysis of these alterations revealed that: PTEN 

(60.4%) and TP53 (14.6%) presented the highest and the lowest 

mutation rate respectively, with alterations in other genes as follows: 

PIK3R1 (35.4%), ARID5B (41.7%), CTCF (31.3%) and RPL22 (39.6%). 

The distribution of mutations across groups in EC dataset is depicted 

in Figure 49 (Annex 16). 

 

 

Figure 49: Distribution of genetic alteration across the four EC prognostic 

subtypes. The four-groups classification presents a particular profile of mutations, 

being a distinctive characteristic. 



 

 
158 

 

The Log-Rank test was used to evaluate the prognostic capacity of 

our molecular classification. This test confirmed that the molecular 

stratification of our patients revealed differences in both PFS 

(p=0.0037) and OS (p=0.030), suggesting that the POLE and CNH 

biotypes constituted the best and the worst prognostic groups 

respectively, mirroring the groups defined by the TCGA (Figure 50). In 

addition, a multivariate analysis was performed, being statistically 

significant only for histology (Table 13B). 

 

 

Figure 50: Kaplan-Meier plots assessed by log-rank test to evaluate the impact of 

the 12g model over outcome parameters. A) DFS and B) OS according to 12g 

stratification. Both parameters reach the statistical signification. 

 

4.2.3. CNV-based classification: Validation of the 12g model 

The 12g Model classify the CNL and CNH group based on the 

mutational profile. Due to the differential approach between the 

establishment of groups in the TCGA study and this study, a 

A B 
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validation step to confirm the CN profile concordance was performed 

in a 14-samples subpopulation. All parameters of GI and genomic 

scars were combined to obtain the CN profile of each sample (Figure 

51). As seen in Figure 51, clustering of samples reproduces the CNH 

and CNL classification from 12g algorithm.  

 

 

Figure 51: Unsupervised clustering of EC patients based on CN patterns.  A) GI 

parameters derived from CNVkit pipeline and B) Genomic Scars from scarHRD 

package.  

 

In addition to unsupervised clusterization based on CN data, the 

presence of each parameter per case was quantified. Genomic Scars, 

as shown in Figure 52, presented higher incidence in samples 

classified as CNH, specially enriched in LST events. 

 

A B 
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Figure 52: Distribution of genomic scars among the 12g subpopulation, stratified 

by 12g Model. Incidence of A) LOH events, B) LST events, C) TAI events and D) HRD 

score. 

 

Regarding the distribution of GI parameters, obtain from CNVkit, 

between CN groups established by 12g algorithm, CNH group 

harbours higher presence of GI events, being specifically pronounced 

the distribution of LOH at event level (p=0.0071) and percentage of 

genome altered (p=0.007) represented in Figure 53.  

However, even if 12g-Model classification seems to coincide with CN-

based classification, GI parameters as well as Genomic scars, should 

be used as a whole to define GI pattern and not independently. 

 

A B 

C D 
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Figure 53: Distribution of GI parameters between CNV-based groups. Non-

parametric tests evaluating A) LOH events and B) Percentage of genome altered by 

LOHs among the 12g subpopulation, stratified by 12g Model. 

 

4.2.4. Expression analysis 

Considering all the previous information generated from 12g cohort, 

a transcriptional approach was also perform, in order to complete 

the analysis. Due to the differential clinical implication of GI between 

OC and EC, the characterization of the CNH group was especially 

interesting, since could shed light to this difference.  However, aiming 

to sub classify this group, CNH cases were faced to CNL. 

Unsupervised analysis correctly grouped samples according to 12g 

classification (Figure 54), showing a differential expression pattern.  

A B 
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Figure 54: Unsupervised analysis of subpopulattion of cohort 3 classified by 12g 

model. Results from A)PCA plot and B)Heatmap. 

 

When DE analysis was performed between 12g-groups, samples 

seems to group in three different clusters; C1 mainly enriched in CNH 

cases,  C2 enriched in CNL cases and C3 with mixed presence of 

cases. DE resulted in four main genes differentially expressed 

between groups (Figure 55B).  

 

 

Figure 55: Clusterization of subpopulattion of cohort 3 after DE analysis. Results 

from  A)PCA plot and B)Heatmap. 

A B 

A B 
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The clinical implication of the 3-cluster classification was evaluated. 

Survival analysis facing Cluster 1 and Cluster 2 and 3 was significant in 

terms of PFS (p=0.039) and OS (p=0.0016), presenting the worst 

prognosis the C1 cluster enriched in CNH patients (Figure 56).  

 

 

Figure 56: Log-rank test evaluating the clinical impact of 12g-based classification. 

Analysis regardin A) PFS and B) OS and DE-cluster based classification for C)PFS and 

D)OS. 

 

In addition, DE analysis was also performed exclusively in the CNH 

population, classified by clusters. CNH samples where perfectly 

A B 

C D 



 

 
164 

 

clusterized when assessed DE. Five DE genes were obtained from this 

comparison (Figure 57)  

 

Figure 57: Clusterization of patients after DE analysis in CNH population. Results 

from A) PCA plot and B) Heatmap. 

 

 

Figure 58: Log-rank test evaluating the clinical impact of cluster-based 

classification. Analysis regarding A) PFS and B) OS in CNH subpopulation. 

A B 
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This clusterization also maintains the prognostic impact of the 

classification in terms of OS (Figure 58).  

 

4.3. In vitro characterization 

In cancer research, cell culture systems represent the starting point 

of any study. For that reason, the existence of appropriate models 

that predict clinical efficacy and mimic the evolution of the disease is 

a need. Hence, characterizing and understanding the molecular 

biology of tumours allow the generation of suitable in vitro models. 

 

4.3.1. Drug-sensitivity analysis of ovarian Cancer cell lines: IC50 

calculation 

Pharmacological characterization of the different cell lines was 

performed, obtaining corresponding dose-response curves for 

PM01183 (Lurbinectedin), Olaparib, Niraparib and Talazoparib in 

each cell line. Thus, IC50 values were established in the OC panel.  

First, culture conditions were set up for each cell line.  Regarding 

PM01183, exposure times of  1, 24 and 72 h were tested. While 1 h of 

treatment was discarded due to not reaching IC50 inside the 

evaluated range of concentrations, 24 and 72 h gave comparable 

results (Figure 59A). PARPi, evaluated at 72, 96 and 120 h after 
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treatment, showed a proportional decrease in IC50 value with 

increase of exposure time (Figure 59B).  Based on these results, and 

considering that tested drugs will be administered also in 

combination, 72 h was chosen as optimal treatment condition for 

both type of drugs.  In this way, cells were seeded. After 24 h, drugs 

were added with fresh medium and maintained during 72 h. Finally, 

cell survival was evaluated by MTT assay. 

 

 

Figure 59: Setting-up range of drug-concentration and exposure time to perform 

cytotoxic assays. Tested conditions to establish best treatment scheme for A) 

Lurbinectedin and B) iPARP in monotherapy through three different time lapses. 

 

Once established optimal time exposure and concentration ranges, 

cytotoxic assays were performed. All evaluated cell lines presented 

high sensitivity to PM01183, being the IC50 lower than 1 nM, except 

from OVCAR-3 (Figure 60). In the case of OVCAR-3, was not possible 

to apply the same treatment scheme.  

A B 
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Figure 60: Cytotoxic assays of PM01183 in monotherpy. Drug-response curves of 

OC panel cell lines to PM01183. 

 

Concerning the PARPi, even if cell lines were also sensitive, the active 

range of the drugs was in the M scale (Figure 61).  The most 

sensitive cell line to PM01183 (0.46 nM) and to different PARPi 

(ranged between 0.01-10 M) was A2780, while SKOV3 presented 

the lowest sensitivity, excluding OVCAR3. Talazoparib was the PARPi 

that presented the lowest IC50 values in comparison with Olaparib 

and Niraparib, being the most effective (Regarding combination 

treatment, as mentioned above, due to high sensitivity of cell lines to 

single drugs, the obtention of accurate results to prove synergistic 

effect was not feasible with this methodology.   
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Table 16). 

 

Figure 61: Cytotoxic assays of PARPi in monotherpy. Drug-response curves of OC 

panel cell lines to Olaparib, Niraparib and Talazoparib. 

Regarding combination treatment, as mentioned above, due to high 

sensitivity of cell lines to single drugs, the obtention of accurate 

results to prove synergistic effect was not feasible with this 

methodology.   
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Table 16: Drug sensitivity data for tested OC cell lines and treatments.   IC50 

values for PM01183 and different PARPi in monotherapy. 

Cell line PM01183 (nM) Olaparib (mM) Niraparib (mM) Talazparib (mM) 

A2780 0.8764 3.9 0.98 0.06 

A2780 CIS 0.4315 2.9 1.5 0.003 

PEO6 0.6047 5.1 0.87 0.091 

TOV112D 0.7191 21.7 3.5 1.16 

SKOV3 0.7153 105.7 21.65 25.31 

OVCAR-3 4.128 - - - 

 

Only TOV112D, which presented lower single-drug sensitivity, 

showed a significant synergistic effect (CI>1) for the combination 

(Figure 62). 

 

 

Figure 62: Cytotoxic assays of PARPi and PM01183 in combination. Dose-response 

curve for combination treatment of PM01183 and Olaparib in TOV112D cell line. 
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4.3.2. Generation of PM01183-Resistant cell line and functional 

characterization 

As a final step, we decided to study the problem of resistance, 

complication that would lead to treatment failure and therefore, 

there is an urgent need of understanding its molecular mechanisms 

in order to overcome them. 

Treatment of A2780 cells with one shot strategy, expose to 10 nM of 

PM01183, resulted in significant growth delay, slow recovery periods 

and extreme morphological changes, characterized by stellated 

morphology, long prolongations, and significant increase in cellular 

volume.  These cells were unstable, not being possible to maintain 

them in culture. After the first pass, cells stopped growing and finally 

died.  

Due to that, continuous exposure was the selected approach. Even 

though changes were less prominent, the possibility of culturing 

them, allowed the generation of the resistance over time. In this way, 

cells continuously treated with IC30 concentrations of PM01183 were 

maintained in culture until pass 8th. At this point, IC50 values were 

re-evaluated. The IC50 concentration of PM01183 resistant cells was 

1.5 nM compared to 0.4 nM in the original parental cell line, a 3.75-

fold increase (Figure 63Figure 63). Cell line at the eighth passage of 

treatment was considered partially resistant (A2780-PM) and 

changes at functional and genomic level were evaluated. 
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Figure 63: Quantification of changes in the IC50 values after the induction of 

PM01183 resistance. Modified IC50 after generation of PM01183 resistant cell line. 

Comparison between parental and partially resistant cell lines. 

 

To evaluate alterations in the doubling time, cell growing ability was 

analysed over time.  Different cell lines (A2780, 2780-cis and A2780-

PM) were seeded at equal concentration and then cells were counted 

at five different time; 0, 24, 48, 72 and 96 h. While there were no 

significant differences between the A2780 cell line and the A2780-cis, 

A2780-PM exhibits a much lower growth rate (Figure 64), with a 

delay in cell cycle progression that was also confirmed by the analysis 

of cell cycle. Significant difference in the proliferation capacity/ability 

between parental cell line and their corresponding PM01183 

resistant sub-line indicates the emergence of a resistant phenotype. 
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Figure 64: Doubling-time assay. Evaluation of growth capability changes induced 

by PM and CIS resistance in A2780, A2780-cis and A2780-PM. 

 

Cell lines characterization also included cell cycle analysis in the 

parental and partially resistant cell lines. Observed variations, 

although subtle, showed a delay in the advancement of the cell cycle 

in partially resistant cell line to PM01183 compared to parental line. 

Treatment with PM00183, promoted an accumulation of cells in the 

G0/G1 phase (Figure 65). Treatment induced an accumulation of cells 

in the G0/G1 phase concomitantly with a decrease in the S phase of 

the cell cycle. This blockade in the advance of the cell cycle, 

consistent with the doubling time studies, may play an important role 

in the PM01183 resistant phenotype. 
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Figure 65: Cell cycle analysis. Quantification of fluctuations in cell cycle 

components before and after PM treatment in primary and resistant cell lines, 

A2780 and A2780PM. 

 

To investigate DNA-DSB repair pathway status in cell lines and 

characterize the signalling pathway activation following drug 

treatment, expression of H2AX, RAD51 and PARP were measured by 

western blot in parental and resistant cell lines (Figure 66). 

In general terms, results showed a trend to increase the expression 

ofH2AX during treatment in parental and PM-resistant lines, with 

high basal levels in the last one, while CIS-resistant remains 

unaffected. Regarding RAD51 expression, this seems to decrease in 

parental and CIS-resistant, while PM-resistant maintains elevated but 

constant values (Figure 66). No significant decrease in the intact form 

of PARP was evident in any of the cell lines. 
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Figure 66: Analysis of HRR-related proteins by Western blot following drug 

treatment. Differential expression between parental and PM01183 and cisplatin 

resistant cell lines illustrated in A) Western blot gel and B) Protein normalized 

quantification from western blot raw data. Levels of H2AX, RAD51 and PARP were 

evaluated using -tubulin as loading control. 

 

Although it is necessary to extend these studies to obtain valid 

biological conclusions, the most relevant data are the high levels of 

phosphorylated histone observed in the A2780-PM following 

PM01183 treatment, without a change of RAD51 thus suggesting the 

ability of this cell line to sense and therefore repair DNA damage. The 

low levels of PARP observed in A2780-cis can possibly explain the 

A 
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high sensitivity of this line to the different PARPi as well as to 

PM01183, although it is resistant to cisplatin.
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5. Discussion 

Over the past decades, there have been rapid advances in high-

throughput technologies, which enable a range of genomic analyses 

to quantify the different layers of biological elements that contribute 

to the emergence and development of cancer. These variations in 

cellular machinery are driven by molecular aberration in several 

omics layers such as genome, epigenome, transcriptome, proteome, 

and metabolome within cancer cells191. 

The advent of high-throughput technologies has permitted the 

growing of system biology and multi-omic approaches192. In this 

particular context, the use of integrative analysis is mandatory to 

depict cancer at multiple molecular levels and move forward towards 

the precision medicine paradigm193  

The integration and analysis of these multi-omics datasets is a crucial 

and critical step to gain actionable knowledge in a precision medicine 

framework. Integrated approaches allow comprehensive views of 

cancer phenomena. This integration provides a platform to connect 

the genomic or epigenomic alterations to transcriptome, proteome, 

and metabolome networks191. Focusing on the analysis of the 

generated data, bioinformatics has always had a central role and, 

hence, powerful and sophisticated computational tools have been 

developed to identify the interconnection between them194. Thus, a 

comprehensive recognition of molecular networks based on multi-

omics data has an important scientific role to understand the 
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molecular mechanisms of cancer.195. The computational approaches 

play a central role in improving our current cancer management 

capabilities and are mainly based on ML techniques and other 

techniques such as graph analysis196-198.  

The main goal of the precision oncology research driven by multi-

omics data is to develop predictive/prognostic models that are 

refined by experimental validations. Hence, selecting patients based 

on personalized multi-omics data and stratifying them for prognosis 

or outcome194,199. 

In this context, several efforts have been made to generate 

comprehensive multi-omics profiles of cancer patients. TCGA, 

(https://portal.gdc.cancer.gov/), which provides detailed clinical, 

genomics, transcriptomics, and proteomics data for a variety of 

cancer types is a good example of this kind of approaches198. These 

studies have been undeniably useful in the field of oncology, helping 

to decipher the molecular landscape of multiple tumors and working 

as a hypothesis-generator of a wide number of research works200. 

However, the deepness and hugeness of this type of projects is a 

limitation when translating them into the clinics.  For that reason, 

there is a need to reproduce these classifiers in a simplified and more 

suitable approach, enabling their use in clinical routine. 

Based on all the previously exposed data arises the hypothesis and 

objectives of this research, to develop an integrative prognostic and 
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response-predictive model relying on generated multi-omic data, 

facilitating the stratification and clinical guidance of gynecological 

patients. 

a. OC approach 

The picture of OC shifted after the publication of the OC-TCGA in 

201152. From now on, the research started to focus on the study of 

alterations in the DNA HRR pathway and its clinical implications, 

together with the development and approval of targeted drugs 

against that such as the PARPi201. The TCGA project showed that 

defects in HRR genes were presented in almost 50% of cases202. 

Hence, half of tumors will have to lay on more error-prone systems 

to repair DNA-damage, such as NHEJ, leading to an increased GI, also 

called “Genomic Scars”65. These alterations serve as an indirect 

measure of HRD as they represent a permanent historical footprint of 

genomic changes induced by DNA repair deficiency, irrespective of 

the underlying etiology203. The main clinical impact arrives when the 

assessment of GI through omic-based algorithms showed association 

with better prognosis and response to platinum-based chemotherapy 

and PARPi, even improving the predictive power of the until-now 

gold standard, BRCA mutations203,204. At this point, the key 

consequences of HRR defects in the development of tumours 

reached enough attention to focus research in that direction.  

However, interpreting the consequences of alterations in HR-related 

genes remains challenging since only some present the predictive 
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value, depending on its specific function within the repair process 

and the type of mutation involved167. Low frequency of the individual 

mutations also complicates the assessment of their relevance205. In 

addition, different studies have shown that nearly the 20% of patient 

presented GI in absence of HRR mutation,  also benefiting from 

Platinum-based chemotherapy and PARPi206. Therefore, limiting the 

evaluation of HRD phenotype to HRR-gene panel would restrict the 

number of patients that would benefit from these therapies. Due to 

that, the assessment of GI status as a surrogate of HRD started to be 

present in different clinical trials including PAOLA207, PRIMA208, and 

VELIA209, confirming its clinical relevance as a predictive and 

prognostic biomarker. Consequently, the identification of GI has risen 

as an essential tool in OC and become a challenge for the selection of 

patients that will benefit from these therapeutic approaches. 

However, even though GI-based (or equivalently HR-based) 

stratification would ideally be useful to understand individualized 

treatment options for patients. Otherwise, the lack of clinically 

validated academic tool together with the limited access to testing in 

many countries and associated socioeconomic challenges of the 

available tools limit its widespread use in clinical routine51. 

- Technical and analytical methodology: CNV 

The lack of an academic tool in conjunction with the lack of a gold 

standard technology to decipher SCNAs patterns mainly respond to 

the complexity of this genomic feature210. At technical level, there 
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are several available approaches to determine CNV, from Array-

based technologies (aCGH and SNP array), affordable and relatively 

high-resolution assays211 to NGS-based solutions, such as WGS and 

whole-exome sequencing (WES). Sequence-based technologies have 

rapidly emerged as a viable option with higher resolution and 

accuracy, becoming primary strategies in this field212-217. However, 

there are still caveats that need to be overcome in every strategy. 

While aCGH and SNP array faces limitations regarding time-

consumption, limited resolution and poorer sensitivity and precision, 

especially in FFPE samples, NGS protocols tend to require big 

technical and bioinformatics efforts, not only related to preparation 

but also related to computing power, storage, and costs218,219. 

With the aim of outperforming all these limitations, in this project a 

tuning of both methodological and analytical approaches to identify 

and characterize GI was achieved. This analysis was performed by 

using a NGS-derived method to determine SCNAs by combining the 

interrogation of 170080 SNPs along the genome plus a DNA HRR-

genes custom panel. Thus, we are able to evaluate SCNAs at genomic 

level together with the interrogation of alteration in the HRR 

pathway without losing resolution, cost-effectiveness and avoiding 

the need of huge computational work. 

Along with the methodological approach, the challenge was to 

develop a bioinformatic tool able to accurately detect SCNAs159. At 

analytical/bioinformatics level, many algorithms have been 
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developed to facilitate CNV detection, but these algorithms are 

hindered by several factors220. However, despite improvements in 

CNV detection methods, the identification of CNV is still a challenging 

approach160,221.  

The first challenge was to identify pipelines that best suits our type of 

data and further analysis. In the absence of a standard analytical 

method for FFPE samples, we tested different available tools and 

selected three to be evaluated: Surecall, the commercial solution 

from Agilent; and two in-house pipelines based on CNVkit184 and 

saasCNV186 packages coded in python and R respectively. Reasons for 

this choice were in turn: feasibility to analyze FFPE samples using 

NGS strategy, adaptation to the computer resources available and 

possibility to use in targeted panels222,223. 

 

In general terms, these algorithms are constituted by four basic 

steps: mapping of reads and calculation of coverage; normalization; 

segmentation; and estimation of copy number160,224. Depending on 

the nature of the pipeline, the different steps are more open to 

personalization. Due to the aforementioned complexity of the 

determination, being able to adapt them is a considerable advantage. 

Hence, adaptation and parameter tuning was performed for each 

tested approach. This process enable us to identify the best 

parameter setting to obtain reliable results in the sense of being 
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endowed with the most predictive information, maximizing the 

sensitivity required for a clinical context.  

Due to the customizable nature of CNVkit pipeline, three different 

parameters were tested due to its relevance in CN calling. On the one 

hand, the addition of tumor burden, obtained by a specialized 

pathologist, as an input feature, was evaluated. Tumor samples are 

mostly contaminated by non-tumor cells. As a result, read count 

values do not completely reflect copy number of tumor cells. This 

introduces difficulties in calling copy number segments217. Values of 

50, 80 and 100 % of tumor content for the same sample were applied 

during the analysis (Figure 26). Results showed significant differences 

when applying different tumoral content in total number of CNV 

events (p=0.00046), as well as tendency in percentage of tumor 

altered and CN length. On the other hand, applied segmentation 

pipeline was also shown to be decisive when calling CNAs (Figure 24). 

The selected segmentation pipeline, due to higher reliability of 

events of greater length and the suitability to perform the following 

analysis to call LOH events, was CBS. Lastly, different p-values where 

tested to select and filter CN events (Figure 25). The proven fact was 

that using a restrictive filter does not mean losing CNV information 

while obtaining more reliable results. Thus p-value of 0.001 was 

chosen for the subsequent analysis.  

Whereas CNVkit offered a wide range of adjustable parameters, 

saasCNV and SureCall were quite limited in this regard, applying 
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default parameters and pre-filtering steps respectively. Additionally, 

selection and use of controls were diverse between pipelines. While 

saasCNV and SureCall approaches only allow the addition of one 

control sample, when running CNVkit, a panel of controls was 

applied. In both cases, 10 FFPE corresponding to peritumoral samples 

of the ovary were used. However, these divergences will mark the 

difference in later analysis, mainly in the step of CN calling. 

Following the adjustment, pipelines were benchmarked according to 

established GI parameters. Regarding calling of GI parameters 

between pipelines, significant differences appeared. These 

differences seemed to be related to the controls that had been used, 

normalization method, segmentation pipeline and default or 

personalized features applied on each pipeline (Figure 28). To 

evaluate the performance of these CN callers in terms of GI 

assessment, we used response to Platinum-based drugs as a 

surrogate of outcome. Hence, saasCNV presented the worst 

performance rate except for LOH calling, while CNVkit and Surecall 

were significantly higher (Figure 29). Similar results were obtained 

when comparing them to HRR gene mutations (Figure 30).  

Taking all this information into account, when comparing 

performances of these tools, CNVkit appeared as the most suitable to 

our data due to its customizable fashion as well as its good 

correlation with clinical outcome, being selected for further analysis. 
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- Mutational analysis 

Classically, the determination of HRD status has relied on BRCA1 and 

BRCA2 genotyping. However, other non-BRCA HRR genes have been 

also described to be implicated in the HRD phenotype, in a frequency 

between 4-9%, depending on the NGS panel used225. Additionally, 

preclinical data suggested that patients, whose tumors show HRD 

caused by other mutations in the HR pathway, may benefit from 

therapy with PARPi226. Due to its maintained clinical relevance, 

alterations in genes involved in the HRR pathways were also 

interrogated.  

In our series, 59.1% of cases presented HRR mutations, representing 

BRCA1 and BRCA2 the 27.4% and 13.6% of cases respectively (Figure 

22). The high frequency of the BRCA mutations in our series in 

comparison to other previously published data227 is due to the 

enrichment in BRCA mutated cases to optimize our GI status 

approach. We also identified mutations in other non-BRCA HRR 

genes, including PALB2 9.1 % (4/44), RAD54L 4.5 % (2/44), BRIP1 4.5 

% (2/44), ATM 4.5 % (2/44), ATR 2.3 % (1/44) and SLX4 2.3 % (1/44) 

(Figure 22). 

Whereas the detection of these mutations seems to be technically 

manageable, there are another caveats. First, several types of 

proteins are involved in protect genome integrity206. On the other 

hand, there are issues with the interpretation of the consequences of 

alterations in a clinical context such us variant selection, which 

includes in silico prediction of pathogenesis, might have an impact on 
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sensitivity prediction. Some of those mutations may not have a real 

loss of function and, hence, may not present the HRD phenotype. 

Besides, non-BRCA genes present low frequency of the individual 

mutations complicating the assessment of their relevance. This point 

still remains challenging167. Additionally, it has been describe that 

nearly 20% of the study population was HRD positive without having 

a BRCA mutation206, drawing attention to the fact that GI not always 

overlap HRR-gene mutation and suggesting higher accuracy of the GI 

score over an HRR gene panel to define an HRD phenotype. Due to its 

implication in the clinical scenario, especially regarding response 

prediction, approaches at different levels such as genomic scars, 

identifying HRD without knowing the underlying mechanisms are 

gaining relevance205,228,229. 

Finally, to expose the clinical advantage that a more comprehensive 

approach means over the mutational analysis, as previously 

underlined based on bibliography, we compare the ability of GI 

parameter and HRR mutation to predict response. Here we showed 

that GI parameter presented a better correlation with response than 

mutation. These differences respond to the nature of the 

phenomenon that we are analysing. While the interrogation of gene-

mutation brings us to the possible cause of GI, the evaluation of 

SCNAs bring us to consequence. Even if sometimes the specific cause 

of a genomic event is the data that we are looking for, in the case of 

HRD, the presence of GI will give us real information about the 
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current status and functionality of the pathway, directly impacting 

over clinical behaviour of the tumor228.  

- Model fitting 

Despite some GI parameters individually present better performance 

than mutations in the HRR pathway, there is yet space for 

improvement. For that reason, the possibility of combining genomic 

and transcriptomic data was interesting to explore. Besides 

representation of a complex phenomenon like GI, involves several 

biological and regulatory mechanisms. However, the combination of 

different biological layers remains a challenging process. Hence, the 

need to integrate multi-omics data has led to the development of 

new algorithms and methods that are able to extract biologically 

significant information of clinical relevance230. The identification of GI 

as a surrogate of HRD has risen as a prognostic and predictive tool in 

HGSOC204. Even though HRR-based stratification based on any 

alteration or effect in the genome is widely recognized as essential, 

many efforts have been made to obtain and clinically validate 

academic tools based on different approaches231-233.  

ML plays a leading role in the design and development of these 

studies191. This discipline has been proved to be capable of solving 

many biomedical problems, providing insights into the molecular 

mechanisms, revealing interactions between different omics, and 

have been used in prognostic tools193,230,234.  



 

 
190 

 

In this study, we established three single-source models based on 

SNPs, GI and RNA expression analysis and an integrative algorithm 

(Scarface model) built to predict response to DNA-damaging agents, 

particularly platinum-based chemotherapy, and PARPi.  

Proposed models are built on the basis of three layers: SNP deep NGS 

sequencing, CNV profile using in-silico algorithms and targeted 

RNAseq using HTG EdgeSeq technology. Each layer has its strengths 

and limitations, but ultimately, each one underpins the others. This 

design responds to the different mechanisms in which HRD is 

produced, trying to mimic the complex biological context (genomic, 

transcriptomic, epigenetic, etc…). These different levels of biological 

information could be better represented by a multi-omic 

approach235.  

Due to the large amounts of heterogeneous data generated by the 

different approaches, the removal of non-informative characteristics 

reveals to be a crucial step during the fitting process, simplifying the 

model and increasing its performance. Hence, feature selection 

selects the variables that contribute most to the prediction, removing 

the irrelevant or less important features that can negatively 

contribute to the performance of the model191,193.  

Feature selection was carried out by different strategies using 

ANOVA test, s2n ratio, significant parameters from logistic 

regression, recursive feature extraction236 and Boruta algorithm237. 
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Then, each set of selected parameters was tested coupled with a 

data mining algorithm. Several ML models (SVM, RF, NN, Decision 

Tree, and Naïve Bayes) were adjusted with different parameters and 

hyperparameters. Every possible combination between the algorithm 

and selected features was tested to ensure best performing. The 

Scarface model, constituted by the best single-source models, 

comprises 8 SNPs (Annex 10), 28 GI parameters and the expression of 

7 genes (Annex 11), and achieves an accuracy of 0.9615 and a kappa 

of 0.9128.  

However, even the great performance of the Scarface Score, single-

source models could also work as a suitable and efficient tool in the 

real clinical setting, helping to guide the clinical management of 

patients simplifying the approach and decreasing costs (Table 12). 

The lack of a gold standard for the definition and assessment of GI 

has motivated a wide number of studies to find an accurate 

approach. However, only two of them have been commercially 

approved: Myriad MyChoice® and FoundationOne CDx from 

Foundation Medicine®51. 

Those solutions, based on the identification of genomic scars, HRR 

gene mutations and LOH have proven their clinical utility in the 

context of clinical trial150,205. Notwithstanding, they all succeeded in 

the prediction of BRCA1/2 status, aim they were trained for. These 

tests, however,  do not cover other molecular mechanisms such as 
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epigenetic or gene expression, which causes a loss of information 

concerning other HRD-causing mechanisms independent from BRCA 

gene status occurs205,238.  

Due to the lack of possibility of comparing the Scarface model with 

gold standard tests, such as those above mentioned, we compare 

classification based on HRR genes mutations (only BRCA1/2 and 

including all HRR genes) and score from scarHRD pipeline188, facing 

them to our integrative algorithm. 

Stratifications based on BRCA1/2 mutation (pPFI<0.0001, pPARPi= 

0.0048) and whole HRR genes (pPFI < 0.0001, pPARPi = 0.0013 ) 

resulted significant regarding PFI and PFS to PARPi (Figure 23). In this 

particular case, the addition of other HRR genes together with 

BRCA1/2 when classifying patients improved the statistical power, 

adding a prognostic and predictive value to the survival analysis. 

However, as recently reported, they do not always overlap GI, 

suggesting higher accuracy of the GI score over an HRR gene panel to 

define an HRD phenotype239,240. 

On the other side, scarHRD pipeline was applied to compare the 

performances of the classifiers. This pipeline has been trained to 

obtain the genomic scars evaluated by the validated commercial 

solutions, LOH, LST, TAI and HRDscore. However, the results were not 

as good as expected. Differences regarding methodological and 

analytical procedures caused a loss of statistical significance when 
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analyzing our series; this could be due to several causes. Firstly, in 

this approach, GI data was derived from NGS data covering a 

backbone and a medium-size panel whereas myChoice kit was 

validated and calibrated by using aCGH. Secondly, in this approach 

CNVkit method is used with the parameters specifically tuned in our 

clinical scenario, including pre-analytical factors such as Tumor 

burden in the sample. The best results were obtained when the 

series was stratified based on the median number of LOH events 

(pPFI = 0.0071, pPARPi = 0.07) and median HRDscore (pPFI = 0.031, 

pPARPi = 0.28), only being significant for PFI and not PFS to PARPi 

(Annex 17, Annex 18).  

Nevertheless, the Scarface Model achieve the highest statistical 

significance for both platinum-based chemotherapy (p<2x10-16) and 

PFS to PARPi (p=0.00077), improving the predictive performance of 

until now-used classifiers (Figure 33). 

As aforementioned, the predictive algorithm was trained and 

validated in an ambispective, multi-centric and real cohort of HGSOC 

using PFI as an endpoint. Thus, information regarding PFS to PARPi 

was not as accurate as expected due to this real-life design. PFS to 

PARPi data was collected for different lines, different treatment 

combinations and schemes and different PARPi drugs, not being a 

suitable parameter to use for training and validating the model. Due 

to that, and admitting the presented algorithm also showed 

predictive value of HRR mutations in this clinical scenario, the model 
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should be evaluated in a cohort with homogeneous and available 

PARPi response to validate its clinical benefit in this specific scenario. 

With the Scarface model, we integrate GI parameters, equivalent to 

an HRD status that will more accurately differentiate patients 

according to PFI rather than the HRR mutations. In addition, 

information about gene expression is also provided, supporting the 

GI and contributing to the responder-phenotype processes. This 

approach has the advantage of studying the GI phenomenon as a 

whole at the genomic, chromosomal, and transcriptomic levels. 

In conclusion, the Scarface Score could constitute a useful academic 

tool to predict response for DNA-damaging agents in the clinical 

scenario of HGSOC and, potentially, other HRR deficient tumours. 

This algorithm covers the needs not accomplished by available and 

validated commercial solutions, addressing GI and the molecular 

biology of the tumor from a more comprehensive point of view. 

 

- Other clinical scenarios 

Besides, due to the fact that this model addresses GI from different 

points of view, it seems a plausible strategy to calibrate the model to 

predict response with different cut-offs in other tumors, in which GI 

may play an important role in response to therapy, such as advanced 

prostate cancer with BRCA mutations,  pancreatic cancer or TNBC. 
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Analogously, model could be adjusted to other similar drugs, such as 

PARPi51. 

The translational study associated with the POLA clinical trial 

(NCT02684318, EudraCT 2015-001141-08, 03.10.2015) was designed 

to describe the correlation between different GI parameters and the 

benefit of the treatment, establishing GI as a predictive biomarker in 

this clinical scenario.  In total, 57 cases were evaluated at the gene 

and genomic levels, defining those that presented HRD based on the 

mutational status of HRR genes (10 patients, 17.5%). BRCA1/2 tumor 

mutations were present in 10% of cases, which is below the 20% of 

germline and somatic cases reported in HGSOC (Figure 39)241.  

Regarding the correlation between HRD classifications based on 

mutational status and response, no significant association was found. 

The lack of predictive power of HRR gene mutations could be 

explained by differences regarding the characteristics of the 

population. Due to the nature of the population, with patients who 

have been previously treated with PARPis and, therefore, potentially 

mutated and responsive patients being excluded, the incidence of 

cases with BRCA mutations suffered an evident decrease. Clinical and 

methodological issues might also have an impact on the results. For 

instance, the fact that the genetic and genomic analysis was 

performed on the primary tumor and not at the moment of relapse, 

previously to study entry, could affect the concordance between HRD 

status and treatment response. The mutational/LOH patterns are not 
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reverted when a tumor recovers HR function, so they may not be 

accurate in predicting PARPi sensitivity in patients who have 

previously received and progressed on DNA damaging chemotherapy, 

such as platinum.  

A significant correlation between response and different GI 

parameters, such as loss events, mainly present in the OC cohort and  

HRD population was found. Besides, a correlation between different 

GI parameters and better response to the studied combination was 

established. The results concerning the OC population were 

particularly interesting, where a higher percentage of losses (p = 

0.021) appeared to be correlated with ORR (Figure 42A). At the same 

time, without reaching statistical significance, a trend was observed 

between the number of LOH events (p = 0.055) with LTRs (Figure 

42B). In addition, the total number of events was also significant in 

the log-rank test (Figure 42C). However, all these results should be 

considered as preliminar because of the limited sample size. 

Despite the promising results of GI parameters and its ability to 

predict response, the adjustment and application of the Scarface 

Model as validation was not possible due to the low number of cases, 

heterogeneous characteristics in the population and limited clinical 

data. However, it will be desirable to get well characterized and 

homogeneous populations to obtain a predictive model in the PARPi 
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context combining these pre-defined parameters and using response 

as the endpoint. 

On the other hand, due to the undeniable importance of this GI 

phenomenon as a biomarker, in this study, we have performed 

genomic characterization at CNV and SNV level of a panel of EOC cell 

lines, representing different histotypes. Somatic mutations, taking 

into account only evaluated panel of genes, highly correlate with 

those previously published171, except from SK-OV-3 and A2780 

related cell lines. SK-OV-3, presented alterations in MSH6 and EMSY 

while A2780 lack ATM and BRCA mutations but acquired alterations 

in MSH6, CHEK2 and ATR (Figure 44). Regarding CNV profiles, the 

evaluated cell lines showed a wide range of GI, from 5 to 50 % of 

altered genome, demonstrating the high dynamic range of this 

parameter, conferring a potential discriminant power (Figure 44). As 

expected, the most unstable genomes corresponded to HGSOC 

subtype. This characterization presents huge clinical relevance due to 

the indication of PARPi treatment beyond BRCA genes mutation and 

help to stratify tumors242. Small cell and endometroid histologies 

showed lower values. Interestingly, the mixed histologies (TOV112D 

and SKOV3), classically used as HGSOC models, were also grouped in 

C2, providing insights to a better knowledge and classification of this 

kind of tumors (Figure 45). However, we should be careful when 

evaluating GI and somatic mutations in cell lines. Their unlimited 

proliferation capability together with the passages previously 
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performed could imprint this type of profiles, being responsible of 

differences with bibliography243. 

The characterization of an OC cell line panel at genetic and genomic 

level, interrogating HRR pathway status and GI profiles, completes 

the molecular landscape and establishes the basis and breeding 

ground of future preclinical and clinical studies. 

 

b. EC approach 

Analogously to the case of OC, the evolution of the molecular 

landscape of EC was marked by the data generated in the EC-TCGA66. 

The stratification of EC patients has changed among the years, from 

the first subtype classification in 1983, which distinguished between 

Type I and Type II based on clinical and hormonal features75, until 

before-TCGA classification, predicated on tumor morphology and 

tumor grade (based on glandular architecture and nuclear grade), in 

addition to the genetic profiling of different histologic subtypes, that 

has led to the identification of early driver mutations244. 

However, techniques to determine histotype and grade in EC still 

have some caveat that need to be solved245-248. One of the main 

problems in the management of EC patients is inter-observer 

agreement when assigning histology and tumor grade by microscopic 

techniques246,249-252. In addition, the overlap between histologic 
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subtypes and grade determination, as the difficulties differencing  

grade 3 endometrioid carcinomas and serous carcinomas or the poor 

correlation of histology and grade between diagnostic and final tissue 

samples complicates final diagnosis253-255.  

Stratifications based on these data are associated with different 

natural histories, treatment scheme and patient outcomes, all of 

which will influence clinical decision making. Thus, accurate 

pathological assessment of histology and grade is essential in 

prognosis assessment and patient management252. However, this 

scenario is frequently idealistic. 

Those limitations present in our current system of EC classification 

and risk stratification have promoted researches aiming to identify 

new biologically informative tools256-260. 

The incorporation of molecular classification into the standard 

histologic classification would more precisely define the subtypes of 

EC and guide development and use of molecular diagnostic 

techniques and targeted therapies,  resulting in improved diagnostic 

accuracy and clinical outcomes261. 

In the post-genomic era, multi-omic information is redefining tumor 

classification. In this context, the arrival of the TCGA project 

completely changed current classification of EC and now constitutes 

an excellent source of data to mine prognostic models66. 
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In 2013, the TCGA reported a large scale, comprehensive, and 

integrated genomic analysis of 373 endometrial carcinomas. The 

analyses identified four categories of endometrial carcinomas with 

distinct clinical, pathologic, and molecular features.  However, even 

the information generated is extremely valuable and acts as an 

hypothesis generator, the comprehensive TCGA based approach is 

unaffordable in clinical scenarios, which require methodologies to be 

feasible, reproducible, and cost effective130. 

Aiming to overcome those limitations, we designed a small NGS gene 

panel with data from the EC TCGA dataset consisting of 13 of the 

most discriminant genes. Those selected were the genes with highest 

absolute and differential mutational frequency among the TCGA 

groups. Our objective was to develop a method based on the 

genotyping of only 12 genes with the definition and implementation 

of a reproducible model to classify EC into the four prognostic groups 

(POLE, MSI, CNL and CNH).  

The most challenging task was to define a surrogate to classify CNH 

and CNL groups, which currently requires sophisticated technology as 

well as technical and analytical training. To achieve this, a RF model 

(12g-algorithm) was built by using the EC TCGA dataset (Table 14). 

This 12 g model accurately defines CNH and CNL groups (97%) and 

considers the contribution of each gene to discriminate between 

groups (Table 15). Finally, we validated the model with our 

prospective and independent EC patients series resulting in a total of 
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20 cases classified as CNH (21%) and 48 as CNL (50%). These 

frequencies were similar to those reported by the TCGA (26% and 

39% respectively)66.  Due to the different approach between the 

establishment of groups in the TCGA study, based on CNV 

determination and this study, based on mutational approach, a 

validation step analysing CNV patterns was performed. Clustering of 

samples correctly reproduce the CNH and CNL classification from 12g 

algorithm as shown in Figure 51. 

As a whole, the classificatory algorithm showed a good correlation 

with the TCGA groups and matched its prognostic value, with 

differences in both PFS (p=0.0037) and OS (p=0.030) (Figure 50). In 

addition, 12g prognostic model classified the patients independently 

of IHC, thus avoiding the intrinsic inter-observer subjectivity. 

However, even though clinical impact was significative and genomic 

and genetic features were comparable to those of the TCGA groups, 

some discrepancies appeared in the incidence and distribution of 

alterations between them. Firstly, it should be highlighted that our 

cohort was significantly high in POLE mutations (16.7%) compared 

with the TCGA dataset (7%)66. This mismatch is presumably due to 

different NGS technical approaches implemented in the two projects. 

WES, used in the analysis of EC TCGA samples, achieved a lower 

coverage (20X) than the targeted panel which was implemented in 

our work (600X). Therefore, mutations with lower variant AF could 

not be detected in WES. However, the percentage of mutations 
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found in POLE hotspots (p.P286R and p.V411L) defined by the EC 

TCGA was concordant between both datasets; 5.3% (our series) and 

5.2% (TCGA series). In addition, filtering of alteration regarding 

annotation process could also impact in the number of variants 

finally selected and, hence, causing differences on incidence. This is 

particularly challenging in cases with rare variants, of which the 

effect on proofreading function is unclear. 

Additionally, the incidence of MSI was considerably different. While, 

TCGA series presented around 28-20% of instable cases, our cohort 

only identify 16.6 %. Even if differences would be expected when 

distinct methodologies are applied, in this case, both fragment 

analysis and IHC were performed, obtaining a 96% of concordance 

between them, reinforcing the main role of the size of the analysed 

series in frequency of MSI unbalance. 

Due to the relevance of the field, several research groups have also 

made great efforts to overcome these limitations and to identify the 

best combination of molecular markers to be used. With this aim, 

different approaches have been applied to reproduce prognostic 

classification simplifying the methodology.    

Two main studies, Leiden/Trans PORTEC and Vancouver/ProMisE, 

have evaluated approaches to generate practical and feasible 

molecular classification systems. Although the subgroups of these 

two studies are not identical to the TCGA study, they integrate similar 



 

 
203 

 

molecular alterations127-129,262. Similarly, the ProMisE/Vancouver 

group provided a molecular classification based on IHC of p53 as a 

surrogate of the CNH/CNL TCGA groups127,130. However, the 

aforementioned inter-observer variability implicit in IHC makes 

standardization difficult between labs. This is underlined by the 

discrete (70%) concordance found in our global series, which is 

significantly improved in the CNH subgroup (84%), between the 

determination of TP53 mutational status using IHC and NGS 

approach. 

Since the known relevance of clinicopathological parameters, besides 

sequencing and adjusting the 12 g-RF model, we trained another 

model including these features (histology, grade and stage) to study 

the influence of these parameters, the so-called CPP model. Although 

there was a slight improvement in the performance parameters of 

the RFA (Annex 19, Annex 20), it is important to consider that our 

series came from a monographic oncology hospital. Additionally, 

pathological assessment was performed by a single gynecological 

pathologist highly trained in the diagnosis of EC, possibly masking the 

subjective effect, which should be considered with this kind of 

determination. 

Taking all in account, the proposed approach overcomes subjectivity 

and technical difficulties related to the definition of CNH and CNL 

groups. The assessment of the mutational status by NGS technology  
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constitutes a highly objective methodology, drastically simplifying 

TCGA approach. Furthermore, the common availability of NGS and 

trained staff in clinical labs will facilitate the implementation of the 

proposed workflow in the diagnostic routine. 

c. Complementary transcriptomic assays  

Complementary transcriptomic analysis was mainly interesting to 

assess differences and similarities between CNH and HRD/high GI  

subgroups from OC and EC, due to their differential clinical 

implication regarding survival. The three different clusters obtained 

from DE analysis give some clues about the distinct causing events of 

GI (Figure 51). The fact  that C1 mainly enriched in CNH cases, and 

presenting worse prognosis while  C3 with mixed presence of cases 

and better prognosis  could be stratifying CNH patients with different 

prognosis, suggesting a differential pathways implicated in the high 

GI pattern (Figure 58). Interestingly, a strong similarity between CNH 

and HGSOC has been suggested. Consequently, it is likely that a 

subgroup of CNH-EC presented HRR deficiency119, similar to HGSOC, 

probably corresponding to CNH from the C3 cluster, with better 

prognosis. These results could provide a rationale for the use of 

PARPi in this subset of EC patients.  
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d. In vitro analysis 

The improved understanding of the molecular landscape of OC has 

also drawn attention to the unmet need of developing more accurate 

in vitro models that reflect the clinical behavior and genomic 

phenotype263,264. Hence, well characterized models will be useful to 

correctly guide patient and treatment selection, leading to higher 

response rates172. As aforementioned, HRD stratification appeared to 

be the most relevant molecular discovery in OC51. However, multiple 

studies revealed that alteration in this pathway not only respond to 

mutation in HRR-related genes but also by genomic scars or GI. 

Widen the concept of HRD by including GI allowed to capture 

clinically relevant information, and especially when obtaining 

correlation with drug response265. 

Thus, in addition to genomic profiling, response to Lurbinectedin and 

different PARPi, treatment scheme from POLA clinical trial,  was 

evaluated .  Analysis of dose-response curves was focused on 6 of the 

total panel of OC cell lines, all showing high sensitivity to PM01183, 

with IC50s lower than 1 nM, except from OVCAR-3 (Regarding 

combination treatment, as mentioned above, due to high sensitivity of 

cell lines to single drugs, the obtention of accurate results to prove 

synergistic effect was not feasible with this methodology.   
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Table 16, Figure 60). In the case of OVCAR-3 was not possible to apply 

the same treatment scheme due to longer doubling times, not being 

comparable. Different range should be applied in order to achieve 

accurate data.  Regarding, response to PARPi, Talazoparib was the 

PARPi that presented the lowest IC50 values (Table 16 and Figure 61),  

as previously reported266. 

The obtention of reliable results from the combination was not 

possible following the established methodology and treatment 

scheme due to the extremely high sensitivity of cell lines to 

PM01183. This limited the correct determination of combination 

index and synergies.  Although it is beyond the scope of this study a 

colony assay could shed light in this aspect267. Additionally, it will be 

interesting to discard possible toxicities of the drug beyond tumor 

cells. 

As a final step, we decided to front the problem of resistance, 

complication that would lead to treatment failure and therefore, 

there is an urgent need of understanding its molecular mechanisms 

and how to overcome them. We generated a PM01183 partially-

resistant model and characterized it in terms of proliferative 

potential, cell cycle distribution and HR-functionality. Two strategies 

for resistance induction were tested: One-shot and chronic exposure. 

In spite of one-shot strategy was more clinically relevant, its unstable 

resistance makes it impossible to work with268. Finally, PM01183 

resistant cell line was established over time through chronic in vitro 
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exposure to IC30 concentrations of the drug. Differences were 

observed between parent and resistant cells when evaluating 

proliferative and cell cycle assays (Figure 64, Figure 65), as well as 

IC50 values (Figure 63), evidencing the starting of a resistance 

phenotype.  However, this value did not achieve significant increase 

in order to consider cell line as resistant. 

Therefore this study presents considerable research value to those 

looking for better defined model systems with consistency to valid 

clinical phenotypes, completing the molecular landscape and 

establishing the basis and breeding ground of future preclinical and 

clinical studies. However, it is needed to wide and complete data 

regarding chemo sensitivity as well as proving significance correlation 

between genomic studies and in vitro assays, aiming to work as a 

basis to new clinical trials. Additionally, generation of PM partially-

resistant cell line will understand and overcome this phenomenon, 

being able to anticipate treatment failures. 
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6. Conclusions 

 

1. A Laboratory Developed Test (LDT) to obtain genomic 

instability status, based on combined NGS data from a HRR-

genes custom panel and SNPs sequencing, has been 

developed and validated in a retrospective High-Grade serous 

Ovarian Cancer cohort.  

2. An independent validation of the developed LDT 

demonstrated a significant correlation with different 

clinically-validated parameters of response to PARP inhibitors 

in the ovarian cancer cohort of the POLA clinical trial. 

3. Three independent models and an integrative ensemble one 

(The Scarface Score) have been validated to predict response 

to platinum-based chemotherapy in patients diagnosed with 

High-Grade Serous Ovarian Cancer.  

4. All models showed better performance than currently used 

gold standard biomarkers, showing clinical impact at 

Platinum-response level and other clinical outcomes like PFS 

to PARPi and overall survival. 

5. The 12g Model stratifies endometrial cancer patients 

according to genomic instability profiles. The model combined 

with POLE mutations and Microsatellite Instability data 
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reproduces endometrial cancer TCGA prognostic classification 

with 98% of accuracy.  

6. The 12g model define group of patients with different 

genomic instability patterns in endometrial cancer which 

concordance was verified.  

7. Genomic landscapes and cytotoxicity profiles of an ovarian 

cancer cell line panel have been assessed. This data was used 

to start the generation of a Lurbinectedin partially-resistant 

cell line. The generated information will constitute a 

hypothesis generator for subsequent analysis. 
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Annexes 

Annexed data 
 

Annex 1: Detailed inclusion and exclusion criteria for POLA Phase I/IIB clinical 

trial. 

Patients aged ≥ 18 years were eligible if they had histologically 

confirmed advanced or metastatic high-grade serous or endometroid 

(no mucinous nor clear cell) platinum resistant not refractory (not 

primary nor secondary refractory) ovarian, fallopian or primary 

peritoneal cancer, EC (any grade, not platinum refractory) or triple 

negative breast cancer; Eastern Cooperative Group (ECOG) 

performance status ≤ 2; life expectancy of ≥3 months; measurable 

disease per Response Evaluation Criteria in Solid Tumors (RECIST) 

criteria version 1.1; have receive at least one line of standard therapy 

for locally advanced or metastatic disease and  developed 

progression disease afterwards; hemoglobin ≥ 10 g/dL; absolute 

neutrophil count ≥1,500/µL; platelets ≥100,000/µ; total bilirubin ≤1.5 

times the institutional upper limit of normal (ULN); aspartate 

aminotransferase and alanine aminotransferase ≤2.5 times ULN; 

albumin ≥ 3 g/dL; creatinine ≤ 1.5 times the ULN or a creatinine 

clearance ≥30 mL/min. Patients were illegible if they had received 

previous treatment with a PARP inhibitor or lurbinectedin; received 

chemotherapy or radiotherapy within 2 weeks of the study entry; 

required treatment with inhibitors or inducers of CYP3A4; another 

malignancy within the past 5 years; know active severe disease or 
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immunosuppression; persistent grade ≥2 toxicities (Common 

Terminology Criteria for Adverse Events version XX NCI-CTCAE v. 

4.03) caused by previous treatment (excluding alopecia); resting ECG 

with QTc > 470 msec on 2 or more time point within a 24-hour 

period; existing gastrointestinal disorders that could interfere with 

the absorption of the study medication or had condition that 

preclude to swallow oral medication; baseline features suggestive of 

acute myelogenous leukemia or myelodysplastic syndrome.
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Annex 2: Clinical and molecular characteristics from OC cell line panel. Available information of clinicopathological, treatment and 

molecular features.  

Cell line Tissue Site Status 
Hormone 
Receptor 

Previous Tretment Diagnosis Reported alterations 

A2780 T PT   - Untreated E 
ATM p.Pro604Ser 

PTEN 
p.Lys128_Arg130del 

A2780CIS T PT GR - 
Chronic exposure to 

cisplatin 
E 

ATM p.Pro604Ser   
PTEN 

p.Lys128_Arg130del 

A2780PM T PT GR - Chronic exposure to PM E - 

PEO1 A MS   ER+ 
5-fluorouracil and 

chlorambucil 
C 

TP53 p.Gly244Asp  
BRCA2 p.Tyr1655Ter 

PEO1OLA A MS GR - - C - 

PEO4 A MS CR ER+ 
5-fluorouracil and 

chlorambucil 
C 

TP53 p.Gly244Asp  
BRCA2 p.Tyr1655Tyr  

PEO6 A MS A, TS ER+ 
Cisplatin, 5-fluorouracil 

and chlorambucil 
C 

TP53 p.Gly244Asp  
BRCA2 p.Tyr1655Tyr  

TOV112 - -   - - E TP53 p.Arg175His 

OVCAR-3 - -   - - A TP53 p.Arg248Gln 

SKOV-3 A - PS - - A 

APC p.Thr1556fs*9  
FBXW7 p.Arg505Leu 
PIK3CA p.His1047Arg 

TP53 p.Ser90fs*33 

SCCOHT1 - -   -   SCCHT1 - 
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Cell line Tissue Site Status 
Hormone 
Receptor 

Previous Tretment Diagnosis Reported alterations 

BIN67 P MS   - - SCCHT1 SMARCA4 c.2438+1G>A 

PEA1 PE MS   ER+ Untreated C 
BARD1 p.Arg658Cys 

TP53 p.Cys242Alafs*5. 

59M A MS   - - HGSOC - 

TO14 O MS   ER-   C TP53 p.Cys277Phe 

PEO14 A MS RL ER- 
Cisplatin and 
chlorambucil 

C TP53 p.Cys277Phe 

PEO23 A MS   ER- Untreated C TP53 p.Cys277Phe 

PEA2 PE MS RL - 
cisplatin and 

prednimustine 
C 

BARD1 p.Arg658Cys 
TP53 p.Cys242Alafs*5 

* All cell lines presented Ovarian Origin from Female patients, epithelial morfology and adherent growing. Site: PT, Primary  tumor r MS, metastasic site. Tissue: T, Tumor, A, ascitis, P, pelvis, O, 

omentum or PE, Pleural effusion. Status: GR, Generated resistance, CR, Clinical resistance, A, Advanced stage, TS, Terminal stage, PS, Primary tumor and RL, relapse. Hormone receptor: ER+, 

Oestrogen positive and ER-, Oestrogen negative. Diagnosis: E, endometrioid, C, cystadenocarcinoma, SCCHT1, small-cell carcinoma hypercalcemic Type 1, A, adenocarcinoma and HGS, High-grade 

serous.. All this information has been obtain from different databases and bibliograpfy: ATCC, ECCAC, Cellosaurus, 10.1371/journal.pone.0122284 and 10.1038/ncomms8419.  
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Annex 3: Profile of STR markers (Identifilier®). Characterization of OC cell line panel at STR-markers level to ensure the fidelity regarding 

the public profiles. 

*All cell lines were X for Amelogenin marker.
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Annex 4: Sequencing metrics cohort 1 

Sample 
Total aligned 

 Reads 
Total aligned  

 Reads (%) 
Targeted 

Aligned reads 
Read 

Enrichment (%) 
Median Region 
Coverage Depth 

Target 
Coverage 100X (%) 

12482 22277084 7.34 3803089 68.51 257 74 

13742 98968514 32.60 4444242 21.61 333 83 

15092 18214140 6.00 5176898 73.48 232 74 

15296 24190126 7.97 4305008 65.15 251 75 

15403 25076454 8.26 4701465 73.31 337 81 

16732 11853728 3.90 2121826 62.80 127 59 

16733 13741696 4.53 5545198 61.94 220 72 

16734 19793354 6.52 2208859 62.61 209 70 

16735 10246434 3.38 3766684 66.33 88 45 

17561 13741696 4.53 5883440 61.94 127 58 

18389 23076694 7.60 5410662 64.82 205 69 

18720 22388788 7.38 1712684 46.26 145 60 

13726 23701142 2.91 924006 62.76 236 77 

13727 16690956 2.05 2254052 44.32 104 51 

13728 23425194 2.88 4195091 46.49 173 69 

13729 19406064 2.39 5211536 55.82 172 68 

13730 22081854 2.72 5140839 60.65 226 77 

13732 20212616 2.49 4385546 56.35 181 70 

13734 22565478 2.77 1977853 44.36 164 68 
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Sample 
Total aligned 

 Reads 
Total aligned  

 Reads (%) 
Targeted 

Aligned reads 
Read 

Enrichment (%) 
Median Region 
Coverage Depth 

Target 
Coverage 100X (%) 

13735 16817662 2.07 5577291 65.64 187 73 

13736 27440478 3.37 3690801 61.29 249 77 

13738 23831292 2.93 3792185 64.49 225 74 

13740 17606562 2.16 3308214 45.55 108 53 

15948 21679520 2.67 4407397 61.93 212 74 

15949 22644328 2.78 318424 61.51 234 77 

15950 20476602 2.52 4738696 61.94 199 74 

15952 74933690 9.21 3779027 31.24 413 84 

15953 9771584 1.20 700381 35.09 49 22 

15954 10723472 1.32 805311 53.99 98 49 

15955 19892626 2.45 2808450 62.05 208 74 

15956 20942190 2.57 4739107 54.16 180 69 

15957 28262764 3.48 496183 59.39 301 82 

15959 70256830 8.64 433802 64.56 775 86 

15961 24399080 3.00 3848533 57.75 236 77 

15962 22245538 2.74 4330348 66.31 235 78 

15963 54956126 6.76 669822 64.75 598 86 

15964 10915424 1.34 5049329 55.98 100 50 

15965 33281256 4.09 4050099 57.72 332 83 

15966 16207554 1.99 4723055 63.91 179 75 

15967 37139140 4.57 5603188 70.46 448 85 
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Sample 
Total aligned 

 Reads 
Total aligned  

 Reads (%) 
Targeted 

Aligned reads 
Read 

Enrichment (%) 
Median Region 
Coverage Depth 

Target 
Coverage 100X (%) 

15969 20633066 2.54 5492957 59.06 210 74 

15970 8652210 1.06 748620 61.01 101 50 

15974 32708974 4.02 2594118 67.06 384 84 

15977 18796972 2.31 1776993 48.90 151 65 
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Annex 5: Variant information cohort 1 

Sample 
Total aligned 

 Reads 
Total aligned  

 Reads (%) 
Targeted 

Aligned reads 
Read 

Enrichment (%) 
Median Region 
Coverage Depth 

Target 
Coverage 100X (%) 

12482 22277084 7.34 3803089 68.51 257 74 

13742 98968514 32.60 4444242 21.61 333 83 

15092 18214140 6.00 5176898 73.48 232 74 

15296 24190126 7.97 4305008 65.15 251 75 

15403 25076454 8.26 4701465 73.31 337 81 

16732 11853728 3.90 2121826 62.80 127 59 

16733 13741696 4.53 5545198 61.94 220 72 

16734 19793354 6.52 2208859 62.61 209 70 

16735 10246434 3.38 3766684 66.33 88 45 

17561 13741696 4.53 5883440 61.94 127 58 

18389 23076694 7.60 5410662 64.82 205 69 

18720 22388788 7.38 1712684 46.26 145 60 

13726 23701142 2.91 924006 62.76 236 77 

13727 16690956 2.05 2254052 44.32 104 51 

13728 23425194 2.88 4195091 46.49 173 69 

13729 19406064 2.39 5211536 55.82 172 68 

13730 22081854 2.72 5140839 60.65 226 77 

13732 20212616 2.49 4385546 56.35 181 70 

13734 22565478 2.77 1977853 44.36 164 68 

13735 16817662 2.07 5577291 65.64 187 73 

13736 27440478 3.37 3690801 61.29 249 77 

13738 23831292 2.93 3792185 64.49 225 74 
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Sample 
Total aligned 

 Reads 
Total aligned  

 Reads (%) 
Targeted 

Aligned reads 
Read 

Enrichment (%) 
Median Region 
Coverage Depth 

Target 
Coverage 100X (%) 

13740 17606562 2.16 3308214 45.55 108 53 

15948 21679520 2.67 4407397 61.93 212 74 

15949 22644328 2.78 318424 61.51 234 77 

15950 20476602 2.52 4738696 61.94 199 74 

15952 74933690 9.21 3779027 31.24 413 84 

15953 9771584 1.20 700381 35.09 49 22 

15954 10723472 1.32 805311 53.99 98 49 

15955 19892626 2.45 2808450 62.05 208 74 

15956 20942190 2.57 4739107 54.16 180 69 

15957 28262764 3.48 496183 59.39 301 82 

15959 70256830 8.64 433802 64.56 775 86 

15961 24399080 3.00 3848533 57.75 236 77 

15962 22245538 2.74 4330348 66.31 235 78 

15963 54956126 6.76 669822 64.75 598 86 

15964 10915424 1.34 5049329 55.98 100 50 

15965 33281256 4.09 4050099 57.72 332 83 

15966 16207554 1.99 4723055 63.91 179 75 

15967 37139140 4.57 5603188 70.46 448 85 

15969 20633066 2.54 5492957 59.06 210 74 

15970 8652210 1.06 748620 61.01 101 50 

15974 32708974 4.02 2594118 67.06 384 84 

15977 18796972 2.31 1776993 48.90 151 65 
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Annex 6: Germline BRCA mutations cohort 1. Details of alterations at germline 

level regarding BRCA1/2 gene. 

Sample Gene Alteration 

13726 BRCA1 c.3264dupT p.Gln1089Serfs*10 

13727 BRCA1 c.213-12A>G 

13728 BRCA1 c.3481_3491del11 p.Glu1161Phefs*  and  
c.3264depT p.Gln1089Serfs*10 

13729 BRCA1 Deletion exons8-13 

13730 BRCA1 c.4307_4308delCT p.Ser1436Phefs*4 

13732 BRCA1 c.4287CA> p.Tyr1429* 

13734 BRCA1 c.1961delA p.Lys654Serfs*47 

13735 wild type No informative 

13736 wild type No informative 

13738 BRCA1 c.5095C>T (p.Arg1699Trp) 

13740 wild type No informative 

13742 BRCA1 c.3770_3771delAG (p.Glu1257Glyfs) 

15948 BRCA1 c.68_69delAG p.Glu23Valfs*17 

15949 wild type No informative 

15950 wild type No informative 

15952 wild type No informative 

15953 BRCA2 No informative 

15954 wild type No informative 

15955 wild type No informative 

15956 wild type No informative 

15957 wild type No informative 

15959 wild type No informative 

15961 wild type No informative 

15962 BRCA2 c.2246_2261delGTGATACTGACTTTCA 
p.Ser749Asnfs*18 

15963 wild type No informative 

15964 wild type No informative 

15965 wild type No informative 

15966 wild type No informative 

15967 wild type No informative 

15969 BRCA2 c.6024dupG p.Gln2009Alafs*9 

15970 BRCA2 c.7435+1G>A 14% 

15974 BRCA2 c.2808_2811delACAA p.Ala938Profs*21 

15977 wild type No informative 
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Annex 7: Comparison of performances between CNV pipelines. Non-parametric tests to decipher strengths and weakness of applied 

pipelines. 

  CNVKit saasCNV SureCall 

Variable Group N 
Median 
[range] 

p N 
Median 
[range] 

p N Median [range] p 

Total 
number of 
events 

<median 20 
38.5  

[3-168] 
0.002 

21 
20  

[4-49] 
0.032 

19 
147  

[68-300] 
0.011 

>median 21 
64  

[32-102] 
21 

32  
[0-53] 

20 
204  

[146-240] 

Percentage 
of altered 
genome 

<median 21 
19.26  

[3.8-28.54] 
<0.001 

21 
51.52 

[3.44-89.71] 
1.000 

19 
41.33 

[15.39-86.65] 
0.001 

>median 20 
28.61 

[0.98-36.16] 
21 

46.3  
[0-90.75] 

20 
76.355 

[38.71-100] 

Total 
number of 
gain events 

<median 21 
8.5  

[0-57] 
0.044 

21 
0  

[0-21] 
0.900 

19 
25  

[1-80] 
0.007 

>median 20 
15  

[2-49] 
21 

0  
[0-35] 

20 
51 

[9-84] 

Percentage 
of genome 
altered by 
gains 

<median 21 
3.445  

[0-11.56] 
0.025 

21 
0  

[0-66.5] 
0.750 

19 
6.48 

[0.093-27.42] 
0.008 

>median 20 
5.92  

[0.77-13.12] 
21 

0  
[0-90.75] 

20 
17.28 

[3.44-27.7] 

Total 
number of 
loss events 

<median 21 
11  

[0-87] 
0.087 

21 
9 

[0-49] 
0.190 

19 
26 

[1-118] 
0.022 

>median 20 
16  

[4-42] 
21 

14  
[0-28] 

20 
66.5 

[17-104] 
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  CNVKit saasCNV SureCall 

Variable Group N 
Median 
[range] 

p N 
Median 
[range] 

p N Median [range] p 

Percentage 
of genome 
altered by 
losses 

<median 21 
2.93  

[0-10.1] 
0.083 

21 
16.59 

[0-89.71] 
0.950 

19 
12.14 

[0.034-56.98] 
0.009 

>median 20 
4.05  

[1.39-7.95] 
21 

21.72 
[0-45.89] 

20 
30.05 

[4.53-72.76] 

Total 
number of 
LOH events 

<median 21 
18  

[2-49] 
<0.001 

21 
7 

[0-19] 
0.008 

19 
82 

[10-193] 
0.899 

>median 20 
26  

[12-42] 
21 

13 
[0-29] 

20 
80 

[39-198] 

Percentage 
of genome 
altered by 
LOHs 

<median 21 
12.265 

[2.67-24.01] 
0.009 

21 
13.29 

[0-34.9] 
0.240 

19 
20.68 

[6.87-38.63] 
0.180 

>median 20 
16.94  

[0.77-25.1] 
21 

22.03 
[0-39.62] 

20 
28.845 

[13.91-39.4] 

Total 
number of 
LOH>15 mb 
events 

<median 21 
7  

[0-13] 
0.009 

21 
5 

[0-16] 
0.060 

19 
6 

[0-46] 
0.061 

>median 20 
11  

[3-20] 
21 

11 
[0-23] 

20 
12.5 

[0-25] 

Percentage 
of genome 
altered by 
LOHs>15 mb 

<median 21 
7.255  

[0-24.01] 
0.042 

21 
13 

[0-34.8] 
0.540 

19 
6.73 

[0-23.71] 
0.026 

>median 20 
13.57 

[4.53-22.08] 
21 

20.91 
[0-39.23] 

20 
9.98 

[0-29.29] 
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Annex 8: Correlation between HRD-based classification and different GI 

parameters.  Non-parametric tests to evaluate the grade of concordance between 

the presence of HRR-genes mutations and GI. 

Variable Group N Median [range] p-value 

Total number 
of events 

nonHRD 15 39 [3-136] 

0.068 HRD noNBRCA 7 68 [32-91] 

HRD BRCA 19 55 [17-168] 

Percentage of 
altered 
genome 

nonHRD 15 17.09 [3.8-32.25] 

0.006 HRD noNBRCA 7 28.82 [16.9-36.16] 

HRD BRCA 19 27.14 [13.77-34.71] 

Total number 
of gain events 

nonHRD 15 8 [0-36] 

0.120 HRD noNBRCA 7 25 [2-49] 

HRD BRCA 19 13 [3-57] 

Percentage of 
genome 
altered by 
gains 

nonHRD 15 1.86 [0-10.59] 

0.013 
HRD noNBRCA 7 8.52 [0.77-12.55] 

HRD BRCA 19 5.06 [1.2-13.12] 

Total number 
of loss events 

nonHRD 15 13 [0-52] 

0.870 HRD noNBRCA 7 16 [4-34] 

HRD BRCA 19 15 [0-87] 

Percentage of 
genome 
altered by 
losses 

nonHRD 15 2.95 [0-7.62] 

0.570 
HRD noNBRCA 7 4.2 [1.39-7.14] 

HRD BRCA 19 3.69 [0-10.11] 

Total number 
of LOH events 

nonHRD 15 18 [2-49] 

0.260 HRD noNBRCA 7 21 [12-42] 

HRD BRCA 19 25 [12-30] 

Percentage of 
genome 
altered by 
LOHs 

nonHRD 15 10.11 [2.67-24.01] 

0.050 
HRD noNBRCA 7 14.92 [9.48-25.1] 

HRD BRCA 19 16.94 [3.86-23.61] 

Total number 
of LOH>15 mb 
events 

nonHRD 15 6 [0-14] 

0.035 HRD noNBRCA 7 8 [5-20] 

HRD BRCA 19 11 [1-16] 

Percentage of 
genome 
altered by 
LOHs>15 mb 

nonHRD 15 6.35 [0-24.01] 

0.037 
HRD noNBRCA 7 11.22 [4.92-22.08] 

HRD BRCA 19 13.86 [0.49-21.72] 
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Annex 9: CNVkit performance. Ability of different pre-defined GI parameters to 

predict clinical outcome. 

Variable Group N Median (95% CI) pvalue 

Total number of 
events 

<median 19 11.67 (±0.411) 
0.015 

>median 22 20.60 (±10.42) 

Percentage of 
altered genome 

<median 20 11.667 (±0.149) 
0.008 

>median 21 33.6 (±11.850) 

Total number of 
gain events 

<median 19 13.63 (±1.57) 
0.088 

>median 22 20.60 (±9.17) 

Percentage of 
genome altered 
by gains 

<median 20 11.77 (±2.2) 
0.028 

>median 21 33.6 (±13.554) 

Total number of 
loss events 

<median 20 13.63 (±2.42) 
0.620 

>median 21 18.37 (±1.70) 

Percentage of 
genome altered 
by losses 

<median 20 11.77 (±2.236) 
0.210 

>median 21 18.37 (±2.009) 

Total number of 
LOH events 

<median 18 11.77 (±2.09) 
0.008 

>median 23 33.57 (±10.70) 

Percentage of 
genome altered 
by LOHs 

<median 20 13.63 (±2.273) 
0.057 

>median 21 33.567 (±11.621) 

Total number of 
LOH>15 mb 
events 

<median 20 14.267 (±0.671) 
0.280 

>median 21 20.6 (±11.901) 

Percentage of 
genome altered 
by LOHs>15 mb 

<median 20 13.80 (±2.19) 
0.110 

>median 21 20.60 (±11.83) 
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Annex 10: Parameter feeding SNP-Model.  

SNP Chr 
Position 

(GRCh38) 
Alleles Consequence 

Clinical 
significance 

rs876261 8 95230391 C>G None 
Not Reported 

in ClinVar 

rs142099227 X 102701669 C>A 
ARMCX5-
GPRASP2 : 

Intron Variant 

Not Reported 
in ClinVar 

rs13135475 4 39498624 
T>C 
T>G 

UGDH : 500B 
Downstream 

Variant 

Not Reported 
in ClinVar 

rs56747986 13 97118261 T>A None 
Not Reported 

in ClinVar 

rs540649069 4 97223716 T>G 
STPG2 : Intron 

Variant 
Not Reported 

in ClinVar 

rs761256207 X 70504827 G>A 
DLG3 : 3 Prime 

UTR Variant 
Not Reported 

in ClinVar 

rs13401599 2 834796 
A>G 
A>T 

LINC01115 : 
Intron Variant 

Not Reported 
in ClinVar 

rs562439697 3 14679706 
G>A 
G>T 

C3orf20 : Intron 
Variant 

Not Reported 
in ClinVar 
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Annex 11: Parameter feeding HTG-Model. 

Gene Location 
Cytogenetic 

band 
Size (bp) Function 

RUVBL1 
chr3:128,064,61
1-128,153,914 

3q21.3 89,304 

Activity ATPase 
associated with 
diverse cellular 

activities. 

ADORA2A 
chr22:24,417,87

9-24,442,357 
22q11.23 24,479 

Guanine nucleotide-
binding protein (G 
protein)-coupled 
receptor (GPCR). 

ABCD4 
chr14:74,285,26

9-74,303,062 
14q24.3 17,794 

ATP-binding cassette 
(ABC) transporters. 

ABC proteins 
transport various 
molecules across 
extra- and intra-

cellular membranes. 

PVR 
chr19:44,643,79

8-44,666,162 
19q13.31 22,365 

Transmembrane 
glycoprotein 

belonging to the 
immunoglobulin 

superfamily. 

PFDN2 
chr1:161,100,55
6-161,118,055 

1q23.3 17,500 

The encoded protein 
is one of six subunits 
of prefoldin, which is 
a chaperone protein 

that binds and 
stabilizes newly 

synthesized 
polypeptides. 

SIL1 
chr5:138,946,72
4-139,293,557 

5q31.2 346,834 

This gene encodes a  
N-linked glycoprotein 

with an N-terminal 
ER targeting 

sequence, 2 putative 
N-glycosylation sites, 
and a C-terminal ER 

retention signal. 
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Annex 12: Sequencing metrics of Cohort 4. 

Sample 
Total 

aligned 
 Reads 

Total 
aligned  

 Reads (%) 

Targeted 
Aligned 
reads 

Read 
Enrichment 

(%) 

Median 
Region 

Coverage 
Depth 

Target 
Coverage 

100X 

Target 
Coverage 

700X 

SNVs 
Reported  

10031 4598467 2.08 3803089 82.70 11543 100 99.17 40 

10293 1168220 0.53 924006 79.10 2963 99.17 92.95 21 

11218 3388612 1.53 2254052 66.52 6815 100 98.76 37 

11282 5124886 2.31 4195091 81.86 13150 99.59 99.17 44 

11525 6169307 2.79 5211536 84.48 15373 100 99.17 45 

12395 6105083 2.76 5140839 84.21 16774 99.59 98.76 35 

12447 5392192 2.43 4385546 81.33 12699 100 99.17 34 

12514 4677751 2.11 1977853 42.28 5491 99.59 95.02 41 

13033 6932913 3.13 5577291 80.45 16556 100 99.17 37 

13324 4712742 2.13 3690801 78.32 10862 100 99.17 40 

13618 4891463 2.21 3792185 77.53 11203 99.59 99.17 36 

13652 4133615 1.87 3308214 80.03 10252 98.76 98.34 130 

13841 5667250 2.56 4444242 78.42 13186 100 99.59 39 

14032 6078507 2.74 5176898 85.17 15698 100 99.59 34 

14039 5246469 2.37 4305008 82.06 13275 100 99.17 36 

14061 5688289 2.57 4701465 82.65 13829 100 99.59 36 

14078 5276367 2.38 4407397 83.53 13611 100 99.17 39 

14202 382024 0.17 318424 83.35 928 92.12 62.66 13 

14206 5433163 2.45 4738696 87.22 13188 100 99.17 26 

14257 4573663 2.07 3779027 82.63 11068 100 99.17 77 
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Sample 
Total 

aligned 
 Reads 

Total 
aligned  

 Reads (%) 

Targeted 
Aligned 
reads 

Read 
Enrichment 

(%) 

Median 
Region 

Coverage 
Depth 

Target 
Coverage 

100X 

Target 
Coverage 

700X 

SNVs 
Reported  

14317 831817 0.38 700381 84.20 2183 98.76 89.21 18 

14537 938562 0.42 805311 85.80 2230 98.76 89.21 25 

14575 4629694 2.09 2808450 60.66 8468 99.59 97.51 78 

14623 5870553 2.65 4739107 80.73 14109 100 99.17 35 

14890 939669 0.42 496183 52.80 1530 99.17 83.82 19 

15447 671034 0.30 433802 64.65 1336 98.34 71.78 29 

15636 5503367 2.49 3848533 69.93 12241 99.59 99.17 39 

15815 5175822 2.34 4330348 83.66 12784 100 99.17 40 

16265 827609 0.37 669822 80.93 2038 99.17 88.38 19 

17842 5998116 2.71 5049329 84.18 12945 100 99.17 22 

18217 4566355 2.06 4050099 88.69 12266 100 98.76 31 

18644 5971319 2.70 4723055 79.10 14436 100 99.17 49 

3252 7365762 2.24 5603188 76.07 750 98.14 25.65 13 

3075 6531400 2.95 5492957 84.10 17188 100 99.17 49 

3474 1024933 0.46 748620 73.04 2358 99.17 92.12 19 

4072 3284082 1.48 2594118 78.99 7495 100 98.76 32 

4273 2228365 1.01 1776993 79.74 5428 100 98.76 33 

4712 3497351 1.58 2121826 60.67 6253 100 98.76 33 

5244 6765709 3.06 5545198 81.96 16523 100 99.59 47 

5653 3137473 1.42 2208859 70.40 6543 100 98.76 43 

6202 4646968 2.10 3766684 81.06 11843 99.17 97.93 35 

6272 7777797 3.51 5883440 75.64 18029 100 99.17 42 
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Sample 
Total 

aligned 
 Reads 

Total 
aligned  

 Reads (%) 

Targeted 
Aligned 
reads 

Read 
Enrichment 

(%) 

Median 
Region 

Coverage 
Depth 

Target 
Coverage 

100X 

Target 
Coverage 

700X 

SNVs 
Reported  

6691 6674023 3.01 5410662 81.07 16098 100 99.17 47 

7824 2065368 0.93 1712684 82.92 5001 100 98.34 25 

7926 3038922 1.37 2406975 79.20 7101 100 98.76 30 

8774 4920697 2.22 3498165 71.09 10606 99.59 99.17 102 

9352 5042059 2.28 4183288 82.97 13182 100 99.17 46 

9692 6042409 2.73 4990079 82.58 15550 100 99.17 35 

9831 2851563 1.29 2187688 76.72 6549 100 98.76 32 

10402 4304993 1.55 3601452 83.66 9771 99.58 99.17 24 

11535 5688265 2.05 2001592 35.19 5703 99.58 98.33 29 

12670 5384295 1.94 4329967 80.42 13226 99.58 99.17 89 

13169 4837981 1.74 3977094 82.21 11635 100 98.75 94 

13539 8732122 3.46 6457114 73.95 864 97.76 41.26 41 

13188 4788291 1.72 3955243 82.60 12224 98.75 97.92 34 

13672 7338031 2.64 6218334 84.74 19146 100 99.58 52 

14208 2375408 0.86 1737958 73.16 5170 96.25 89.17 27 

14262 5956424 2.15 3548475 59.57 8972 99.58 98.33 30 

14406 5313507 1.91 4329544 81.48 13367 99.58 99.17 40 

14953 3126311 1.13 2474465 79.15 7717 99.17 98.75 41 

14998 2832890 1.02 2298279 81.13 6895 97.92 90.83 19 

15213 2681321 0.97 2349804 87.64 7326 96.25 91.25 33 

16300 4449066 1.60 3463807 77.85 10441 100 99.58 29 

17305 5408446 1.95 4650477 85.99 14243 99.17 99.17 86 
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Sample 
Total 

aligned 
 Reads 

Total 
aligned  

 Reads (%) 

Targeted 
Aligned 
reads 

Read 
Enrichment 

(%) 

Median 
Region 

Coverage 
Depth 

Target 
Coverage 

100X 

Target 
Coverage 

700X 

SNVs 
Reported  

17364 5443701 1.96 3822513 70.22 11902 100 99.17 31 

17654 5714914 2.06 4455107 77.96 13457 100 99.58 35 

17836 5480066 1.97 4318424 78.80 13011 100 98.75 33 

18715 5702422 2.05 4608851 80.82 14444 99.58 99.17 33 

19166 3683450 1.33 2906697 78.91 8796 99.58 98.75 29 

19173 4852416 1.75 3843651 79.21 11718 99.58 98.75 37 

19191 6420569 2.31 5541841 86.31 16681 99.58 99.17 41 

2797 7262801 2.62 5313960 73.17 16603 100 99.17 138 

2924 7772194 2.80 6422778 82.64 19198 100 99.17 79 

2932 7867688 2.83 5105399 64.89 15641 100 99.17 97 

3104 3853896 1.39 2827460 73.37 8147 99.17 97.50 146 

4373 3802540 1.37 1998333 52.55 6116 99.58 97.50 120 

4483 6960219 2.51 5707522 82.00 17258 99.58 99.17 88 

4574 3605445 1.30 2562902 71.08 7486 99.58 98.33 134 

4598 6383926 2.30 4203209 65.84 12242 99.58 98.75 171 

5491 8453975 3.05 6558101 77.57 19316 100 99.58 100 

5799 6233467 2.25 5275053 84.62 15725 100 99.17 56 

5991 4044883 1.46 2527164 62.48 7544 99.58 97.08 132 

6001 8098650 2.92 6158951 76.05 19473 100 99.58 96 

6020 7409096 2.67 4090395 55.21 11747 100 99.17 138 

6388 11357066 3.46 8406022 74.02 1125 99.63 52.04 20 

6186 5718245 2.06 4912155 85.90 10738 100 95.83 89 
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Sample 
Total 

aligned 
 Reads 

Total 
aligned  

 Reads (%) 

Targeted 
Aligned 
reads 

Read 
Enrichment 

(%) 

Median 
Region 

Coverage 
Depth 

Target 
Coverage 

100X 

Target 
Coverage 

700X 

SNVs 
Reported  

6667 7159257 2.58 5919789 82.69 16353 99.58 99.17 57 

7004 7274183 2.62 5537072 76.12 16717 99.58 99.58 109 

7153 9582534 2.92 9332364 97.39 1249 99.63 68.7 27 

7443 6187109 2.23 4525018 73.14 12386 99.17 97.92 93 

7619 8845944 3.19 7188904 81.27 22438 100 99.17 43 

8081 7637004 2.75 5163648 67.61 15902 99.58 99.17 85 

8721 6094668 2.20 3829490 62.83 11474 99.58 99.17 65 

9417 2107803 0.76 1725302 81.85 4594 98.33 87.50 31 

9558 9020276 3.25 7193906 79.75 21643 100 99.17 64 

9935 6572137 2.37 5621340 85.53 17290 99.58 98.75 43 
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Annex 13: Distribution of variants by annotation in Cohort 4. 

Sample Pathogenic 
Likely 

Pathogenic 
VUS 

Likely 
Benign 

Benign Other 
Total 

filtered 
Variants 

Total 
Unfiltered 
Variants 

% Variants 
Passing 
Filters 

10031 7 2 3 4 0 24 12 40 30.00 

10293 6 1 0 0 0 14 7 21 33.33 

11218 2 3 3 6 0 23 8 37 21.62 

11282 6 0 6 4 0 28 12 44 27.27 

11525 1 1 7 5 1 31 9 45 20.00 

12395 1 0 4 0 2 30 5 35 14.29 

12447 2 1 7 3 0 21 10 34 29.41 

12514 1 3 2 6 1 29 6 41 14.63 

13033 2 1 4 4 0 26 7 37 18.92 

13324 6 6 5 4 2 19 17 40 42.50 

13618 6 2 4 4 1 20 12 36 33.33 

13652 15 16 12 17 1 70 43 130 33.08 

13841 2 0 7 6 1 24 9 39 23.08 

14032 1 2 7 4 0 20 10 34 29.41 

14039 0 1 5 6 0 24 6 36 16.67 

14061 4 0 8 4 0 20 12 36 33.33 

1 
4078 

1 3 4 4 1 27 8 39 20.51 

14202 2 1 0 0 0 10 3 13 23.08 

14206 0 3 2 5 1 16 5 26 19.23 

14257 8 8 1 0 0 60 17 77 22.08 
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Sample Pathogenic 
Likely 

Pathogenic 
VUS 

Likely 
Benign 

Benign Other 
Total 

filtered 
Variants 

Total 
Unfiltered 
Variants 

% Variants 
Passing 
Filters 

14317 2 0 0 1 0 15 2 18 11.11 

14537 1 0 1 2 1 21 2 25 8.00 

14575 9 18 9 10 15 32 36 78 46.15 

14623 3 1 3 5 1 23 7 35 20.00 

14890 0 1 2 4 2 12 3 19 15.79 

15447 4 3 3 9 0 10 10 29 34.48 

15636 5 2 4 2 1 26 11 39 28.21 

15815 2 1 4 5 1 28 7 40 17.50 

16265 2 1 0 3 1 13 3 19 15.79 

17842 2 1 5 3 1 13 8 24 33.33 

18217 1 0 2 4 0 24 3 31 9.68 

18644 5 4 7 4 1 29 16 49 32.65 

3252 1 1 5 1 1 5 7 13 53.85 

3075 3 6 8 4 0 28 17 49 34.69 

3474 3 0 0 0 0 16 3 19 15.79 

4072 0 3 3 4 0 22 6 32 18.75 

4273 1 2 3 3 0 24 6 33 18.18 

4712 2 1 3 4 0 23 6 33 18.18 

5244 3 4 7 6 0 27 14 47 29.79 

5653 3 3 5 7 0 25 11 43 25.58 

6202 3 2 3 2 0 25 8 35 22.86 

6272 1 0 7 4 0 30 8 42 19.05 

6691 6 2 4 4 0 31 12 47 25.53 
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Sample Pathogenic 
Likely 

Pathogenic 
VUS 

Likely 
Benign 

Benign Other 
Total 

filtered 
Variants 

Total 
Unfiltered 
Variants 

% Variants 
Passing 
Filters 

7824 0 0 3 3 0 19 3 25 12.00 

7926 1 2 3 4 0 20 6 30 20.00 

8774 4 3 6 7 0 82 13 102 12.75 

9352 3 10 3 7 0 23 16 46 34.78 

9692 2 1 7 4 0 21 10 35 28.57 

9831 1 1 3 5 0 22 5 32 15.63 

10402 1 3 1 2 0 17 5 24 20.83 

11535 1 1 2 3 0 22 4 29 13.79 

12670 13 11 16 0 0 49 40 89 44.94 

13539 2 3 6 4 5 26 11 41 26.83 

13169 6 13 13 12 0 50 32 94 34.04 

13188 2 2 5 3 0 22 9 34 26.47 

13672 8 2 7 5 0 30 17 52 32.69 

14208 1 3 1 3 0 19 5 27 18.52 

14262 1 0 4 4 0 21 5 30 16.67 

14406 1 0 8 4 0 27 9 40 22.50 

14953 2 7 5 4 0 23 14 41 34.15 

14998 0 1 1 5 0 12 2 19 10.53 

15213 0 4 4 3 0 22 8 33 24.24 

16300 1 0 5 3 0 20 6 29 20.69 

17305 0 10 19 14 0 43 29 86 33.72 

17364 1 0 4 5 0 21 5 31 16.13 

17654 1 0 6 5 0 23 7 35 20.00 
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Sample Pathogenic 
Likely 

Pathogenic 
VUS 

Likely 
Benign 

Benign Other 
Total 

filtered 
Variants 

Total 
Unfiltered 
Variants 

% Variants 
Passing 
Filters 

17836 0 1 4 7 0 21 5 33 15.15 

18715 0 0 5 4 0 24 5 33 15.15 

19166 0 1 3 3 0 22 4 29 13.79 

19173 0 1 2 0 0 34 3 37 8.11 

19191 1 1 4 5 0 30 6 41 14.63 

2797 23 18 20 16 1 61 61 138 44.20 

2924 6 5 9 10 0 49 20 79 25.32 

2932 18 12 9 4 0 54 39 97 40.21 

3104 20 20 16 14 0 76 56 146 38.36 

4373 3 21 11 25 0 60 35 120 29.17 

4483 6 6 13 7 0 56 25 88 28.41 

4574 8 19 25 22 1 60 52 134 38.81 

4598 19 28 17 28 0 79 64 171 37.43 

5491 12 15 13 18 0 42 40 100 40.00 

5799 2 8 1 7 1 38 11 56 19.64 

5991 15 33 11 17 0 56 59 132 44.70 

6001 4 0 4 41 0 47 8 96 8.33 

6020 21 15 9 20 1 73 45 138 32.61 

6388 1 3 7 6 3 33 11 50 22.00 

6186 10 11 9 12 0 47 30 89 33.71 

6667 4 6 7 6 0 34 17 57 29.82 

7153 2 3 5 7 10 41 10 58 17.24 

7004 12 3 14 9 0 71 29 109 26.61 
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Sample Pathogenic 
Likely 

Pathogenic 
VUS 

Likely 
Benign 

Benign Other 
Total 

filtered 
Variants 

Total 
Unfiltered 
Variants 

% Variants 
Passing 
Filters 

7443 5 13 10 15 0 50 28 93 30.11 

7619 2 3 5 3 0 30 10 43 23.26 

8081 6 1 8 9 0 61 15 85 17.65 

8721 10 8 9 6 0 32 27 65 41.54 

9417 2 2 2 5 0 20 6 31 19.35 

9558 5 2 7 7 0 43 14 64 21.88 

9935 3 8 6 5 0 21 17 43 39.53 
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Annex 14: Clinical impact of features included in12g-algorithm. Implication of gene-alteration in the outcome of patients; OS and DFS. 

  n Events % 
DFS 

(pvalue) 
n Events % 

OS 
(pvalue) 

MSI 
MSI low 68 13 68.3 

N.S. 
64 9 77.9 

N.S. 
MSI high 14 1 91.7 14 1 85.7 

POLE 

Non 
mutated 

68 14 64.0 
0.038 

64 10 74.4 
N.S. 

Mutated 14 0 100 14 0 93.3 

PTEN 

Non 
mutated 

34 10 35.5 
0.002 

31 9 48.0 
<0.001 

Mutated 48 4 85.4 47 1 94.5 

ARID1A 

Non 
mutated 

41 9 53.7 
N.S. 

38 7 66.0 
N.S. 

Mutated 41 5 85.5 40 3 89.2 

ARID5B 

Non 
mutated 

42 9 64.4 
N.S. 

42 8 64.0 
0.016 

Mutated 40 5 80.0 36 2 92.0 

RPL22 

Non 
mutated 

46 9 60.7 
N.S. 

42 8 74.3 
N.S. 

Mutated 36 5 79.1 36 2 87.8 

PPPR1A 

Non 
mutated 

50 10 62.6 
N.S. 

46 9 62.4 
0.005 

Mutated 32 4 82.0 32 1 92.9 

PIK3R1 
Non 
mutated 

53 11 62.6 N.S. 49 9 66.8 0.028 
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  n Events % 
DFS 

(pvalue) 
n Events % 

OS 
(pvalue) 

Mutated 29 3 83.5 29 1 93.2 

TP53 
Non 
mutated 

55 6 79.8 
N.S. 

51 4 82.5 
N.S. 

Mutated 27 8 60.6 27 6 73.0 

PIK3CA 

Non 
mutated 

55 10 64.7 
N.S. 

51 7 75.8 
N.S. 

Mutated 27 4 82.1 27 3 84.8 

FBXW7 
Non 
mutated 

57 10 68.1 
N.S. 

53 7 74.6 
N.S. 

Mutated 25 4 78.8 25 3 85.1 

CTCF 

Non 
mutated 

58 10 70.0 
N.S. 

54 8 72.3 
N.S. 

Mutated 24 4 77.6 24 2 90.5 

CTNNB1 
Non 
mutated 

69 13 64.3 
N.S. 

66 9 76.5 
N.S. 

Mutated 13 1 92.3 12 1 88.9 

KRAS 

Non 
mutated 

74 13 70.5 
N.S. 

70 10 75.7 
N.S. 

Mutated 8 1 85.7 8 0 100 

* n  corresponds to total number of cases used in the statistical analysis 
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Annex 15:  Alteration found in cohort 4 sorted by structural annotation among EC 

prognostic subtypes (Median number of alteration/group). 

 Molecular group (variants/group) 

 POLE MSI CNL CNH 

Regulator 11.0 5.7 6.9 4.8 

Frameshift 6.4 3.3 2.5 2.0 

In frame 3.3 2.9 2.8 2.0 

Splicing 
events 

9.3 5.1 4.6 3.8 

Synonymous 24.5 13.1 14.5 9.5 

Intron 
Variant 

13.5 8.7 10.0 6.9 

Nonsense 3.9 0.8 0.8 0.5 

Missense 35.2 11.4 10.5 9.0 
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Annex 16: Distribution of genetic alteration across the four prognostic groups. 

 Group 

Parameter POLE MSI CNL CNH 

MSI (%) 3 (18.7) 12 (100) 0 (0) 0 (0) 

POLE (%) 16 (100) 0 (0) 0 (0) 0 (0) 

PTEN (%) 14 (87.5) 9 (75) 29 (60.4) 1 (5) 

TP53 (%) 7 (43.7) 3 (25) 7 (14.6) 15 (75) 

PI3K (%) 12 (75.0) 3 (25) 12 (25.0) 4 (20) 

PIK3R1 (%) 11 (68.7) 2 (16.7) 17 (35.4) 3 (15) 

ARID1A (%) 13 (81.2) 7 (58.3) 25 (52.1) 2 (10) 

ARID5B (%) 10 (62.5) 5 (41.7) 20 (41.7) 7 (35) 

KRAS (%) 3 (18.7) 1 (2.0) 5 (10.4) 0 (0) 

CTCF (%) 9 (56.2) 2 (16.7) 15 (31.3) 0 (0) 

CTNNB1 (%) 8 (50) 0 (0) 6 (12.5) 1 (5) 

FBXW7 (%) 13 (81.2) 1 (2.0) 10 (20.8) 4 (20) 

PPP2R1A (%) 9 (56.2) 5 (41.7) 11 (22.9) 9 (45) 

RPL22 (%) 7 (43.7) 10 (83.3) 19 (39.6) 5 (25) 

 

  



 

 
270 

 

Annex 17: Log-Rank tests evaluating the implication of predefined HRD scars 

parameters from scarHRD package in correlation with PFI and PARPi response. 

Log-rank tests evaluating performance of: (A) LOH, (C) LST and (E) TAI versus PFI 

and (B) LOH, (D) LST and (F) TAI performance versus PARPi response. 
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Annex 18: Correlation of HRD score obtained on scarHRD package and time-to-

event variables. Log-rank tests evaluating:  (A) PFI prediction regarding HRD score 

median-based stratification. (B) Pre-established Myriad-based cut-off stratification 

(42). (C) PFS to PARPi prediction regarding HRD score median-based stratification. 

(D) Pre-established Myriad-based cut-off stratification (42). 
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Annex 19: Contribution of each parameter in the CPP model measured as 

decreasing of the Gini index. 

Parameter CPP-model 

TP53 8.765 

Grade 7.3384 

Histology 4.7434 

PTEN 4.2490 

CTNNB1 1.6679 

ARID1A 1.4816 

Stage 0.7857 

PPPR1A 0.6392 

CTCF 0.5489 

PIK3CA 0.4308 

KRAS 0.4176 

FBXW7 0.3973 

PIK3R1 0.3395 

ARID5B 0.2071 

RPL22 0 
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Annex 20: Performance of the RF model (CPP) including clinical and pathological 

parameters (grade, histology and stage). 

 CPP-model RFA 

Accuracy (95% CI) 
0.9808  

(0.8974-0.9995) 

No Information Rate 0.6923 

Kappa 0.9541 

McNemar’s test p-value 1 

Sensitivity 0.9375 

Specificity 1 

Positive Predictive Value 1 

Negative Predictive Value 0.9730 

Prevalence 0.3077 

Detection Rate 0.2855 

Detection prevalence 0.2855 

Balanced accuracy 0.9688 
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Prognostic classification of 
endometrial cancer using a 
molecular approach based on a 
twelve-gene NGS panel
Raquel López-Reig1,6, Antonio Fernández-Serra1,6, Ignacio Romero2, Cristina Zorrero3, 
Carmen Illueca4, Zaida García-Casado1, Andrés Poveda5 & José Antonio López-Guerrero   1*

Endometrial Cancer (EC) is one of the most common malignancies in women in developed countries. 
Molecular characterization of different biotypes may improve clinical management of EC. The Cancer 
Genome Atlas (TCGA) project has revealed four prognostic EC subgroups: POLE, MSI; Copy Number Low 
(CNL) and Copy Number High (CNH). The goal of this study was to develop a method to classify tumors 
in any of the four EC prognostic groups using affordable molecular techniques. Ninety-six Formalin-
Fixed Paraffin-embedded (FFPE) samples were sequenced following a NGS TruSeq Custom Amplicon 
low input (Illumina) protocol interrogating a multi-gene panel. MSI analysis was performed by fragment 
analysis using eight specific microsatellite markers. A Random Forest classification algorithm (RFA), 
considering NGS results, was developed to stratify EC patients into different prognostic groups. Our 
approach correctly classifies the EC patients into the four TCGA prognostic biotypes. The RFA assigned 
the samples to the CNH and CNL groups with an accuracy of 0.9753 (p < 0.001). The prognostic value of 
these groups was prospectively reproduced on our series both for Disease-Free Survival (p = 0.004) and 
Overall Survival (p = 0.030).Hence, with the molecular approach herein described, a precise and suitable 
tool that mimics the prognostic EC subtypes has been solved and validated. Procedure that might be 
introduced into routine diagnostic practices.

Endometrial Cancer (EC) is the most common gynecological neoplasm and the fourth most frequent can-
cer in women in developed countries, with 280000 cases per year worldwide1. This cancer principally affects 
post-menopausal women, with the peak incidence between 55 and 65 years1. Clinically, the presence of metror-
rhagia in 80% of patients allows both early diagnosis and treatment, resulting in an improved five-year survival2. 
Among newly-diagnosed women, 68% will present localized disease in the uterine cavity, 20% will show disease 
in pelvic organs and lymph nodes, and about 8% will suffer distant metastasis at diagnosis3. Prognosis varies dra-
matically according to the stage of the disease. Stage I has an 80–90% five-year survival rate, whereas for Stage IV 
this rate decreases up to 20%4,5.

Considering the biology and clinical parameters, EC is classified into two groups: type I carcinomas comprise 
80% of newly-diagnosed EC and are characterized by alterations in PTEN, KRAS, and CTNNB1 and by microsat-
ellite instability (MSI). These tumors are associated with better prognosis6,7. Type II tumors are defined by TP53 
mutations, high Ki-67 score, p16 inactivation and CDH1 and HER2 amplification8,9.

Integration of clinicopathological information and genetic data provides more accurate classification of EC 
into different prognostic groups, facilitating the use of specific therapeutic interventions. The integrated genomic 
characterization of EC performed by the Cancer Genome Atlas (TCGA) consortium10 defined four prognostic 
EC subgroups, with a prognosis from the best to the worst as follows: POLE group, comprising tumors with POLE 
exonuclease domain mutations; MSI group, composed of EC with MSI; Copy Number Low (CNL) and Copy 
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Number High (CNH) groups. CN groups are defined by a differential profile of CN alterations (CNA), CNH 
group particularly presenting an elevated incidence of TP53 alterations10.

The aim of this study was to develop a molecular prognostic classifier for EC that mimics the four TGCA 
prognostic groups, by using only a small multi-gene NGS panel and MSI determination.

Results
Selection of the multigene-NGS panel and mutational analysis.  The EC data set from TCGA10 
defines 48 genes with differential mutation frequencies across the four prognostic groups. A subset of 13 genes, 
corresponding to those with the highest differences in terms of frequencies between groups, was selected: POLE, 
PTEN, TP53, ARID1A, KRAS, ARID5B, FBXW7, PPP2R1A, CTCF, CTNNB1, RPL22, PIK3CA, PIK3R1. Two 
separate sequencing runs, containing 48 dual-pool libraries each were performed. The coverage, quality param-
eters and statistics were comparable between both runs, hence it was possible to merge the data for analysis. 
Sequencing metrics for analyzed samples are summarized in Supplementary File 1.

A median of 40 genetic alterations per case (range: 13–171) were found (Supplementary File 2). Variants 
were classified as mutated if they were already reported in ClinVar or if appeared as predicted pathogenic, likely 
pathogenic or VUS by PolyPhen and SIFT predictors. Benign and likely benign variants were not considered 
for the analysis. The presence of mutation was treated as categorical dichotomous variable (presence/absence of 
mutation).

The most frequently affected genes in our series was PTEN (55.2%), followed by ARID1A (49.0%) and 
ARID5B (43.8%), whereas KRAS mutations (9.4%) represent the lowest frequency (Fig. 1). The median number 
of mutations per patient was 9.5 (range: 2–64). Univariate analysis at gene level showed a correlation between 
POLE mutation and early stage EC (p = 0.040), PTEN mutations were enriched in EC with endometrioid his-
tology (p < 0.001) and low-grade tumors (p < 0.001). EC with serous histology harbored more TP53 muta-
tions (p = 0.021). Finally, RPL22 mutation showed higher frequency in endometrioid histology (p = 0.005) and 
low-grade tumors (p = 0.004). KRAS (p = 0.035) and CTCF (p = 0.05) mutations were also related with low-grade 
tumors (Table 1A).

Regarding the prognostic value of individual gene mutations in our series, mutations in POLE, PTEN PIK3R1, 
ARID5B and PPP2R1A are correlated with better patient outcome as seen in Supplementary File 3.

Distribution of microsatellite instability in paired blood and FFPE samples.  MSI was observed 
in 15 of 96 patients (15.6%): 14 of 15 with endometrioid histology (93.3%), and in just 1 of 13 serous cases 
(7.7%) (p = N.S). MSI was more frequent in early stages: 11/15 (73.3%) stages I-II vs. 4/14 (26.7%) stages III-IV 
(p = N.S). This parameter lacked prognostic value both for PFS and OS (Supplementary File 3). The status of 
Mismatch repair (MMR) proteins was also evaluated by immunochemistry (IHC, Supplementary Information) 
obtaining a concordance with MSI results of 96%.

Building a predictive multi gene model using a Random Forest approach.  A random forest (RF) 
predictive model for a dichotomous variable (CNL or CNH) was trained using the mutational profile of the 13 
selected genes from 148 patients analyzed by the EC TCGA project10. To correctly adjust the RF model, the TCGA 
dataset was randomly split in two cohorts (training and validation), based on the distribution of the dichotomous 
response variable; hence, the groups consisted of 62 patients for the training set and 86 for the validation set.

Figure 1.  Frequency of gene mutations in EC patient’ series determined by NGS 13 genes panel. *Hotspot 
POLE (p.P286R and p.V411L) 5.2% (5.6% in TCGA population).
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To train the model, genotyping of 12 genes was included as categorical dichotomous variables (the so called 
12g-model) (Tables 2 and 3). Prior to the adjustment of the RFA model, the number of variables per level on each 
split was optimized to pre-train the model. The model was validated with 5-fold cross-validation and bagging11.

The POLE and MSI groups were directly defined by the presence of POLE mutations and MSI respectively.

Impact of 12 genes RF model in the clinical stratification of the disease.  Our series of 96 EC 
patients was stratified into the four TCGA prognostic groups based on the genotyping data of the 12-gene NGS 
panel, MSI status, grade, stage and histology: PO LE, 16/96 (16.7%); MSI-H, 12/96 (12.5%); CNH, 20/96 (20.8%); 
and CNL, 48/96 (50.0%). As mentioned above, CNH and CNL groups were classified with our RF adjusted model.

The POLE group was characterized by a POLE exonuclease domain mutation in all 16 cases and by the pres-
ence of MSI in 3 of the 16 cases (18.7%). This group presented the highest mutational ratio with a median of 94 
variants/case (range: 31–171) compared with the other groups (p < 0.001) (Fig. 2). MSI group was characterized 
by the presence of microsatellite instability in 100% of the cases and had no POLE mutations. This group pre-
sented a lower median of alterations than POLE with 40 variants per case (range: 19–93). Among these alter-
ations, the most affected genes were PTEN (75.0%), ARID1A (58.3%) and RPL22 (83.3%). CNH presented a 
median of 32 variants per case (range: 19–96) and was characterized by mutations in TP53 (75%), low frequency 
of PTEN mutations (5%) and alterations in PPP2R1A (45%). Finally, CNL showed a median of 37 variants per 
case (range: 13–138) (Table 4 and Supplementary Fig. S1). Gene by gene analysis of these alterations revealed that: 
PTEN (60.4%) and TP53 (14.6%) presented the highest and the lowest mutation rate respectively, with alterations 
in other genes as follows: PIK3R1 (35.4%), ARID5B (41.7%), CTCF (31.3%) and RPL22 (39.6%). The distribution 
of mutations across groups in EC dataset is depicted in Fig. 3 (Supplementary Table S1).

The Log-Rank test was used to evaluate the prognostic capacity of our molecular classification. This test 
confirmed that the molecular stratification of our patients revealed differences in both PFS (p = 0.004) and OS 
(p = 0.030), suggesting that the POLE and CNH biotypes constituted the best and the worst prognostic groups 
respectively, mirroring the groups defined by the TCGA (Fig. 4). In addition, a multivariate analysis was per-
formed, being statistically significant only for histology (Table 1B).

Histology Stage Grade

Endometrioid Serous p-value Early-stage Advanced-stage p-value I II III p-value

(A)

POLE
mutated 15 1

N.S.
16 0

0.040
10 5 1

N.S.
non-mutated 68 12 63 17 35 23 22

PTEN
mutated 53 0

<0.001
44 9

N.S.
30 20 3

<0.001
non-mutated 30 13 35 8 15 8 20

TP53
mutated 24 8

0.021
24 8

N.S.
12 8 12

0.050
non-mutated 59 5 55 9 33 20 11

KRAS
mutated 8 1

N.S.
9 0

N.S.
8 0 1

0.035
non-mutated 75 12 70 17 37 28 22

CTCF
mutated 25 1

N.S.
22 4

N.S.
16 7 3

0.050
non-mutated 58 12 57 13 29 21 20

RPL22
mutated 40 1

0.005
34 7

N.S.
17 19 5

0.004
non-mutated 43 12 45 10 28 9 18

DFS OS

Univariate Multivariate Univariate Multivariate

(B)

Stage
Early 37.40 (2.067–91.2)

0.006 N.S.
42.57 (2.067–91.20)

0.004 N.S.
Advanced 15.37 (4.87–91.00) 34.47 (6.30–91.00)

Grade

I 50,33 (2.07–91.02)

0.003 N.S.

52.83 (2.067–91.20)

<0.001
8.26 
(62.50–1.10
9

0.040II 30.28 (9.70–79.57) 33.10 (9.70–79.57)

III 26.38 (4.87–67.60) 32.50 (6.30–67.60)

Histology
Endometrioid 43.63 (5.47–37.40)

<0.001 8.90 (29.90–2.71) <0.001
44.23 (2.067–91.20)

<0.001 N.S.
Serous 21.47 (2.067–91.20) 29.53 (6.30–38.6)

TCGA groups

POLE 55.40 (24.27–77.43)

0.004 N.S.

55.40 (24.27–77.43)

0.030 N.S.
MSI 38.33 (11.9–74.93) 38.6 (11.9–74.93)

CNL 34.43 (2.067–91.00) 42.57 (2.067–91.00)

CNH 27.70 (4.87–91.2) 30.53 (6.30–91.2)

Table 1.  Correlation between mutational status of analyzed genes and (A) Main clinical and pathological 
parameters in EC using Chi-square test (B) PFS and OS measured by log-rank test.
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Discussion
One of the main problems in the management of EC patients is inter-observer agreement when assigning histol-
ogy and tumor grade by microscopic techniques. These classifications are associated with different natural histo-
ries, treatment scheme and patient outcomes, all of which will influence clinical decision making. Thus, accurate 
pathological assessment of histology and grade is essential in prognosis assessment and patient management12. 
However, this scenario is frequently idealistic. For instance, a misclassification in grade assignment, especially in 
high-grade EC tumors, has already been reported12. In addition, there is a poor correlation of histology and grade 

Parameter 12 g-model

TP53 12.4658

PTEN 6.094

CTNNB1 3.4884

ARID1A 1.8658

PPPR1A 1.5958

CTCF 1.1435

PIK3CA 0.5644

KRAS 0.3994

FBXW7 0.4852

PIK3R1 0.4506

ARID5B 0.2425

RPL22 0

Table 2.  Contribution of evaluated parameters to 12 g-model measured as mean decrease of Gini index of the 
variables in the models.

12 g-model RFA

Accuracy (95% CI) 0.9753 (0.9136–0.997)

No Information Rate 0.6049

Kappa 0.9483

McNemar’s test p-value 1

Sensitivity 0.9688

Specificity 0.9796

Positive Predictive Value 0.9688

Negative Predictive Value 0.9796

Prevalence 0.3951

Detection Rate 0.3827

Detection prevalence 0.3951

Balanced accuracy 0.9742

Table 3.  Performance parameters of 12 g model.

Figure 2.  Mutational load across four EC prognostic subtypes. CNH group shows the lowest mutational rate 
(*p < 0.05), whereas POLE mutational rate is the highest (**p < 0.001).

https://doi.org/10.1038/s41598-019-54624-x
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between diagnostic and final tissue samples13,14. Moreover, inter-observer grade agreement has also shown only 
moderate consistency having a kappa index of 0.41–0.6815.

In the post-genomic era, multiomic information is redefining tumor classification. In this context, the EC 
TCGA project was developed and now constitutes an excellent source of data to mine prognostic models10. EC 
TCGA described four prognostic groups based on multiomics data. However, this approach is unaffordable 
in clinical scenarios due to the lack of availability of omic techniques in standard clinical laboratories. Several 
research groups have made great efforts to overcome these limitations. With this aim, different approaches have 
been applied to reproduce prognostic classification simplifying the methodology. Stello et al. used IHC for p53 
and MMR protein assessment and Sanger sequencing for POLE hotspots genotyping as surrogate of the EC 
TCGA subgroups16–18. Similarly, the ProMisE/Vancouver group provided a molecular classification based on p53 
IHC as a surrogate of the CNH/CNL TCGA groups19,20. However, the aforementioned inter-observer variability 

Molecular group (variants/group)

POLE MSI CNL CNH

Regulator 11.0 5.7 6.9 4.8

Frameshift 6.4 3.3 2.5 2.0

In frame 3.3 2.9 2.8 2.0

Splicing events 9.3 5.1 4.6 3.8

Synonymous 24.5 13.1 14.5 9.5

Intron Variant 13.5 8.7 10.0 6.9

Nonsense 3.9 0.8 0.8 0.5

Missense 35.2 11.4 10.5 9.0

Table 4.  Occurrence of mutations sorted by functional annotation among EC prognostic subtypes (Median 
number of alteration/group).

Figure 3.  Distribution of genetic alteration across the four EC prognostic subtypes.

Figure 4.  Kaplan-Meier plots assessed by log-rank test to evaluate. (a) Disease free survival and (b) Overall 
Survival according to 12 g stratification. Both parameters reach the statistical signification.
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implicit in IHC makes standardization difficult between labs (Supplementary Fig. S2). This is underlined by the 
discrete (70%) concordance found in our global series, which is significantly improved in the CNH subgroup 
(84%), between the determination of TP53 mutational status using IHC and NGS approach. For these reasons our 
objective was to develop a method based on the genotyping of only 12 genes with the definition and implementa-
tion of a reproducible RF model (12g-algorithm) to classify EC into the four prognostic groups.

We designed a small NGS gene panel with data from the EC TCGA dataset consisting of 13 of the most dis-
criminant genes which presented the highest absolute and differential mutational frequency among the groups. 
The POLE ultramutated group was defined by mutations in the exonuclease domain of this gene. This group 
presents the highest mutational load and the best prognosis, as previously described by EC TCGA10. It should be 
highlighted that our cohort was significantly high in POLE mutations (16.7%) compared with the TCGA dataset 
(7%)10. This mismatch is presumably due to different NGS technical approaches implemented in the two projects. 
Whole Exome Sequencing (WES), used in the analysis of EC TCGA samples, achieved a lower coverage (20X) 
than the targeted panel which was implemented in our work (600X). Therefore, mutations with lower variant 
allelic frequency could not be detected in WES. However, the percentage of mutations found in POLE hotspots 
(p.P286R and p.V411L) defined by the EC TCGA10 was concordant between both datasets; 5.3% (our series) and 
5.2% (TCGA series). Additionally, the MSI Group was obtained by the determination of MSI status using the 
eight microsatellite markers (NR27, NR21, NR24, BAT26, BAT25, D5S346, D2S123 and D17S250) by fragment 
analysis. The IHC for MMR proteins was also performed, obtaining a 96% of concordance between IHC and MSI 
results. This group was characterized by high mutational ratio, although lower than the POLE group (94 vs 40 
median of mutations per case respectively).

The most challenging task was to define a surrogate to classify CNH and CNL groups, which currently requires 
sophisticated technology as well as technical and analytical training. To achieve this, we adjusted a RF model 
(12g-algorithm) by using the EC TCGA dataset. This 12 g model accurately defines CNH and CNL groups (97%) 
and considers the contribution of each gene to discriminate between groups. Finally, we validated the model with 
our prospective and independent EC patients series resulting in a total of 20 cases classified as CNH (21%) and 
48 as CNL (50%). These frequencies were similar to those reported by the TCGA (26% and 39% respectively)10. 
As expected, these groups had lower mutational load than the POLE group and were characterized by mutations 
in TP53 and PTEN. As a whole, this approach showed a good correlation with the TCGA groups and matched its 
prognostic value. In addition, our prognostic model classified the patients independently of IHC, thus avoiding 
the intrinsic inter-observer subjectivity.

Besides sequencing and adjusting the 12 g-RF model, we trained another model including clinicopathological 
features (histology, grade and stage) to study the influence of these parameters, the so-called CPP model.

Although there was a slight improvement in the performance parameters of the RFA (Supplementary 
Tables S2 and S3), it is important to take into account that our series came from a monographic oncology hospi-
tal. Additionally, pathological assessment was performed by a single gynecological pathologist highly trained in 
the diagnosis of EC, possibly masking the subjective effect.

Our approach overcomes subjectivity and technical difficulties related to the definition of CNH and CNL 
groups. The assessment of the mutational status by NGS technology constitutes a highly objective methodology, 
drastically simplifying the approach. Furthermore, the common availability of NGS and trained staff in clinical 
labs will facilitate the implementation of the proposed workflow in the diagnostic routine.

In conclusion, we have defined a prognostic model to classify EC prognostic biotypes based on the analysis of 
a multi-gene NGS panel; which could be easily implemented as a molecular diagnostic tool.

Material and Methods
Patients.  This study includes 96 EC patients prospectively collected from 2010 to 2019 within the context 
of the institutional projects ACOG0901 and ACOG1602. Experimental protocols were approved by Instituto 
Valenciano de Oncología (IVO) Institutional Review Board in 2009 and 2016 respectively. All methods used 
during the study were performed in accordance with the relevant guidelines and regulations.

At the time of the study, our prospective institutional EC database contained a total of 187 patients. Criteria 
for inclusion in this study was: age over 18 years; tumors with serous or endometrioid histology; grade I to III and 
stage I, II and III. A total of 149 fulfilled these criteria, from which 96 were selected according to the best ranked 
DNA quality and concentration.

All analyzed samples were formalin-fixed paraffin-embedded (FFPE) tumor tissue retrieved from the IVO 
Biobank. Informed consent of patients was obtained in accordance with our institution’s ethical and legal 
regulations.

Clinical and pathological information for the whole series was integrated into a prospective database, median 
age at diagnosis being 62 years (range: 36.4–87) and median follow-up of 35.02 months (range: 2.1–91.2 months). 
During follow-up, 15.2% of the patients recurred, and 10.7% died as consequence of the disease; the median 
progression-free survival (PFS) being 33.65 months (range: 2.1–91.2) and the median overall survival (OS) 35 
months (range: 2.1–91.2 months) (Table 5).

Multi-gene next generation sequencing.  DNA extraction was performed using the QIAmp DNA FFPE 
Tissue kit (Qiagen, Valencia, CA) following the manufacturer’s instructions. Three FFPE blocks sections of 20 
µm-thin with tumor content higher than 50% were used. The final DNA concentration was measured fluoromet-
rically using PicoGreen™ reagent in a Quantifluor instrument (Promega, Fitchburg, Wisconsin). DNA sample 
quality for NGS selection was estimated using a qPCR-based approach (QC illumina kit) (Illumina, San Diego, 
CA). In addition, quality and related size of genomic DNA were assessed by the microfluidics-based platform 
Agilent 4200 Tapestation with Genomic D1000 Kit (Agilent, Santa Clara, CA). Electropherograms were visualized 
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with the TapeStation Software Analysis A.02.01 SR1 including data collection, peak detection, and interpretation 
of the different profiles.

For NGS, the median starting DNA concentration was 49.91 ng/μl (8.77–189.538 ng/μl). According to the 
manufacturer’s protocol, the initial amount of DNA required to construct the library is between 10 and 100 ng. In 
some cases, recommended DNA quantity was not achieved, so maximum available quantity was assigned to these 
samples. Library preparation was conducted using TruSeq Custom Amplicon Low Input Kit (Illumina, San Diego, 
CA) in combination with a custom-designed panel (DesignStudio, Illumina, San Diego, California), interrogating 
the whole coding regions of the following 13 genes: POLE, PTEN, TP53, ARID1A, ARID5B, FBXW7, PPP2R1A, 
CTCF, CTNNB1, RPL22, KRAS, PIK3CA, PIK3R1. These genes were selected based on the sequencing results of 
the TCGA. By selecting the 13 genes that best discriminate between the 4 groups, based on relative and absolute 
frequency of each gene among the groups, it is possible to improve the feasibility of the model. Samples were 
subjected to dual-pool amplicon-based PCR library preparation according to the manufacturer’s instructions. 
Subsequent sequencing of pooled libraries was performed in a NextSeq. 550 sequencing platform (Illumina, San 
Diego, California).

Data analysis, including alignment to the hg19 human reference genome and variant calling, was done 
using CASAVA pipeline (Illumina, San Diego, CA). These variants were then annotated using the Illumina 
VariantStudio v3.0 data analysis software (Illumina, San Diego, CA). Integrative Genomic Viewer (Broad 
Institute) was used to visualize the sequence and check for the presence of mutations21,22. Variants were selected 
based on a minimum coverage of 600X, minimum frequency of mutated allele of 5% and previously describe or 
in silico as pathogenic, likely pathogenic or variant of unknown significance (VUS).

Microsatellite instability.  MSI was performed on 2–3 ng of DNA from paired FFPE and blood samples 
using the Type-it Mutation Detect PCR Kit (Qiagen) in a Veriti thermocycler (Applied Biosystem, Foster City, 
CA) and specific primers labelled with the fluorophores FAM, HEX or NED for the following STR regions: NR27, 
NR21, NR24, BAT26, BAT25, D5S346, D2S123 and D17S25023. PCR conditions were: 5′ initial denaturing at 
95 °C followed by 35 cycles at 95 °C of 30″, 1′30″ at 60 °C and 30″ at 72 °C with a final 10′ extension at 68 °C. PCR 
products were denatured with formamide for 5′ at 95 °C and visualized, after capillary electrophoresis in the 
ABI3130xl Genetic Analyzer (Applied Biosystem, Foster City, CA), using the GeneMapper v4.0 software (Applied 
Biosystem, Foster City, CA). MSI-High (MSI-H) was considered when at least 30% of STR regions presented an 
MSI pattern.

Stage

Endometrioid Serous

Grade 1 Grade 2 Grade 3 All Total

(A)

I 78 (23) 83 (24) 70 (21) 17 (5) 248 (73)

II 3 (1) 9 (3) 6 (2) 5 (1) 23 (7)

III 7 (2) 12 (4) 26 (8) 25 (7) 70 (21)

Adjuvant therapy

RT 12 (3) 28 (8) 22 (6) 7 (2) 69 (19)

Chemo 2 (1) 6 (2) 14 (4) 13 (4) 35 (10)

ChemoRT 2 (1) 9 (3) 18 (5) 17 (5) 46 (13)

Unknown 70 (20) 61 (17) 57 (16) 16 (5) 204 (58)

Total 86 (24) 104 (29) 111 (31) 53 (15) 354 (100)

(B)

I 40 (42) 24 (25) 6 (6) 7 (7) 77 (80)

II 0 (0) 1 (1) 0 (0) 1 (1) 2 (2)

III 5 (5) 3 (3) 4 (4) 5 (5) 17 (18)

Adjuvant therapy

RT 21 (22) 8 (8) 2 (2) 1 (1) 32 (33)

Chemo 2 (2) 1 (1) 2 (2) 7 (7) 12 (13)

ChemoRT 3 (3) 3 (3) 6 (6) 3 (3) 15 (16)

Unknown 2 (2) 1 (1) 0 (0) 2 (2) 5 (5)

Total 28 (29) 13 (13) 10 (10) 13 (13) 64 (67)

32 (33) patients did not receive any treatment

Median follow-up (months) 34.45 (1.8–91.2)

Median PFS (months) 33.1 (1.87–91.2)

Median OS (months) 34.45 (1.87–91.2)

Relapse (%) 14.6

Exitus (%) 11.4

Table 5.  Distribution of patients based on most relevant clinical and pathological parameters in (A) TCGA 
series, (B) Our series.
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Random forest algorithm (RFA).  The EC dataset from TCGA10 was used to train a Random Forest algo-
rithm (RFA) to define a prognostic model. Dichotomous and categorical variables including mutational status of 
the studied genes and clinical and pathological parameters such as histology, stage and grade were implemented 
in the model. Furthermore, a standard bagging approach is applied. Briefly, the dataset is internally split in three 
sets in order to internally cross-validate the predictor’s performance. The number of trees was empirically esti-
mated to 1000. R v3.4.3 patched was used in all the predictive models built and tested.

Survival analysis.  Statistical analysis was performed to define the correlations between clinicopathological 
and molecular parameters for time-to-event variables [i.e., PFS and OS]. Log-rank test with Kaplan–Meier esti-
mations were performed to compare groups. SPSS v20.0 software was used for statistics.

For categorical variables frequency inference a chi-square test was employed. For median comparison between 
continuous variables non-parametric tests (Kruskal-Wallis and Wilcoxon) were used.

For RFA classification validation, survival analysis of the four established groups was performed using 
log-rank test.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).

Received: 17 June 2019; Accepted: 18 November 2019;
Published: xx xx xxxx

References
	 1.	 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin 67, 7–30, https://doi.org/10.3322/caac.21387 (2017).
	 2.	 Cohn, D. E. et al. Should the presence of lymphvascular space involvement be used to assign patients to adjuvant therapy following 

hysterectomy for unstaged endometrial cancer? Gynecol Oncol 87, 243–246 (2002).
	 3.	 Cramer, D. W. The epidemiology of endometrial and ovarian cancer. Hematol Oncol Clin North Am 26, 1–12, https://doi.

org/10.1016/j.hoc.2011.10.009 (2012).
	 4.	 Creasman, W. T. et al. Carcinoma of the Corpus Uteri. Int J Gynaecol Obstet 95(Suppl 1), S105–S143, https://doi.org/10.1016/S0020-

7292(06)60031-3 (2006).
	 5.	 Mutch, D. FIGO Update: Vancouver, Canada, October 2015. Gynecol Oncol 140, 6–7, https://doi.org/10.1016/j.ygyno.2015.12.002 

(2016).
	 6.	 Lax, S. F. Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based 

classification. Virchows Arch 444, 213–223, https://doi.org/10.1007/s00428-003-0947-3 (2004).
	 7.	 Lax, S. F., Kendall, B., Tashiro, H., Slebos, R. J. & Hedrick, L. The frequency of p53, K-ras mutations, and microsatellite instability 

differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer 88, 814–824 (2000).
	 8.	 Fadare, O. & Zheng, W. Insights into endometrial serous carcinogenesis and progression. Int J Clin Exp Pathol 2, 411–432 (2009).
	 9.	 Okuda, T. et al. Genetics of endometrial cancers. Obstet Gynecol Int 2010, 984013, https://doi.org/10.1155/2010/984013 (2010).
	10.	 Cancer Genome Atlas Research, N. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73, https://

doi.org/10.1038/nature12113 (2013).
	11.	 Chen, X. & Ishwaran, H. Random forests for genomic data analysis. Genomics 99 (2012).
	12.	 Clarke, B. A. & Gilks, C. B. Endometrial carcinoma: controversies in histopathological assessment of grade and tumour cell type. J 

Clin Pathol 63, 410–415, https://doi.org/10.1136/jcp.2009.071225 (2010).
	13.	 Phelippeau, J. et al. Preoperative diagnosis of tumor grade and type in endometrial cancer by pipelle sampling and hysteroscopy: 

Results of a French study. Surg Oncol 25, 370–377, https://doi.org/10.1016/j.suronc.2016.08.004 (2016).
	14.	 Talhouk, A. et al. Molecular classification of endometrial carcinoma on diagnostic specimens is highly concordant with final 

hysterectomy: Earlier prognostic information to guide treatment. Gynecol Oncol 143, 46–53, https://doi.org/10.1016/j.
ygyno.2016.07.090 (2016).

	15.	 Gilks, C. B., Oliva, E. & Soslow, R. A. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am 
J Surg Pathol 37, 874–881, https://doi.org/10.1097/PAS.0b013e31827f576a (2013).

	16.	 Billingsley, C. C. et al. Polymerase varepsilon (POLE) mutations in endometrial cancer: clinical outcomes and implications for Lynch 
syndrome testing. Cancer 121, 386–394, https://doi.org/10.1002/cncr.29046 (2015).

	17.	 Stelloo, E. et al. Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative. 
Mod Pathol 28, 836–844, https://doi.org/10.1038/modpathol.2015.43 (2015).

	18.	 Stelloo, E. et al. Improved Risk Assessment by Integrating Molecular and Clinicopathological Factors in Early-stage Endometrial 
Cancer-Combined Analysis of the PORTEC Cohorts. Clin Cancer Res 22, 4215–4224, https://doi.org/10.1158/1078-0432.CCR-15-
2878 (2016).

	19.	 Talhouk, A. et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 123, 
802–813, https://doi.org/10.1002/cncr.30496 (2017).

	20.	 Talhouk, A. & McAlpine, J. N. New classification of endometrial cancers: the development and potential applications of genomic-
based classification in research and clinical care. Gynecol Oncol Res Pract 3, 14, https://doi.org/10.1186/s40661-016-0035-4 (2016).

	21.	 Robinson, J. T. et al. Integrative genomics viewer. Nat Biotechnol 29, 24–26, https://doi.org/10.1038/nbt.1754 (2011).
	22.	 Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data 

visualization and exploration. Brief Bioinform 14, 178–192, https://doi.org/10.1093/bib/bbs017 (2013).
	23.	 Park, J., Shin, S., Yoo, H. M., Lee, S. W. & Kim, J. G. Evaluation of the Three Customized MSI Panels to Improve the Detection of 

Microsatellite Instability in Gastric Cancer. Clin Lab 63, 705–716, https://doi.org/10.7754/Clin.Lab.2016.161029 (2017).

Acknowledgements
This work has been performed thanks to the ACIF/2016/008 grant from the Generalitat Valenciana. Authors also 
thank the Biobank of the Fundación Instituto Valenciano de Oncología for providing the biologic samples for the 
analysis.

Author contributions
R.L.R., A.F.S., I.R., A.P. and J.A.L.G. contributed to the study design. I.R., Z.G., C.Z. and C.I. contributed to the 
data acquisition. R.L.R. and A.F.S. contributed to data analysis and statistics. R.L.R., A.F.S., I.R. and J.A.L.G. 
contributed to manuscript preparation, editing and reviewing.

https://doi.org/10.1038/s41598-019-54624-x
https://doi.org/10.3322/caac.21387
https://doi.org/10.1016/j.hoc.2011.10.009
https://doi.org/10.1016/j.hoc.2011.10.009
https://doi.org/10.1016/S0020-7292(06)60031-3
https://doi.org/10.1016/S0020-7292(06)60031-3
https://doi.org/10.1016/j.ygyno.2015.12.002
https://doi.org/10.1007/s00428-003-0947-3
https://doi.org/10.1155/2010/984013
https://doi.org/10.1038/nature12113
https://doi.org/10.1038/nature12113
https://doi.org/10.1136/jcp.2009.071225
https://doi.org/10.1016/j.suronc.2016.08.004
https://doi.org/10.1016/j.ygyno.2016.07.090
https://doi.org/10.1016/j.ygyno.2016.07.090
https://doi.org/10.1097/PAS.0b013e31827f576a
https://doi.org/10.1002/cncr.29046
https://doi.org/10.1038/modpathol.2015.43
https://doi.org/10.1158/1078-0432.CCR-15-2878
https://doi.org/10.1158/1078-0432.CCR-15-2878
https://doi.org/10.1002/cncr.30496
https://doi.org/10.1186/s40661-016-0035-4
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1093/bib/bbs017
https://doi.org/10.7754/Clin.Lab.2016.161029


9Scientific Reports |         (2019) 9:18093  | https://doi.org/10.1038/s41598-019-54624-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-54624-x.
Correspondence and requests for materials should be addressed to J.A.L.-G.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-54624-x
https://doi.org/10.1038/s41598-019-54624-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/


����������
�������

Citation: Poveda, A.; Lopez-Reig, R.;

Oaknin, A.; Redondo, A.; Rubio, M.J.;

Guerra, E.; Fariñas-Madrid, L.;

Gallego, A.; Rodriguez-Freixinos, V.;

Fernandez-Serra, A.; et al. Phase 2

Trial (POLA Study) of Lurbinectedin

plus Olaparib in Patients with

Advanced Solid Tumors: Results of

Efficacy, Tolerability, and the

Translational Study. Cancers 2022, 14,

915. https://doi.org/10.3390/

cancers14040915

Academic Editors: Christina M.

Annunziata and Adam R. Karpf

Received: 21 December 2021

Accepted: 11 February 2022

Published: 12 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Phase 2 Trial (POLA Study) of Lurbinectedin plus Olaparib in
Patients with Advanced Solid Tumors: Results of Efficacy,
Tolerability, and the Translational Study
Andres Poveda 1,*, Raquel Lopez-Reig 2,3 , Ana Oaknin 4, Andres Redondo 5, Maria Jesus Rubio 6 , Eva Guerra 7,
Lorena Fariñas-Madrid 4, Alejandro Gallego 5, Victor Rodriguez-Freixinos 4,8, Antonio Fernandez-Serra 2,3,
Oscar Juan 9, Ignacio Romero 10 and Jose A. Lopez-Guerrero 2,3,11

1 Oncogynecologic Department, Initia Oncology, Hospital Quironsalud, Avda Blasco Ibañez, 14,
46010 Valencia, Spain

2 Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain;
rlopez@fivo.org (R.L.-R.); afernandez@fivo.org (A.F.-S.); jalopez@fivo.org (J.A.L.-G.)

3 IVO-CIPF Joint Research Unit of Cancer, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
4 Medical Oncology Department, Vall d’Hebron University Hospital, Vall d´Hebron Institute of

Oncology (VHIO), 08035 Barcelona, Spain; aoaknin@vhio.net (A.O.); lfarinas@vhio.net (L.F.-M.);
victor.rodriguezfreixinos@sunnybrook.ca (V.R.-F.)

5 Medical Oncology Department, Hospital Universitario La Paz-IdiPAZ, Universidad Autónoma de
Madrid (UAM), 28049 Madrid, Spain; andres.redondos@uam.es (A.R.);
alejandro.gallego@salud.madrid.org (A.G.)

6 Medical Oncology Department, Universitary Hospital Reina Sofia, 14004 Cordoba, Spain;
mjesusrubio63@gmail.com

7 Medical Oncology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; eva_m_guerra@hotmail.com
8 Department of Medical Oncology and Hematology, Odette Cancer Centre, Sunnybrook Health Sciences

Centre, Toronto, ON M4N 3M5, Canada
9 Medical Oncology, Pivotal SLU, 28023 Madrid, Spain; oscar.juan@pivotalcr.com
10 Medical Oncology, Fundacion Instituto Valenciano de Oncologia, 46009 Valencia, Spain; iromero@fivo.org
11 Department of Pathology, School of Medicine, Catholic University of Valencia ‘San Vicente Mártir’,

46001 Valencia, Spain
* Correspondence: apoveda@initiaoncologia.com

Simple Summary: Genomic instability (GI) is a transversal phenomenon in oncology, constituting
a hallmark of cancer. In gynecological malignancies, the predictive value of GI has been described
and is mainly caused by alterations in the homologous recombination repair (HRR) genes, such as
BRCA1/2. The POLA clinical trial constitutes an ideal substrate used to study the correlation between
GI and response to combined therapy of lurbinectedin plus olaparib in solid tumors. In this context,
we developed an approach based on next-generation sequencing, capable of shedding information
about Copy Number Variations (CNV) as a surrogate of GI and genotyping of homologous recombi-
nation repair genes. Additionally, some algorithms used to extract GI parameters were tested and
benchmarked, selecting the most informative mutational and GI features as potential predictive
biomarkers for the drug combination explored in the POLA trial.

Abstract: We hypothesized that the combination of olaparib and lurbinectedin maximizes DNA
damage, thus increasing its efficacy. The POLA phase 1 trial established the recommended phase
2 dose of lurbinectedin as being 1.5 mg (day 1) and that of olaparib as being 250 mg/12 h (days 1–5) for
a 21-day cycle. In phase 2, we explore the efficacy of the combination in terms of clinical response and
its correlation with mutations in the HRR genes and the genomic instability (GI) parameters. Results:
A total of 73 patients with high-grade ovarian (n = 46), endometrial (n = 26), and triple-negative breast
cancer (n = 1) were treated with lurbinectedin and olaparib. Most patients (62%) received ≥3 lines of
prior therapy. The overall response rate (ORR) and disease control rate (DCR) were 9.6% and 72.6%,
respectively. The median progression-free survival (PFS) was 4.54 months (95% CI 3.0–5.2). Twelve
(16.4%) patients were considered long-term responders (LTR), with a median PFS of 13.3 months. No
clinical benefit was observed for cases with HRR gene mutation. In ovarian LTRs, although a direct
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association with GI and a total loss of heterozygosity (LOH) events was observed, the association did
not reach statistical significance (p = 0.055). Globally, the total number of LOHs might be associated
with the ORR (p =0.074). The most common grade 3–4 toxicities were anemia and thrombocytopenia,
in 6 (8.2%) and 3 (4.1%) patients, respectively. Conclusion: The POLA study provides evidence
that the administration of lurbinectedin and olaparib is feasible and tolerable, with a DCR of 72.6%.
Different GI parameters showed associations with better responses.

Keywords: ovarian cancer; endometrial cancer; lurbinectedin; olaparib; genomic instability

1. Introduction

The treatment of ovarian cancer has seen increasing improvement over recent years.
Today, the most critical advance has been the use of poly (ADP-Ribose) polymerase in-
hibitors (PARPis). In 2009, a phase I study on olaparib presented the first clinical evidence
of PARPi having an effect in patients with BRCA1/2 mutations, with the benefits being
of a magnitude never observed before [1]. However, the clinical benefit of PARPi is not
limited to patients with BRCA1/2 mutations; the entire population of high-grade serous
(HGS) ovarian cancer or triple-negative breast cancer has observed its benefits [2]. In
patients with the absence of BRCA alterations, the efficacy of PARPi is more pronounced in
those with homologous recombinant deficiency (HRD). Several phase II and III trials have
demonstrated the efficacy of PARPi in patients with ovarian cancer [3] and have led to the
approval of three PARPis—olaparib, niraparib, and rucaparib—as maintenance therapy for
platinum-sensitive recurrent ovarian cancer [4–8].

Regarding maintenance, PARPis have been administered as monotherapy in a con-
tinuous oral dosing schedule. The combination of PARPis with chemotherapy or other
agents is an interesting approach to increasing their efficacy, especially in previously treated
patients and those with unknown DNA repair deficits [9]. However, combination trials
using continuous olaparib with chemotherapy, such as cisplatin or carboplatin alone, or
combined with gemcitabine, had to be stopped prematurely due to high hematological
toxicity. An intermittent dose of olaparib, especially with a short course, has shown better
tolerability when combined with chemotherapy [10–13]. Myelosuppression is the main
effect caused by toxicity of PARPi and is considered a “class toxicity”. However, only
the PARPi veliparib has been associated with lower myelosuppression in monotherapy
studies, and the continuous administration of veliparib has been successfully combined
with chemotherapy [14,15].

Trabectedin is an anticancer drug structurally related to ecteinascidins and approved
in many countries to treat patients with relapsed platinum-sensitive ovarian cancer. Lur-
binectedin (PM01183) is a novel synthetic alkaloid structurally similar to trabectedin. Both
contain a pentacyclic skeleton composed of two fused tetrahydroisoquinoline rings (sub-
units A and B) responsible primarily for DNA recognition and binding. However, the
additional module (ring C) in lurbinectedin is a tetrahydro β-carboline rather than the
additional tetrahydroisoquinoline present in trabectedin. This structural difference may
confer pharmacokinetic benefits and intrinsic activity [16]. Lurbinectedin joins covalently
to the DNA, inducing DNA double-strand breaks that initiate apoptosis [17] and reducing
tumor-associated macrophages and the inflammatory microenvironment by inhibiting
inflammatory factors [17]. Lurbinectedin has been recently approved by the U.S. Food and
Drug Administration (FDA) based on a phase 2 single-arm study in 105 platinum-sensitive
and platinum-resistant adult patients with metastatic small cell lung cancer and disease
progression on or after platinum-based chemotherapy [18]. In a small randomized phase
2 study, lurbinectedin showed high activity in patients with platinum-resistant ovarian
cancer [19]. However, a recently published phase 3 study contradicted these results, with
lurbinectedin showing a similar antitumor efficacy to topotecan or liposomal doxorubicin
but having a better toxicity profile [20].
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Combining a PARPi (olaparib) with a DNA damaging agent (trabectedin or lurbinecte-
din) is an exciting approach to maximizing the effect of DNA damage. In preclinical
models, the combination of both agents was synergistic and led to biologically significant
deregulation of the DNA damage repair machinery that elicited relevant antitumor ac-
tivity [21,22]. However, overlapping hematological toxicity may represent a limitation of
the combination. The lurbinectedin dose adjusted to the body surface area showed lower
hematological toxicity (57%) than flat dose [19,23]. Similarly, an intermittent schedule of
olaparib is feasible and has a lower rate of hematologic adverse events than a continuous
course when combined with chemotherapy [10,11].

Recently, we reported the results of a phase I dose-finding study with a short course
of olaparib and lurbinectedin in patients with ovarian and endometrial cancer. The dose-
limiting toxicity was grade 4 neutropenia, and the recommended phase 2 dose (RP2D) was
1.5 mg/m2 of lurbinectedin administered intravenously on day 1 and 250 mg of olaparib
administered as oral capsules twice a day (BID) on days 1–5 of a 21-day cycle [24]. Most
adverse events were mild, and the treatment was well-tolerated. Moreover, we obtained a
disease control rate (DCR) of 60% (but no responses). Overall, the favorable safety profile
and preliminary efficacy results deserved further investigation.

The POLA is the first phase 2 trial to assess the efficacy and toxicity of lurbinecte-
din and olaparib in previously treated gynecological tumors and their correlation with
molecular characteristics.

2. Materials and Methods
2.1. Study Population

This is a phase 2, open-label, non-randomized study that recruited patients from
five centers in Spain. Patients aged ≥ 18 years were eligible if they had histologically
confirmed advanced or metastatic HGS or endometroid (no mucinous and no clear cells)
platinum-resistant—Not refractory (neither primary nor secondary)—Ovarian cancer, fal-
lopian cancer, primary peritoneal cancer, endometrial cancer (any grade, not platinum-
refractory), or triple-negative breast cancer; had an Eastern Cooperative Group (ECOG)
performance status (PS) ≤ 2; had a life expectancy of ≥3 months; had a measurable dis-
ease according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1;
received at least one line of standard therapy for locally advanced or metastatic disease
and developed progression disease afterwards (no limit was placed on the number of
prior therapies); had hemoglobin ≥ 10 g/dL; had an absolute neutrophil count ≥ 1500/µL;
had platelets ≥ 100,000/µ; had total bilirubin ≤ 1.5 times the institutional upper limit of
normal (ULN); had aspartate aminotransferase and alanine aminotransferase ≤ 2.5 times
ULN; had albumin ≥ 3 g/dL; and had creatinine ≤ 1.5 times the ULN or a creatinine
clearance ≥ 30 mL/min. Patients were ineligible if they had received previous treatment
with a PARPi or lurbinectedin.

The study (NCT02684318, EudraCT 2015-001141-08, 03.10.2015) was approved by a
centralized ethics committee and was conducted following the Declaration of Helsinki, ICH
Good Clinical Practice guidelines, and the current legislation. Written informed consent
was obtained from all patients before conducting study-specific procedures.

2.2. Study Treatment

The patients received 1.5 mg/m2 of lurbinectedin intravenously on day 1 in combi-
nation with oral administration of 250 mg of olaparib/12 h on days 1–5 BID of a cycle
of 21 days according to the RP2D determined in the phase I trial. The study treatments
were given until objective disease progression according to the RECIST 1.1, unacceptable
toxicity, or patient withdrawal of consent. At screening, patients underwent a history and
physical examination, baseline hematological and chemistry assessments and urinalysis,
blood sampling for pharmacogenomics (PG) analysis, ECG, and tumor assessment. The
patients were seen on day 1 and day 15 of cycles 1 and 2 and every 3 weeks for the rest of
the cycles for history and physical examination, hematological and chemistry assessment,
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and PG sampling (only in cycle 1). Tumor response was assessed by the investigators using
the same method used during screening, which was in line with the RECIST v1.1 every
2 cycles (6 weeks) until disease progression or death. All toxic effects were graded using the
National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE)
version 4.0.3 (https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.
htm#ctc_40 (accessed on 22 January 2022)).

2.3. Outcomes

The primary endpoint was overall response rate (ORR), defined as a complete response
(CR) or partial response (PR) according to the RECIST v1.1. The secondary endpoints were
progression-free survival (PFS), overall survival (OS), safety, and translational studies. The
exploratory objectives included ORR and PFS by tumor type and by the number of previous
treatment lines, duration of response, and long-term responders (LTR).

2.4. Translational Studies
2.4.1. DNA Extraction

DNA extraction was performed using 3 × 20 µm sections of formalin-fixed paraffin-
embedded (FFPE) archived tumors and the QIAmp DNA FFPE Tissue kit (Qiagen Iberica
S.L., Spain). DNA integrity, concentration, and fragment size were determined using a
Genomic DNA ScreenTape assay (TapeStation 4200, Agilent, Santa Clara, CA, USA).

2.4.2. Next-Generation Sequencing (NGS) Panel

The libraries were prepared using the Agilent (Santa Clara, CA, USA) SureSelect-XT HS
Target Enrichment Kit combined with OneSeq backbone 1 Mb. Briefly, 200 ng of extracted
DNA were enzymatically fragmented to a size between 150 and 200 bp. Each library was
then hybridized to a SureSelect custom panel (Agilent) according to the manufacturer’s
protocol. The custom panel, designed to evaluate the HRD status, includes 35 genes
involved in different DNA repair pathways: BRCA1, BRCA2, BARD1, BRIP1, CHEK1,
CHEK2, FAM175A, NBN, PALB2, ATM, MRE11A, RAD51B, RAD51C, RAD51D, RAD54L,
FANCI, FANCM, FANCA, ERCC1, ERCC2, ERCC6, REQL, XRCC4, HELQ, SLX4, WRN, ATR,
PTEN, CCNE1, EMSY, TP53, MLH1, MSH2, MSH6, and PMS2, and 147,000 SNPs distributed
homogenously along the genome that served to obtain Copy Number (CN) profiles. The
pooled library was sequenced (2 × 100 cycles) on a NextSeq550 using a high output flow cell
(Illumina, San Diego, CA, USA). A secondary analysis was performed with Haplotypecaller
(Broad Institute) for variant calling and Variant studio 4.0 for annotation (Illumina, San
Diego, CA, USA). The variants were considered when classified as pathogenic (P), likely
pathogenic (LP), or variant of unknown significance (VUS) with pathogenic prediction or
variants with both in silico predictors, SIFT and Polyphen, predicted as pathogenic. The
variants were filtered based on the coverage and functional annotation. The minimum
coverage for a variant was established at 100×. Mutations were accepted with a frequency
higher than 5%. For CN calling at the gene level, the PanelMops package [25] from R was
applied. The genomic instability was established using NGS OneSeq kit (Agilent) data.
Briefly, the cnvkit algorithm [26] was used with bam alignment files as the input. Filtering
by a p-value of 0.001 was applied, and the copy number events were adjusted to the tumor
burden of every sample; this tuning was applied during cns file creation. The genome’s
LOH regions were established by comparing the heterozygote regions of a panel of five
controls. Lastly, a post-analytical filter removing alterations shorter than 1 Mb, which were
assigned as probable technical artifacts, was applied previously to the data analysis.

The studied parameters were the number of copy number variation (CNV) events, the
average length per event, the length of the genome altered by these events, percentage of
the genome altered, the same four parameters removing borderline events with a biallelic
frequency (BAF) between 0.3 and 0.7, the number of gains, the length of the genome
affected by gains, the percentage of genomes affected by gains, the three gain events
removing a BAF between 0.3 and 0.7, the total number of losses, the length of genomes

https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_40
https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_40
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affected by copy number losses, the length of the genome suffering LOH events [27], the
percentage of genomes altered by LOH, the number of events, and the length of genomes
and the percentage of genomes altered with LOH spanning more than both 15 and 10 Mb.
Continuous variables were categorized according to their median and quartiles.

The parameter settings and codes used for GI determination with cnvkit software
and script to extract analytical features are available at https://github.com/afernandezse/
Pola_Phase2_GI_traslational (accessed on 22 January 2022).

2.4.3. Multiplex Ligation-Dependent Probe Amplification (MLPA) Analysis

To validate the in silico assessment of CN amplification and losses at the gene level in
CCNE1, PTEN, and EMSY (previously described in the OC population), an MLPA analysis
was performed. SALSA® MLPA Probemix p225-E1 and P078-D2 Breast tumor assays were
used, and the protocol was performed following the manufacturer’s instructions (MRC
Holland, Amsterdam, The Netherlands). Amplified products were separated using an
ABI3130XL Genetic Analyzer (Applied Biosystem, Foster City, CA, USA) and interpreted
with GeneMapper Software v4.0 (Applied Biosystems, Foster City, CA, USA). Quantifi-
cation of the fragment analysis results was performed using the Coffalyser software as
described by the manufacturer (MRC Holland). Different normal control samples from
healthy FFPE tissue were used to normalize the allele dosage.

The subrogates of the deficiency of the homologous recombination repair (HRR)
pathway were HRD status, defined as single nucleotide variants (SNVs) and indels in
HRR-genes, and different pre-established GI parameters (See the Supplementary Materials).
To assess their predictive power, these parameters faced response-based rates. ORR was
the result of grouping CR and PR versus SD and PD, whereas Clinical Benefit Rate (CBR)
grouped CR, PR, and SD of more than 6 months versus SD of fewer than 6 months and PD.
Their associations with LTR were also explored.

2.5. Statistical Analysis

According to the Fleming method for phase 2 trials, 73 patients had to have more than
a 90% chance of their ORRs being significantly different (0.05), considered the minimum
(historical control 24%) and optimal ORRs for the proposed experimental schedule (esti-
mated at 40%). For both safety and efficacy analyses, all patients who received at least
one dose of the study treatment were included. The time-to-event analysis (PFS, OS, and
duration of response) was analyzed using the Kaplan–Meier method. The Clopper–Pearson
method was used to present the number and percentage of patients achieving a response
with a two-sided 95% confidence interval (CI).

A statistical analysis was performed to define the correlations between clinicopatho-
logical and molecular parameters for time-to-event variables (i.e., PFS and OS). Differences
between a Kaplan–Meier curves tests were determined using a log-rank test. R version 4.03
was used for statistics. A side effect was estimated using Cohen’s D test.

Further statistical analyses of all endpoints were performed following the Statistical
Analysis Plan.

3. Results
3.1. Efficacy

A total of 84 patients were screened, and 73 patients received at least one dose
of the study drugs (Supplementary Figure S1). When the study database was locked
(January 2019), all patients had discontinued treatment. The median treatment duration
was 15 weeks (the minimum duration was 7 weeks, and the maximum was 25 weeks).
The principal reason for treatment discontinuation was radiological progression disease in
59 patients (73%). Other reasons included patient decision (four patients), adverse event
(two patients), death (one patient), protocol violation such as an overdose or skipped
dose of olaparib (two patients), clinical progression (two patients), or clinical deterioration
(three patients).

https://github.com/afernandezse/Pola_Phase2_GI_traslational
https://github.com/afernandezse/Pola_Phase2_GI_traslational
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The clinical characteristics of the patients are summarized in Table 1. Most patients had
HGS or high-grade endometrioid ovarian, fallopian tube, or primary peritoneum cancer
(n = 46 patients, 63%), with endometrial cancer being the second most common tumor
type (n = 26 patients, 35.6%). There was only one patient with triple-negative breast cancer.
Twenty-seven (37%) patients presented visceral metastases at the time of the inclusion, with
the most common site being lymph nodes in 16 patients (59.3%), followed by the lungs
in 10 patients (37%). The median time from the diagnosis to the inclusion in the trial was
43.4 months (range: 6.3–171.8 months), and most patients (n = 45, 61.6%) had received three
or more prior lines of therapy.

Table 1. Patient characteristics.

Characteristic Lurbinectedin plus Olaparib, n = 73 Patients

Age, median (range), years 65 (22–80)
Gender

Females, n (%) 73 (100)
ECOG PS, n (%)

0 40 (54.8)
1 33 (45.2)

Primary tumor type, n (%)
Ovarian carcinoma 46 (63)
High-grade serous 44 (60.3)

High-grade endometroid 2 (2.7)
Endometrial carcinoma 23 (31.5)

Endometrial carcinosarcoma 3 (4.1)
Triple negative breast cancer 1 (1.4)
Metastasis at baseline, n (%) 27 (37)

Lung 10 (37)
Liver 5 (18.5)

Lymph nodes 16 (59.3)
Bone 1 (3.7)

Others 12 (44.4)
Number of previous treatment regimens

<3 treatments, n (%) 28 (38.4)
≥3 treatments, n (%) 45 (61.6)

ORR evaluated per RECIST in the intention-to-treat population (73 patients) was
9.6%: one (1.4%) and six (8.2%) patients achieved CR and PR, respectively (Supplementary
Table S1). However, the disease control rate (DCR = CR + PR + SD) was 72.6%. The best
percentage of change from baseline in target lesions is shown in Figure 1. Five (6.8%)
patients were unevaluable.

In the subgroup analysis, patients with endometrial cancer had higher ORR than
patients with ovarian cancer (15.4% vs. 6.6%, respectively; p = 0.057). The number of
previous lines of therapy influenced ORR; in patients with less than three previous lines
(n = 28), the ORR was 21.4%, whilst in patients with three or more previous lines (n = 45),
the ORR was 2.2% (p = 0.02). The sole patient with CR had been diagnosed with endometrial
cancer and had received less than three lines of previous therapies.

The median PFS was 4.54 months (95% CI 3.0, 5.2) (Supplementary Figure S2A). No
significant statistical differences were found in terms of PFS according to the primary
site of the tumor. The median PFS was 4.5 (95% CI 3.0, 5.1) months for ovarian cancer
and 4.8 (95% CI 1.9, 6.8) months for endometrial cancer (Supplementary Figure S2B,C).
For the whole population, the PFS rate at 6 months was 28.56% (95% CI 18.34, 39.62)
(Supplementary Figure S2A).

An exploratory analysis was performed to characterize the subset of patients deriving
long-term benefit from the combination of lurbinectedin and olaparib. Long-term respon-
ders (LTRs) were defined as patients whose PFS was equal to or greater than the double
estimated median PFS (4.54 months). In total, 12 (16.4%) of the 73 patients were considered
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LTR, with a median PFS of 13.3 months (Supplementary Table S2). The median OS for
the entire population was 15.19 (95% CI 12.13, 17.69) (Supplementary Figure S3A). No
differences were found in OS according to the tumor type (Supplementary Figure S3B).
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Figure 1. Waterfall plot of best response, as a percentage of change in target lesions.

3.2. Safety and Tolerability

All 73 patients had at least one treatment-emergent adverse event (TEAE) (Table 2).
Overall, treatment with lurbinectedin and olaparib was well-tolerated, with most TEAEs
being grade 1 or 2. A total of 26 patients (35.5%) experienced grade 1–2 TEAEs, most
commonly asthenia, nausea, vomiting, constipation, diarrhea, abdominal pain, dysgeusia,
and anemia. The most common grade > 3 TEAE was hematological toxicity, predominantly
neutropenia, which was reported in 28 patients (38.3%). Grade 3–4 anemia and thrombocy-
topenia were observed in 6 (8.2%) and 3 (4.1%) patients, respectively. The most common
grade 3–4 non-hematologic toxicity was asthenia, reported in 6 patients (8.2%). Serious
TEAEs were observed in 22 patients (30.1%), which were related to study drugs in 3 of the
patients: 1 patient had grade 3 diarrhea, 1 patient had grade 3 constipation, and 1 patient
had grade 3 cardiac disorders. No deaths were related to adverse events.

Over the course of the treatment, 42 patients (57.5%) required a dose reduction in at
least one drug due to adverse events. Six patients (8.2%) discontinued treatment due to
toxicity as the main reason.

3.3. Translational Studies
3.3.1. Distribution of Genetic Alterations and Clinical Impact

Genetic studies were performed on a total of 57 samples that passed the quality and
quantity requirements, corresponding to 19 (33.3%) endometrial cancer and 38 (66.7%)
ovarian cancer patients. Among all of the mutated genes, considering both cancer types,
TP53 and PTEN presented the highest mutational ratios, with 34/57 (59.6%) and 9/57
(15.8%), respectively, excluding CNVs. TP53 alterations were mainly present in ovarian
cancer (70.6%), specifically in HGS histology, while PTEN was preferentially altered in
endometrial cancer (88.9%). Regarding the HRR pathway, a total of eight genes presented
alterations, including BRCA1 (3, 5.3%), BRCA2 (1, 1.8%), ATM (2, 3.5%), RAD5L (1, 1.8%),
ATR (1, 1.8%), NBN (1, 1.8%), SLX (1, 1.8%), and WRN (1, 1.8%). Overall, HRR gene
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alterations were reported in 10/57 (17.5%) cases homogeneously distributed between
endometrial cancer and ovarian cancer, and they were used in the following analysis as
an HRD status subrogates. Additionally, mutations in the Fanconi Anemia genes, FANCM
(1, 1.8%) and FANCA (1, 1.8%), were also found. Finally, alterations in the MMR genes were
described in two endometrial cancer cases (Figure 2).

Table 2. Treatment-emergent adverse event (≥5%) by maximum grade per patient.

TEAE
Grade 1 Grade 2 Grade 3 Grade 4 Total

n (%) n (%) n (%) n (%) n (%)

Anemia 8 (10.9) 7 (9.5) 6 (8.2) 0 (0) 21 (27.3)
Leukopenia 3 (4.1) 5 (6.8) 3 (4.1) 0 (0) 11 (15)
Neutropenia 0 (0) 10 (13.6) 19 (26) 9 (12.3) 38 (52)

Trombocytopenia 4 (5.4) 2 (2.7) 2 (2.7) 1 (1.3) 9 (12.3)
Abdominal pain 14 (19.0) 10 (13.6) 2 (2.7) 0 (0) 26 (35.3)

Constipation 18 (24.6) 6 (8.2) 0 (0) 0 (0) 24 (32.8)
Diarrhea 15 (20.5) 4 (5.4) 1 (1.3) 0 (0) 20 (27.3)

Dyspepsia 3 (4.1) 2 (2.7) 0 (0) 0 (0) 5 (6.8)
Nausea 30 (41) 11 (15) 0 (0) 0 (0) 41 (56.1)

Vomiting 12 (16.4) 7 (9.5) 1 (1.3) 0 (0) 20 (27.3)
Asthenia 15 (20.5) 29 (39.7) 6 (8.2) 0 (0.0) 50 (68.4)
Fatigue 2 (2.7) 3 (4.1) 0 (0) 0 (0) 5 (6.8)

Mucosal inflammation 3 (4.1) 1 (1.3) 0 (0) 0 (0) 4 (5.4)
Pyrexia 9 (12.3) 1 (1.3) 0 (0) 0 (0) 10 (13.6)

Bronchitis 3 (4.1) 2 (2.7) 0 (0) 0 (0) 5 (6.8)
Urinary tract infection 1 (1.3) 0 (0) 0 (0) 0 (0) 1 (1.3)
ALT/GPT increased 4 (5.4) 1 (1.3) 1 (1.3) 0 (0) 6 (8.1)
AST/GOT increased 5 (6.8) 2 (2.7) 0 (0) 1 (1.3) 8 (10.9)

GGT increased 0 (0) 1 (1.3) 0 (0) 3 (4.1) 4 (5.4)
Decreased appetite 8 (10.9) 4 (5.4) 0 (0) 0 (0) 12 (16.4)
Hypoalbuminaemia 2 (2.7) 4 (5.4) 0 (0) 0 (0) 6 (8.2)
Hypogamnesaemia 7 (9.5) 0 (0) 0 (0) 0 (0) 7 (9.5)

Artralgia 4 (5.4) 1 (1.3) 0 (0) 0 (0) 5 (6.8)
Back pain 7 (9.5) 3 (4.1) 0 (0) 0 (0) 10 (13.6)
Dizziness 3 (4.1) 0 (0) 0 (0) 0 (0) 3 (4.1)
Dysgeusia 16 (21.9) 1 (1.3) 0 (0) 0 (0) 17 (23.2)

Cough 4 (5.4) 0 (0) 0 (0) 0 (0) 4 (5.4)
Dyspnea 6 (8.2) 4 (5.4) 1 (1.3) 0 (0) 11 (15)

Pulmonary embolism 1 (1.3) 1 (1.3) 4 (4.5) 0 (0) 6 (8.2)
Lymphedema 3 (4.1) 1 (1.3) 0 (0) 0 (0) 4 (5.4)

We studied the possible relationship between HRD status and response to treatment.
No correlations were found between study treatment ORR or CBR, and HRR mutations.
The different GI parameters (Supplementary Material and Methods) were compared with
the mutation-based stratification. In the whole population, HRD status was associated
with losses (p = 0.0038) and the percentage of the genomes affected by losses (p = 0.034)
(Figure 3A,B). Considering that GI caused by HRR gene mutations has been principally
described in the ovarian cancer population, we studied GI patterns according to cancer
type (Supplementary Figure S4). The ovarian cancer cohort (n = 38) showed a significant
correlation between HRD status and the total number of events (p = 0.0053), loss events
(p = 0.0012), and percentage of the genome affected by losses (p = 0.012). Loss of heterozy-
gosity (LOH) did not correlate with treatment response (p = 0.091) (Figure 3C–F). On the
other hand, the endometrial cancer cohort (n = 19) did not show any significant results.
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3.3.2. Characterization of Copy Number Patterns across the Clinical Trial Population:
Clinical Impact of Genomic Instability-Based Classification

Finally, the GI parameters were evaluated as a predictive biomarker for the combina-
tion of olaparib and lurbinectedin. First, in terms of the response and duration of response,
LTRs were assessed. When evaluating the ovarian cancer population specifically (n = 27),
we observed a trend towards an association between LTRs and total LOH events, which
did not reach statistical significance with the current sample size (p = 0.055) (Figure 4B).
Second, the relationship between GI and ORR was also evaluated. The total number of
LOH events was not associated with ORR (p = 0.074) (Supplementary Figure S5A). We
observed a significant correlation between ORR and the percentage of genome altered by
losses (p = 0.021), although only two cases qualified as responders with HGS histology
(Figure 4A). In the endometrial cancer population, the percentage of the total genome
that was altered was not associated with ORR (p = 0.07) (Supplementary Figure S5B).
Finally, the classification of responses as CBR was studied, but did not yield significant
associations, for example, with the total number of events (p = 0.063) and gains (p = 0.088)
(Supplementary Figure S6). In the HGS population (n = 38), a higher number of events was
significantly associated with longer PFS (p = 0.041) (Figure 4C). Although the GI parameters
were correlated with the PARPi response in the non-parametric tests, only few parameters
showed significance in the univariate survival analysis, and multivariate analysis was not
significant. However, the results showed a correlation between higher GI and outcome,
which raises the possibility of developing this parameter as a predictive marker.
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4. Discussion

The combination of an inhibitor of DNA damage repair, such as olaparib, with a DNA
damaging agent, such as lurbinectedin, is an exciting approach to maximizing the effect of
DNA damage. In preclinical models, the combination of olaparib and lurbinectedin has
shown a synergistic effect with relevant antitumor activity [21]. However, overlapping
toxicities make the combination difficult. Hematological toxicity is the major concern
of this combination, since only lurbinectedin as therapy showed grade 3–4 neutropenia
up to 85% when administered at a flat dose [19], though this was lower (57%) when
the dose was adjusted to body surface area [23]. On the other hand, treatment with
chemotherapy and continuous doses of olaparib is usually not feasible due to the high
rate of hematologically adverse events. An intermittent schedule of olaparib is better
tolerated than a continuous one when combined with chemotherapy [10,11]. In our study,
the treatment with lurbinectedin and olaparib was tolerable. Compared with phase 1, no
new threats to safety in the expanded phase 2 study were observed. The most common
adverse events were hematological (38% of patients had neutropenia grade ≥ 3), and
among the nonhematological events, the most common was asthenia, in 8.2%. Although
dose modification of at least one drug due to adverse events was common (57.5%), only six
patients (8.2%) discontinued treatment due to toxicity.

In the POLA phase 1 dose-escalation trial, we demonstrated that the combination of
lurbinectedin adjusted to body surface area and a short course of olaparib had a safe and
tolerable profile with an encouraging DCR (stable disease 60%) in a heavily pretreated
population [24]. In this phase 2 study, we assessed the efficacy of the RP2D of lurbinectedin
(1.5 mg/m2 on day 1) with a short course of olaparib (250 mg twice a day on days 1–5)
administered every three weeks. To our knowledge, this study is the first phase 2 trial that
tests this combination in gynecological malignancies. We showed that this combination
provides an ORR of 9.6%, below the pre-specified boundary of efficacy (40%) and even in
historical controls (24%). However, DCR was 72.6%, and 12 (16.4%) of the 73 patients treated
were considered LTRs, with a median PFS of 13.3 months. In our study, there is particular
difficulty in estimating the efficacy across different tumor types and patient characteristics:
61.6% of the patients were heavily pretreated (three or more lines of treatment) since no
limit on previous lines of therapy was established. This population had a worse prognosis
than the populations included in the recent large phase 3 studies: ovarian cancer was
limited to three previous lines, and endometrial cancer was limited to two previous line.
Our study subgroup analyses were performed according to histology, and the number
of previous lines of therapy showed that patients with three or more previous lines of
therapy had a low probability of response (2.2%). In our study, ovarian cancer patients
had an ORR of 6.6%, irrespective of histology (HGS or endometroid) and HR status.
Historically, the four drugs (pegylated liposomal doxorubicin, paclitaxel, gemcitabine,
and topotecan) most often used as single agents in platinum-resistant ovarian cancer had
similar response rates (ranging from 10% to 15%) [28]. In select patients, the addition of
bevacizumab to chemotherapy increases their response rates [29], but in most of these
trials, the patients had received only one or two lines of previous chemotherapy. In a
phase 2 study, lurbinectedin showed significant improvement in ORR compared with
topotecan [19]. Regarding PARPi, olaparib monotherapy was approved by the FDA for
patients treated with three or more lines based on the results (ORR of 34% and median
PFS of 7.9 months) of a series of patients with BRCA mutations and platinum-resistant
disease [30]. In the ROLANDO trial [31], olaparib combined with pegylated liposomal
doxorubicin was assessed in platinum-resistant ovarian cancer and showed an ORR of 29%.
However, the number of prior therapy lines was limited to a maximum of four, with at
least one previous platinum-sensitive relapse, and BRCA mutations were present in 16% of
patients compared with 7% of patients in the present study. On the other hand, patients
with endometrial carcinoma had an ORR of 15.4%, which is higher than that reported with
other PARPis in monotherapy, such as niraparib (4%) [32]. For endometrial cancer, the
most active chemotherapeutic agents identified have been doxorubicin and cisplatin, and
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both alone or in combination with other agents have been tested in phase III trials, with
ORRs ranging from 14.7% to 42% [29,33–36]. However, lurbinectedin plus doxorubicin has
only been tested in a small phase I trial with an ORR of 42% [37]. However, the median
chemotherapy lines for advanced disease in this population was 1 (range 0–2).

Historically, cancer treatments have been investigated without studying biomarkers
of response or fully understanding the mechanisms underlying resistance to the treatment.
However, recent trials have evidenced the role specific biomarkers have played in the de-
velopment of new treatments. The POLA translational study was designed to describe the
correlation between different GI parameters and the benefit of the treatment, establishing
GI as a predictive biomarker in this clinical scenario. In total, 57 cases were evaluated at
the gene and genomic levels, defining those that presented HRD based on the mutational
status of HRR genes (10 patients, 17.5%). BRCA1/2 tumor mutations were present in 10%
of cases, which is below the 20% of germline and somatic cases reported in HGS ovarian
carcinoma [30]. Due to the nature of the population, with patients who have been pre-
viously treated with PARPis and, therefore, potentially mutated and responsive patients
being excluded, the incidence of cases with BRCA mutations suffered an evident decrease.
Regarding the correlation between HRD classification based on mutational status and
response, no significant association was found. However, we found a significant correlation
between response and different GI parameters, such as loss events, mainly present in the
ovarian cancer cohort and HRD population. The lack of predictive power of HRR gene
mutations could be explained by differences regarding the characteristics of the population,
given that the population is composed principally of patients with HGS ovarian cancer who
have been heavily pretreated and a lower frequency of BRCA mutations compared with
other series. Recent reports have evidenced that mainly cases harboring BRCA mutations
and, marginally, other HRR genes, such as RAD51C conferred sensitivity to PARPi [31,32].
Clinical and methodological issues might also have an impact on the results. For instance,
the fact that the genetic and genomic analysis was performed on the primary tumor and not
at the moment of relapse, previously to study entry, could affect the concordance between
HRD status and treatment response. The mutational/LOH patterns are not reverted when a
tumor recovers HR function, so they may not be accurate in predicting PARPi sensitivity in
patients who have previously received and progressed on DNA damaging chemotherapy,
such as platinum. In addition, the variant selection, which includes in silico prediction of
pathogenesis, could have an impact on sensitivity prediction, since some of those mutations
may not have a real loss of function and, hence, may not present the HRD phenotype.

The lack of a gold standard for the definition and assessment of GI has motivated a
wide number of studies to find an accurate approach [33]. However, only two of them have
been commercially approved: Myriad MyChoice® and the one from Foundation Medicine®.
Even if both approaches have been extensively validated [6,31], developing an in-house
tool adapted to our requirements and being able to establish the GI based on different
parameters were advantages. Additionally, for the mutational analysis, we assessed the
whole-genome CNV phenotype and adjusted an in-house pipeline to interrogate and define
the GI patterns with regard to the combined treatment response. Hence, we aimed to
achieve the most suitable classifier, overcoming the possible caveats of available method-
ologies. Our approach showed a correlation between different GI parameters and better
response to the studied combination. The results concerning the ovarian cancer population
were particularly interesting, where a higher percentage of losses (p = 0.021) appeared to be
correlated with ORR. At the same time, without reaching statistical significance, a trend
was observed between the number of LOH events (p = 0.055) with LTRs. However, all these
results should be carefully considered because of the limited sample size. In addition, the
total number of events was also significant in the log-rank test (Figure 4). As several GI
parameters are associated with better responses, our next steps will be focused on obtaining
a model combining these pre-defined parameters, using response as the endpoint. Then, the
predictive role of this GI model will need to be validated in a prospective trial specifically
addressing this endpoint.
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5. Conclusions

In conclusion, the POLA study provides evidence that the administration of 1.5 mg/m2

of lurbinectedin on day 1 and 250 mg of olaparib twice a day on days 1–5 every 21 days is
feasible with a DCR of 72.6% and tolerable safety profile in patients who have been heavily
pretreated for gynecological cancer. Based on these results, the combination would be
suitable for further research and offers a potential alternative for patients with relapsed
ovarian and endometrial cancer irrespective of BRCA mutation status. This translational
study showed a correlation between different GI parameters and a better response; however,
its predictive impact should still be investigated in a larger randomized study.
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et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: A randomised phase 2 trial. Lancet
Oncol. 2015, 16, 87–97. [CrossRef]

11. van der Noll, R.; Jager, A.; Ang, J.E.; Marchetti, S.; Mergui-Roelvink, M.W.J.; de Bono, J.S.; Lolkema, M.P.; de Jonge, M.J.A.; van der
Biessen, D.A.; Brunetto, A.T.; et al. Phase I study of intermittent olaparib capsule or tablet dosing in combination with carboplatin
and paclitaxel (part 2). Investig. New Drugs 2019, 38, 1096–1107. [CrossRef]

12. Lampert, E.J.; Hays, J.L.; Kohn, E.C.; Annunziata, C.M.; Minasian, L.; Yu, M.; Gordon, N.; Sissung, T.M.; Chiou, V.L.; Figg, W.D.;
et al. Phase I/Ib study of olaparib and carboplatin in heavily pretreated recurrent high-grade serous ovarian cancer at low genetic
risk. Oncotarget 2019, 10, 2855–2868. [CrossRef] [PubMed]

13. Del Conte, G.; Sessa, C.; Von Moos, R.; Viganò, L.; Digena, T.; Locatelli, A.; Gallerani, E.; Fasolo, A.; Tessari, A.; Cathomas, R.; et al.
Phase i study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br. J. Cancer 2014,
111, 651–659. [CrossRef]

14. Gray, H.J.; Bell-McGuinn, K.; Fleming, G.F.; Cristea, M.; Xiong, H.; Sullivan, D.; Luo, Y.; McKee, M.D.; Munasinghe, W.; Martin,
L.P. Phase I combination study of the PARP inhibitor veliparib plus carboplatin and gemcitabine in patients with advanced
ovarian cancer and other solid malignancies. Gynecol. Oncol. 2018, 148, 507–514. [CrossRef] [PubMed]

15. Coleman, R.L.; Fleming, G.F.; Brady, M.F.; Swisher, E.M.; Steffensen, K.D.; Friedlander, M.; Okamoto, A.; Moore, K.N.; Efrat
Ben-Baruch, N.; Werner, T.L.; et al. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. N.
Engl. J. Med. 2019, 381, 2403–2415. [CrossRef] [PubMed]

16. Leal, J.F.M.M.; Martínez-Díez, M.; García-Hernández, V.; Moneo, V.; Domingo, A.; Bueren-Calabuig, J.A.; Negri, A.; Gago, F.;
Guillén-Navarro, M.J.; Avilés, P.; et al. PM01183, a new DNA minor groove covalent binder with potent in vitro and in vivo
anti-tumour activity. Br. J. Pharmacol. 2010, 161, 1099–1110. [CrossRef] [PubMed]

17. Belgiovine, C.; Bello, E.; Liguori, M.; Craparotta, I.; Mannarino, L.; Paracchini, L.; Beltrame, L.; Marchini, S.; Galmarini, C.M.;
Mantovani, A.; et al. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in
preclinical models. Br. J. Cancer 2017, 117, 628–638. [CrossRef]

18. Trigo, J.; Subbiah, V.; Besse, B.; Moreno, V.; López, R.; Sala, M.A.; Peters, S.; Ponce, S.; Fernández, C.; Alfaro, V.; et al. Lurbinectedin
as second-line treatment for patients with small-cell lung cancer: A single-arm, open-label, phase 2 basket trial. Lancet Oncol.
2020, 21, 645–654. [CrossRef]

19. Poveda, A.; Del Campo, J.M.; Ray-Coquard, I.; Alexandre, J.; Provansal, M.; Guerra Alía, E.M.; Casado, A.; Gonzalez-Martin,
A.; Fernández, C.; Rodriguez, I.; et al. Phase II randomized study of PM01183 versus topotecan in patients with platinum-
resistant/refractory advanced ovarian cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 1280–1287. [CrossRef]

20. Gaillard, S.; Oaknin, A.; Ray-Coquard, I.; Vergote, I.; Scambia, G.; Colombo, N.; Fernandez, C.; Alfaro, V.; Kahatt, C.; Nieto, A.;
et al. Lurbinectedin versus pegylated liposomal doxorubicin or topotecan in patients with platinum-resistant ovarian cancer: A
multicenter, randomized, controlled, open-label phase 3 study (CORAIL). Gynecol. Oncol. 2021, 163, 237–245. [CrossRef]

21. Ordóñez, J.L.; Amaral, A.T.; Carcaboso, A.M.; Herrero-Martín, D.; Del Carmen García-Macías, M.; Sevillano, V.; Alonso, D.;
Pascual-Pasto, G.; San-Segundo, L.; Vila-Ubach, M.; et al. The PARP inhibitor olaparib enhances the sensitivity of Ewing sarcoma
to trabectedin. Oncotarget 2015, 6, 18875–18890. [CrossRef] [PubMed]

22. Ávila-Arroyo, S.; Nuñez, G.S.; García-Fernández, L.F.; Galmarini, C.M. Synergistic Effect of Trabectedin and Olaparib Combination
Regimen in Breast Cancer Cell Lines. J. Breast Cancer 2015, 18, 329–338. [CrossRef] [PubMed]

23. Cruz, C.; Llop-Guevara, A.; Garber, J.E.; Arun, B.K.; Perez Fidalgo, J.A.; Lluch, A.; Telli, M.L.; Ferńandez, C.; Kahatt, C.; Galmarini,
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Simple Summary: The response of high-grade serous ovarian cancer (HGSOC) to DNA-damaging
agents largely depends on tumor genomic instability (GI), a phenomenon that affects the entire
genome. Nowadays, surrogate biomarkers of this phenomenon, such as BRCA-gene mutations, are
used in clinical practice to identify patients harboring this characteristic. However, these approaches
do not capture the entire picture of GI, mainly due to the lack of information on non-BRCA mutation
causes and hence, leading to the misclassification of patients. Thus, considering the great interest in
studying GI from a comprehensive perspective, this study aims to establish an integrative response-
predictive classifier (Scarface Score) for DNA-damaging agents in the context of HGSOC. The Scarface
score will support clinical decision-making by correctly selecting the subpopulation of patients with
better responses and avoiding overtreatment of those with a low Scarface Score.

Abstract: Genomic Instability (GI) is a transversal phenomenon shared by several tumor types that
provide both prognostic and predictive information. In the context of high-grade serous ovarian
cancer (HGSOC), response to DNA-damaging agents such as platinum-based and poly(ADP-ribose)
polymerase inhibitors (PARPi) has been closely linked to deficiencies in the DNA repair machinery by
homologous recombination repair (HRR) and GI. In this study, we have developed the Scarface score,
an integrative algorithm based on genomic and transcriptomic data obtained from the NGS analysis
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of a prospective GEICO cohort of 190 formalin-fixed paraffin-embedded (FFPE) tumor samples from
patients diagnosed with HGSOC with a median follow up of 31.03 months (5.87–159.27 months).
In the first step, three single-source models, including the SNP-based model (accuracy = 0.8077),
analyzing 8 SNPs distributed along the genome; the GI-based model (accuracy = 0.9038) interrogating
28 parameters of GI; and the HTG-based model (accuracy = 0.8077), evaluating the expression of
7 genes related with tumor biology; were proved to predict response. Then, an ensemble model called
the Scarface score was found to predict response to DNA-damaging agents with an accuracy of 0.9615
and a kappa index of 0.9128 (p < 0.0001). The Scarface Score approaches the routine establishment
of GI in the clinical setting, enabling its incorporation as a predictive and prognostic tool in the
management of HGSOC.

Keywords: high-grade serous ovarian cancer; genomic instability; machine learning; PARPi;
platinum-based chemotherapy

1. Introduction

The term ‘genomic instability’ (GI) describes the characteristic of cells to progressively
accumulate genomic alterations. In recent years, because of its increasing importance in
the field of oncology, GI has gained greater attention in translational research [1]. GI is a
hallmark of cancer and is relevant not only as an intrinsic feature of tumor cells but also
as a potential driving force of tumorigenesis [2]. Although GI is present in every cancer
type, some tumors show a remarkable accumulation of alterations [3]. High-grade serous
ovarian cancer (HGSOC) is of particular interest in this respect. HGSOC is a molecularly
and clinically heterogeneous disease that is characterized by TP53 mutations and DNA
damage homologous recombination repair (HRR) deficiency (HRD) in approximately 50%
of patients [4]. Deficiencies in this pathway could have different molecular causes in
addition to classically known BRCA1/2 mutation, such as other HRR-genes mutations and
epigenetic modifications [5]. The HRD phenotype represents a clear molecular subtype
that is highly enriched in copy number alteration patterns, which play important roles in
oncogenesis, progression, and metastasis [2,6]. The so-called HRD phenotype is defined as a
clinical profile similar to tumors harboring BRCA gene alterations. That is, showing a higher
progression-free survival treated mainly with platinum salts and PARP inhibitors, among
other therapies [7]. Copy number alteration patterns can be classified by the presence of
specific GI events, also called genomic scars, reflecting a loss of genome integrity [8]. These
genomic scars may be reliable biomarkers for homologous recombination repair deficiency
(HRD) and could potentially be used to identify patients who would benefit from specific
types of anticancer therapies, such as platinum-based chemotherapies or poly(ADP-ribose)
polymerase inhibitor (PARPi) therapy [9–11]—the clinical utility of which has been shown
in several clinical trials, including PAOLA [12], PRIMA [13], VELIA [14] and ATHENA [15].
As such, GI is a potential predictive and prognostic biomarker [6]. Because of these clinical
implications, researchers are attempting to define GI status in order to select patients who
will benefit from these therapeutic approaches.

Classically, the determination of HRD status has relied on BRCA1 and BRCA2 geno-
typing [16], but the HRR pathway involves a vast range of proteins, most of which are
reportedly mutated in tumor samples [17]. Today, the development of high-throughput
techniques allows the integrative analysis of multiomic data to generate machine learning
models, which can more comprehensively determine HRD status [18,19].

Based on the above, the aim of this study was to develop a methodologic and analytic
approach to determining GI status in patients with HGSOC using a comprehensive strategy
that integrates data from single-nucleotide variations, somatic copy number alterations,
and transcriptomics. These data were used to build a model (the Scarface score) that could
predict a patient’s response to DNA-damaging agents.
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2. Materials and Methods
2.1. Patient Selection

The study used 190 formalin-fixed and paraffin-embedded (FFPE) HGSOC samples
that were ambispectively collected from patients treated at multiple centers from 2007 to
2020 (BorNeO 1703). An ambispective study implies the combination of both retrospective
and prospective data, including past, present, and future time points. All patients signed
an informed consent form approved by the required ethics committees, and the study
was approved by the ethics committee of Fundación Instituto Valenciano de Oncología in
2021 (LBM-02-20, SCARFACE). The informed consent of patients was obtained following
institutional, ethical, and legal regulations. The inclusion criteria were age ≥18 years at
inclusion, diagnosis with HGSOC, and previous first-line treatment with platinum-based
chemotherapy.

2.2. Mutational and Copy Number Variants Analysis

DNA extraction was performed using three 20 µm-thick sections of FFPE tumor blocks
and a QIAamp DNA FFPE tissue kit (Qiagen, Hilden, Germany). The final concentration
was measured spectrophotometrically using NanoDrop ND-1000 (Eppendorf, Hamburg,
Germany). Genomic concentration, DNA integrity, and fragment size were determined by
using a TapeStation 4200 bioanalyzer (Agilent, Santa Clara, CA, USA).

Libraries were prepared using the SureSelectXT HS Target Enrichment Kit using the
Magnis NGS Prep System (Agilent, Santa Clara, CA, USA). Briefly, 200 ng of extracted
DNA was enzymatically fragmented to a size range of 150–200 base pairs. Each library
was then hybridized with a SureSelectXT HS custom panel combined with Agilent OneSeq
backbone 1 Mb according to the manufacturer’s protocol. The custom panel analyzed the
following DNA damage response genes: BRCA1, BRCA2, BARD1, BRIP1, CHEK1, CHEK2,
FAM175A, NBN, PALB2, ATM, MRE11A, RAD51B, RAD51C, RAD51D, RAD54L, FANCI,
FANCM, FANCA, ERCC1, ERCC2, ERCC6, REQL, XRCC4, HELQ, SLX4, WRN, ATR, PTEN,
CCNE1, EMSY, TP53, MLH1, MSH2, MSH6, and PMS2.

Although HRR genes were overrepresented in the panel, genes belonging to the base
excision repair, nucleotide excision repair, and mismatch repair pathways were also incor-
porated into the design. The OneSeq backbone was used to obtain copy number variants
(CNVs), consisting of 147,000 single-nucleotide polymorphisms (SNPs) homogeneously
distributed along the genome. Pooled libraries were sequenced (100 bp paired-end) using
the NextSeq 550 System (Illumina, San Diego, CA, USA). A secondary analysis was per-
formed using HaplotypeCaller (Broad Institute, Cambridge, MA, USA) for variant calling
and VariantStudio 4.0 for annotation (Illumina). Variants were selected after a filtering
process based on the following analytical parameters: coverage >100× (covered in forward
and reverse sense); allele frequency >5%; and annotation of Pathogenic, likely pathogenic,
or VUS with a prediction of pathogenicity with Varsome classifier. Germline BRCA1/2
alterations were obtained from analyses carried out at each hospital of origin.

Bioinformatics analysis to obtain copy number events was performed using an in-
house pipeline based on the CNVkit algorithm [20]. This pipeline was internally cus-
tomized to ensure the suitability and reliability of the method (Supplementary Data S1 and
Figures S1–S5). The CNVkit algorithm uses sequencing data from target and anti-target
regions to infer copy number status. Circular binary segmentation was chosen for the
segmentation step. The variant calling step was performed using Mutect2 (Broad Institute).
Normalization was applied by using median read counts from a set of 10 control samples
from healthy peritumoral ovarian tissue.

Independently, the panelcn.MOPS package (version 1.17.1) [21] was used to evaluate
copy number changes at the gene level—particularly CCNE1 amplification.

The presence of HRD-associated genomic scars (loss of heterozygosity (LOH), large-
scale transitions, number of telomeric allelic imbalances, and a combined score (HRD score))
was assessed using the scarHRD package (version 0.1.1) for R [22].
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The parameter settings and codes used for GI determination with CNVkit software and
the script to extract analytical features are available at https://github.com/afernandezse/
Pola_Phase2_GI_traslational (accessed 22 January 2022).

2.3. Transcriptomic Analysis

Gene expression analysis was performed using the HTG EdgeSeq System (HTG
Molecular Diagnostics, Tucson, AZ, USA). This technique is based on RNA sequencing
consisting of a prehybridization step with specific probes using a quantitative nuclease
protection assay, followed by a standard next-generation sequencing (NGS) protocol. This
technique requires a small input (i.e., 5 µm FFPE section and an area of 15 mm2). The panel
focuses on a selection of 2549 oncology-related mRNAs (the Oncology Biomarker Panel)
rather than analyzing the entire transcriptome, obtaining the appropriate dynamic range in
gene expression analysis. Gene expression data were parsed using HTG EdgeSeq Parser
version 5.3.0.7184. Quality control was performed using HTG Reveal version 3.0 (HTG
Molecular Diagnostics). Raw read counts were normalized according to the median [23].

2.4. Model Fitting

To improve the current detection of HRD-related GI, a data-mining model integrating
several biological approaches was proposed. The model included genomic and transcrip-
tomic data from 190 HGSOC samples, from which all data were available for 183 samples.
The first layer of the model comprised 147,000 SNPs uniformly distributed along the entire
genome at a resolution of 1 Mb. The second layer, comprised of GI parameters, was derived
from CNVkit results. Finally, gene expression data obtained from targeted RNA sequenc-
ing of 2549 genes was the third layer. Because of the high number of SNP parameters,
those that were less informative were removed under the criteria of a low number or near
zero variance in total counts per SNP.

Briefly, the model fitting on the first and third layers consisted of three parts. First,
feature selection was performed by extracting attributes using the ANOVA test, the signal-
to-noise ratio, significant parameters identified from logistic regression analysis, recursive
feature extraction [24], and the Boruta algorithm [25]. Second, model feeding was con-
ducted. Each resulting set of features was tested to build three data-mining models using
the following algorithms: support vector machine, random forest, and neural network
(Supplementary Data S2). Third, specific hyperparameters were tuned. Second-layer build-
ing followed the same procedure but without feature extraction.

The final model consisted of an ensemble model (which was termed the Scarface score),
in which the best-performing data-mining model was fed with its paired selected parame-
ters. This model was benchmarked by studying its mean accuracy and kappa index from
500 bootstrapping iterations (detailed in Supplementary Data S2). Each model, including the
ensemble model (the Scarface score), was trained and validated using two series, which were
randomly selected from the total 183 HGSOC samples in a proportion of 70/30, respectively.
The models were trained to discriminate between patients with a response to platinum-based
chemotherapy ≥12 months (responders) versus <12 months (non-responders).

2.5. Statistical Analysis

The chi-square and Fisher’s exact tests were used to compare categorical GI and
clinical and pathological variables. Non-parametric Wilcoxon and Kruskal–Wallis tests
were used for continuous variables.

For time-to-event variables, survival analysis was performed using Kaplan–Meier esti-
mation, and significance was obtained by log-rank testing. Univariate and multivariate Cox
regression was also performed. Statistical significance was considered at p < 0.05. All tests were
two-tailed. The time-to-event variables investigated were platinum-free interval (PFI), defined
as the time between the end of platinum-based chemotherapy and relapse; progression-free
survival (PFS) to PARPi, defined as the time between the start of PARPi treatment and disease
progression; and overall survival (OS), defined as the time between diagnosis and death.

https://github.com/afernandezse/Pola_Phase2_GI_traslational
https://github.com/afernandezse/Pola_Phase2_GI_traslational


Cancers 2023, 15, 3030 5 of 15

The performance of the models was evaluated using the ROCR and pROC packages from
R version 4.1.2. Statistical analyses were performed using R studio version 2021.09.0.

3. Results
3.1. Study Population

FFPE tumor blocks from 190 patients with HGSOC were analyzed. Clinical parameters
of the patient population are shown in Table 1. The median follow-up of the studied
population was 31.03 months (range 5.87–159.27 months). Median PFI after first-line
therapy was 16.28 months (range 0–83.33 months), the recurrence rate after first-line
therapy was 52.11% (99/190), and the median PFS to PARPi was 11.03 months (range
1.03–64.63 months). Overall, 20.53% of patients had died at the time of data analysis.

Table 1. Main clinical, pathological, and treatment-related variables of the whole series.

Clinical Parameter N % Clinical Parameter N %

Histology High-grade serous
ovarian cancer 190 100

Surgery
Yes 167 87.9

Stage

IA 7 3.7 No 23 12.1

IC1 6 3.2
Primary debulking surgery

Yes 114 68.3

IC2 9 4.7 No 53 31.7

IIA 4 2.1 Residual disease after primary
debulking surgery

Yes 18 15.8

IIB 6 3.2 No 96 84.2

IIIA1 8 4.2 First-line platinum therapy All 190 100.0

IIIA2 5 2.6
Relapse after first-line therapy

Yes 99 52.1

IIIB 10 5.3 No 91 47.9

IIIC 77 40.5
Received PARP

Yes 59 31.1

IVA 12 6.3 No 131 68.9

IVB 27 14.2 Progression with PARPi
Yes 29 49.1

No 30 50.9

NA 19 10.0 Exitus
Yes 39 20.5

No 151 79.5

Stage
(aggregated)

Localized (I-IIB) 34 17.9
Clinical parameter Median (range)

Locally Advanced (III-IVA) 120 63.2 Age at diagnosis, years 59.2
[34.1–83.9]

Metastatic (IVB) 36 18.9 Platinum-free interval, months
16.3

[0.0–83.3]

Type of biopsy

Excisional 132 69.5
PFS to PARPi therapy, months

11.0

Incisional 35 18.4 [1.0–64.6]

Tru-Cut 23 12.1
Follow-up, months

31.0

BRCAg

WT or benign/Likely benign 141 71.2 [5.9–159.3]

Variant of unknown
significance 13 6.8

Overall survival, months
31.0

Pathogenic 36 18.9 [5.87–159.27]

PARPi, poly(ADP-ribose) polymerase inhibitor. NA, not available.

3.2. Mutational Distribution and Clinical Implications

Mutational analysis was performed based on the results of the NGS custom panel,
which analyzed 35 DNA damage repair genes. As expected, the most frequently mutated
gene was TP53, which was mutated in 72.11% (137/190) of samples, followed by BRCA1 and
BRCA2, with incidences of 16.84% (32/190) and 15.26% (29/190), respectively. Germline
mutations were detected in 59.02% (36/61) of patients with BRCA1/2-mutated HGSOC.
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Other HRR genes were also found to be altered, with a total incidence of 11.05% (21/190),
some of them coexisting with BRCA mutations. In addition, alterations in other DNA
damage repair genes were also identified (Figure 1). Mutational data were used to classify
tumors as HRR-proficient or HRD, according to the mutational status of pathway-specific
genes. Hence, 35.79% (68/190) of patients were considered HRR mutated (HRRmut).
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Figure 1. Distribution of mutations in DNA damage repair genes among 190 patients with high-grade
serous ovarian cancer, stratified by HRR gene status. HRR, homologous recombination repair; mut,
mutated; wt, wild-type.

Non-parametric and log-rank tests were used to evaluate the ability of HRR mutation
status to predict response to DNA-damaging drugs (including platinum-based and PARPi ther-
apies). The results revealed differences for tumors HRR wildtype (HRRwt) versus HRRmut
with respect to both PFI (p = 5 × 10−8), with a median PFI of 15.3 and 72.1 months, and PFS
to PARPi (p = 0.00085), with a median of 8.53 months for HRRwt and were not achieved by
HRRmut, demonstrating the prognostic impact of HRR mutation status (Figure 2).
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Figure 2. Log-rank test to evaluate the predictive ability of an HRR gene mutation-based classifier
with respect to (A) PFI, HR = 0.25 (95% CI: 0.15–0.43) and (B) PFS to PARPi therapy, HR = 0.25
(95% CI: 0.1–0.62). HRR, homologous recombination repair; mut, mutated; PARPi, poly(ADP-ribose)
polymerase inhibitor; PFI, platinum-free interval; PFS, progression-free survival; wt, wild-type.
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CCNE1 has previously been implicated in the prognosis of patients with HGSOC [4],
and therefore, the addition of the CCNE1 amplified cases in this series could increase the
accuracy when classifying patients. For that reason, CCNE1 amplification was evaluated
in silico in this series. Patients whose tumors harbored amplifications in CCNE1 (22/190,
11.58%) were classified as an independent subgroup to evaluate the prognostic implication of
each genomic alteration. The addition of CCNE1 amplified cases as a new independent group
showed significant differences in the log-rank tests for both PFI (p < 0.0001) and PFS to PARPi
(p = 0.00012) (Figure S6). In the case of PFS to PARPi, the presence of CCNE1 amplification
was associated with the worst-prognosis group, followed by HRRwt and, finally, HRRmut.

3.3. Copy Number Parameters and Their Clinical Implications

The applied NGS approach also includes 147,000 SNPs homogeneously distributed
among the whole genome. These data facilitated the assessment of GI based on copy
number analysis by using an in-house pipeline. Hence, we were able to establish GI profiles
and quantify them using different predefined parameters (Supplementary Data S3). Each GI
parameter was tested for associations with continuous and categorical response variables.
GI parameters that were more significantly associated with PFI in non-parametric tests were
the total number of LOH events of >15 Mb (p = 0.019) and the percentage of the genome
that was altered by LOH of >15 Mb (p = 0.016) (Figure S7). However, there were also other
GI parameters also resulted in significant correlation, as specified in Supplementary File.

The correlation between pre-established HRD scores, as previously described [26], and
response variables was also evaluated. The highest significance for predicting PFI was seen
with the LOH parameter stratified by its median value (p = 0.0071), followed by the HRD
score stratified by its median value (p = 0.031). However, none of the pre-established HRD
scores investigated was able to significantly predict PFS to PARPi (Figures S8 and S9).

Aiming to optimize the generated data, even though GI parameters on their own
could work as a predictive biomarker and to improve the currently available biomarkers,
the combination of them was used as a base to build a predictive model.

Finally, GI profiles, described by the presence of GI parameters, were determined to
compare the different HRR mutational-based populations. As expected, a higher accu-
mulation of GI was found in samples harboring mutations in the HRR pathway and was
especially enriched for those with BRCA mutations (Figure S10).

3.4. Independent Model Fitting and Building of the Integrative Ensemble Model (Scarface Score)

In order to adjust a machine learning strategy to predict response to platinum-derived
therapy, attributes from three different sources were used. The first model was derived
from the raw coverage information of 147,000 SNPs, while the third model contained gene
expression data from 2549 genes obtained from targeted RNA sequencing results. Feature
selection was performed using several strategies, as described in the Materials and Methods.
The second model included the most representative parameters of the GI phenomenon
but was not subjected to feature selection because of a low number of features. Each set of
selected parameters was tested and coupled with a data-mining algorithm. Every possible
combination of the data-mining algorithm and selected features was tested.

The best performances were seen with a support vector machine with eight SNPs (‘SNP
model’; Table S1), a support vector machine with 28 GI parameters (‘GI model’), and a neural
network with the expression of seven genes (‘HTG model’; Table S2). Selected features of
each model are described in Supplementary Data S3. The performance of each model is
shown in Table 2. Weights and main characteristics of the features included in each of the
three models and the ensemble are included in Tables S3–S6. Among the three single-source
models, the best performance was obtained with the GI model, which had an accuracy of
0.9038. Finally, an ensemble model (the Scarface score) was developed based on a support
vector machine algorithm, using as an input the 43 attributes from the individual models
described above. The ensemble model was trained with a bootstrapping of 500 iterations and
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obtained an accuracy of 0.96 and a kappa index of 0.91, outperforming all three single-source
models. All performance parameters were obtained from the validation series.

Table 2. Performance of the different predictive algorithms tested.

Model TP/TN/FP/FN Accuracy
(95% CI) Sensitivity Specificity Kappa

SNP model 29/13/5/5 0.8077
(0.6747–0.9037) 0.7222 0.8529 0.5752

HTG model 25/17/1/9 0.8077
(0.6747–0.9037) 0.9444 0.7353 0.6154

GI model 31/16/2/3 0.9038
(0.7897–0.968) 0.8889 0.9118 0.7903

Ensemble model 34/16/2/0 0.9615
(0.8679–0.9953) 0.8889 1.0000 0.9128

FP, false positive; FN, false negative; GI, genetic instability; SNP, single nucleotide polymorphism; TP, true positive;
TN, true negative.

The clinical impact of each model was tested in the whole population of patients
with HGSOC (n = 183) by using a log-rank test with PFI as a time-to-event variable. All
four models, including the ensemble model, were able to distinguish responders from
non-responders with significant differences in PFI (all p < 0.0001; Figure 3). The HTG-based
model was found to be the most limited, while the highest statistical significance was
obtained using the ensemble model (p < 2 × 10−16).
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score), HR = 0.046 (95% CI: 0.027–0.077). GI, genomic instability; PFI, platinum-free interval; SNP,
single-nucleotide polymorphism.

The goodness-of-fit of each model was evaluated using receiver operating characteris-
tic (ROC)curves, which showed how well each predictive model discriminated between
patients with a PFI ≥12 versus <12 months. As expected, the highest discriminative power
was obtained with the ensemble model, which had an area under the curve of 0.962, a
sensitivity of 0.929, and a specificity of 0.945 (Figure 4A).
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performance of the models. Tumor extension was stratified based on stage: localized (I–IIB), lo-
cally advanced (III–IVA), or metastatic (IVB) regarding PFI. * p-value ≤ 0.05, ** p-value < 0.01 and
*** p-value < 0.001. GI, genomic instability; HRR, homologous recombination repair; PFI, platinum-
free interval; SNP, single-nucleotide polymorphism. # Characteristics of the regression.

Although the algorithms were trained to predict response to platinum-based chemother-
apy, the ultimate aim of the study was to develop a model that could identify patients who
are candidates for PARPi therapies. Thus, the ability of the models to discriminate the best
responders to PARPi therapies was also investigated using log-rank testing in a sub-cohort
of 58 patients from the overall population who had received PARPi therapy in addition to
first-line platinum-based chemotherapy. The performance of the models was compared
with the stratification based on BRCA mutation, which is the current gold standard for
selecting patients to receive PARPi therapy. The ensemble model was found to have a
p-value of 0.00077 for non-responders versus responders, which outperformed BRCA-based
classification (p = 0.0048) (Figure 5 and Figure S11), thus improving the discriminant power
of the gold standard.
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The ability of the models to predict overall survival was also evaluated. All mod-
els reached statistical significance, with the greatest significance seen for the ensemble
model (Figure S12C–F). In contrast, classification based on BRCA or HRR gene status
appeared unable to significantly predict overall survival (Figure S12A,B). Exact p-values
and summarized survival analyses are shown in Table S7.

In addition to model performance, a multivariate analysis was performed to evaluate
the ability of different clinicopathologic and mutational parameters to stratify patients
according to overall survival. The most discriminant parameter was the ensemble model
prediction (hazard ratio (HR) 0.12). However, other parameters, such as tumor extension
(locally advanced, HR 2.18; metastatic, HR 3.31 and HRR mutation status (HR 0.36), also
contributed to risk assessment (Figure 4B). Additional Cox analyses were performed
evaluating a higher number of variables (Figure S13).

4. Discussion

GI, as a surrogate of HRD, has risen as a prognostic and predictive tool in HGSOC [27].
While HRR-based stratification, based on any alteration or effect in the genome, is widely
recognized as essential, many efforts have been made to develop and clinically validate
academic tools based on different approaches [28–30]. In this study, we developed three
single-source models based on SNPs, GI, and RNA expression analysis, respectively, and
an integrative ensemble model (the Scarface score) to predict response to DNA-damaging
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agents—particularly platinum-based chemotherapy and PARPis. The Scarface model—
which combined eight SNPs, 28 GI parameters, and the expression of seven genes—showed
the best performance, with an accuracy of 0.9615 and a kappa index of 0.9128 in the
validation series. However, the single-source models could also be suitable and efficient
tools in a real-life clinical setting, helping to guide the clinical management of patients.
The proposed models were built based on three layers: SNP deep NGS, a CNV profile
using in silico algorithms, and targeted RNA sequencing using HTG EdgeSeq technology.
Each layer has its strengths and limitations, but ultimately, each underpins the others.
This design accounts for the different mechanisms by which HRD is produced and tries
to mimic the complex biological context (e.g., genomic, transcriptomic). These different
levels of biological information could be better represented by a multiomic approach. For
this purpose, the capacity of machine learning to account for complex interactions in large
datasets [31] made it optimal for the study of GI based on drug response. Several machine
learning models (support vector machine, random forest, neural network, decision tree,
and naïve Bayes) were adjusted with different parameters and hyperparameters, and the
resulting models were benchmarked to rank the best performance for each layer.

Commercial solutions, such as MyChoice® CDx Plus (Myriad Genetics, Salt Lake City,
UT, USA) and the FoundationOne® CDx (Foundation Medicine, Cambridge, MA, USA),
which are based on identifying genomic scars, HRR gene mutations and LOH, have already
shown their clinical benefit in clinical trials [32–34]. However, even if each model succeeds
in predicting BRCA1/2 status (for which they are trained), the fact that they do not cover
other molecular mechanisms (e.g., CNV or gene expression) means that they do not provide
information on other HRD-causing mechanisms independent of BRCA gene status [35,36]. In
addition, there has not yet been a direct prospective comparison between the two tests. One
study reported on the interchangeability of the MyChoice assay using LOH alone compared
with the GI score (GIS) and showed poor agreement; among 3209 wild-type BRCA genes,
53% of those assigned as unstable by GIS (cut-off ≥ 33) were assigned as HRD-negative by
%LOH criteria, while only 4% of unstable tumors assessed by %LOH were positive using
GIS. Considering BRCA1/2 and the official GIS cut-off of ≥42, an agreement was 64.9% for
positive cases and 96.6% for negative cases [37]. Similar discrepancies were also seen in a
retrospective analysis that found that 23% of samples were classified as GI stable, with an
LOH percentage of <16%, by FoundationOne harbored BRCA1/2 germline mutations [38].
These facts, together with the high costs of these tests and long turnaround times for results,
constitute the main limitations of both commercial tests.

With the Scarface model, we have integrated GI parameters—equivalent to HRD
status—rather than HRR mutations to differentiate patients more accurately according to
PFI. Information about gene expression is also provided, supporting the GI and contributing
to responder–phenotype processes. This approach has the advantage of studying the GI
phenomenon as a whole: at the genomic, chromosomal, and transcriptomic levels. Due to
the impossibility of comparing our data with the gold standard, such as those mentioned
above, since patients included in the study lack this type of determination, we compared
the model with a classification based on HRR gene mutations (BRCA1/2 only and all HRR
genes) and scores from the scarHRD pipeline [22]. In our series, 35.8% of samples had HRR
gene mutations, with BRCA1 and BRCA2 mutations in 16.84% and 15.26%, respectively.
Additionally, amplification of CCNE1 was performed in our series, with an incidence of
approximately 12%. Co-occurrence of BRCA1/2 mutations and CCNE1 amplification were
found in approximately 7% of BRCA1/2 mutated cases, similar to the frequencies found in
the OC-TCGA [4]. Even though these alterations are found together in a very low number of
cases, there are not mutually exclusive. Those samples harboring mutations in HRR genes
were classified as HRD for comparison. Both stratifications—based on BRCA1/2 mutation
and all HRR genes—were able to identify patients who would have an extended PFI (both
p < 0.0001) and PFS to PARPi (BRCA1/2, p = 0.0048; all HRR genes, p = 0.0013). In this
particular case, adding other HRR genes to BRCA1/2 when classifying patients improved
statistical power and increased the prognostic and predictive value. However, as recently
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reported, they do not always overlap GI, suggesting higher accuracy of the GI score over
an HRR gene panel to define an HRD phenotype [39,40]. For that reason, approaches at
different levels, such as genomic scars, are gaining strength in the assessment of GI.

The scarHRD pipeline was applied to compare the performance of the classifiers. This
pipeline has been trained to identify the genomic scars evaluated by the validated com-
mercial solutions, LOH, large-scale transitions, telomeric allelic imbalances, and HRDscore.
However, the results were not as good as expected. Differences in methodologic and analytic
procedures caused a loss of statistical significance when analyzing our series, with several
potential causes. First, in this approach, GI data were derived from NGS data covering a
backbone and a medium-size panel, whereas the MyChoice kit was validated and calibrated
using a comparative genomic hybridization array. Second, the CNVkit method was used
with the parameters specifically tuned to our clinical scenario, including pre-analytical
factors such as tumor burden in the sample. The best results were obtained when the series
was stratified based on the median number of LOH events (PFI, p = 0.0071; PFS to PARPi,
p = 0.07) and median HRD score (PFI, p = 0.031; PFS to PARPi, p = 0.28), but significance was
only reached for PFI and not for PFS to PARPi. In contrast, the Scarface model achieved the
highest statistical significance for both PFI (p < 2 × 10−16) and PFS to PARPi (p = 0.00077),
improving the predictive performance above that of previously used classifiers.

As mentioned, the predictive algorithm was trained and validated in an ambispective,
multicentric, real-life cohort of patients with HGSOC using PFI as an endpoint. Because of
the real-life design, information regarding PFS to PARPi was not as accurate as expected;
PFS to PARPi data were collected with respect to different lines of therapy (first-line therapy
in 23 patients and second or later lines in 35 patients), different treatment combinations and
schemes, and different PARPi drugs. As such, PFS to PARPi was not a suitable parameter
for training and validating the model. The real-world nature of the series, which lacks
centralized review, probably implies the misclassification of some studied cases. The
concordance between the centralized review and the first diagnosis is approximately 70%, as
previously presented in other works in OC [41]. This could be the cause of the low number
of TP53 alterations found (72% in this cohort vs. more than 90% in other series [4]). The
same cause could be responsible for the high number of BRCA1/2 mutated cases without
TP53 alteration, uncommonly found in HGSOC. Representation of other histologies with
different mutational patterns, such as the case of endometrial OC [42], could be influencing
the results. Even if this fact constitutes a limitation of the study, it is also presented as a
strength since it represents the reality of the clinical practice in which the model would be
potentially used. Otherwise, another limitation of the study consists of the fact that the
data sources are quite specific; thus, it is necessary to sequence the samples with the kit
described in material and methods containing a backbone. Additionally, this fact limits
the availability of data in public repositories. Therefore, although the presented algorithm
showed that HRR mutations had predictive value for PFS to PARPi, the model should be
further evaluated in a cohort with homogeneous PARPi response data to validate its clinical
benefit. In addition, because this model addresses GI from different levels of regulation, it
seems that it would be plausible to calibrate the model to predict response with different
cut-offs in other tumors in which GI may play an important role in response to therapy, such
as advanced prostate cancer with BRCA mutations or pancreatic cancer. Analogously, new
optimal cut-offs for GIS and genomic LOH have been proposed in the VELIA and ARIEL2
clinical trials [5,39]. Thus, there is room for improvement in the exposed GI study approach.

5. Conclusions

The Scarface score constitutes a useful academic tool to predict response to DNA-
damaging agents in HGSOC and, potentially, in other HRR-deficient tumors. This algorithm
addresses the limitations of available and validated commercial solutions by looking at GI
and the molecular biology of the tumor from a more comprehensive point of view.
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gene mutation and CCNE1 amplification-based classification regarding (A) PFI and (B) PFS to PARPi;
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