
i
i

i
i

i
i

i
i

Streaming Neural Speech
Translation

June 2023

Author: Javier Iranzo Sánchez

Supervisors: Dr. Alfons Juan Císcar
Dr. Jorge Civera Saiz

i
i

i
i

i
i

i
i

Agradecimientos

Escribo estas líneas en mi lengua materna, porque si bien el inglés es la lengua
más adecuada para transmitir el conocimiento científico, resulta más apropiado
utilizar el castellano para transmitir de manera clara lo que siento. Resulta
totalmente imposible dar las gracias en únicamente dos páginas a todas las per-
sonas que durante estos 4 años han sido una parte importante de este periplo,
así que inevitablemente habrá alguna exclusión inmerecida, debido a restric-
ciones organizativas y la dificultad de resumir tanto tiempo en unas pocas
líneas.

Quiero agradecer la labor de supervisión de mis directores Alfons y Jorge,
que llevan guiándome desde mucho antes de comenzar esta tesis. Su aten-
ción a lo largo de estos años ha sido un factor determinante en el éxito de
esta, especialmente las largas sesiones de revisión y reescritura conjunta a las
que hemos sometido a los trabajos publicados, sin las cuales su claridad y
rigor matemático serían bastante inferiores a las que se han obtenido final-
mente. De igual manera, quiero agradecer a los compañeros del equipo MLLP,
Adrià Giménez, Adrià Martínez, Albert, Álex, Gonçal, Pau, Javi, Joan Albert,
Miguel, Nahuel y Santi, no únicamente por sus contribuciones profesionales al
buen funcionamiento del grupo, sino también por todas las aventuras, discu-
siones político-históricas de todo tipo y demás ocurrencias vividas, sin olvidar
las partidas de Towerfall y sesiones de juegos de mesa, que han hecho de esta
una etapa inolvidable. Quiero agradecer especialmente a Adrià Giménez, por
sus conocimientos técnicos y aportaciones intelectuales a lo largo de muchas
discusiones y sesiones de pizarra de ideas locas, muchas de las cuales no han

iii

visto la luz del día, pero que han sido la semilla que ha hecho crecer muchos
de los trabajos que he publicado a lo largo de estos años.

Durante todo este tiempo he contado con el apoyo y el cariño de mi familia y
amigos. Mis padres Pascual y María José, y mis hermanos Ana y Jorge han
sido una fuente constante de afecto y ánimos. Esta tesis está dedicada a mis
abuelos, que ya no están este nosotros, que desde pequeño fueron cultivando,
animando y haciendo crecer mi curiosidad y mi interés por el estudio. Durante
todo este viaje he tenido la increíble suerte de haber estado acompañado en
todo momento por mi alma gemela, Aysha, que no ha dejado de creer en
mí en ningún momento y me ha animado constantemente a llevar hasta el
final este proyecto. No sólo me has hecho sentir la persona con más suerte
del mundo, sino que también, a nivel personal y organizativo, has conseguido
que funcionaran las cosas cuando las fechas de entregas me exigían sacrificios
personales. El mérito de haber conseguido esta tesis es también en parte tuyo,
porque sin ti no habría sido lo mismo.

Por último, quiero también enviar un recuerdo a mis mejores amigos, Rafa,
Vicente y Clara, así como a Ramon, Jaime y el resto de compañeros del máster
y la facultad, todas las personas a las que desgraciadamente he tenido que dejar
de ver tanto como me hubiera gustado. No tengo la menor duda de que, una
vez libre de la Espada de Damocles, nuestros caminos volverán a encontrarse.

iv

i
i

i
i

i
i

i
i

Abstract

Thanks to significant advances in Deep Learning, Speech Translation (ST) has
become a mature field that enables the use of ST technology in production-
ready solutions. Due to the ever-increasing hours of audio-visual content pro-
duced each year, as well as higher awareness of the importance of media accessi-
bility, ST is poised to become a key element for the production of entertainment
and educational media.

Although significant advances have been made in ST, most research has focused
on the offline scenario, where the entire input audio is available. In contrast,
online ST remains an under-researched topic. A special case of online ST,
streaming ST, translates an unbounded input stream in a real-time fashion
under strict latency constraints. This is a much more realistic problem that
needs to be solved in order to apply ST to a variety of real-life tasks.

The focus of this thesis is on researching and developing key techniques neces-
sary for a successful streaming ST solution. First, in order to enable ST system
development and evaluation, a new multilingual ST dataset is collected, which
significantly expands the amount of hours available for ST. Then, a streaming-
ready segmenter component is developed to segment the intermediate tran-
scriptions of our proposed cascade solution, which consists in an Automatic
Speech Recognition (ASR) system that transcribes the audio, followed by a
Machine Translation (MT) system that translates the intermediate transcrip-
tions into the desired language. Research has shown that segmentation quality
plays a significant role in downstream MT performance, so the development
of an effective streaming segmenter is a critical step in the streaming ST pro-

v

cess. This segmenter is then integrated and the components of the cascade are
jointly optimized to achieve an appropriate quality-latency trade-off.

Streaming ST has much more strict latency constraints than standard online
ST, as the desired latency level must be maintained during the whole trans-
lation process. Therefore, it is crucial to be able to accurately measure this
latency, but the standard online ST metrics are not well suited for this task.
As a consequence, new evaluation methods are proposed for streaming ST
evaluation, which ensure realistic, yet interpretable results.

Lastly, a novel method is presented for improving translation quality through
the use of contextual information. Whereas standard online ST systems trans-
late audios in isolation, there is a wealth of contextual information available
for improving streaming ST systems. Our approach introduces the concept
of streaming history by storing the most recent information of the transla-
tion process, which is then used by the model in order to improve translation
quality.

vi

i
i

i
i

i
i

i
i

Resumen

Gracias a avances significativos en aprendizaje profundo, la traducción del
habla (ST) se ha convertido en un campo consolidado, lo que permite la uti-
lización de la tecnología ST en soluciones para entornos de producción. Como
consecuencia del aumento constante del número de horas de contenido audiovi-
sual generado cada año, así como una mayor sensibilización sobre la importan-
cia de la accesibilidad, la ST está preparada para convertirse en un elemento
clave para la producción de contenidos audiovisuales, tanto de ocio como ed-
ucativos.

A pesar de que se ha progresado significativamente en ST, la mayor parte de
la investigación se ha centrado en el escenario en diferido (offline), en el cual
todo el audio de entrada está disponible. En cambio, la ST en directo (online)
es una temática en la que falta mucho por investigar. En concreto, existe un
caso de traducción en directo, la traducción continua (streaming), que traduce
un flujo continuo de palabras en tiempo real y bajo unas estrictas condiciones
de latencia. Este es un problema mucho más realista, que es necesario resolver
para que sea posible aplicar la ST a una variedad de tareas de la vida real.

Esta tesis está centrada en investigar y desarrollar las técnicas claves que son
necesarias para una solución de ST continua. En primer lugar, de cara a
permitir el desarrollo y la evaluación de sistemas de ST, se ha recopilado un
nuevo conjunto de datos para ST multilingüe, que expande significativamente
el número de horas disponibles para ST. A continuación se ha desarrollado un
segmentador preparado para la condición continua, que se utiliza para segmen-
tar las transcripciones intermedias de nuestra solución por etapas, que consiste

vii

en un sistema de reconocimiento automático del habla (ASR), seguido de un
sistema de traducción automática (MT) encargado de traducir las transcrip-
ciones intermedias al idioma de destino elegido. Diversas investigaciones han
concluido que la calidad de la segmentación es un factor muy influyente es la
calidad del sistema MT, por lo que el desarrollo de un segmentador efectivo es
un paso fundamental en el proceso de ST continua. Este segmentador se ha
integrado en la solución por etapas, y estas se optimizan de manera conjunta
para alcanzar el equilibrio óptimo entre calidad y latencia.

La ST continua tiene unas restricciones de latencia mucho más estrictas que la
ST en directo, ya que el nivel deseado de latencia tiene que mantenerse durante
todo el proceso de traducción. Por tanto, es crucial ser capaz de medir de
manera precisa esta latencia, pero las métricas estándar de ST en directo no
se adaptan bien a esta tarea. Como consecuencia de esto, se proponen nuevos
métodos para la evaluación de ST continua, que garantizan unos resultados
precisos a la vez que interpretables.

Por último, se presenta un nuevo método para mejorar la calidad de la tra-
ducción continua mediante el uso de información contextual. Mientras que los
sistemas tradicionales de ST en directo traducen audios de manera aislada,
existe abundante información contextual que está disponible para mejorar los
sistemas de ST continua. Nuestra propuesta introduce el concepto de historia
continua, que consiste en el almacenamiento de la información más reciente del
proceso de traducción, que se utiliza más adelante por el modelo para mejorar
la calidad de la traducción.

viii

i
i

i
i

i
i

i
i

Resum

Gràcies a avanços significatius en aprenentatge profund, la traducció de la parla
(ST) s’ha convertit en un camp consolidat, la qual cosa permet la utilització de
la tecnologia ST en solucions per a entorns de producció. A conseqüència de
l’augment constant del nombre d’hores de contingut audiovisual generat cada
any, així com una major sensibilització sobre la importància de l’accessibilitat,
la ST està preparada per a convertir-se en un element clau per a la producció
de continguts audiovisuals, tant d’oci com educatius.

A pesar que s’ha progressat significativament en ST, la major part de la re-
cerca s’ha centrat en l’escenari en diferit, en el qual tot l’àudio d’entrada està
disponible. En canvi, la ST en directe és una temàtica en la qual falta molt
per investigar. En concret, existeix un cas de traducció en directe, la traducció
contínua, que tradueix un flux continu de paraules en temps real i sota unes es-
trictes condicions de latència. Aquest és un problema molt més realista, que és
necessari resoldre perquè sigui possible aplicar la ST a una varietat de tasques
de la vida real.

Aquesta tesi està centrada en investigar i desenvolupar les tècniques claus que
són necessàries per a una solució de ST contínua. En primer lloc, de cara a
permetre el desenvolupament i l’avaluació de sistemes de ST, s’ha recopilat un
nou conjunt de dades per a ST multilingüe, que expandeix significativament la
quantitat de dades disponibles per a ST. A continuació s’ha desenvolupat un
segmentador preparat per a la condició contínua, que s’utilitza per a segmentar
les transcripcions intermèdies de la nostra solució per etapes, que consisteix
en un sistema de reconeixement automàtic de la parla (ASR), seguit d’un

ix

sistema de traducció automàtica (MT) encarregat de traduir les transcripcions
intermèdies a l’idioma de destí triat. Diveros treballs de recerca han conclòs
que la qualitat de la segmentació és un factor molt important en la qualitat
del sistema MT, per la qual cosa el desenvolupament d’un segmentador efectiu
és un pas fonamental en el procés de ST contínua. Aquest segmentador s’ha
integrat en la solució per etapes, i aquestes s’optimitzen de manera conjunta
per a aconseguir l’equilibri òptim entre qualitat i latència.

La ST contínua té unes restriccions de latència molt més estrictes que la ST
en directe, ja que el nivell desitjat de latència ha de mantindre’s durant tot el
procés de traducció. Per tant, és crucial ser capaç de mesurar de manera precisa
aquesta latència, però les mètriques estàndard de ST en directe no s’adapten
bé a aquesta tasca. A conseqüència d’això, es proposen nous mètodes per a
l’avaluació de ST contínua, que garanteixen uns resultats precisos alhora que
interpretables.

Finalment, es presenta un nou mètode per a millorar la qualitat de la traducció
contínua mitjançant l’ús d’informació contextual. Mentre que els sistemes
tradicionals de ST en directe tradueixen àudios de manera aïllada, existeix
abundant informació contextual que està disponible per a millorar els sistemes
de ST contínua. La nostra proposta introdueix el concepte d’història contínua,
que consisteix en l’emmagatzematge de la informació més recent del procés de
traducció, que s’utilitza més endavant pel model per a millorar la qualitat de
la traducció.

x

i
i

i
i

i
i

i
i

Contents

Agradecimientos iii

Abstract v

Resumen vii

Resum ix

Contents xi

List of acronyms xxiii

1 Introduction 1

1 Motivation . 2

2 Scientific goals . 3

3 Preliminaries . 5

3.1 Machine Learning . 5

xi

Contents

3.2 Machine Translation . 9

3.3 Transformer architecture . 12

3.4 Data processing and benchmarking 18

3.5 Evaluation of results . 20

4 List of publications . 23

4.1 Paper 1 . 23

4.2 Paper 2 . 24

4.3 Paper 3 . 25

4.4 Paper 4 . 25

4.5 Paper 5 . 26

References . 28

2 Selected Papers 33

1 Europarl-ST: A Multilingual corpus for Speech Translation of Parliamentary
Debates . 35

1.1 Introduction . 37

1.2 Data collection and processing 38

1.3 Experiments and results . 41

1.4 Conclusions . 45

References . 46

2 Direct Segmentation Models for Streaming Speech Translation 49

2.1 Introduction . 51

2.2 Statistical framework . 54

2.3 Direct Segmentation Model 56

2.4 Experimental setup . 59

xii

i
i

i
i

i
i

i
i

Contents

2.5 Evaluation . 62

2.6 Conclusions . 67

2.7 Reproducibility . 68

2.8 ASR Systems . 68

2.9 MT Systems . 70

2.10 Segmentation Systems . 72

References . 73

3 Streaming cascade-based speech translation leveraged by a direct segmenta-
tion model . 79

3.1 Introduction . 82

3.2 Streaming automatic speech recognition 84

3.3 Simultaneous machine translation 88

3.4 Direct segmentation model 89

3.5 Evaluation . 93

3.6 Conclusions . 110

References . 111

4 Stream-level Latency Evaluation for Simultaneous Machine Translation . . 119

4.1 Introduction . 121

4.2 Related work . 122

4.3 Stream-level evaluation . 123

4.4 Experiments . 127

4.5 Conclusions . 130

4.6 Reproducibility of proposed measures 131

4.7 MT System . 132

4.8 Segmenter System . 133

xiii

Contents

References . 133

5 From Simultaneous to Streaming Machine Translation by Leveraging Stream-
ing History . 135

5.1 Introduction . 137

5.2 Streaming MT . 139

5.3 Experimental setup . 144

5.4 Evaluation . 147

5.5 Conclusions . 152

5.6 Extended Streaming Translation Results 153

5.7 Efficiency of the proposed models 154

5.8 MT System configuration . 157

5.9 Segmenter System configuration 160

References . 161

3 General discussion of the results 165

References . 174

4 Conclusions and future work 175

References . 177

xiv

i
i

i
i

i
i

i
i

List of Figures

1.1 Example of gradient computation using the chain rule. Both the forward
pass (top) and the backward pass (bottom) are shown. 8

1.2 Gradient computation using the multivariate chain rule (single input vari-
able). Both the forward pass (top) and the backward pass (bottom) are
shown. 9

1.3 Basic schematic of the encoder of an encoder-decoder system. 10

1.4 Example of how the attention mechanism works. In this example, the six-
pointed stars of the query are conceptually closer to the five-pointed stars
(k3), followed by the dots(k2). For simplicity, in this case we assume that
the key and associated value share the same representation. 11

1.5 Basic schematic of the autoregressive decoder of an encoder-decoder system. 13

1.6 Transformer encoder block. 14

1.7 Transformer decoder block. 16

1.8 Figure of the Transformer architecture. 17

1.9 Pre-processing pipeline example. Each step is applied over the output of
the previous one. Notice how rare word "eloquently" has been split into
subword units, avoiding a potential Out-of-vocabulary problem. 18

xv

List of Figures

2.1 Overview of the model architecture for the streaming ST segmenter. The
dashed-line boundary separates the Text model including word embeddings,
RNN and state vectors, from the two possible Audio models, RNN and copy,
outside the boundary. 58

2.2 BLEU scores in the English-German (En-De) and Spanish-English (Es-En)
dev sets as a function of future window length, averaged over history sizes
for the three segmenters on the left-hand side, and on history sizes 5, 10 and
15 for the Audio w/o RNN segmenter on the right-hand side. 64

2.3 Architectural overview of the DS model. At the bottom, input acoustic
word-based vectors x̌j+dj are found. Then, inside the dashed boundary, the
input word sequence wj+dj−n is processed by an RNN and concatenated with
the acoustic word-based vectors before passing through a FFN to output
p(yj | yj−1

j−n, w
j+d
j−n, x̌j+dj). 92

2.4 WER vs nlookahead in seconds on the EuroParl-ST dev set. 98

2.5 Perplexity as a function of the TLM history size measured in n words on
the EuroParl-ST dev set. 99

2.6 WER vs. RTF as a function of the beam width without limiting the value of
LMHP (LMHP=Inf) and considering LMHP equal to 80 on the Europarl-ST
dev set. 100

2.7 BLEU vs average word-level latency for Es-En (top) and Es-Fr (bottom)
with future window length d = {0, 1, 2, 4} of the segmentation model on
Europarl-ST dev set. Points on each curve from left to right represent
increasing values of k = {1, 2, 4, 8} in the wait-k MT system. 107

2.8 The examples shown above illustrate how a model which follows a wait-k
policy can obtain AL/DAL values that differ from k. The bold lines show
the behaviour of the model, the dotted lines show the oracle policy. Left:
writing rate error with k = 1; the model uses γ̂ = 1, but the actual value
is γ = 1.5. Right: segmentation error with k = 2; the first translated
word of the second sentence is wrongly assigned to the first sentence during
resegmentation, i.e. ŷ1 = (y1,1, y1,2, y1,3, y1,4, y2,1). 126

2.9 Stream-level AP (top-left), AL (top-right) and DAL (bottom) with s = 1.0

and s = 0.95 (dashed lines) as a function of k in the multi-k approach for
four experimental setups on the IWSLT 2010 German-English dev set. . . 129

xvi

i
i

i
i

i
i

i
i

List of Figures

2.10 Comparison of attention positions in j = 3 for bidirectional (top-left), uni-
directional (top-right) and PBE (bottom) encoders with k = 4 in two con-
secutive timesteps i = 1 with G(1) = 4 and i = 2 with G(2) = 5. 144

2.11 BLEU scores on the German-English IWSLT 2010 dev set as a function of
the k value in the wait-k policy for a range of streaming history (h) lengths
and encoder type (See Appendix 5.6 for a close-up). 148

2.12 BLEU scores versus stream-adapted AL and DAL (scale s=0.85) with seg-
menters of future window length w = {0, 1, 2, 3, 4} on the IWSLT 2010 test
set. Points over each curve correspond to k = {1, 2, 4, 8, 16} values of the
wait-k policy used at inference time. 149

2.13 Comparative BLEU scores versus AL at three regimes, low, medium, and
high latency, for IWSLT 2020 simultaneous text-to-text track participants,
RWTH, ON-TRAC, KIT and our streaming MT (STR-MT) system on the
MuST-C corpus. 151

2.14 BLEU scores on the German-English IWSLT 2010 dev set as a function of
the k value in the wait-k policy for a range of streaming history (h) lengths
with a unidirectional encoder (solid lines), PBE (dashed line) or bidirectional
(dashed line with points). This is a close-up of Figure 2.11. 154

2.15 BLEU scores on the English-German IWSLT 2010 dev set as a function of
the k value in the wait-k policy for a range of streaming history (h) lengths
using a PBE encoder. 155

2.16 BLEU scores versus stream-adapted AL and DAL (scale s=0.85) with seg-
menters of future window length w = {0, 1, 2, 3, 4} on the English-German
IWSLT 2010 test set. Points over each curve correspond to k = {1, 2, 4, 8, 16}
values of the wait-k policy used at inference time. 156

2.17 Illustrated example of sample construction with history. Starting from a
corpus of ordered sentence pairs (top), streaming samples are constructed
(bottom) using h = 5. Past history is shown in light gray. Sentence bound-
ary and document tokens are not counted for the history size limit. Notice
how, for the last sample, the pair (x2,y2) is not included in the sample, as
the history size limit would have otherwise been exceeded on the source side. 159

xvii

List of Figures

3.1 BLEU vs average word-level latency for Es-En with future window length
d = {0, 1, 2, 4} of the segmentation model on Europarl-ST dev set. Points
on each curve from left to right represent increasing values of k = {1, 2, 4, 8}
in the wait-k MT system. The points belonging to the Pareto frontier are
highlighted with a circle. 170

xviii

i
i

i
i

i
i

i
i

List of Tables

1.1 Overview of ST resources at the start of 2019. 20

2.1 Number of speech hours after each step of the data filtering pipeline, and
CER of the filtered data sets. 39

2.2 Statistics of the preprocessed Europarl-ST corpus. 41

2.3 Statistics of AM and LM training data. 43

2.4 ASR results in terms of WER on the test sets. 43

2.5 Training data used for the MT systems 44

2.6 BLEU scores of out-of-domain MT systems with reference transcriptions as
input and fine-tuning BLEU scores between parenthesis. 44

2.7 BLEU scores of cascade-based SLT experiments with fine-tuned models as-
sessed on the test sets. 45

2.8 Basic statistics of the Europarl-ST corpus for the training, development and
test partitions for the six language pairs involved in the evaluation. . . . 59

2.9 BLEU scores of the cascade ST on the Europarl-ST test sets depending on
the preprocessing scheme. 61

xix

List of Tables

2.10 BLEU scores on the test sets provided by the conventional cascade ST sys-
tem with ASR output. 63

2.11 BLEU scores on the test sets provided by a cascade ST system with reference
transcriptions. 65

2.12 Comparison with previous work in terms of BLEU score on the English-
German test set of the Europarl-ST corpus. 66

2.13 Accumulative chunk-level latencies in seconds (mean ± std. dev.) for the
ASR, Segmenter and MT components of the Es-En ST cascade model. . . 67

2.14 Statistics of the speech resources used for acoustic model training. 69

2.15 Details of the acoustic models architecture. 70

2.16 Statistics of text resources used for language modelling. 71

2.17 Satistics of the text resources used for training MT systems. 72

2.18 Segmentation model hyperparameter exploration. Selected values are shown
in bold. 73

2.19 Basic statistics of the Europarl-ST corpus for the training, development and
test sets for the Es-En and Es-Fr language pairs. 94

2.20 Statistics of transcribed Spanish speech data sources used to train AMs. . . 95

2.21 Statistics of Spanish text resources used for language modelling. S=Sentences,
RW=Running words, V=Vocabulary. Units are thousands (K). 96

2.22 PPLs, interpolation weights and WERs for EuroParl dev and test sets. . . 97

2.23 Training data used for the general-domain neural MT systems in millions of
sentence pairs. 101

2.24 BLEU, AP, AL and DAL results on the Europarl-ST dev set for Es-En and
Es-Fr with reference transcriptions and oracle segmentation as a function of
the hyperparameter λ. 103

2.25 Accumulative word-level latencies in seconds (mean ± std. dev.) for the
ASR and segmenter components of the ST system on the Europarl-ST dev
set. 106

2.26 BLEU scores under the input settings for the wait-k MT system evaluated
on the Es-En and Es-Fr Europarl-ST test sets. 108

xx

i
i

i
i

i
i

i
i

List of Tables

2.27 Accumulative word-level latencies in seconds (mean ± std. dev.) for the
ASR, segmenter and MT components of the ST system on Es-En and Es-Fr
Europarl-ST test sets. 109

2.28 Comparative BLEU scores and accumulative word-level latencies across seg-
mentation schemes evaluated on the Es-En and Es-Fr Europarl-ST test sets.
. 110

2.29 Comparison of the latency metric computation between the Concat-1 (top)
and the conventional sentence-level (bottom) strategy when using a wait-1
system. 124

2.30 Estimation of stream-level latencies measures on the same example proposed
in Table 2.29. 125

2.31 Stream-level AL as a function of k, computed using the Concat-1 approach
on the IWSLT 2010 German-English dev set. 128

2.32 Stream-level DAL as a function of k, computed using the Concat-1 approach
on the IWSLT 2010 German-English dev set. 128

2.33 Stream-level AL as a function of k, computed using the Concat-1 approach
on the IWSLT 2010 German-English dev set. 131

2.34 Stream-level DAL as a function of k, computed using the Concat-1 approach
on the IWSLT 2010 German-English dev set. 131

2.35 Corpus used for MT model training 131

2.36 Basic statistics of the training data from the IWSLT 2020 Evaluation Cam-
paign (M = Millions). 144

2.37 Latency and quality comparison of ACT and the proposed STR-MT on the
IWSLT 2010 De-En test set. 150

2.38 Latency of translating a token (in seconds) for the proposed En-De h=60
Transformer Big model. 157

3.1 Overview of the Europarl-ST train set, version v1.1. The rows indicate the
source language (audio, transcription), and the columns the target language
(translations). Each entry indicates the amount of audio hours available. . 167

3.2 BLEU score on the Europarl-ST set. These results show the effect of using
different segmenter models for processing the transcriptions of an ASR system. 168

xxi

i
i

i
i

i
i

i
i

List of acronyms

ACT Adaptive Computation Time

AL Average Lagging

AM Acoustic Model

AP Average Precision

ASR Automatic Speech Recognition

BLEU Bilingual Evaluation Understudy

BLSTM Bidirectional Long Short-Term Memory

BPE Byte-Pair Encoding

BPTT Back-Propagation Through Time

CART Classification and regression tree

CC Creative Commons

CER Character Error Rate

CPU Central Processing Unit

DAL Differentiable Average Lagging

DNN Deep Neural network

DS Direct Segmentation

xxiii

FFN Feed Forward Network

GD Gradient Descent

GMM Gaussian Mixture Model

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

HMM Hidden Markov Model

IL Infinite Lookback

IWSLT International Conference on Spoken Language Translation

LM Language Model

LMHP Language Model Histogram Pruning

LMHR Language Model Histogram Recombination

LSTM Long Short-Term memory

MEP Member of the European Parliament

MFCC Mel Frequency Cepstral Coefficients

ML Machine Learning

MLP MultiLayer Perceptron

MMA Monotonic Multi-Head Attention

MMAH Hard Monotonic Multi-Head Attention

MT Machine Translation

NCE Noise-Contrastive Estimation

NLP Natural Language Processing

NMT Neural Machine Translation

NN Neural Network

OOV Out Of Vocabulary

POS Part-Of-Speech

xxiv

i
i

i
i

i
i

i
i

PPL Perplexity

RELU Rectified Linear Unit

RNN Recurrent Neural Network

RNNLM Recurrent Neural Network Language Model

RTF Real-Time Factor

SD Speaker Diarization

SGD Stochastic Gradient Descent

SHAS Supervised Hybrid Audio Segmentation

SLT Spoken Language Translation

SMT Statistical Machine Translation

ST Speech Translation

STR Streaming

TER Translation Edit Rate

TL Translation Lag

TLK transLectures UPV toolkit

TLM Transformer Language Model

TTS Text To Speech

VAD Voice Activity Detection

VR Variance Regularization

WER Word Error Rate

WFST Weighted Finite-State Transducer

WMT Conference on Machine Translation

xxv

i
i

i
i

i
i

i
i

Chapter 1

Introduction

1

Chapter 1. Introduction

1 Motivation

In an increasingly globalized world, language barriers are still a limiting factor
for communication between humans. For example, in 2012, only 54% of the
European population was able to have a conversation in a language different
than their mother tongue. In terms of the world’s most commonly spoken
language, only 38% of European citizens were able to hold a conversation in
English (European Commission 2012). Owing to this lack of shared language,
there is a significant communication gap waiting to be solved.

Machine Translation (MT), a subfield of Artificial Intelligence, seeks to build
automatic systems that can translate between two languages. The data-driven
approach to MT started to gather widespread adoption with the introduction
of the word-based IBM models (Brown, Cocke, et al. 1990; Brown, Pietra, et
al. 1993). In the early 2000s, a significant leap forward in quality was obtained
moving from word-based to phrase-based translation models (Koehn, Och, and
Marcu 2003). This culminated in the creation of Google Translate in 2006, at a
time where the field had matured enough for the first widespread commercial
offering to appear. In parallel with other fields that use Machine Learning
(ML), the arrival of deep learning radically changed the MT field which saw
radical improvements in quality in a few years (Bahdanau, Cho, and Bengio
2015; Vaswani et al. 2017). Likewise, deep learning has also radically changed
the field of Automatic Speech Recognition (ASR) (Dahl et al. 2011; Chan et al.
2016; Irie et al. 2019; Park et al. 2019; Jorge, Giménez, et al. 2020). Thanks
to these advances in both ASR and MT, current Speech Translation (ST)
systems, which aim to automatically generate the text translation of an audio
waveform, have just now begun to obtain acceptable results for widespread
adoption. For this thesis, the ST task is approached using a cascaded system:
A streaming ASR system transcribes the audio, which is then split into chunks
using a streaming segmenter component, and the chunks are given as input
to a streaming MT system which produces the final translation. Although
end-to-end ST systems exist, at the time of writing this thesis, cascaded ST is
still the dominant choice (Anastasopoulos et al. 2022). As a result of all the
previous issues, the development of a successful streaming ST system poses
some significant challenges.

Nevertheless, the majority of the work in ST is concerned only with the of-
fline task, that is, the task in which the entire input audio is available, and
no real-time constraints exist. In contrast, in the online task, the input au-
dio is incrementally received as time passes, and the system must produce a
translation of a partial input within a certain latency threshold, in a real-time

2

i
i

i
i

i
i

i
i

2 Scientific goals

fashion. Online ST is inherently a harder problem, because the partial input
compromises the quality of the translation, and due to the real-time constraint,
the computational efficiency of the system cannot be ignored.

At the same time, the demand for online ST systems is increasing, with the
number of hours of audio-visual content produced increasing year after year.
Additionally, there is a trend by governments to mandate that a higher per-
centage of these materials must be accessible, including in other languages,
which further fuels the need for ST systems.

When combined, all of these factors ensure that streaming ST is a challeng-
ing and exciting research topic, with the potential of a significant impact in
breaking down barriers in human communication.

2 Scientific goals

The main topic of this thesis is streaming ST, which we consider to be a special
task of online ST. We have already discussed how online ST has two main
characteristics: translation of partial input, and real-time constraints. This
thesis focuses on a harder problem, streaming ST, which is a particular case
of online ST. Specifically, we define streaming ST as an online ST task where
the input is an unbounded audio stream. Many online ST works are evaluated
on academic datasets consisting in short isolated audio clips. Therefore, the
conclusions that can be extracted from this type of research is limited, and
can only be directly applied to tasks involving the translation of short isolated
audio clips, such as voice commands. In contrast, streaming ST is a more
realistic setting for the study of ST, which closely mimics the conditions of
many real-time tasks, such as the translation of a live conversation, a lecture
or a news broadcast.

This setting brings with it some additional complications. As the input is
an unbounded audio stream, it must be processed, segmented and translated
on-the-fly, so that real-time translation can occur. On the other hand, the
temporal information contained in the input stream can be exploited in order
to improve the quality of the translation. In this way, streaming ST can also
be understood as an specific case of contextual MT. Contextual MT, also
known as document-level MT, tries to avoid the shortcomings of translating
sentences in isolation, by augmenting the model with contextual information
about the surrounding source sentences or the already generated translations.
Additionally, greater care must be put into the computational efficiency and

3

Chapter 1. Introduction

behaviour of the system, as delays in some part of the stream translation can
be propagated later, leading to poor results.

In order to develop a streaming ST system, one must first have a suitable
dataset for system training and evaluation. This dataset, which consists in
raw audio paired with its transcription and translation, should be big enough
to be used by modern state-of-the-art systems. In order to be useful for a
streaming task, such a dataset must also preserve the original ordering and
temporal information. Additionally, the dataset should ideally cover multiple
languages and translation directions, in order to test that developments can
also be applied to other translation tasks, unlike the English-centric approach
of mainstream research. Thus, our first challenge lies in how to construct this
dataset.

Secondly, the output of the streaming ASR system, which is an unbounded
stream of words, can be segmented into sentence-like segments or chunks, be-
cause MT systems are trained using complete sentences, and the quality of the
translation has been shown to be correlated with the quality of the segmenta-
tion (Rangarajan Sridhar et al. 2013; Gaido et al. 2021; Tsiamas et al. 2022;
Anastasopoulos et al. 2022). Given that we are working in the streaming task,
this segmentation must be carried out using only the partial input available
at each timestep. Likewise, standard ASR systems have been trained using
normalized text, in which all words all lowercased, punctuation signs removed,
and numbers are replaced by their phonetic transliteration. In contrast, stan-
dard MT systems expect inputs with proper casing and punctuation. Thus,
a second significant challenge lies in how to best process and segment ASR
output in order to maximize the performance of the downstream MT system.

Up to this point, no specific evaluation framework has been introduced for
streaming MT, so we are limited to evaluating streaming ST in the same way
that we do for online systems. However, as previously mentioned, in classical
online ST, the evaluation is carried out by translating small ('10s) isolated
chunks of audio, independent from each other. This is not a realistic task for
streaming ST, in which we want to take into account how the behaviour and
delays of the system interact during the whole translation process. Current on-
line ST metrics are not accurate when adapted to the streaming case (Schneider
and Alexander Waibel 2020), so our third challenge consists in developing eval-
uation procedures and metrics that can reliably evaluate the performance of
streaming ST systems.

Last, but not least, in a streaming ST task there exists temporal information
and an ordering between the words and chunks received by the MT model.

4

i
i

i
i

i
i

i
i

3 Preliminaries

This contextual information is not present on the baseline online task, and
could be used by the model in order to improve translation quality. Works
in related areas of contextual MT have shown significant improvements when
using contextual information (Tiedemann and Scherrer 2017; Müller et al.
2018; Voita, Sennrich, and Titov 2019b; Voita, Sennrich, and Titov 2019a),
but these techniques have not been adapted to the streaming task in which
only a partial context is available. Thus, there exists a significant challenge in
how contextual MT techniques can be applied to the streaming ST case.

In order to solve these challenges, the following scientific questions will be
addressed in this thesis:

• How can we obtain a ST dataset that can be used for realis-
tic, multilingual development and evaluation of streaming ST
systems?

• How can the output of the ASR system be processed and seg-
mented in order to maximize the performance of a cascaded MT
system?

• How can the performance of streaming ST systems be evaluated
with a procedure that takes into account the sequential nature
of the problem and is at the same time interpretable?

• How can a streaming ST system best take advantage of contex-
tual information in order to improve translation quality?

3 Preliminaries

This section introduces the preliminaries that are required for understanding
the rest of the work carried out during this thesis. Parts of this section are
derived from the author’s B.S. (Iranzo-Sánchez 2018) and M.S. (Iranzo-Sánchez
2019) theses.

3.1 Machine Learning

The field of Machine Learning (ML) studies the feasibility of creating automatic
systems that can learn. (Mitchell 1997) defines it as follows: "A computer
program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured
by P , improves with experience E." ML techniques have been applied to a very

5

Chapter 1. Introduction

diverse range of tasks T , in order to build systems that can carry out these
tasks for us.

Many of the most popular ML tasks fall under the umbrella of supervised
learning: The ML model must learn a function f(x) that maps some input
x ∈ X into some output y ∈ Y. Under this task, the model will have access
to a set of experiences E which consists in many pairs of (x,y), which it will
use in order to learn how to perform the task.

An ML model is composed of a series of mathematical operations, and the
parameters θ that characterize them. Thus, the model defines the function
f(x;θ). In order to maximize the model’s performance, as measured by P ,
during the training stage the model will use the samples in order to optimize
θ. More formally, let

ŷ = f(x;θ). (1.1)

For each sample pair (x,y), the performance of the model can be measured
using a loss function L(ŷ,y). By convention, the goal is to minimize the loss
function. For example, for regression problems it is typical to use the Mean-
Squared-Error (MSE) loss:

LMSE(ŷ,y) = (ŷ − y)2. (1.2)

Based on this, the goal is to minimize a cost function J(θ), which is defined as
the expected value of the loss function over the underlying data distribution:

J(θ) = E(x,y)∼pdataL(ŷ,y). (1.3)

As we do not have access to the true data distribution, we must instead opti-
mize the cost function over the training data distribution p̂data.

It is also common to introduce other terms (sometimes called auxiliary losses)
into the cost function if one wishes to take into account some other property
of the parameters. If one wished to control the magnitude of the weights,
an L2 auxiliary loss could for example be introduced. This is also known as
regularization:

J(θ) = E(x,y)∼p̂dataL(ŷ,y) + λLL2(θ) (1.4)

6

i
i

i
i

i
i

i
i

3 Preliminaries

LL2(θ) = ||θ||22. (1.5)

In order to optimize θ, the gradient descent (GD) algorithm is used to itera-
tively subtract the gradient of the parameters with respect to the cost function:

θ ← θ − α∇θJ(θ). (1.6)

The learning rate or step size α controls how big is the update we make on each
step. Computing the exact gradient over the entire training data is computa-
tionally expensive, so the gradient is usually computed over a small subset of
the training data which is randomly sampled in each step, called a minibatch.
This modification is known as stochastic gradient descent (SGD). Conceptu-
ally, SGD can be understood as a modification of GD consisting in updating
the parameters with a noisy estimation of the gradient:

θ ← θ − α(∇θJ(θ) + ε). (1.7)

In practice, the exact gradient is not necessary and SGD reaches a good re-
sult in the parameter space, with the additional noise acting as a regularizer
which can help during the learning process. Furthermore, SGD can converge
faster than GD due to the fact that the parameters are updated more often
(Bottou and Bousquet 2007). In order to optimize the model, one must solve
the problem of computing the partial derivatives ∂J

∂θi
, something which is not

straightforward at first. Nowadays, the state-of-the-art approach to many ML
tasks is to use a neural network model. These models are composed of multiple
layers, each one applying an operation over the output of the previous layer.
Computing the gradient for these models involves many layers and param-
eters, which introduces computational concerns. This problem can be solved
efficiently by using the backpropagation algorithm, which is based on the chain
rule.

Using the chain rule, if y = f1(x, θ) and J = f2(y), then the derivative can be
computed as

∂J

∂θ
=
∂J

∂y

∂y

∂θ
. (1.8)

It is common to use a structure known as a computational graph in order to
represent an ML model. A computational graph is a directed graph composed

7

Chapter 1. Introduction

x

θ

f1()

y

f2()

J

x

θ

f1()

y

f2()

J

∂y
∂θ

∂J
∂y

Figure 1.1: Example of gradient computation using the chain rule. Both the forward pass
(top) and the backward pass (bottom) are shown.

of variables, each represented by a node. Each node computes an operation
over the input variables, represented by edges, and produces an output. This
representation explicitly records the parameters and functions that define an
ML model, as well as the dependencies between those operations. Figure 1.1
shows a computational graph illustrating the computation of the partial deriva-
tive.

The chain rule can be used to generalize the process of computing ∂J
∂a

for any
arbitrary node a in the computational graph, by following this iterative process:

1. Perform all computations defined by the graph, and store the results of
each node. This is known as the forward pass.

2. Starting with the output node, compute for each node a and each of its
incoming nodes b, ∂a

∂b
. This value is associated to the edge linking a and

b. This is known as the backward pass.

3. For each node for which we require ∂J
∂a
, this can be computed as the

product of the partial derivatives along the path from a to J .

If there exist multiple paths from a to J , ∂J
∂a

is the sum of the values of each
path, which can be computed by taking into account all outgoing nodes. A

8

i
i

i
i

i
i

i
i

3 Preliminaries

x

θ

f1()

y

f3()

c

f2()

J

x

θ

f1()

y

f3()

c

f2()

J

∂y
∂θ

∂c
∂θ

∂J
∂y

∂J
∂c

Figure 1.2: Gradient computation using the multivariate chain rule (single input variable).
Both the forward pass (top) and the backward pass (bottom) are shown.

graphical example of this is shown in Figure 1.2. For this specific case, the
gradient for θ is computed as

∂J

∂θ
=
∂J

∂y

∂y

∂θ
+
∂J

∂c

∂c

∂θ
. (1.9)

3.2 Machine Translation

As stated in Equation 1.1, a ML system learns a function from X to Y. In
MT, x ∈ X represents the source sentence in the original language, and y ∈ Y
represents the translation of the input sentence. As previously stated, state-
of-the-art MT systems are based on neural networks. Although their specifics
vary from case to case, most current MT systems fall under the encoder-decoder
paradigm. Under this paradigm, an MT system is formed by 3 distinct compo-

9

Chapter 1. Introduction

Encoder

h1 h2

. . .

hJ

x1 x2

. . .

xJ

Figure 1.3: Basic schematic of the encoder of an encoder-decoder system.

nents: an encoder component, a decoder component and an encoder-decoder
attention component.

The encoder component takes the vector representation of the input words,
processes them through a series of layer, and produces, for each input word
xi, an encoded representation hi, which contains a richer representation of
the word and its context. Figure 1.3 shows the basic schema of an encoder
component.

The decoder component uses two sources of information to produce the transla-
tion, the encodings produced by the encoder, and optionally information about
the current state of the translation process. Standard encoder-decoder models
are auto-regressive, that is, the translation is produced one word at a time,
taking into account the previously produced words. This is why the decoder
must also have access to the translation state, in order to account for which
words have already been translated.

The decoder receives the representations produced by the encoder by means
of an encoder-decoder attention mechanism. An attention mechanism is a
function which maps a set of multiple vectors into a single one. This is what
enables the model to work with variable length input sentences. An attention
function is described by (Vaswani et al. 2017) as a function whose arguments
are a query, q, and a set of key-value pairs, grouped into matrices K and V,

10

i
i

i
i

i
i

i
i

3 Preliminaries

k1 k2 k3

q

Attention Function

0.1 0.3 0.6

v1 v2 v3

c

Figure 1.4: Example of how the attention mechanism works. In this example, the six-
pointed stars of the query are conceptually closer to the five-pointed stars (k3), followed by
the dots(k2). For simplicity, in this case we assume that the key and associated value share
the same representation.

and whose output is a weighted sum of the values. The weights for each value
are computed by a compatibility function between its key and the query.

Attention can thus be interpreted as, given a query, choosing which keys are
more relevant as a result of some operation with the query, and producing an
output vector, which is the weighted sum of the values, assigning more weight
to each value depending on the relevance of each one. The hope is that, if the
attention mechanism is working as intended, more weight will be assigned to
the source words that are the most relevant for producing the current word to
be translated. Figure 1.4 shows a graphical example of how attention works.

A basic encoder-decoder attention mechanism produces one context vector ci
at each time step:

ci =
∑
j

α(j|i)Vj, (1.10)

where

α(j|i) = softmax(attention(q,K))j. (1.11)

11

Chapter 1. Introduction

In MT, we compute the context vector as the weighted sum of the different
encoder representations at each time step. The generic attention mechanism
described in Equations (1.10) and (1.11) can be specified to produce a context
vector ci from a series of encoder representations h1, . . . , hJ as key-value pairs
and using the decoder state, si−1 as the query. Therefore, q = si−1, Kj = hj,
and Vj = hj, leaving us with:

ci =
∑
j

α(j|i)hj, (1.12)

where

α(j|i) = softmax(attention(si−1,K))j. (1.13)

Dot-Product Attention is typically used as the compatibility function:

attention(si−1,K) = sTi−1K. (1.14)

These α(j|i) weights can be interpreted as acting as an alignment. At each
time step i, α(j|i) can be understood as the probability that the target word
at position i is aligned with the input word at position j. Figure 1.5 shows the
basic schema of the decoder.

3.3 Transformer architecture

The Transformer (Vaswani et al. 2017) architecture replaces recurrent layers
by a new type of layer, a Self-Attention layer, as well as a series of archi-
tectural changes in both the encoder and decoder components. This model
achieves significant improvements in both speed and quality of translations,
and is currently considered the state of the art.

This section provides a general overview of the model and the proposed im-
provements. Due to the model’s complexity and the wide variety of introduced
changes, readers should refer to the original article to learn about details of
the implementation.

Both the encoder and the decoder are composed of a series of layer blocks
stacked on top of each other. Each of these blocks is made up of a series
of sub-layers. A sub-layer implements a function, such as a neural network

12

i
i

i
i

i
i

i
i

3 Preliminaries

DecoderAttention
ci

Translation state si

h1 h2

. . .

hJ

yi

Figure 1.5: Basic schematic of the autoregressive decoder of an encoder-decoder system.

hidden layer, jointly with Residual Connections (He et al. 2016) and Layer
Normalization (Ba, Kiros, and Hinton 2016). In what follows, each of these
techniques is described, starting with the main contribution of the Transformer
model, the introduction of a new way of computing attention.

The attention layers of the Transformer architecture perform multiple Scaled
Dot-Product Attention by using Multi-Head Attention. We have previously
introduced Dot-Product Attention in Equation (1.14). Scaled attention in-
troduces a scaling term that depends on the dimensions of the key, dk. The
Transformer computes scaled attention as

attention(q,K) =
qTK√
dk
. (1.15)

If we wish to compute attention with multiple queries, the queries can be
packed in a matrix Q, and the computation may be expressed solely in terms
of matrix multiplication. This means that the entire attention process is com-
puted as

attention(Q,K,V) = softmax

(
QKT

√
dk

)
V. (1.16)

13

Chapter 1. Introduction

Multi-Head
Attention

K V Q

Add & Norm

Feed
Forward

Add & Norm

Figure 1.6: Transformer encoder block.

Up to now, the attention mechanism has provided us with an answer for each
query. Multi-Head attention extends the previous mechanism in order to pro-
duce an answer that is the combination of multiple key-query comparisons.
Multi-head attention consists in performing several attention operations in
parallel and combining the results to obtain the final context vector. Each
individual attention operation or head is carried out by applying a linear pro-
jection to the query, keys and values, computing attention between them, and
then projecting back into a common space:

MultiHead(Q,K,V) = concat(head1, . . . ,headh)W
o (1.17)

headi = attention(QWQ
i ,KWK

i ,VWV
i). (1.18)

The projections are applied by means of matrices Wo,WQ
i ,WK

i and WV
i .

These projection matrices are parameters learned during training.

There are two types of sub-layers in the Transformer architecture, Feed For-
ward layers and the previously described Multi-Head Attention layers. Feed
Forward layers are standard neural network layers consisting on weight matrix
multiplication followed by an activation function. Figure 1.6 shows a Trans-
former encoder block.

14

i
i

i
i

i
i

i
i

3 Preliminaries

The standard Transformer block consists in a Multi-Head attention sub-layer
followed by a Feed Forward sub-layer. The entire input sentence is fed to the
encoder, and the input sentence representation is computed all at the same
time. The self attention layers in the encoder apply Multi-Head attention to
the output of the previous layer, using that output as both query and key-
value pairs. Therefore, at each layer, the encoder produces a representation
for each word, that can incorporate information about any other word in the
sentence thanks to the self-attention mechanism. The entire representation
can therefore be produced in a single pass.

Figure 1.7 shows a Transformer decoder block. In the same way as all other
neural MT models, the decoder produces one word at a time, conditioned by
the previously emitted words. The decoder is fed the previously emitted words
and its Multi-Head attentions sub-layers perform their computations over the
output of the previous decoder layer. Compared with the encoder blocks, the
decoder blocks include an additional Multi-Head cross attention sub-layer that
attends to the output of the encoder stack, allowing the decoder to access the
input sentence representations. In these cross attention sub-layers, the output
of the previous decoder layer acts as query, while the encoder output acts as
key-value pair.

A graphical overview of the Transformer architecture is shown in Figure 1.8.
Note that, in the case of the Transformer architecture, self-attention layers,
by themselves, offer no way of knowing word order in a sentence, since they
treat all inputs the same way. In order to provide the missing word-order
information, the Transformer architectures uses positional embeddings that
encode this information using sine and cosine functions.

It is usual to choose one of the following configurations, Transformer Base or
Big, when building MT systems:

• Transformer Base: 6 encoder/decoder blocks, embedding dimension
512, hidden layer size of 2048 and 8 attention heads.

• Transformer Big: 6 encoder/decoder blocks, embedding dimension
1024, hidden layer size of 4096 and 16 attention heads.

15

Chapter 1. Introduction

Multi-Head
Attention

K V Q

Add & Norm

Multi-Head
Attention

Add & Norm

K V Q

Feed
Forward

Add & Norm

Figure 1.7: Transformer decoder block.

16

i
i

i
i

i
i

i
i

3 Preliminaries

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

h1 h2

. . .

hJ

x1 x2

. . .

xJ

+Positional
Embeddings

Output
Probabilities

yi

y1 y2

. . .

yi−1

+Positional
Embeddings

Figure 1.8: Figure of the Transformer architecture.

17

Chapter 1. Introduction

Raw text He said Barack Obama speaks eloquently.
Truecasing he said Barack Obama speaks eloquently.
Tokenization he said Barack Obama speaks eloquently .
BPE he said Barack Obama speaks eloquent@@ ly .

Figure 1.9: Pre-processing pipeline example. Each step is applied over the output of the
previous one. Notice how rare word "eloquently" has been split into subword units, avoiding
a potential Out-of-vocabulary problem.

3.4 Data processing and benchmarking

Neural networks work with real numbers, so before any processing can occur,
it is necessary to transform the textual representation of the input words into
a vector representation. Vectorization is carried out by assigning each unique
word to a unique vector. The set of words to be considered is called the vo-
cabulary, and words outside it are by convention all mapped to an special
"out-of-vocabulary" or "unknown" vector. These vectors, also known as word
embeddings, are considered parameters and are typically jointly optimized with
the rest of the model parameters. As mentioned in Section 3.3, Transformer
self-attention layers need positional embeddings in order to access word-order
information. The positional embedding is added together with the word em-
bedding to produce the input to the network.

There is a strong interest in avoiding redundant entries in the vocabulary, so
as to not waste parameters and computation on redundant features. This is
achieved by a step known as pre-processing, with the goal of collapsing simi-
lar words into a single one. One typical step in pre-processing is truecasing,
to avoid having separate uppercase and lowercase representations of the same
word, as well as tokenization, which breaks up words into individual compo-
nents (for example, separating words from punctuation signs). The resulting
vocabulary should be as small as possible without compromising modelling
capabilities. However, the use of a fixed-sized vocabulary leaves the model un-
able to process out-of-vocabulary words. This is why words are typically broken
down into sub-units, called sub-words. This technique enables open vocabulary
translation if we use a sub-word vocabulary, because unknown words can be
broken into known sub-units. Through this thesis, Byte Pair Encoding (BPE)
subwords are used (Sennrich, Haddow, and Birch 2016). Figure 1.9 shows an
example of the whole pre-processing procedure.

18

i
i

i
i

i
i

i
i

3 Preliminaries

Data availability is one of the most critical factors for building successful ML
systems, and ST is no exception. In order to build a cascaded ST system, data
for both the ASR and MT systems must be collected. For the ASR system,
this will consist in audio segments paired with their corresponding transcrip-
tions. For MT translation, parallel corpora needs to be collected, consisting
in sentences and their translations into the target language. Additionally, it
is also useful to collect vast quantities of monolingual data in order to train
the language model component of the ASR system or to generate synthetic
backtranslations for the MT system. Although obtaining these resources is
not easy, the use of modern data crawling and data filtering techniques such as
(Jorge, Martínez-Villaronga, et al. 2018) and (Bañón et al. 2020) means that
one can obtain sufficient resources for training state-of-the-art ASR and MT
architectures.

However, data scarcity remains a significant concern for building and evaluat-
ing ST systems, because ST data consists of triples of (audio, transcription,
translation), which are significantly harder to obtain than ASR or MT data.
This is even more critical for end-to-end ST systems, which require this ST
data for training. The lack of ST training data can be partially alleviated, for
example, by generating synthetic data using MT and Text-to-Speech (TTS)
systems if not enough ST data is available. However, the lack of sufficient ST
benchmarks remains a problem for ST evaluation, specially for language pairs
that do not include English. Table 1.1 shows an overview of ST datasets at
the beginning of 2019, the year this thesis was started.

As it can be observed, a very limited amount of ST data was available, and
the majority of it consists in English audio data or English target translations.
ST data for non-English language pairs is scarce, so it can be used only in
low-resource scenarios and for evaluation. The lack of suitable ST evaluation
sets is a limiting factor for ST research, as many of the insights obtained with
high-resource English-centric settings might not apply for realistic scenarios
involving other language pairs. Apart from this, another issue present in 2019
was the use of the Fisher and Callhome corpus (Post et al. 2013) as the standard
benchmark for ST, which is not freely available to researchers.

The need for a reliable, multilingual ST that is freely available to the ST
community motivated the creation of the Europarl-ST corpus, the first major
contribution of this thesis, which is described in Paper 1.

19

Chapter 1. Introduction

Table 1.1: Overview of ST resources at the start of 2019. Reproduced with permission
from (Di Gangi et al. 2019).

Corpus Languages Hours
(Niehues et al. 2018) En→De 273
(Kocabiyikoglu, Besacier, and Kraif 2018) En→Fr 236
(Tohyama et al. 2005) En↔Jp 182
(Paulik and Alex Waibel 2009) En→Es 111

Es→En 105
(Post et al. 2013) En→Es 38
(Stüker et al. 2012) De→En 37
(Shimizu et al. 2014) En↔Jp 22
(Federmann and Lewis 2017) En → Zh 22
(Bendazzoli and Sandrelli 2007) En↔It/Es 18

It↔Es 18
(Bérard et al. 2016) Fr→En 17
(Federmann and Lewis 2016) En↔Fr/De 8
(Woldeyohannis, Besacier, and Meshesha 2017) Am→En 7
(Godard et al. 2018) Mboshi→Fr 4

3.5 Evaluation of results

Streaming ST systems are typically evaluated across two axes: translation
quality and latency. Translation quality is typically understood as the goodness
of the translation, whereas latency is the elapsed time between a word being
spoken and its translation being generated by the system. These two objectives
are at odds with each other, because translation quality is heavily influenced by
the amount of context available for translating each word, but waiting for more
context implies an additional waiting time before the translation is available.
Thus, there exists a latency-quality trade-off that must be adjusted depending
on the requirements of the specific solution being developed.

The question of how to best assess the translation quality of MT systems re-
mains open. Manual evaluation, that is, evaluation made by humans about the
quality of the translated text, could very well be the best evaluation measure,
but it has the disadvantage of needing a human to carry out the task. Carrying
out manual evaluations every time we define a new system configuration and
translate a large amount of test sentences quickly becomes unfeasible.

This has given rise to search for automatic evaluation metrics that are ide-
ally correlated with human judgment. Automatic evaluation is carried out by

20

i
i

i
i

i
i

i
i

3 Preliminaries

comparing the output of a system with a reference translation produced by a
human. The most basic evaluation metric is the precision, the ratio between
correct output words (shared words between the system output and the ref-
erence translation) and the number of words present on the output sentence.
The problem with this metric is that it does not penalize short sentences and
therefore can be easily fooled 1. A better evaluation measure that takes the
idea of precision into account together with hypothesis length is the Bilingual
Evaluation Understudy (BLEU) (Papineni et al. 2002) score. The BLEU score
computes a modified precision, pn, at different n-gram levels. Unlike regular
precision, the clipped-precision used by the BLEU metric requires that an n-
gram appears the same number of times both in the reference translation and
in the candidate translation. If a certain n-gram appears more times in the
candidate than in the reference, it will only be counted as correct as many
times as it appears in the reference. BLEU is a corpus-level measure which is
computed by checking and clipping the number of matching n-grams for each
pair of hypothesis and reference sentences. The number of matches is added
over all sentences of the test set and the precision is then computed:

AveragePrecision(N) =
1

N

N∑
n=1

log pn. (1.19)

This score also includes a Brevity Penalty term that is detrimental if the length
of the candidate translation (c) is smaller than the length of the reference (r):

BrevityPenalty =

{
1 : if c > r
exp(1− r

c
) : if c ≤ r (1.20)

The usual definition of BLEU is computed up to n-grams of order 4, such that

BLEU(4) = BrevityPenalty ∗AveragePrecision(4). (1.21)

The final result is a value ranging from 0 to 1, higher values are better. The
value is usually multiplied by 100 to obtain better readability. BLEU belongs
to the family of string metrics, that is, metrics that estimate the translation
quality by comparing the words of the hypothesis and the reference transla-
tion and computing statistics such as precision and recall. BLEU is the most

1A system that emitted the translation "the" for any given input sentence would achieve an
unusually high precision, since "the" is the most common English word. (Koehn 2010)

21

Chapter 1. Introduction

popular string-based metric, but there exist others such as TER (Snover et al.
2006) and chrF (Popović 2015).

More recently, a new type of metrics called neural metrics has started to gather
widespread attention. Instead of count-based statistics, neural metrics typi-
cally work by using a neural network that takes the hypothesis and the reference
translation as input, and tries to estimate the quality of the translation. These
models are usually trained on a supervised manner using Direct Assessment
(DA) data, which contains triples of source sentence, hypothesis translation
and reference translation, as well as a human scored assigned to the hypoth-
esis translation. The latest research concludes that neural metrics are more
correlated with human judgements than string-based metrics (Freitag et al.
2022). Neural metrics have also been shown to be susceptible to certain types
of errors (Amrhein and Sennrich 2022) and bias (Gowda et al. 2021), so they
need to be used with special care.

Likewise, the second evaluation criteria for streaming ST, latency, is not triv-
ial to measure. In human interpretation studies, Ear-Voice Span (EVS), also
known as time lag (Barik 1973), is the main measure used to understand inter-
preter latency. EVS is computed by measuring the elapsed time between when
a word is uttered by the speaker and when the interpreter utters its transla-
tion. This measure is computed manually, by tagging word pairs with similar
semantic meaning in both the original speaker and the interpreters interven-
tions. The annotation process for EVS is a time-consuming step, and there
are disagreements over the exact specifics of how EVS should be computed
(Collard 2019).

Online ST uses automatic measures whose goal is the same as EVS, to mea-
sure the latency of the translation. Average Proportion (AP) (Cho and Esipova
2016), Average Lagging (AL) (Ma et al. 2019) and Differentiable Average Lag-
ging (DAL) (Cherry and Foster 2019) are the most commonly used compu-
tationally agnostic measures. For AP/AL/DAL, latency is measured by as-
suming a fixed, monotonic alignment between source and target words. These
measures are computed independently for each sentence pair, and the aver-
age over all sentences is reported. However, translating sentences in isolation
and then measuring latency is not representative of a system’s behaviour when
faced with the real task of streaming ST. Moreover, as previously mentioned,
AP/AL/DAL cannot be directly applied to the streaming scenario (Schneider
and Alexander Waibel 2020). The lack of a realistic framework for evaluating
streaming ST latency motivated the work carried out in Paper 4.

22

i
i

i
i

i
i

i
i

4 List of publications

4 List of publications

4.1 Paper 1

Title Europarl-ST: A Multilingual corpus for
Speech Translation of Parliamentary Debates

Authors Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà,
Javier Jorge, Nahuel Roselló Adrià Giménez,
Albert Sanchis, Jorge Civera, Alfons Juan

Year 2020
Type International Conference - GGS Class 2
DOI 10.1109/ICASSP40776.2020.9054626
Name Proc. of ICASSP 2020
Pages 8229-8233

Current ST research is often hampered by the lack of specific data resources
for this task, as currently available ST datasets are restricted to a limited
set of language pairs. This work presents Europarl-ST, a novel multilingual
ST corpus containing paired audio-text samples from and into 6 European
languages (English, German, French, Spanish, Italian, Portuguese), for a total
of 30 different translation directions. This corpus has been compiled using the
debates held in the European Parliament in the period between 2008 and 2012.
The corpus creation process is described in detail, which has been carefully
aligned and filtered in order to provide a reliable benchmark for streaming ST
systems.

The paper presents a series of automatic speech recognition, machine transla-
tion and spoken language translation experiments that highlight the potential
of this new resource, carried out using the English, German, French and Span-
ish sets, for a total of 12 ST directions. The results show the usefulness of this
resource for both domain adaptation and evaluation, as well as highlighting
some of the challenges to be solved on the road to streaming ST.

23

Chapter 1. Introduction

4.2 Paper 2

Title Direct Segmentation Models for Streaming Speech Translation
Authors Javier Iranzo-Sánchez, Adrià Giménez,

Joan Albert Silvestre-Cerdà, Pau Baquero-Arnal,
Jorge Civera, Alfons Juan

Year 2020
Type International Conference - GGS Class 1
DOI 10.18653/v1/2020.emnlp-main.206
Name Proc. of EMNLP 2020
Pages 2599-2611

This paper studies how to optimize the processing and segmentation of the
ASR system output so that the downstream MT performance is maximized.
Specifically, this publication is focused on studying the segmentation problem
for the streaming scenario. We introduce a novel neural segmenter architec-
ture, Direct Segmentation (DS), which considers the segmentation process as a
classification problem. Using a sliding window approach, for every position of
the ASR stream, the segmenter decides whether or not to produce a chunk by
using a fixed local history and a small look-ahead window. The performance of
this approach is evaluated on the previously introduced Europarl-ST corpus,
by training an offline MT system and testing its performance when combined
with different segmenters, for the English ↔ {German, French, Spanish} di-
rections. Experiments are also performed showing that adding audio features
to the segmenter improves performance.

The proposed architecture is computationally efficient while outperforming
other segmentation approaches, and is able to work straight-out-of-the box
in the streaming scenario. Additionally, the work studies how the MT training
data should be processed so that it better matches the ASR transcriptions,
avoiding the need for an intermediate inverse text normalization step.

24

i
i

i
i

i
i

i
i

4 List of publications

4.3 Paper 3

Title Streaming cascade-based speech translation
leveraged by a direct segmentation model

Authors Javier Iranzo-Sánchez, Javier Jorge, Pau Baquero-Arnal
Joan Albert Silvestre-Cerdà, Adrià Giménez, Jorge Civera
Albert Sanchis, Alfons Juan

Year 2021
Type Journal - JCR Q1 Artificial Intelligence (18/227)
DOI 10.1016/j.neunet.2021.05.013
Name Neural Networks, 142
Pages 303–315

This paper extends the previous one by moving from a simulated streaming
scenario into a real one. Previously, we worked on a simulated scenario which
used the fixed transcriptions of an ASR system and an offline MT system to
asses the feasibility of the proposed DS system. This work uses streaming
ASR and MT systems whose hyperparameters are jointly optimized with the
DS segmenter in order to maximize the latency-quality trade-off of the stream-
ing process, and the streaming scenario is tested by using as input the raw,
unsegmented interventions of the Europarl-ST corpus.

The experiments are carried out with a Spanish ASR system, and Spanish-
English and Spanish-French MT systems, which highlights how Europarl-ST
enables non-English centric ST. Two online MT approaches are tested, MMAH
and wait-k translation, and our experiments show how, for these settings, wait-
k is the preferred approach in both quality and latency.

4.4 Paper 4

Title Stream-level Latency Evaluation
for Simultaneous Machine Translation

Authors Javier Iranzo-Sánchez, Jorge Civera, Alfons Juan
Year 2021
Type International Conference
DOI 10.18653/v1/2021.findings-emnlp.58
Name Findings of EMNLP 2021
Pages 664-670

This paper introduces a novel evaluation procedure for streaming MT. Stan-
dard online MT metrics only work with short audio segments, evaluated in

25

Chapter 1. Introduction

isolation, and do not take into account the sequential nature of the stream-
ing scenario. Our proposed streaming evaluation method fixes these issues,
and as a bonus, it can be applied to the standard metrics used for online MT
with a small modification. Our proposal keeps track of a global latency score
across the entire translation process, and uses a re-alignment step that matches
translated words with the correct reference segment.

A significant advantage of our proposal is that the evaluation procedure is not
system/segmentation dependent and can be used to compare different systems,
as well as maintaining the original interpretability of the metrics. Comparative
experiments show that, unlike competing approaches, our proposal correctly
ranks systems based on their latency, as well as keeping the previously men-
tioned properties.

4.5 Paper 5

Title From Simultaneous to Streaming Machine Translation
by Leveraging Streaming History

Authors Javier Iranzo-Sánchez, Jorge Civera, Alfons Juan
Year 2022
Type International Conference - GGS Class 1
DOI 10.18653/v1/2022.acl-long.480
Name Proc. of ACL 2022
Pages 6972-6985

This paper presents a general methodology for building context-aware state-of-
the-art streaming MT systems, by incorporating the previously developed DS
streaming segmenter and using our proposed streaming metrics for evaluation.
This publication takes advantage of the insights developed in the previous
publications in order to build a strong streaming baseline MT system, and
improves it with a novel context-aware training methodology which obtains
significant improvements. Further improvements are also obtained with a pro-
posed Partial Bidirectional Encoder (PBE) that has access to a larger portion
of the input prefix.

Our approach is similar to the concatenative approach used in context-aware
MT, and uses a sliding window which contains the previous streaming history
that has been produced during the translation process. History-augmented
training samples are constructed from document-level corpora, and at inference
time, the real streaming history is used. Extensive experiments are carried on
IWSLT English-German data in order to study the behaviour of the model and

26

i
i

i
i

i
i

i
i

4 List of publications

optimize the latency-quality trade-off. Using our proposed streaming latency
metrics, our system is compared with the ACT streaming approach (Schneider
and Alexander Waibel 2020) and the submissions to the IWSLT 2020 simul-
taneous track (Ansari et al. 2020), achieving a similar level of quality for a
fraction of the latency.

27

Chapter 1. Introduction

References

Amrhein, Chantal and Rico Sennrich (2022). “Identifying Weaknesses in Ma-
chine Translation Metrics Through Minimum Bayes Risk Decoding: A Case
Study for COMET”. In: Proc. of AACL-IJCNLP. ACL, pp. 1125–1141 (cit.
on p. 22).

Anastasopoulos, Antonios et al. (2022). “Findings of the IWSLT 2022 Evalua-
tion Campaign”. In: Proc. of IWSLT. ACL, pp. 98–157 (cit. on pp. 2, 4).

Ansari, Ebrahim et al. (2020). “FINDINGS OF THE IWSLT 2020 EVALU-
ATION CAMPAIGN”. In: Proc. of IWSLT. Online: ACL, pp. 1–34 (cit. on
p. 27).

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton (2016). “Layer nor-
malization”. In: arXiv preprint arXiv:1607.06450 (cit. on p. 13).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: Proc. of
ICLR. Ed. by Yoshua Bengio and Yann LeCun (cit. on p. 2).

Bañón, Marta et al. (2020). “ParaCrawl: Web-Scale Acquisition of Parallel Cor-
pora”. In: Proc. of ACL. Association for Computational Linguistics, pp. 4555–
4567 (cit. on p. 19).

Barik, H. (1973). “Simultaneous Interpretation: Temporal and Quantitative
Data”. In: Language and Speech 16, pp. 237–270 (cit. on p. 22).

Bendazzoli, Claudio and Annalisa Sandrelli (2007). “An approach to corpus-
based interpreting studies: developing EPIC (European Parliament Inter-
preting Corpus)”. In: Challenges of Multidimensional Translation, Proceed-
ings of the Marie Curie Euroconferences MuTra: Challenges of Multidimen-
sional Translation (cit. on p. 20).

Bérard, Alexandre et al. (2016). “Listen and Translate: A Proof of Concept
for End-to-End Speech-to-Text Translation”. In: Proceedings of the NIPS
Workshop on end-to-end learning for speech and audio processing. Barcelona,
Spain (cit. on p. 20).

Bottou, Léon and Olivier Bousquet (2007). “The Tradeoffs of Large Scale
Learning”. In: Proc. of NIPS, pp. 161–168 (cit. on p. 7).

Brown, Peter F., John Cocke, et al. (1990). “A Statistical Approach to Machine
Translation”. In: Comput. Linguistics 16.2, pp. 79–85 (cit. on p. 2).

Brown, Peter F., Stephen Della Pietra, et al. (1993). “The Mathematics of
Statistical Machine Translation: Parameter Estimation”. In: Comput. Lin-
guistics 19.2, pp. 263–311 (cit. on p. 2).

Chan, William et al. (2016). “Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition”. In: Proc. of ICASSP.
IEEE, pp. 4960–4964. doi: 10.1109/ICASSP.2016.7472621 (cit. on p. 2).

28

https://doi.org/10.1109/ICASSP.2016.7472621

i
i

i
i

i
i

i
i

References

Cherry, Colin and George Foster (2019). “Thinking Slow about Latency Eval-
uation for Simultaneous Machine Translation”. In: arXiv:1906.00048 (cit. on
p. 22).

Cho, Kyunghyun and Masha Esipova (2016). “Can neural machine translation
do simultaneous translation?” In: arXiv preprint arXiv:1606.02012 (cit. on
p. 22).

Collard, Camille (2019). “A corpus-based study of simultaneous interpreting
with special reference to sex”. PhD thesis. Ghent University (cit. on p. 22).

Dahl, George E. et al. (2011). “Large vocabulary continuous speech recog-
nition with context-dependent DBN-HMMS”. In: Proc. of ICASSP. IEEE,
pp. 4688–4691 (cit. on p. 2).

Di Gangi, Mattia et al. (2019). “MuST-C: a Multilingual Speech Translation
Corpus”. In: NAACL-HLT 2019 (cit. on p. 20).

European Commission, Special Eurobarometer (2012). “Europeans and their
languages”. In: Special Eurobarometer 386.June (cit. on p. 2).

Federmann, Christian and William D. Lewis (2016). “Microsoft Speech Lan-
guage Translation (MSLT) Corpus: The IWSLT 2016 release for English,
French and German”. In: Proc. of IWSLT. International Workshop on Spo-
ken Language Translation (cit. on p. 20).

– (2017). “The Microsoft Speech Language Translation (MSLT) Corpus for
Chinese and Japanese: Conversational Test data for Machine Translation and
Speech Recognition”. In: Proc. of MTSUMMIT, pp. 72–85 (cit. on p. 20).

Freitag, Markus et al. (2022). “Results of WMT22 Metrics Shared Task: Stop
Using BLEU – Neural Metrics Are Better and More Robust”. In: Proc. of
WMT. ACL, pp. 46–68 (cit. on p. 22).

Gaido, Marco et al. (2021). “Beyond Voice Activity Detection: Hybrid Audio
Segmentation for Direct Speech Translation”. In: Proc. of ICNLSP. ACL,
pp. 55–62 (cit. on p. 4).

Godard, Pierre et al. (2018). “A Very Low Resource Language Speech Cor-
pus for Computational Language Documentation Experiments”. In: Proc. of
LREC. ELRA (cit. on p. 20).

Gowda, Thamme et al. (2021). “Macro-Average: Rare Types Are Important
Too”. In: Proc. of NAACL. ACL, pp. 1138–1157 (cit. on p. 22).

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”.
In: Proc. of CVPR. IEEE Computer Society, pp. 770–778 (cit. on p. 13).

Iranzo-Sánchez, Javier (2018). “A comparative study of Neural Machine Trans-
lation frameworks for the automatic translation of open data resources”. B.S.
Thesis. Universitat Politècnica de València (cit. on p. 5).

– (2019). “Online Multilingual Neural Machine Translation”. M.S. Thesis. Uni-
versitat Politècnica de València (cit. on p. 5).

29

Chapter 1. Introduction

Irie, Kazuki et al. (2019). “Language Modeling with Deep Transformers”. In:
Proc. Interspeech 2019. ISCA, pp. 3905–3909. doi: 10.21437/Interspeech.
2019-2225 (cit. on p. 2).

Jorge, Javier, Adrià Giménez, et al. (Jan. 1, 2020). “LSTM-Based One-Pass
Decoder for Low-Latency Streaming”. In: Proc. of ICASSP. IEEE (cit. on
p. 2).

Jorge, Javier, Adrià Martínez-Villaronga, et al. (2018). “MLLP-UPV and RWTH
Aachen Spanish ASR Systems for the IberSpeech-RTVE 2018 Speech-to-Text
Transcription Challenge”. In: Proc. IberSPEECH 2018, pp. 257–261 (cit. on
p. 19).

Kocabiyikoglu, Ali Can, Laurent Besacier, and Olivier Kraif (2018). “Augment-
ing Librispeech with French Translations: A Multimodal Corpus for Direct
Speech Translation Evaluation”. In: Proc. of LREC (cit. on p. 20).

Koehn, Philipp (2010). Statistical Machine Translation. 1st. New York, NY,
USA: Cambridge University Press (cit. on p. 21).

Koehn, Philipp, Franz Josef Och, and Daniel Marcu (2003). “Statistical Phrase-
Based Translation”. In: Proc. of HLT-NAACL. Ed. by Marti A. Hearst and
Mari Ostendorf. ACL (cit. on p. 2).

Ma, Mingbo et al. (2019). “STACL: Simultaneous Translation with Implicit
Anticipation and Controllable Latency using Prefix-to-Prefix Framework”.
In: Proc. of ACL. ACL, pp. 3025–3036. doi: 10.18653/v1/P19-1289 (cit.
on p. 22).

Mitchell, Tom M. (1997). Machine learning, International Edition. McGraw-
Hill Series in Computer Science. McGraw-Hill (cit. on p. 5).

Müller, Mathias et al. (2018). “A Large-Scale Test Set for the Evaluation
of Context-Aware Pronoun Translation in Neural Machine Translation”. In:
Proc. of WMT. Brussels, Belgium: Association for Computational Linguistics
(cit. on p. 5).

Niehues, Jan et al. (2018). “The IWSLT 2018 Evaluation Campaign”. In: Proc.
of IWSLT, pp. 2–6 (cit. on p. 20).

Papineni, Kishore et al. (2002). “Bleu: a Method for Automatic Evaluation of
Machine Translation”. In: ACL 2002 (cit. on p. 21).

Park, Daniel S. et al. (2019). “SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition”. In: Proc. Interspeech, pp. 2613–
2617 (cit. on p. 2).

Paulik, Matthias and Alex Waibel (2009). “Automatic translation from par-
allel speech: Simultaneous interpretation as MT training data”. In: Proc. of
ASRU. IEEE, pp. 496–501 (cit. on p. 20).

Popović, Maja (2015). “chrF: character n-gram F-score for automatic MT eval-
uation”. In: Proc. of WMT. ACL, pp. 392–395. doi: 10.18653/v1/W15-3049
(cit. on p. 22).

30

https://doi.org/10.21437/Interspeech.2019-2225
https://doi.org/10.21437/Interspeech.2019-2225
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/W15-3049

i
i

i
i

i
i

i
i

References

Post, Matt et al. (2013). “Improved speech-to-text translation with the Fisher
and Callhome Spanish-English speech translation corpus”. In: Proc. of IWSLT
(cit. on pp. 19, 20).

Rangarajan Sridhar, Vivek Kumar et al. (2013). “Segmentation Strategies for
Streaming Speech Translation”. In: Proc. of NAACL. ACL, pp. 230–238 (cit.
on p. 4).

Schneider, Felix and Alexander Waibel (2020). “Towards Stream Translation:
Adaptive Computation Time for Simultaneous Machine Translation”. In:
Proc. of IWSLT. ACL, pp. 228–236 (cit. on pp. 4, 22, 27).

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016). “Neural Machine
Translation of Rare Words with Subword Units”. In: ACL 2016 (cit. on
p. 18).

Shimizu, Hiroaki et al. (2014). “Collection of a Simultaneous Translation Cor-
pus for Comparative Analysis”. In: Proc. of LREC, pp. 670–673 (cit. on
p. 20).

Snover, Matthew et al. (2006). “A Study of Translation Edit Rate with Tar-
geted Human Annotation”. In: Proc. of AMTA. AMTA, pp. 223–231 (cit. on
p. 22).

Stüker, Sebastian et al. (2012). “The KIT Lecture Corpus for Speech Transla-
tion”. In: Proc. of LREC, pp. 3409–3414 (cit. on p. 20).

Tiedemann, Jörg and Yves Scherrer (2017). “Neural Machine Translation with
Extended Context”. In: Proc. of DiscoMT@EMNLP. ACL, pp. 82–92 (cit. on
p. 5).

Tohyama, Hitomi et al. (2005). “Construction and utilization of bilingual speech
corpus for simultaneous machine interpretation research”. In: Proc. of IN-
TERSPEECH. ISCA, pp. 1585–1588 (cit. on p. 20).

Tsiamas, Ioannis et al. (2022). “SHAS: Approaching optimal Segmentation for
End-to-End Speech Translation”. In: Proc. Interspeech 2022, pp. 106–110
(cit. on p. 4).

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Proc. of NIPS.
Ed. by Isabelle Guyon et al., pp. 5998–6008 (cit. on pp. 2, 10, 12).

Voita, Elena, Rico Sennrich, and Ivan Titov (2019a). “Context-Aware Monolin-
gual Repair for Neural Machine Translation”. In: Proc. of EMNLP-IJCNLP.
ACL, pp. 877–886 (cit. on p. 5).

– (2019b). “When a Good Translation is Wrong in Context: Context-Aware
Machine Translation Improves on Deixis, Ellipsis, and Lexical Cohesion”. In:
Proc. of ACL. ACL, pp. 1198–1212 (cit. on p. 5).

Woldeyohannis, Michael Melese, Laurent Besacier, and Million Meshesha (2017).
“A Corpus for Amharic-English Speech Translation: The Case of Tourism
Domain”. In: Proc. of ICT4DA. Ed. by Fisseha Mekuria et al. Vol. 244.
Springer, pp. 129–139 (cit. on p. 20).

31

i
i

i
i

i
i

i
i

Chapter 2

Selected Papers

33

i
i

i
i

i
i

i
i

1 Europarl-ST: A Multilingual corpus for Speech Translation
of Parliamentary Debates

Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà, Javier Jorge,
Nahuel Roselló, Adrià Giménez, Albert Sanchis,
Jorge Civera, Alfons Juan

ICASSP 2020 - 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 8229-8233

Barcelona (Spain)

10.1109/ICASSP40776.2020.9054626

4-8 May 2020

i
i

i
i

i
i

i
i

Europarl-ST: A Multilingual corpus for Speech
Translation of Parliamentary Debates

Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà, Javier Jorge,
Nahuel Roselló, Adrià Giménez, Albert Sanchis,

Jorge Civera, Alfons Juan

Abstract

Current research into spoken language translation (SLT), or speech-
to-text translation, is often hampered by the lack of specific data
resources for this task, as currently available SLT datasets are re-
stricted to a limited set of language pairs. In this paper we present
Europarl-ST, a novel multilingual SLT corpus containing paired audio-
text samples for SLT from and into 6 European languages, for a
total of 30 different translation directions. This corpus has been
compiled using the debates held in the European Parliament in the
period between 2008 and 2012. This paper describes the corpus cre-
ation process and presents a series of automatic speech recognition,
machine translation and spoken language translation experiments
that highlight the potential of this new resource. The corpus is re-
leased under a Creative Commons license and is freely accessible
and downloadable.

Keywords: speech translation, spoken language translation, automatic speech
recognition, machine translation, multilingual corpus

1.1 Introduction

The significant developments in the automatic speech recognition (ASR) and
machine translation (MT) fields in the last five years, which have been mainly
driven by advances in deep learning models and greater data availability, have
picked up interest in spoken language translation (SLT) as the natural conver-
gence of the two previous fields.

37

Chapter 2. Europarl-ST Speech Translation corpus

However, SLT is far from solved. Two approaches are currently used: cas-
cade (Sperber, Niehues, and Waibel 2017; Cho, Niehues, and Waibel 2017; E.
Matusov et al. 2018) and end-to-end models (Weiss et al. 2017; Sperber, Neu-
big, et al. 2019; Salesky, Sperber, and Black 2019), without one being clearly
adopted by the community. The latest IWSLT 2018 evaluation campaign
showed that the cascade approach outperforms end-to-end models (Niehues
et al. 2018), but recent developments in the area are shrinking that gap (Jia
et al. 2019). The performance of SLT, and especially end-to-end SLT models,
is limited by the lack of SLT corpora when compared with the more resource-
rich ASR and MT fields. Furthermore, most of the existing SLT corpora are
limited to only English speech data paired with translations into other lan-
guages, such as the recently released MuST-C corpus (Di Gangi et al. 2019).
This fact limits the SLT research than could be carried out in language pairs
other than English. Moreover, recent studies report their main results using
either the paid Fisher/Callhome corpora (Sperber, Niehues, and Waibel 2017;
Weiss et al. 2017; Sperber, Neubig, et al. 2019; Salesky, Sperber, and Black
2019; Post et al. 2013), or private propietary datasets (Jia et al. 2019), which
limits reproducibility for the research community.

In order to alleviate these problems, we have created the Europarl-ST corpus
out of European Parliament (EP) debates and their official transcriptions and
translations. To our knowledge, Europarl-ST is the first fully self-contained,
publicly available corpus with both, multiple (speech) source and target lan-
guages, which will also enable further research into multilingual SLT (cf. (Boito
et al. 2020)). The Europarl-ST corpus is released under a Creative Commons
Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0), and
can be freely accessed and downloaded at www.mllp.upv.es/europarl-st.

1.2 Data collection and processing

The corpus has been created using the publicly available videos from European
Parliament debates1. In order to ease the access to the different attributes of
each debate the LinkedEP database is used (Van Aggelen et al. 2017). The
basic unit of this corpus is a speech, an intervention made by a single speaker
at the Parliament.

The EP debates suffer from missing videos, inaccurate timestamps and, as of
2011, many translations into languages other than English are missing. Indeed,
after 2012, the translation of EP debates is not available. Additional data is
discarded when constructing the Europarl-ST corpus, since in order to build

1http://www.europarl.europa.eu/plenary/en/debates-video.html

38

www.mllp.upv.es/europarl-st

i
i

i
i

i
i

i
i

Table 2.1: Number of speech hours after each step of the data filtering pipeline, and CER
of the filtered data sets.

Initial Step 1 Step 2 CER
De 207 149 44 10.7
En 346 252 120 12.9
Es 80 59 34 9.1
Fr 183 132 47 10.7

a corpus of audio-transcription-translation triples, it is necessary to properly
define forced audio-text and text-text sentence alignments, and intra-sentence
word-alignment.

For this initial release of the corpus, experiments are reported from and into
English (En), German (De), French (Fr) and Spanish (Es), since these lan-
guages accumulate a larger number of speech hours. Additional languages,
such as Italian and Portuguese, will also be included in the initial release, but
experimental results are not reported due to time constraints.

Audio-to-text alignment and data filtering

One of the challenges processing this corpus is that timestamps provided for the
EP speeches can be wildly inaccurate, and as a side-effect, they often contain
fragments from both the preceding and following speeches. In order to amelio-
rate this, first we carried out a Speaker Diarization (SD) step for each speech
using the LIUM SpkDiarization (Rouvier et al. 2013) toolkit. Second, for each
speech, the longest sequence of audio segments belonging to the same speaker
was clipped, making the assumption that it does correspond to the actual inter-
vention of the speaker of this speech. Finally, a forced alignment of the clipped
audio segments was carried out against their corresponding transcriptions to
obtain correct word timestamps. Forced alignments were carried out using the
TLK toolkit’s decoder (Agua et al. 2014) and the FF-DNN acoustic models
(AM) described in Section 1.3, restricting the search graph of the decoder to
the provided transcription. As a result of the procedure describe above (Step
1), around 28% of the original audio data was discarded (see Table 2.1 for
language-based statistics).

Next, in order to produce a reliable corpus than could be used to both train
and evaluate models, a second data filtering step was carried out based on
character error rate (CER) computed at the speech level. First, we apply ASR
over all speeches, using the ASR system described in Section 1.3. Second, we

39

Chapter 2. Europarl-ST Speech Translation corpus

measure how much the recognition outputs differ from the provided reference
transcriptions by computing CER values. Our aim is to eliminate speeches
that exhibit significant amounts of non-verbatim transcriptions, as well as non-
transcribed speech or unuttered transcripts that could be present either due
to mistakes of the SD process or to annotation errors in the original data. In
comparison with the well-known word error rate (WER) metric, the CER is
more convenient for our purposes, as it better gauges the phonetic similarity
between the recognised speech and the candidate reference transcripts, and
alleviates the effect of ASR out-of-vocabulary words.

Finally, language-dependent CER thresholds were defined, 15% for French,
German and Spanish and 20% for English, in order to exclude those speeches
whose CER exceeded these thresholds. Thresholds were defined based on pre-
vious experience filtering crawled speech data. As a result of this filtering step
(Step 2), around 40-70% of the audio data selected in the previous step was
discarded (see Table 2.1 for detailed statistics). CER figures computed on the
selected speeches after Step 2 are also provided in Table 2.1. These figures are
an approximation to a quality assurance measure to ensure that only speeches
with little or no noise are included into the corpus. At the end of this process,
around 60-80% of the original data was filtered out.

Source-to-target text alignment

Each selected speech, both transcription and translation, is divided into sen-
tences, using the sentence-split.pl script from the Moses toolkit (Koehn et al.
2007), that are aligned using Gargantua (Braune and Fraser 2010). Sentences
longer than 20 seconds were split into shorter ones in order to accommodate
the data for training purposes. Shorter sentences were generated by comput-
ing word-alignments using Fast-align (Dyer, Chahuneau, and Smith 2013) and
pairing them to guarantee intra-sentence alignments. The statistics of the re-
maining data after text-aligning and excluding speeches with no translation
into the respective target language are shown in Table 2.2. As observed in
Table 2.2, this corpus is provided with segmentations, both at the speech and
sentence level. The sentence-level segmentation is expected to be devoted to
training purposes, while evaluations at the speech level are reported in Sec-
tion 1.3.

A speaker-independent train/dev/test partition was defined, devoting approxi-
mately 3 hours of audio to each of the dev and test sets, and the rest was left as
training data. The dev/test speakers are the same for language directions with
the same source language. However, the number of speeches may differ because

40

i
i

i
i

i
i

i
i

Table 2.2: Statistics of the preprocessed Europarl-ST corpus.

Src Trg Speeches Sent. Hours Src w. Trg w.

De
En 1521 18.1K 42 345K 409K
Es 863 10.2K 24 196K 242K
Fr 839 9.6K 24 191K 265K

En
De 3233 35.5K 89 811K 793K
Es 3184 34.4K 87 796K 865K
Fr 3174 34.5K 87 794K 974K

Es
De 694 7.0K 20 193K 186K
En 1131 11.2K 32 305K 307K
Fr 684 6.9K 20 190K 225K

Fr
De 832 9.6K 25 263K 227K
En 1306 15.1K 38 394K 371K
Es 817 9.4K 25 260K 246K

for some speeches there are translations missing. The training data might be
used to fine-tune and adapt out-of-domain models to this specific domain, or
even to train basic in-domain ASR, MT and SLT models from scratch.

1.3 Experiments and results
This section introduces the setup used for the experiments performed with the
Europarl-ST corpus. In addition to ASR and MT experiments, SLT experi-
ments following a cascade approach, in which the output of an ASR system is
used as input for an MT system, are reported. First, the performance of mod-
els trained on general domain data when applied to the Europarl-ST corpus
are evaluated, and second, the usefulness of the Europarl-ST training data for
adapting models to the EP specific domain is also assessed. More precisely,
results of ASR, MT and SLT experiments are reported using the 4 selected
languages (English, German, Spanish and French), for a total of 12 translation
directions in the case of translation experiments. Results are reported in terms
of WER for ASR experiments, and BLEU (Papineni et al. 2002) for MT and
SLT experiments.

In order to properly compute BLEU, both the system hypothesis and the
reference translation must have the same number of lines. However, in a SLT
experiment, the number of lines will depend on the segmentation applied to the
output of the ASR system in the cascade case, and the SLT system in the end-
to-end case. Therefore, it is standard to re-segment the system hypothesis in
order to get the same number of lines as in the reference. This re-segmentation

41

Chapter 2. Europarl-ST Speech Translation corpus

is performed with the mwerSegmenter (Evgeny Matusov et al. 2005), and then
evaluated by computing case-sensitive BLEU (including punctuation signs)
with SacreBLEU (Post 2018). All evaluations are carried out at the speech
level, so re-segmentation is applied to both, MT and SLT experiments, in
order to evaluate them under the same conditions.

ASR

General-purpose ASR systems for German (De), English (En), Spanish (Es)
and French (Fr) were used to generate automatic transcripts for audio speeches
in the development and test sets of each language pair. These automatic
transcripts are the input text for subsequent MT systems within the SLT
cascade approach.

These ASR systems are based on the hybrid deep neural network hidden
Markov model (DNN-HMM) approach. Acoustic models, are generated us-
ing the TLK toolkit (Agua et al. 2014) to train feed-forward (FF) DNN-HMM
models of three left-to-right tied triphone states, using 48 (De, Es, Fr) or
80-dimensional (En) Mel frequency cepstral coefficients (MFCCs) as input fea-
tures. State tying was done by applying language-dependent classification and
regression trees (CART), which resulted in 10K (Es, Fr) or 18K (De, En) tied
triphone states. With the exception of the French ASR system which only fea-
tures FF-DNNs, these models were used to bootstrap bidirectional long-short
term memory (BLSTM) DNN models, the latter model trained using Tensor-
flow (TensorFlow 2018). For German, Spanish and French, we also trained
fCMLLR AMs, so that these systems follow a two-step recognition process.

On the other hand, regarding the language models (LM), we used a linear
combination of several n-gram LMs trained with SRILM (Stolcke 2002), com-
bined with a recurrent NN (RNN) LM trained using the RNNLM toolkit (The
RNNLM Toolkit 2012) (De, Es, Fr), or an LSTM LM trained with the CUED-
RNNLM toolkit (Chen et al. 2016) (En). The vocabulary of these systems was
restricted to 200K words. Table 2.3 shows overall statistics of the amount of
training data that were used to train the acoustic models, in terms of speech
hours, and the language models, in terms of sentences and words. The number
of English words includes 294G words from Google Books counts.

Table 2.4 shows, for each SLT test set, WER figures computed from the ASR
part only. Rows represent source (ASR) languages, whilst columns represent
target (MT) languages. It is important to remind that the set of source
speeches, though mostly overlapping, are different because the correspoding

42

i
i

i
i

i
i

i
i

Table 2.3: Statistics of AM and LM training data.

Hours (K) Sentences (M) Words (G)
De 0.9 71 0.8
En 5.6 532 300
Es 0.8 24 0.7
Fr 0.7 110 1.8

Table 2.4: ASR results in terms of WER on the test sets.

De En Es Fr
De – 19.8 19.8 19.9
En 17.2 – 17.2 17.1
Es 14.6 15.0 – 14.6
Fr 27.3 24.3 27.2 –

target text translation may not exist. Results show that most WER figures
are below 20%, except in those pairs having French as input language. This is
explained because the French ASR system does not feature BLSTM acoustic
models, and it is the language with least acoustic resources.

MT

A Neural Machine Translation (NMT) system was built for each translation di-
rection mainly using publicly available corpora from OPUS (Tiedemann 2012)
and excluding the Europarl corpus to avoid data overlapping. The training
data used in each language pair is shown in Table 2.23. This includes the list
of corpora and the total number of sentences.

The corpora were preprocessed by applying 40K BPE (Sennrich, Haddow, and
Birch 2016) operations, learnt jointly over the source and target data. The
models follow the Transformer NMT architecture (Vaswani et al. 2017) and
are trained using the Transformer BASE configuration using 4GPU machines
and an initial learning rate of 5e−4, decayed using the inverse square root
scheme. Once the training converges, a fine-tuning step was carried out using
the training data generated in Section 1.2. To do so, we fix the learning
rate to 5e−5, and we use a standard SGD optimizer instead of Adam. We
measure performance on the dev set and stop training once the perplexity
stops decreasing. Table 2.6 shows BLEU scores of the out-of-domain MT
systems compared with those obtained by fine-tuning with the Europarl-ST
training data shown between parenthesis. These MT systems are evaluated

43

Chapter 2. Europarl-ST Speech Translation corpus

Table 2.5: Training data used for the MT systems

Pair Corpora # sents(M)

De↔En DGT,eubookshop 21.0TildeMODEl, Wikipedia

De↔Es DGT, eubookshop, 14.3JRC-Acquis, TildeModel

De↔Fr eubookshop, JRC-Acquis, 14.3TildeModel

En↔Es commoncrawl, eubookshop, 21.1EU-TT2, UN, Wikipedia

En↔Fr commoncrawl, giga, 38.2undoc, news-commentary

Es↔Fr DGT, eubookshop, 37.2JRC-Acquis, UNPC

Table 2.6: BLEU scores of out-of-domain MT systems with reference transcriptions as
input and fine-tuning BLEU scores between parenthesis.

De En Es Fr
De – 32.6 (36.3) 26.8 (29.3) 23.2 (27.1)
En 33.6 (37.6) – 46.3 (48.2) 34.7 (39.2)
Es 20.9 (24.8) 39.2 (41.8) – 29.3 (33.1)
Fr 23.3 (26.3) 38.7 (42.3) 34.8 (36.3) –

on automatic outputs generated from reference transcriptions as a standalone
MT task.

The results vary depending on the amount of resources used for each system
as well as the intrinsic difficulty of each translation direction. As observed, the
fine-tuned systems trained on the Europarl-ST corpus provide very significant
improvements over the out-of-domain systems, ranging from +1.9 up to +4.0
BLEU, which confirms the quality and usefulness of the training data.

SLT

This section presents the results of the SLT experiments following the cascade
approach, in which we use the output of the ASR system as input for the
MT system. The output of the ASR system is segmented based on detected
silences. For this task, we will combine the ASR and MT models described in
Sections 1.3 and 1.3. We use the fine-tuned MT systems as they outperform

44

i
i

i
i

i
i

i
i

Table 2.7: BLEU scores of cascade-based SLT experiments with fine-tuned models assessed
on the test sets.

De En Es Fr
De – 21.3 17.5 15.7
En 22.4 – 28.0 23.4
Es 15.6 26.5 – 22.0
Fr 15.3 25.4 23.2 –

the out-of-domain systems in all cases. The results of the SLT experiments are
shown in Table 2.7.

Table 2.7 shows that BLEU scores in the SLT experiments are lower than
those in the MT experiments. This is to be expected, as the MT system has
to cope not only with error propagation from incorrect transcriptions, but also
with a sub-optimal segmentation of the input which might not correspond
with whole sentences. This could be improved with a specific segmentation
and punctuation module (Cho, Niehues, and Waibel 2017). As expected, al-
though the overall BLEU scores are lower, the ranking of the performance
across translation directions is preserved, with MT systems that obtained the
highest scores in the MT experiments, also obtaining the highest scores in the
SLT experiments, and vice versa. Although SLT results are constrained by
the complexity of this task, these results serve as a good starting baseline for
future developments.

1.4 Conclusions

We have presented a novel SLT corpus built from European Parliament pro-
ceedings. The experiments presented have shown how our proposed filtering
pipeline is able to extract good quality data that is useful both for evaluating
the performance of out-of-domain systems in this task, as well as for system
adaptation to the specific domain of parliamentary debates. We believe that
the release of this multi-source and multi-target corpus will enable further
research into multilingual SLT.

In terms of future work, the presented filtering pipeline can be extended to
cover additional languages in the future. Additionally, we will study new fil-
tering techniques to increase the amount of hours available per each language
pair.

45

Chapter 2. Europarl-ST Speech Translation corpus

Finally, we also plan on gauging the performance of end-to-end models for
this task, and compare it with cascade systems that use MT models adapted
to the translation of ASR output. This adaptation can be carried out by
training MT systems on real ASR output as source input (Peitz et al. 2012)
or on simulated ASR output by applying noising techniques to the source
side (Sperber, Niehues, and Waibel 2017).

References

Agua, Miguel A. del et al. (2014). “The Translectures-UPV Toolkit”. In: Iber-
Speech 2014 (cit. on pp. 39, 42).

Boito, Marcely Zanon et al. (2020). “MaSS: A Large and Clean Multilingual
Corpus of Sentence-aligned Spoken Utterances Extracted from the Bible”.
In: LREC 2020 (cit. on p. 38).

Braune, Fabienne and Alexander M. Fraser (2010). “Improved Unsupervised
Sentence Alignment for Symmetrical and Asymmetrical Parallel Corpora”.
In: COLING 2010 (cit. on p. 40).

Chen, Xi et al. (2016). “CUED-RNNLM — An open-source toolkit for efficient
training and evaluation of recurrent neural network language models”. In:
ICASSP 2016 (cit. on p. 42).

Cho, Eunah, Jan Niehues, and Alex Waibel (2017). “NMT-Based Segmentation
and Punctuation Insertion for Real-Time Spoken Language Translation”. In:
(cit. on pp. 38, 45).

Di Gangi, Mattia et al. (2019). “MuST-C: a Multilingual Speech Translation
Corpus”. In: NAACL-HLT 2019 (cit. on p. 38).

Dyer, Chris, Victor Chahuneau, and Noah A. Smith (2013). “A Simple, Fast,
and Effective Reparameterization of IBM Model 2”. In: NAACL-HLT 2013
(cit. on p. 40).

Jia, Ye et al. (2019). “Direct Speech-to-Speech Translation with a Sequence-to-
Sequence Model”. In: Interspeech 2019. doi: 10.21437/Interspeech.2019-
1951 (cit. on p. 38).

Koehn, Philipp et al. (2007). “Moses: Open Source Toolkit for Statistical Ma-
chine Translation”. In: ACL 2007 (cit. on p. 40).

Matusov, E. et al. (2018). “Neural Speech Translation at AppTek”. In: IWSLT
2018 (cit. on p. 38).

Matusov, Evgeny et al. (2005). “Evaluating machine translation output with
automatic sentence segmentation”. In: IWSLT 2005 (cit. on p. 42).

Niehues, Jan et al. (2018). “The IWSLT 2018 Evaluation Campaign”. In: IWSLT
2018 (cit. on p. 38).

46

https://doi.org/10.21437/Interspeech.2019-1951
https://doi.org/10.21437/Interspeech.2019-1951

i
i

i
i

i
i

i
i

References

Papineni, Kishore et al. (2002). “Bleu: a Method for Automatic Evaluation of
Machine Translation”. In: ACL 2002 (cit. on p. 41).

Peitz, Stephan et al. (2012). “Spoken language translation using automatically
transcribed text in training”. In: IWSLT 2012 (cit. on p. 46).

Post, Matt (2018). “A Call for Clarity in Reporting BLEU Scores”. In: WMT18
(cit. on p. 42).

Post, Matt et al. (2013). “Improved speech-to-text translation with the Fisher
and Callhome Spanish–English speech translation corpus”. In: IWSLT 2013
(cit. on p. 38).

Rouvier, Mickael et al. (2013). “An open-source state-of-the-art toolbox for
broadcast news diarization”. In: INTERSPEECH 2013 (cit. on p. 39).

Salesky, Elizabeth, Matthias Sperber, and Alan W Black (2019). “Exploring
Phoneme-Level Speech Representations for End-to-End Speech Translation”.
In: ACL 2019 (cit. on p. 38).

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016). “Neural Machine
Translation of Rare Words with Subword Units”. In: ACL 2016 (cit. on
p. 43).

Sperber, Matthias, Graham Neubig, et al. (2019). “Attention-Passing Models
for Robust and Data-Efficient End-to-End Speech Translation”. In: Transac-
tions of the Association for Computational Linguistics 7, pp. 313–325. doi:
10.1162/tacl_a_00270 (cit. on p. 38).

Sperber, Matthias, Jan Niehues, and Alex Waibel (2017). “Toward robust neu-
ral machine translation for noisy input sequences”. In: IWSLT 2017 (cit. on
pp. 38, 46).

Stolcke, A. (Sept. 2002). “SRILM – an extensible language modeling toolkit”.
In: ICSLP. Denver, CO, USA, pp. 901–904 (cit. on p. 42).

TensorFlow (2018). https://www.tensorflow.org/ (cit. on p. 42).
The RNNLM Toolkit (2012). http://www.fit.vutbr.cz/~imikolov/rnnlm/
(cit. on p. 42).

Tiedemann, Jörg (2012). “Parallel Data, Tools and Interfaces in OPUS”. In:
LREC 2012 (cit. on p. 43).

Van Aggelen, Astrid et al. (2017). “The debates of the European Parliament
as linked open data”. In: Semantic Web 8.2, pp. 271–281 (cit. on p. 38).

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Proc. of NIPS.
Ed. by Isabelle Guyon et al., pp. 5998–6008 (cit. on p. 43).

Weiss, Ron J. et al. (2017). “Sequence-to-Sequence Models Can Directly Trans-
late Foreign Speech”. In: Interspeech 2017 (cit. on p. 38).

47

https://doi.org/10.1162/tacl_a_00270
https://www.tensorflow.org/
http://www.fit.vutbr.cz/~imikolov/rnnlm/

i
i

i
i

i
i

i
i

2 Direct Segmentation Models for Streaming Speech
Translation

Javier Iranzo-Sánchez, Adrià Giménez,
Joan Albert Silvestre-Cerdà, Pau Baquero-Arnal,
Jorge Civera, Alfons Juan

Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 2599-2611

Online

10.18653/v1/2020.emnlp-main.206

16-18 November 2020

i
i

i
i

i
i

i
i

Direct Segmentation Models for Streaming Speech
Translation

Javier Iranzo-Sánchez, Adrià Giménez,
Joan Albert Silvestre-Cerdà, Pau Baquero-Arnal,

Jorge Civera, Alfons Juan

Abstract

The cascade approach to Speech Translation (ST) is based on a
pipeline that concatenates an Automatic Speech Recognition (ASR)
system followed by a Machine Translation (MT) system. These sys-
tems are usually connected by a segmenter that splits the ASR out-
put into, hopefully, semantically self-contained chunks to be fed into
the MT system. This is specially challenging in the case of stream-
ing ST, where latency requirements must also be taken into account.
This work proposes novel segmentation models for streaming ST
that incorporate not only textual, but also acoustic information to
decide when the ASR output is split into a chunk. An extensive
and thorough experimental setup is carried out on the Europarl-ST
dataset to prove the contribution of acoustic information to the per-
formance of the segmentation model in terms of BLEU score in a
streaming ST scenario. Finally, comparative results with previous
work also show the superiority of the segmentation models proposed
in this work.

2.1 Introduction

ST is a field that is very closely aligned with ASR and MT, as it is their
natural evolution to combine the advances in both areas. Thus, the goal is
to obtain the translation of an utterance that has been spoken in a different
language, without necessarily requiring the intermediate transcription. At the
same time, it is desirable to have high quality translations without compro-
mising the speed of the system. Although research into ST started in the
nineties (Waibel et al. 1991), the field did not really take off until signifi-
cant breakthroughs were achieved in ASR (Chan et al. 2016; Irie et al. 2019;

51

Chapter 2. Direct Segmentation Models

Park et al. 2019; Jorge, Giménez, Iranzo-Sánchez, Silvestre-Cerdà, et al. 2020)
and MT (Bahdanau, K. Cho, and Bengio 2015; Sennrich, Haddow, and Birch
2016b; Sennrich, Haddow, and Birch 2016a; Vaswani et al. 2017), mainly due
to the introduction of deep neural networks (NN). Thanks to this, the field has
recently attracted significant amounts of attention from both the research and
industry communities, as the field is now mature enough that it has tangible
and well-performing applications (Ma et al. 2019; Jia et al. 2019).

Currently, there are two main approaches to ST: cascade and end-to-end mod-
els. The goal of the end-to-end approach is to train a single system that is
able to carry out the the entire translation process (Weiss et al. 2017; Berard
et al. 2018; Gangi et al. 2019). This has only recently been possible thanks to
advances in neural modeling. Due to a lack of ST data, different techniques
such as pre-training and data augmentation (Bahar, Bieschke, and Ney 2019;
Pino et al. 2019) have been used in order to alleviate this lack of data. It is
important to remark that the currently proposed end-to-end models work in
an offline manner and must process the entire input sequence. Therefore they
cannot be used for a streaming scenario.

In the cascade approach, an ASR system transcribes the input speech signal,
and this is fed to a downstream MT system that carries out the translation.
The provided input to the MT step can be the 1-best hypothesis, but also
n-best lists (Ng et al. 2016) or even lattices (Matusov and Ney 2011; Sper-
ber, Neubig, et al. 2019). Additional techniques can also be used to improve
the performance of the pipeline by better adapting the MT system to the
expected input, such as training with transcribed text (Peitz et al. 2012) or
chunking (Sperber, Jan Niehues, and Waibel 2017). The cascade approach can
be used to take advantage of independent developments in ASR and MT, and
it is significantly easier to train due to greater data availability. Thus, it is
very relevant to study improvements for the ST cascade pipeline.

This work focuses on the effects of segmentation in streaming ST, as cascade
systems still outperform end-to-end systems in standard setups (J. Niehues
et al. 2019; Pino et al. 2019). Following a cascade approach, a streaming ST
setup can be achieved with individual streaming ASR and MT components.
Advances in neural streaming ASR (Zeyer, Schlüter, and Ney 2016; Jorge,
Giménez, Iranzo-Sánchez, Civera, et al. 2019; Jorge, Giménez, Iranzo-Sánchez,
Silvestre-Cerdà, et al. 2020) allow the training of streaming models whose
performance is very similar to offline ones. Recent advances in simultaneous
MT show promise (Arivazhagan et al. 2019; Ma et al. 2019; Zheng et al. 2019),
but current models have additional modelling and training complexity, and are
not ready for translation of long streams of input text. For the scenario to be

52

i
i

i
i

i
i

i
i

considered (translation of parliamentary speeches, with an average duration of
100s), it is required for the ST systems to have a minimum throughput, but
simultaneous translation is not required, so the translation of chunks2 is still
acceptable. In this case we prioritize quality over simultaneous translation,
with a streaming ASR system followed by a standard offline MT system. This
way, the resulting ST cascade system can provide transcribed words in real-
time, that are eventually split into chunks to be translated by the offline MT
system.

Following this approach, it is necessary to incorporate a segmentation com-
ponent in the middle in order to split the output of the ASR system into
(hopefully semantically self-contained) chunks that can be successfully pro-
cessed by the MT model, while maintaining a balance between latency and
quality. In (E. Cho, Jan Niehues, and Waibel 2012; E. Cho, Jan Niehues, Kil-
gour, et al. 2015; E. Cho, Jan Niehues, and Waibel 2017), the authors approach
this problem by training a monolingual MT system that predicts punctuation
marks, and then the ASR output is segmented into chunks based on this punc-
tuation. Another approach is to segment the ASR output by using a language
model (LM) that estimates the probability of a new chunk to start (Stolcke and
Shriberg 1996; Wang, Finch, et al. 2016; Wang, Utiyama, and Sumita 2019).
Binary classifiers with POS and reordering features have also been proposed to
maximise MT quality (Oda et al. 2014; Siahbani et al. 2018). It is also possible
to segment the ASR output using handcrafted heuristics such as those based
on a fixed number of words per chunk (Cettolo and Federico 2006) or acous-
tic information (Fügen, Waibel, and Kolss 2007). These heuristic approaches
present the disadvantage of being very domain and speaker specific. Alterna-
tively, segmentation can also take advantage of information extracted from the
MT decoding process itself, such as coverage (Kolss, Vogel, and Waibel 2008).

This work introduces a statistical framework for the problem of segmentation
in ST, which incorporates both textual and acoustic information. Jointly with
this, we propose a set of novel models that follow this framework, and a series
of extensive experiments are carried out, which show how these new models
outperform previously proposed segmentation models. In addition, we study
the effect of the preprocessing scheme applied to the input of the MT system,
the performance degradation explained by transcription and/or segmentation
errors, and the latency due to the components of the ST system.

This paper is organized as follows. The next section describes the statistical
framework of the segmenter in the streaming ST scenario. Section 2.3 fol-

2A chunk must be understood as a sequence of words.

53

Chapter 2. Direct Segmentation Models

lows, detailing how our proposed models are instantiated in this framework.
Then, Section 2.4 describes the Europarl-ST dataset that is used in the ex-
periments and the three main components of our streaming ST system based
on a cascade approach: ASR and MT systems, and the segmentation models.
Next, Section 2.5 reports a detailed evaluation in terms of BLEU score on the
Europarl-ST dataset and comparative results with previous work, and latency
figures. Finally, Section 4 draws the main conclusions of this work and devises
future research lines.

2.2 Statistical framework

We define the streaming ST segmentation as a problem in which a continuous
sequence of words provided as the output of an ASR system is segmented into
chunks. These chunks will then be translated by a downstream MT system.
The goal of the segmentation is to maximize the resulting translation accuracy
while keeping latency under the response-time requirements of our streaming
scenario.

Formally, the segmentation problem is the task of dividing a sequence of input
words xJ1 into non-overlapping chunks. We will represent this with a sequence
of split/non-split decisions, yJ1 , with yj = 1 if the associated word xj is the
word that ends a chunk; and yj = 0, otherwise. Optionally, additional input
features can be used. In this work, we use word-based acoustic features (aJ1)
aligned with the sequence of words output by the ASR system.

Ideally, we would choose the segmentation ŷJ1 such that,

ŷJ1 = argmax
yJ1

p(yJ1 | xJ1 , aJ1)

= argmax
yJ1

J∏
j=1

p(yj | yj−11 , xJ1 , a
J
1). (2.1)

However, in a streaming setup, we need to bound the sequence to w words into
the future (hereafter, future window) to meet latency requirements

ŷJ1=argmax
yJ1

J∏
j=1

p(yj | yj−11 , xj+w1 , aj+w1). (2.2)

54

i
i

i
i

i
i

i
i

Indeed, for computational reasons, the sequence is also bounded to h words
into the past (hereafter, history size)

ŷJ1=argmax
yJ1

J∏
j=1

p(yj | yj−1j−h, x
j+w
j−h , a

j+w
j−h). (2.3)

Previous works in the literature can be stated as a particular case of the sta-
tistical framework defined above under certain assumptions.

LM based segmentation (Stolcke and Shriberg 1996; Wang, Finch, et al. 2016;
Wang, Utiyama, and Sumita 2019). In this approach, an n-gram LM is used
to compute the probability

P (yj) = p(xj−1j−n+1, y
j−1
j−n+1, xj, yj, x

j+n−1
j+1) (2.4)

where yj is zero or one depending on the non-split or split decision to be taken,
respectively. Split and non-split probabilities are combined into a function to
decide whether a new chunk is defined after xj

ŷj = argmax
yj

f(P (yj)). (2.5)

Monolingual MT segmentation (E. Cho, Jan Niehues, and Waibel 2012; E.
Cho, Jan Niehues, Kilgour, et al. 2015; E. Cho, Jan Niehues, and Waibel 2017).
Following this setup, a monolingual MT model translates from the original,
(unpunctuated) words xJ1 into a new sequence zJ1 that contains segmentation
information (via puntuaction marks). Each zj can be understood as a pair
(xj, yj), so the segmentation can be defined as an MT problem

ẑJ1 = argmax
zJ1

p(zJ1 | xJ1), (2.6)

that basically reverts to

ŷJ1 = argmax
yJ1

p(yJ1 | xJ1) (2.7)

since xJ1 is given.

55

Chapter 2. Direct Segmentation Models

In contrast with previous approaches, which treats segmentation as a by-
product of a more general task, we propose a model that directly represents
the probability of the split/non-split decision.

2.3 Direct Segmentation Model

Now that we have introduced the theoretical framework, we are going to de-
scribe our proposed segmentation model. This approach has the advantage of
allowing a future dependency and consider not only textual, but also acoustic
features. This provides the model with additional evidence for taking a better
split/non-split decision.

First, the Text model computes text state vectors sj+wj that consider each
word in xj+wj−h using an embedding function e() and one or more recurrent
layers, represented by the function f1(). In order to incorporate information
about previous decisions yj−1j−h, we create a new sequence x̃j+wj−h by inserting an
end-of-chunk token into the text input sequence every time a split decision has
been taken. This sequence is bounded in length by h.

x̃j+wj−h = fc(x
j+w
j−h , y

j−1
j−h). (2.8)

Then, the state vectors are defined as follows

sj+wj = f1(e(x̃
j+w
j−h))). (2.9)

Next, the split probability is computed by concatenating the state vectors of
the current word and those in the future window, and passing them through a
series of feedforward layers f2()

p(yj | yj−1j−h, x
j+w
j−h) = f2([s

j+w
j]). (2.10)

If we include acoustic information, acoustic state vectors are computed using
function f3()

cj+wj = f3(a
j+w
j−h) (2.11)

and are concatenated with the text state vectors in order to compute the
split/non-split probability

56

i
i

i
i

i
i

i
i

p(yj|yj−1j−h, x
j+w
j−h , a

j+w
j−h)=f2([s

j+w
j ; cj+wj]). (2.12)

In the case of audio information, we assess two variants, depending whether
the acoustic sequence is passed through a RNN (Audio w/ RNN) or not (Audio
w/o RNN). These word-based acoustic feature vectors are obtained as follows.
The Audio w/o RNN (also referred to as copy) option extracts three acoustic
features associated to each word: duration of the current word, duration of
the previous silence (if any), and duration of the next silence (if any). These
three features were selected due to their effectiveness to improve system per-
formance, as well as being word-based features which therefore can be directly
integrated into the proposed model. At training time, these features are ob-
tained by carrying out a forced alignment between the audio and the reference
transcription, while at testing time are directly provided by the ASR system.

The Audio w/ RNN option adds an independent RNN as f3, to process the
sequence aj+wj−h of three-dimensional acoustic feature vectors just described, and
the acoustic state vectors are concatenated at word level with the text state
vectors. Whenever acoustic features are used, first the Text model is pre-
trained and frozen, and then the feedforward network is updated with the
acoustic data.

f3(a
j+w
j−h)=

{
RNN(aj+wj−h) Audio w/ RNN
aj+wj Audio w/o RNN

(2.13)

Figure 2.3 provides an overview of the proposed model architecture behind
the streaming ST segmenter. The part of the model inside the dashed-line
boundary represents the Text model (see Eqs. 2.8 and 2.9), while the complete
model that additionally considers acoustic information is represented outside
the boundary for the Audio w/ RNN and Audio w/o RNN cases (see Eqs. 2.11
and 2.13). State vectors are concatenated right before the feed-forward network
(FFN). In this way, Eq. 2.10 computes the split probability for the Text-only
model, while Eq. 2.12 does the same for the Audio models.

57

Chapter 2. Direct Segmentation Models

x̃j−h

. . .

x̃j

. . .

x̃j+w

.

RNN

||

FFN

p(yj | yj−11 , xj+wj−h , a
j+w
j−h)

RNN / copy

aj−h

. . .

aj

. . .

aj+w

. . .

Figure 2.1: Overview of the model architecture for the streaming ST segmenter. The
dashed-line boundary separates the Text model including word embeddings, RNN and state
vectors, from the two possible Audio models, RNN and copy, outside the boundary.

58

i
i

i
i

i
i

i
i

Table 2.8: Basic statistics of the Europarl-ST corpus for the training, development and
test partitions for the six language pairs involved in the evaluation.

Training Development
ST Videos Kwords Videos Kwords

Direction Source Target Source Target
En-De 2937 753 730 134 29 28
En-Es 2926 738 800 131 29 31
En-Fr 2918 738 901 132 29 34
De-En 1082 245 289 218 50 58
Es-En 727 203 200 202 53 53
Fr-En 1053 328 395 148 39 36

Test
ST Videos Kwords

Direction Source Target
En-De 126 28 27
En-Es 127 28 31
En-Fr 124 72 33
De-En 226 52 59
Es-En 206 50 50
Fr-En 166 48 45

2.4 Experimental setup

To study the effects of our streaming ST segmenter in terms of BLEU score (Pa-
pineni et al. 2002), state-of-the-art ASR and MT systems were trained to
perform ST from German (De), Spanish (Es) and French (Fr) into English
(En), and vice versa. ASR and MT systems were treated as black boxes in
order to focus our efforts on evaluating the proposed streaming ST segmenta-
tion models on the recently released and publicly available Europarl-ST cor-
pus (Iranzo-Sánchez et al. 2020). Basic statistics of the six language pairs of
the Europarl-ST corpus involved in the evaluation are shown in Table 2.19.

59

Chapter 2. Direct Segmentation Models

ASR systems

In our cascade ST setting, input speech signal is segmented into speech/non-
speech regions using a Gaussian Mixture Model - Hidden Markov Model based
voice activity detection (VAD) system (Silvestre-Cerdà et al. 2012), which will
be referred to as the baseline segmentation system. Detected speech chunks
are delivered to our general-purpose hybrid ASR systems for German (De),
English (En), Spanish (Es) and French (Fr).

On the one hand, acoustic models (AM) were generated using the TLK toolkit
(Agua et al. 2014) to train Feed-Forward deep neural Network - Hidden Markov
Models (FFN-HMM). These models were used to bootstrap bidirectional long-
short term memory (BLSTM) NN models (Zeyer, Doetsch, et al. 2017), trained
using Tensorflow (Abadi et al. 2015), except for the French ASR system which
only features FFNs. These AMs were trained with 0.9K (De), 5.6K (En), 3.9K
(Es), and 0.7K (Fr) hours of speech data from multiple sources and domains.

On the other hand, language models (LM) consist of a linear interpolation
of several n-gram LMs trained with SRILM (Stolcke 2002), combined with a
recurrent NN (RNN) LM trained using the RNNLM toolkit (Mikolov 2011)
(De, Fr), or an LSTM LM trained with the CUED-RNNLM toolkit (Chen et
al. 2016) (Es, En). The vocabulary of LMs was restricted to 200K words. As
training monolingual text data, we disposed of 0.8G (De), 300G (En), 0.7G
(Es) and 1.8G (Fr) tokens.

Regarding ASR performance, these systems show 19.8 (De), 17.2 (En), 10.9
(Es) and 24.3 (Fr) Word Error Rate% (WER%) figures in their corresponding
test sets of the Europarl-ST corpus.

MT systems

Neural MT systems were trained for each of the translation directions to be
studied using the fairseq toolkit (Ott et al. 2019). The initial models are
general out-of-domain systems trained with millions (M) of sentences: 21.0M
for De↔En, 21.1M for En↔Es and 38.2M for En↔Fr. These models followed
the sentence-level Transformer (Vaswani et al. 2017) BASE configuration, and
were finetuned using the Europarl-ST training data.

Two MT systems were trained for each translation direction depending on the
preprocessing scheme applied to the source sentences in the training set. The
first scheme uses a conventional MT preprocessing (tokenization, truecasing,
etc.), while the second scheme applies a special ST preprocessing to the source

60

i
i

i
i

i
i

i
i

Table 2.9: BLEU scores of the cascade ST on the Europarl-ST test sets depending on the
preprocessing scheme.

Source prep. scheme En-De En-Es En-Fr Es-En Fr-En De-En
Conventional MT 22.4 28.0 23.4 26.5 25.4 21.3
Special ST 26.5 35.5 29.3 33.8 29.9 25.8

side of the training set, by lowercasing, transliterating and removing punctu-
ation marks from all sentences (Matusov, Wilken, et al. 2018). This latter
preprocessing scheme guarantees that the same conditions for the MT input
are found at training and inference time. Since conventional MT preprocess-
ing was applied to the target side, our hope is that the model is also able to
learn to recover casing and punctuation information from the source to the
target side. Both preprocessing schemes were evaluated by translating ASR
hypotheses provided in chunks given by the baseline VAD segmenter. Results
are shown in Table 2.9. As the segmentation is different from that of the ref-
erence, the evaluation is carried out by re-segmenting the translations so that
they match the segmentation of the reference (Matusov, Leusch, et al. 2005).

As shown in Table 2.9, BLEU score improvements of the ST scheme over
the MT scheme range from 4.1 (En-De) to 7.5 (En-Es), due to the fact that
the ST source processing scheme fixes the mismatch between training and
inference time. At the same time, MT systems are able to recover punctuation
information that was not available in the ASR output. Thus, the special ST
preprocessing scheme was applied in the rest of experiments.

Segmentation models

Depending on the segmentation model, text and optionally audio belonging to
Europarl-ST were used as training data. As a preprocessing step, an end-of-
chunk token was inserted in the text training data after each punctuation mark,
such as full point, question/exclamation marks, etc., delimiting a chunk. In
addition, the ST preprocessing scheme was applied to the annotated reference
transcriptions in order to obtain training data that mimics ASR output. In the
case of Audio models, as mentioned before, audio and reference transcriptions
were forced-aligned using the AMs described in Section 2.4 in order to compute
word and silence durations as acoustic features.

Due to the class imbalance present in the segmentation problem, (95% of sam-
ples belong to the non-split class), training batches were prepared by weighted
random sampling so that on average, one third of the samples belongs to the

61

Chapter 2. Direct Segmentation Models

split class. Otherwise, the model degenerates to always classifying into the
non-split class.

The Text model consists of 256-unit word-embedding layer, followed by a for-
ward GRU-based RNN of 256 units. Second, for the Audio w/ RNN model,
acoustic features are processed by a forward GRU-based RNN of 8 units. State
vectors from Text, and optionally Audio w/ RNN, are fed into a two-layer FFN
of 128 units and RELU activation. A dropout of 0.3 is applied after the RNN
and FFN layers. Architecture decisions were taken on the basis of the BLEU
results obtained on the dev set.

Given the sequential nature of the split/non-split decision process as a stream-
ing ASR output is processed, greedy and beam search decoding algorithms were
implemented and compared, but negligible differences were observed between
them.

2.5 Evaluation

In order to perform an evaluation that simulates real conditions, the ASR hy-
pothesis of an entire speech (intervention made by a MEP, with an average
duration of 100 seconds) is fed to the segmentation model whose generated
chunks are translated by the MT system. The chunks are translated indepen-
dently from each other. The quality of the MT output, in terms of BLEU score,
provides a clear indication of the performance of the streaming ST segmenter
and allows us to compare different segmenters.

Figure 2.2 shows BLEU scores as a function of the length of the future window
for the English-German (En-De) and Spanish-English (Es-En) dev sets. On
the left-hand side, the three segmenters (Text, Audio w/ RNN and Audio
w/o RNN) are compared averaging their BLEU scores over history sizes 5, 10
and 15 for the sake of clarity. On the right-hand side, the effect of history
sizes is analysed for the Audio w/o RNN segmenter. In both cases, reference
transcriptions were used as input to the segmenter.

As observed, the length of the future window is a very significant parameter to
decide whether to split or not, which validates our decision to use a model that
considers not only past history, but also a future window. In the case of En-De,
adding a future window significantly improves the results, up to 5.8 and 3.5
BLEU points on average, in the Text and Audio models, respectively. Similarly
for Es-En, but at a lower magnitude, a gain of up to 3.7 and 3.4 BLEU points
on average in the Text and Audio models, respectively, is obtained at larger
future windows.

62

i
i

i
i

i
i

i
i

When comparing the segmenters (Figure 2.2 on the left), the Text segmenter
provides a performance that is clearly lower than the Audio-based segmenters
for the English-German pair, and similar or lower for the Spanish-English
pair. Audio-based segmenters offers nearly the same BLEU scores for English-
German and Spanish-English. However, the Audio w/o RNN being a simpler
model reaches slightly better BLEU scores using future window of length 4.
This window length presents an appropriate trade-off between system latency
and accuracy in our streaming scenario. Focusing on the Audio w/o RNN
segmenter (Figure 2.2 on the right), longer history sizes such as 10 and 15
clearly provide better BLEU scores than the shorter history size (h = 5).
A history size of 10 reaches the best BLEU scores for English-German, and
similar performance is achieved between 10 and 15 in Spanish-English for future
window of length 4. Based on these results, a history size of 10 and a future
window of length 4 were selected for the rest of the experiments.

Table 2.10 presents BLEU scores of conventional cascade ST systems, in which
the ASR output is segmented using the three proposed models and passed
down to the MT system, from English into German, Spanish and French, and
vice versa. As an upper-bound reference, results on an oracle segmenter are
provided, which we have approximated by splitting the text into chunks using
punctuation marks. The oracle segmenter shows which are the best BLEU
scores that can be achieved with our current ASR and MT systems.

Table 2.10: BLEU scores on the test sets provided by the conventional cascade ST system
with ASR output.

Segmenter En-De En-Es En-Fr Es-En Fr-En De-En
Baseline (VAD) 26.5 35.5 29.3 33.8 29.9 25.8
Text 27.6 37.0 29.4 34.7 31.6 28.1
Audio w/o RNN 28.4 37.2 30.0 34.4 32.1 28.3
Audio w/ RNN 28.4 37.3 30.1 33.9 32.1 28.2
Oracle 31.6 41.3 33.6 38.1 35.3 31.3

BLEU scores show how, except for Spanish-English, the models with acoustic
features are able to outperform those that are only text-based. The largest im-
provement is in the English-German case, with a 0.8 BLEU-point improvement
of Audio models over the Text model. When comparing the Audio models,
there does not seem to be an improvement of using RNN to process the acous-
tic features with respect to directly feeding the acoustic features to the FFN.
In the case of the Spanish-English system, as segmentation hyperparameters
were optimised and shared across language directions, the segments generated
from the Spanish-English Audio models turned out to be around 60% longer

63

Chapter 2. Direct Segmentation Models

28

29

30

31

32

33

...

37

38

39

40

41

 0 1 2 3 4 5 6 7 8

BLEU

Window length

Avg. over history

En-De

Es-En

Text
Audio w/ RNN

Audio w/o RNN

30

31

32

33

...

38

39

40

41

 0 1 2 3 4 5 6 7 8

BLEU

Window length

Audio w/o RNN

En-De

Es-En

h=5
h=10
h=15

Figure 2.2: BLEU scores in the English-German (En-De) and Spanish-English (Es-En)
dev sets as a function of future window length, averaged over history sizes for the three
segmenters on the left-hand side, and on history sizes 5, 10 and 15 for the Audio w/o RNN
segmenter on the right-hand side.

than those of other systems. This fact leads to a slight degradation of the per-
formance of the Spanish-English sentence-based MT system for Audio models
compared to the Text model.

Table 2.11 shows BLEU scores when the ASR output is replaced by the refer-
ence transcription, so that errors are only due to the segmenter and the MT
systems. These results follow the trend of those in Table 2.10, with improve-
ments of Audio over Text models, and no significant differences between both
Audio models. Unlike in Table 2.10 when ASR output was considered, the
Spanish-English Audio w/o RNN system does improve the results of the Text
model when reference transcriptions are provided. Interestingly enough, in
this case the oracle segmentation allows us to observe the performance degra-
dation specifically due to the segmentation model without the interference of

64

i
i

i
i

i
i

i
i

Table 2.11: BLEU scores on the test sets provided by a cascade ST system with reference
transcriptions.

Segmenter En-De En-Es En-Fr Es-En Fr-En De-En
Text 33.3 43.3 35.6 37.8 38.1 30.0
Audio w/o RNN 34.2 44.2 36.2 38.2 38.8 30.3
Audio w/ RNN 34.1 44.1 36.2 37.4 38.7 30.3
Oracle 37.2 47.4 38.9 41.3 41.5 35.6

the noisy ASR output, that is, between 2.7 and 5.3 BLEU points. Those oracle
results show the best-case scenario that can be achieved with the current MT
systems, using the reference transcriptions and the reference segmentation. As
the addition of the RNN to process the acoustic features does not improve
the performance, the simpler Audio w/o RNN will be used in the remaining
experiments.

Comparison with previous work

In this section, we compare our results with previous work in the literature de-
scribed in Section 2.2: the n-gram LM based segmenter included in the SRILM
toolkit (Stolcke 2002), and the monolingual MT segmentation (E. Cho, Jan
Niehues, and Waibel 2017) whose implementation is also publicly available3.

Table 2.12 shows BLEU scores of a cascade ST system for the English-German
Europarl-ST test set, comparing the two segmenters mentioned above, the
Audio w/o RNN model proposed in this work, and the oracle segmenter that
provides the reference segmentation. Except for the oracle, these segmenters
were trained using only the Europarl-ST (EP-ST) training set, or the Europarl-
ST training set plus additional training data from the IWSLT 2012 evaluation
campaign (Cettolo, Girardi, and Federico 2012) , in order to study the perfor-
mance of the segmenter when additional, out-of-domain text data is available.
Results translating both, ASR hypotheses as well as reference transcriptions,
are provided.

The results show the same trend across inputs to the MT system, ASR outputs,
and reference transcriptions; but differences in BLEU over segmenters are more
noticeable when segmenting the references. The LM based segmenter provides
the lowest BLEU scores and is not able to take advantage of additional IWSLT
training data. The monolingual MT model is at a middle ground between the

3https://github.com/jniehues-kit/SLT.KIT

65

Chapter 2. Direct Segmentation Models

Table 2.12: Comparison with previous work in terms of BLEU score on the English-German
test set of the Europarl-ST corpus.

Segmenter Train data ASR References

LM based EP-ST 27.0 32.9
+ IWSLT 26.5 31.7

Mono MT EP-ST 28.0 33.8
+ IWSLT 28.1 34.1

This work EP-ST 28.4 34.2
+ IWSLT 28.5 35.0

Oracle – 31.6 37.2

LM based segmenter and our segmenter, but it is able to take advantage of
the additional IWSLT training data. However, our segmenter outperforms all
other segmenters in both training data settings. More precisely, when incorpo-
rating IWSLT training data, our segmenter outperforms by 0.4 BLEU (ASR
output) and 0.9 BLEU (reference transcriptions) the best results of previous
work obtained using the monolingual MT model, mainly thanks to the ability
to use acoustic information. Additionally, our proposed model shrinks the gap
with respect to the oracle segmentation to 3.1 BLEU points working with ASR
output, and 2.2 BLEU points when reference transcriptions are provided.

Latency evaluation

We will now measure the latency of our cascade ST system in a streaming sce-
nario. Following (Li et al. 2020), we define accumulative chunk-level latencies
at three points in the system, as the time elapsed between the last word of
a chunk being spoken, and: 1) The moment the consolidated hypothesis for
that chunk is provided by the ASR system; 2) The moment the segmenter de-
fines that chunk on the ASR consolidated hypothesis; 3) The moment the MT
system translates the chunk defined by the segmenter. These three latency
figures, in terms of mean and standard deviation, are shown in Table 2.25.
It should be noticed that this ST system is working with ASR consolidated
hypotheses in the sense that these hypotheses will not change as the audio
stream is further processed.

The difference of 1.1 seconds between the ASR and the segmenter is mostly due
to the need to wait for the words in the future window to be consolidated, as
the time taken by the segmenter to decide whether to split or not is negligible
(' 0.01s). Lastly, the MT system has a delay of 0.5 seconds. The total latency

66

i
i

i
i

i
i

i
i

Table 2.13: Accumulative chunk-level latencies in seconds (mean ± std. dev.) for the ASR,
Segmenter and MT components of the Es-En ST cascade model.

Latency (seconds)
ASR 4.1 ± 1.6
+ Seg. 5.2 ± 2.2
+ MT 5.7 ± 2.2

is dominated by the ASR system, since the long-range dependencies of the
RNN-based LM delay the consolidation of the hypothesis, which is needed by
the segmenter and the MT system in order to output the definitive translation.

In practice, however, the ST system could work with non-consolidated hy-
potheses, since these hypotheses very rarely change with respect to those con-
solidated. In this case, the latency of the ASR system is significantly reduced
to 0.8 ± 0.2 seconds, while the latency experienced by the user for the whole
ST system is 1.3 ± 0.4 seconds, as the segmenter does not wait for the words
in the future window to be consolidated.

2.6 Conclusions

This work introduces a statistical framework for the problem of ASR output
segmentation in streaming ST, as well as three possible models to instantiate
this framework. In contrast to previous works, these models not only consider
text, but also acoustic information. The experimental results reported pro-
vide two key insights. Firstly, we have confirmed how the preprocessing of the
MT training data has a significant effect for ST, and how a special prepro-
cessing that is closer to the inference conditions is able to obtain significant
improvements. Secondly, we have shown the importance of including acous-
tic information in the segmentation process, as the inclusion of these features
improves system performance. The proposed model improves the results of
previous works on the Europarl-ST test set when evaluated with two training
data setups.

In terms of future work, there are many ways of improving the direct segmen-
tation model that has been presented here. We plan to look into additional
acoustic features as well as possible ways to incorporate ASR information into
the segmentation process. In addition, the segmentation model itself could also
benefit from the incorporation of additional text data as well as pre-training
procedures. We also devise two supplementary research lines, the integration
of the segmentation into the translation process, so the system learns how to

67

Chapter 2. Direct Segmentation Models

segment and translate at the same time, and moving from an offline MT system
to a streaming MT system to improve response time, but without performance
degradation.

Acknowledgements

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation program under grant agreement
no. 761758 (X5Gon); the Spanish Government’s research project Multisub,
ref. RTI2018-094879-B-I00 (MCIU/AEI/FEDER,EU) and FPU scholarship
FPU18/04135; the Generalitat Valenciana’s research project Classroom Ac-
tivity Recognition, ref. PROMETEO/2019/111., and predoctoral research
scholarship ACIF/2017/055. The authors also wish to thank the anonymous
reviewers for their criticisms and suggestions.

2.7 Reproducibility

The source code of the Direct Segmentation Model, as well as the ASR hy-
pothesis and acoustic features used in the experiments are attached as supple-
mentary materials. Combined with the instructions provided for training the
MT systems, this allows for faithful reproduction of our experiments.

2.8 ASR Systems

The acoustic models were trained using the datasets listed on Table 2.14, and
the architecture of the models is summarized in Table 2.15.

The language models were trained using the datasets listed on Table 2.16. The
number of English words includes 294G words from Google Books counts. As
for the models themselves, they are an interpolation between 4-gram LM and
a RNNLM. For German and French, the RNN is trained with the RNNLM
toolkit and has a hidden layer of 400 units. For Spanish and English, the RNN
is a LSTM trained with the CUED toolkit, with an embbeding layer of 256
units and a hidden layer of 2048 units. The vocabulary was limited to the most
common 200K words.

68

i
i

i
i

i
i

i
i

Table 2.14: Statistics of the speech resources used for acoustic model training.

English Spanish
Corpus Hours Corpus Hours
Crawled Data 3313 Crawled Data 3466
LibriSpeech 960 PM 261
TED-LIUM v3 454 EPPS 157
CommonVoice 243 Voxforge 21
SWC 154
VL.NET 110
Voxforge 109
AMI 96
EPPS 79
ELFA 48
VCTK 44

German French
Corpus Hours Corpus Hours
Crawled Data 716 Crawled Data 592
GSC-TUDa 158 TEDx 39
Audiobooksfr 28
Voxforge 21

69

Chapter 2. Direct Segmentation Models

Table 2.15: Details of the acoustic models architecture.

English Spanish
MFCC 80 85
Input size 80 85
Standard Model (1-pass) 8x1024(BLSTM) 8x1024(BLSTM)
Output states (1-pass) 16132 10041
fCMLLR model (2-pass) – –
Output states (2-pass) – –

German French
MFCC 48 48
Input size 48x11 48x11
Standard Model (1-pass) 6x2048(DNN) 6x2048(DNN)
Output states (1-pass) 18867 6282
fCMLLR model (2-pass) 5x1024(BLSTM) 6x2048(DNN)
Output states (2-pass) 18867 6651

2.9 MT Systems

The models were trained using the datasets listed on Table 2.17.

The following fairseq command was used to train the systems:

fairseq-train $CORPUS_FOLDER \
-s $SOURCE_LANG_SUFFIX \
-t $TARGET_LANG_SUFFIX \
--arch transformer \
--share-all-embeddings \
--optimizer adam \
--adam-betas ’(0.9, 0.98)’ \
--clip-norm 0.0 \
--lr-scheduler inverse_sqrt \
--warmup-init-lr 1e-07 \
--warmup-updates 4000 \
--lr 0.0005 \
--min-lr 1e-09 \
--dropout 0.3 \
--weight-decay 0.0 \
--criterion \

70

i
i

i
i

i
i

i
i

Table 2.16: Statistics of text resources used for language modelling.

English French
Corpus MWords Corpus MWords
News-Discuss 3650 OpenSubtitles 1146
Wikipedia 2266 Ufal 910
News Crawl 1120 Wikipedia 586
LibriSpeech 804 United Nations 343
GIGA 617 News Crawl 298
United Nations 334 Crawled data 116
HAL 92 Comm. Crawl 41
Europarl 54
DGT-TM 45
News comm. 6
WIT-3 3
COSMAT 1
EuroParl TV 1

German French
Corpus MWords Corpus MWords
Wikipedia 642 Giga 665
Europarl 46 Wikipedia 375
Comm. Crawl 45 UN 358
News-Crawl 30 OpenSubs 263
Reuters 38 DGT 79
Tatoeba 3 Europarl 55

COSMAT 29
TT2 13
News comm. 5
TED 4
AMARA fr 1
EUTV 1

71

Chapter 2. Direct Segmentation Models

Table 2.17: Satistics of the text resources used for training MT systems.

Corpus Samples(M)
De-En Fr-En Es-En

DGT 5.1 – –
EUbookshop 9.3 – 5.2
TildeMODEL 4.2 – –
Wikipedia 2.4 – 1.8
UN – 11.0 –
GIGA – 22.5 –
newscommentary – 1.0 –
commoncrawl – 3.2 1.8
EU-TT2 – – 1.0

label_smoothed_cross_entropy \
--label-smoothing 0.1 \
--max-tokens 4000 \
--update-freq 8 \
--save-dir $OUTPUT_FOLDER \
--no-progress-bar \
--log-interval 100 \
--save-interval-updates 10000 \
--keep-interval-updates 20 \
--ddp-backend=no_c10d \
--fp16

For finetuning, we change the following:

--optimizer sgd \
--lr-scheduler fixed \
--lr 5e-5 \

2.10 Segmentation Systems

The different hyperparameters values that were tried for the segmentation
models are shown on Table 2.18. In total, no more than 75 combinations were
tested in order to conduct the experiments reported on this paper.

72

i
i

i
i

i
i

i
i

References

Table 2.18: Segmentation model hyperparameter exploration. Selected values are shown
in bold.

Hyperparameter Values
Embedding size 128,256,512,1024
RNN size 128,256,512,1024
FF layers 1,2,3
FF size 128,256,512
Batch size 128,256,512
Learning rate 0.001,0.0001
Optimizer Adam
Dropout 0.3,0.5
History size 0,1,2,5,10,15,20
Future window 0,1,2,4,8

References

Abadi, Martin et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org (cit. on p. 60).

Agua, Miguel A. del et al. (2014). “The Translectures-UPV Toolkit”. In: Ad-
vances in Speech and Language Technologies for Iberian Languages. Ed. by
Juan Luis Navarro Mesa et al. Springer International Publishing, pp. 269–
278. isbn: 978-3-319-13623-3. doi: 10.1007/978-3-319-13623-3_28 (cit.
on p. 60).

Arivazhagan, Naveen et al. (2019). “Monotonic Infinite Lookback Attention for
Simultaneous Machine Translation”. In: Proc. of ACL. ACL, pp. 1313–1323.
doi: 10.18653/v1/P19-1126 (cit. on p. 52).

Bahar, Parnia, Tobias Bieschke, and Hermann Ney (Dec. 2019). “A compar-
ative study on end-to-end speech to text translation”. In: Proc. of IEEE
ASRU, pp. 792–799. doi: 10.1109/ASRU46091.2019.9003774 (cit. on p. 52).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: Proc. of
ICLR. Ed. by Yoshua Bengio and Yann LeCun (cit. on p. 52).

Berard, Alexandre et al. (2018). “End-to-End Automatic Speech Translation
of Audiobooks”. In: Proc. of ICASSP. IEEE, pp. 6224–6228. doi: 10.1109/
ICASSP.2018.8461690 (cit. on p. 52).

Cettolo, Mauro and Marcello Federico (2006). “Text Segmentation Criteria for
Statistical Machine Translation”. In: In Proc. of Advances in Natural Lan-
guage Processing, FinTAL. Ed. by Tapio Salakoski et al. Vol. 4139. Lecture

73

https://doi.org/10.1007/978-3-319-13623-3_28
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.1109/ASRU46091.2019.9003774
https://doi.org/10.1109/ICASSP.2018.8461690
https://doi.org/10.1109/ICASSP.2018.8461690

Chapter 2. Direct Segmentation Models

Notes in Computer Science. Springer, pp. 664–673. doi: 10.1007/11816508\
_66 (cit. on p. 53).

Cettolo, Mauro, Christian Girardi, and Marcello Federico (2012). “WIT3: Web
Inventory of Transcribed and Translated Talks”. In: Proc. of EAMT, pp. 261–
268 (cit. on p. 65).

Chan, William et al. (2016). “Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition”. In: Proc. of ICASSP.
IEEE, pp. 4960–4964. doi: 10.1109/ICASSP.2016.7472621 (cit. on p. 51).

Chen, Xi et al. (2016). “CUED-RNNLM — An open-source toolkit for efficient
training and evaluation of recurrent neural network language models”. In:
ICASSP 2016 (cit. on p. 60).

Cho, Eunah, Jan Niehues, Kevin Kilgour, et al. (2015). “Punctuation insertion
for real-time spoken language translation”. In: Proc. of IWSLT. ISCA (cit. on
pp. 53, 55).

Cho, Eunah, Jan Niehues, and Alex Waibel (2012). “Segmentation and punc-
tuation prediction in speech language translation using a monolingual trans-
lation system”. In: Proc. of IWSLT. ISCA (cit. on pp. 53, 55).

– (2017). “NMT-Based Segmentation and Punctuation Insertion for Real-Time
Spoken Language Translation”. In: Proc. of Interspeech. ISCA, pp. 2645–
2649. doi: 10.21437/Interspeech.2017-1320 (cit. on pp. 53, 55, 65).

Fügen, Christian, AlexWaibel, and Muntsin Kolss (2007). “Simultaneous trans-
lation of lectures and speeches”. In: Machine Translation 21.4, pp. 209–252.
doi: 10.1007/s10590-008-9047-0 (cit. on p. 53).

Gangi, Mattia Antonino Di et al. (2019). “Enhancing Transformer for End-to-
end Speech-to-Text Translation”. In: Proc. of MT Summit XVII Volume 1:
Research Track. EAMT, pp. 21–31 (cit. on p. 52).

Iranzo-Sánchez, Javier et al. (2020). “Europarl-ST: A Multilingual Corpus For
Speech Translation Of Parliamentary Debates”. In: Proc. of ICASSP. IEEE,
pp. 8229–8233 (cit. on p. 59).

Irie, Kazuki et al. (2019). “Language Modeling with Deep Transformers”. In:
Proc. Interspeech 2019. ISCA, pp. 3905–3909. doi: 10.21437/Interspeech.
2019-2225 (cit. on p. 51).

Jia, Ye et al. (2019). “Direct Speech-to-Speech Translation with a Sequence-to-
Sequence Model”. In: Proc. of Interspeech. Ed. by Gernot Kubin and Zdravko
Kacic. ISCA, pp. 1123–1127. doi: 10.21437/Interspeech.2019-1951 (cit.
on p. 52).

Jorge, Javier, Adrià Giménez, Javier Iranzo-Sánchez, Jorge Civera, et al. (2019).
“Real-time One-pass Decoder for Speech Recognition Using LSTM Language
Models”. In: Proc. of Interspeech, pp. 3820–3824. published (cit. on p. 52).

74

https://doi.org/10.1007/11816508_66
https://doi.org/10.1007/11816508_66
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.21437/Interspeech.2017-1320
https://doi.org/10.1007/s10590-008-9047-0
https://doi.org/10.21437/Interspeech.2019-2225
https://doi.org/10.21437/Interspeech.2019-2225
https://doi.org/10.21437/Interspeech.2019-1951

i
i

i
i

i
i

i
i

References

Jorge, Javier, Adrià Giménez, Javier Iranzo-Sánchez, Joan Albert Silvestre-
Cerdà, et al. (Jan. 1, 2020). “LSTM-Based One-Pass Decoder for Low-Latency
Streaming”. In: Proc. of ICASSP. IEEE (cit. on p. 52).

Kolss, Muntsin, Stephan Vogel, and Alex Waibel (2008). “Stream decoding for
simultaneous spoken language translation”. In: Proc. of Interspeech. ISCA,
pp. 2735–2738 (cit. on p. 53).

Li, B. et al. (2020). “Towards Fast and Accurate Streaming End-To-End ASR”.
In: Proc. of ICASSP. IEEE. doi: 10.1109/ICASSP40776.2020.9054715 (cit.
on p. 66).

Ma, Mingbo et al. (2019). “STACL: Simultaneous Translation with Implicit
Anticipation and Controllable Latency using Prefix-to-Prefix Framework”.
In: Proc. of ACL. ACL, pp. 3025–3036. doi: 10.18653/v1/P19-1289 (cit.
on p. 52).

Matusov, Evgeny, Gregor Leusch, et al. (2005). “Evaluating machine trans-
lation output with automatic sentence segmentation”. In: Proc. of IWSLT.
ISCA (cit. on p. 61).

Matusov, Evgeny and Hermann Ney (2011). “Lattice-Based ASR-MT Inter-
face for Speech Translation”. In: IEEE Trans. Audio, Speech & Language
Processing 19.4, pp. 721–732. doi: 10.1109/TASL.2010.2060483 (cit. on
p. 52).

Matusov, Evgeny, Patrick Wilken, et al. (2018). “Neural speech translation at
AppTek”. In: Proc. of IWSLT. ISCA, pp. 104–111 (cit. on p. 61).

Mikolov, T. (2011). The RNNLM Toolkit. http : / / www . fit . vutbr . cz /
~imikolov/rnnlm/ (cit. on p. 60).

Ng, Raymond W. M. et al. (2016). “Groupwise learning for ASR k-best list
reranking in spoken language translation”. In: Proc. of ICASSP, pp. 6120–
6124 (cit. on p. 52).

Niehues, J. et al. (2019). “The IWSLT 2019 Evaluation Campaign”. In: Proc.
of IWSLT. ISCA. doi: 10.5281/zenodo.3525578 (cit. on p. 52).

Oda, Yusuke et al. (2014). “Optimizing Segmentation Strategies for Simul-
taneous Speech Translation”. In: Proc. of ACL. ACL, pp. 551–556. doi:
10.3115/v1/p14-2090 (cit. on p. 53).

Ott, Myle et al. (2019). “fairseq: A Fast, Extensible Toolkit for Sequence Mod-
eling”. In: Proc. of NAACL-HLT: Demonstrations. ACL (cit. on p. 60).

Papineni, Kishore et al. (2002). “Bleu: a Method for Automatic Evaluation of
Machine Translation”. In: Proc. of ACL. ACL, pp. 311–318. doi: 10.3115/
1073083.1073135 (cit. on p. 59).

Park, Daniel S. et al. (2019). “SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition”. In: Proc. Interspeech, pp. 2613–
2617 (cit. on p. 52).

75

https://doi.org/10.1109/ICASSP40776.2020.9054715
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.1109/TASL.2010.2060483
http://www.fit.vutbr.cz/~imikolov/rnnlm/
http://www.fit.vutbr.cz/~imikolov/rnnlm/
https://doi.org/10.5281/zenodo.3525578
https://doi.org/10.3115/v1/p14-2090
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Chapter 2. Direct Segmentation Models

Peitz, Stephan et al. (2012). “Spoken language translation using automatically
transcribed text in training”. In: Proc. of IWSLT. ISCA, pp. 276–283 (cit. on
p. 52).

Pino, Juan et al. (2019). “Harnessing Indirect Training Data for End-to-End
Automatic Speech Translation: Tricks of the Trade”. In: Proc. of IWSLT.
ISCA. doi: 10.5281/zenodo.3525032 (cit. on p. 52).

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016a). “Improving Neu-
ral Machine Translation Models with Monolingual Data”. In: Proc. of ACL.
ACL, pp. 86–96. doi: 10.18653/v1/p16-1009 (cit. on p. 52).

– (2016b). “Neural Machine Translation of Rare Words with Subword Units”.
In: Proc. of ACL. ACL, pp. 1715–1725. doi: 10.18653/v1/p16-1162 (cit. on
p. 52).

Siahbani, Maryam et al. (2018). “Simultaneous Translation using Optimized
Segmentation”. In: Proc. of AMTA. Ed. by Colin Cherry and Graham Neu-
big. AMTA, pp. 154–167 (cit. on p. 53).

Silvestre-Cerdà, Joan Albert et al. (Nov. 22, 2012). “Albayzin Evaluation: The
PRHLT-UPV Audio Segmentation System”. In: Proc. of IberSPEECH 2012,
pp. 596–600. published (cit. on p. 60).

Sperber, Matthias, Graham Neubig, et al. (July 2019). “Self-Attentional Mod-
els for Lattice Inputs”. In: Proc. of ACL. ACL, pp. 1185–1197. doi: 10.
18653/v1/P19-1115 (cit. on p. 52).

Sperber, Matthias, Jan Niehues, and Alex Waibel (2017). “Toward robust neu-
ral machine translation for noisy input sequences”. In: IWSLT 2017 (cit. on
p. 52).

Stolcke, Andreas (2002). “SRILM - an extensible language modeling toolkit.”
In: Proc. of Interspeech. Ed. by John H. L. Hansen and Bryan L. Pellom.
ISCA, pp. 901–904 (cit. on pp. 60, 65).

Stolcke, Andreas and Elizabeth Shriberg (1996). “Automatic linguistic segmen-
tation of conversational speech”. In: Proc. of ICSLP. Vol. 2. ISCA, pp. 1005–
1008 (cit. on pp. 53, 55).

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Proc. of NIPS.
Ed. by Isabelle Guyon et al., pp. 5998–6008 (cit. on pp. 52, 60).

Waibel, Alex et al. (1991). “JANUS: a speech-to-speech translation system
using connectionist and symbolic processing strategies”. In: Proc. of ICASSP.
IEEE, pp. 793–796. doi: 10.1109/ICASSP.1991.150456 (cit. on p. 51).

Wang, Xiaolin, Andrew Finch, et al. (2016). “An Efficient and Effective Online
Sentence Segmenter for Simultaneous Interpretation”. In: Proc. of WAT. The
COLING 2016 Organizing Committee, pp. 139–148 (cit. on pp. 53, 55).

Wang, Xiaolin, Masao Utiyama, and Eiichiro Sumita (2019). “Online Sentence
Segmentation for Simultaneous Interpretation using Multi-Shifted Recurrent

76

https://doi.org/10.5281/zenodo.3525032
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/P19-1115
https://doi.org/10.18653/v1/P19-1115
https://doi.org/10.1109/ICASSP.1991.150456

i
i

i
i

i
i

i
i

References

Neural Network”. In: Proc. of MT Summit XVII Volume 1: Research Track.
EAMT, pp. 1–11 (cit. on pp. 53, 55).

Weiss, Ron J. et al. (2017). “Sequence-to-Sequence Models Can Directly Trans-
late Foreign Speech”. In: Proc. of Interspeech. ISCA, pp. 2625–2629. doi:
10.21437/Interspeech.2017-503 (cit. on p. 52).

Zeyer, Albert, Patrick Doetsch, et al. (2017). “A comprehensive study of deep
bidirectional LSTM RNNS for acoustic modeling in speech recognition”. In:
Proc. of ICASSP. IEEE, pp. 2462–2466. doi: 10 . 1109 / ICASSP . 2017 .
7952599 (cit. on p. 60).

Zeyer, Albert, Ralf Schlüter, and Hermann Ney (2016). “Towards Online-
Recognition with Deep Bidirectional LSTM Acoustic Models”. In: Proc. of
Interspeech 2016. Ed. by Nelson Morgan. ISCA, pp. 3424–3428. doi: 10.
21437/Interspeech.2016-759 (cit. on p. 52).

Zheng, Baigong et al. (2019). “Simpler and Faster Learning of Adaptive Poli-
cies for Simultaneous Translation”. In: Proc. of EMNLP-IJCNLP. ACL,
pp. 1349–1354. doi: 10.18653/v1/D19-1137 (cit. on p. 52).

77

https://doi.org/10.21437/Interspeech.2017-503
https://doi.org/10.1109/ICASSP.2017.7952599
https://doi.org/10.1109/ICASSP.2017.7952599
https://doi.org/10.21437/Interspeech.2016-759
https://doi.org/10.21437/Interspeech.2016-759
https://doi.org/10.18653/v1/D19-1137

i
i

i
i

i
i

i
i

3 Streaming cascade-based speech translation leveraged by a
direct segmentation model

Javier Iranzo-Sánchez, Javier Jorge, Pau Baquero-Arnal,
Joan Albert Silvestre-Cerdà, Adrià Giménez, Jorge Civera,
Albert Sanchis, Alfons Juan

Neural Networks, 142 , pp. 303–315, 2021

10.1016/j.neunet.2021.05.013

i
i

i
i

i
i

i
i

Streaming cascade-based speech translation
leveraged by a direct segmentation model

Javier Iranzo-Sánchez, Javier Jorge, Pau Baquero-Arnal,
Joan Albert Silvestre-Cerdà, Adrià Giménez, Jorge Civera,

Albert Sanchis, Alfons Juan

Abstract

The cascade approach to Speech Translation (ST) is based on a
pipeline that concatenates an Automatic Speech Recognition (ASR)
system followed by a Machine Translation (MT) system. Nowa-
days, state-of-the-art ST systems are populated with deep neural
networks that are conceived to work in an offline setup in which the
audio input to be translated is fully available in advance. However,
a streaming setup defines a completely different picture, in which
an unbounded audio input gradually becomes available and at the
same time the translation needs to be generated under real-time
constraints. In this work, we present a state-of-the-art streaming
ST system in which neural-based models integrated in the ASR and
MT components are carefully adapted in terms of their training and
decoding procedures in order to run under a streaming setup. In
addition, a direct segmentation model that adapts the continuous
ASR output to the capacity of simultaneous MT systems trained
at the sentence level is introduced to guarantee low latency while
preserving the translation quality of the complete ST system. The
resulting ST system is thoroughly evaluated on the real-life stream-
ing Europarl-ST benchmark to gauge the trade-off between quality
and latency for each component individually as well as for the com-
plete ST system.

Keywords: automatic speech recognition, speech translation, machine trans-
lation, segmentation model, streaming, cascade system, hybrid system, deep
neural networks

81

Chapter 2. Cascade-based speech translation

3.1 Introduction

Deep Neural Networks (DNNs) are revolutionizing not only speech-related re-
search fields, such as purely Automatic Speech Recognition (ASR) with signif-
icant breakthroughs (Chan et al. 2016; Irie et al. 2019; Park et al. 2019; Jorge,
Giménez, Iranzo-Sánchez, Silvestre-Cerdà, et al. 2020), but also other closely
connected fields, such as Machine Translation (MT) (Bahdanau, K. Cho, and
Bengio 2015; Sennrich, Haddow, and Birch 2016b; Sennrich, Haddow, and
Birch 2016a; Vaswani et al. 2017) and consequently, Speech Translation (ST).
Indeed, ST is gaining momentum due to the vast number of industry applica-
tions that could be exploited based on this technology, from person-to-person
communication to subtitling of audiovisual content, just to mention the main
two applications.

Nowadays, two approaches to ST, end-to-end and cascade, coexist. End-to-end
models directly perform a mapping from speech in a source language into a
text representation in a target language, without exploiting an intermediate
discrete representation and jointly training model parameters (Weiss et al.
2017; Berard et al. 2018; Gangi et al. 2019; Jia et al. 2019). However, current
end-to-end models are not usually well-suited for a streaming setup, since they
need to process the entire input sequence before providing the corresponding
translation.

Differently, the cascade approach considers a two-step process in which an
ASR system transcribes the source language in speech form, and the automat-
ically generated transcription is pipelined into an MT system that provides
the target language in text form. There are well-known pros and cons of this
approach with respect to that of end-to-end. On the one hand, it is possible to
train strong independent ASR and MT systems in the cascade approach, since
abundant manually transcribed audio and parallel data are widely available
in high-resourced languages. In contrast, this is not usually the case in end-
to-end models, since manually transcribed audio data in a source language
aligned with text data in the desired target language is more expensive to
produce and cannot be found in the same magnitude. Thus, end-to-end mod-
els resort to pre-training and data augmentation techniques to alleviate this
problem (Bahar, Bieschke, and Hermann Ney 2019; Pino et al. 2019). On the
other hand, the cascade approach tends to propagate ASR errors into the MT
system, while training a single end-to-end model is theoretically more robust
than two decoupled models, if sufficient data would be available. All in all,
cascade systems still outperform end-to-end systems in standard setups (Pino
et al. 2019; J. Niehues et al. 2019; Bahar, Wilken, et al. 2020).

82

i
i

i
i

i
i

i
i

Streaming cascade-based ST systems just started to become available (Ba-
har, Wilken, et al. 2020) thanks to recent advances in streaming hybrid and
end-to-end ASR systems stating competitive results compared to offline sys-
tems (Jorge, Giménez, Iranzo-Sánchez, Silvestre-Cerdà, et al. 2020; Albert
Zeyer, Ralf Schlüter, and Hermann Ney 2016; Jorge, Giménez, Iranzo-Sánchez,
Civera, et al. 2019; Albert Zeyer, Bahar, et al. 2019; Miao et al. 2020; Moritz,
Hori, and Le 2020; Zhang, Lu, et al. 2020), and also due to the significant
progress in simultaneous MT (Jan Niehues et al. 2018; Naveen Arivazhagan
et al. 2019; M. Ma et al. 2019; Zheng et al. 2019; N. Arivazhagan et al. 2020).
However, the segmentation of the ASR output is still essential to deal with
the simultaneous translation of long audio streams (Fügen, Waibel, and Kolss
2007; Rangarajan Sridhar et al. 2013; Oda et al. 2014; E. Cho, Jan Niehues,
Kilgour, et al. 2015; Gu et al. 2017; Iranzo-Sánchez, Giménez, et al. 2020).
Indeed, state-of-the-art simultaneous MT models are Transformer-based mod-
els trained on sentence pairs with a limited length. These vanilla Transformer
models cannot capture any longer-term dependency beyond the predefined
sentence length observed in training (Popel and Bojar 2018; Dai et al. 2019).
Thus, the translation accuracy of these simultaneous Transformed-based MT
models rapidly degrades as the source sentence length goes beyond that ob-
served in training. This fact leads to the need of a text segmenter that splits
the ASR output into hopefully semantically self-contained chunks4 that can be
successfully translated by a simultaneous MT system.

In this work we present a state-of-the-art streaming cascade-based ST sys-
tem evaluated on the Europarl-ST task (Iranzo-Sánchez, Silvestre-Cerdà, et
al. 2020), a real streaming ST benchmark including parliamentary speeches of
up to 10-minute long. This benchmark along with the limitation of simulta-
neous Transformed-based MT models to adequately translate an unbounded
sequence of words, motivates the crucial role played by the segmenter when
translating continuous text streams provided by an ASR system under real-
time constrains. For this reason, this work, in addition to review the ASR and
MT components of the ST system developed in previous work, puts special em-
phasis on the description of our neural-based Direct Segmentation (DS) model
followed by a thoroughly evaluation of its impact on a streaming cascade-based
ST system in terms of accuracy and latency.

In contrast to our previous work in which the DS model was initially pre-
sented (Iranzo-Sánchez, Giménez, et al. 2020), here off-line MT systems are
replaced by simultaneous MT systems. This fact has very important implica-
tions in this work. First, words provided by the ASR system are translated as

4A chunk must be understood as a sequence of words.

83

Chapter 2. Cascade-based speech translation

they become available without waiting for the end-of-chunk token to appear in
the input of the MT system. This is a significant difference with our previous
work mentioned above in which translations were only generated once a com-
plete chunk was available, which is the expected chunk-level behavior of off-line
MT systems. Second, simultaneous MT systems work at the word level, this
allows to compute word-level latencies in contrast to the chunk-level latencies
reported in our previous work. Finally, word-level latencies define a more real-
istic and challenging evaluation closer to the user experience and thus, specific
experimental conditions for this work. As opposed to our previous work in
which the ST system was only optimised for translation accuracy, in this work
a joint optimization of the DS and translation models is carefully performed
and reported not only for translation accuracy but also for word-level latency.

This paper is organized as follows. The neural-based stream-adapted ASR
and MT components of the ST system are reviewed in Sections 3.2 and 3.3,
respectively. Next, Section 3.4 describes in full detail the DS model seamlessly
integrated between the ASR and MT components to allow streaming ST decod-
ing. Then, in Section 3.5, ASR and MT components are individually assessed
on the Europarl-ST task before going into an extensive evaluation in terms
of accuracy and latency of the ST system when the DS model is integrated
into the pipeline. Finally, conclusions are drawn and future work is foreseen
in Section 4.

3.2 Streaming automatic speech recognition

Nowadays, state-of-the-art hybrid ASR systems use DNNs to approximate
acoustic and language model probabilities. However, when we move from the
offline to the streaming (online) setup, it is necessary to take into account a
series of constraints imposed by the streaming scenario to efficiently manage
DNNs. First, the acoustic information comes gradually over time, so the in-
put sequence xT1 is not fully available at decoding time. Second, output must
be provided under tight real-time constraints, so efficient inference procedures
must be devised to guarantee system usability.

More precisely, the limited access to the input poses some challenges to tran-
scribe an audio stream, since the system needs to wait for enough acoustic in-
formation in the input to be available to perform the next decoding step. This
fact introduces a trade-off between the quality of the acoustic scores provided
by the DNN and the latency of the decoding step that directly impacts the
response-time of the system. As acoustic models (AMs) based on DNNs work
at sequence level, we should adapt their behavior to include these constraints.

84

i
i

i
i

i
i

i
i

On the other hand, most of the LMs can naturally work on a streaming setup,
since model dependencies involve conditioning on previous words (history) to
provide the posterior probability of the next one. In this case, the challenge
resides on the inference speed when it comes to state-of-the-art neural-based
LMs. In the following sections we will review how these neural-based models
are adapted to perform streaming ASR.

Acoustic model

Over the last decade, deep Feed-Forward Networks (FFNs) (G. Hinton et al.
2012), Convolutional Neural Networks (CNNs) (Sainath et al. 2015; Bozhe-
niuk et al. 2020) and Recurrent Neural Networks (RNNs) (Schuster and Pali-
wal 1997) have contributed to improve acoustic modeling with respect to the
historical approach based on Gaussian Mixture Model (GMM) (Bourlard and
Wellekens 1990; Russell and Moore 1985). Indeed, RNNs based on the Long-
Short Term Memory (LSTM) unit (Hochreiter and Schmidhuber 1997) have
been successfully applied in ASR (Graves, Jaitly, and Mohamed 2013; Al-
bert Zeyer, Doetsch, et al. 2017). More precisely, the so-called Bidirectional
LSTM (BLSTM) architecture has been widely applied and studied for AM in
ASR (Albert Zeyer, Doetsch, et al. 2017).

As expected in an offline setup, the BLSTM architecture observes the com-
plete acoustic sequence to estimate the score for each frame in this sequence.
However, this is not feasible in a streaming scenario under tight real-time
constraints, as we need to minimize the time elapsed between the speaker ut-
terance, and the corresponding transcription of that utterance by the system.
For this reason, following the study performed in (A. Zeyer, R. Schlüter, and
H. Ney 2016), we introduce the concept of lookahead context of a given frame,
as the sequence of frames following this given frame that need to be processed
to compute the acoustic score (Jorge, Adria Giménez, et al. 2020). The length
of the lookahead context nlookahead allows us to control the trade-off between ac-
curacy and latency, adjusting it to a minimum length that allows the BLSTM
network to gather enough acoustic information. In practice, a sliding window
with a limited lookahead context is moved over the infinite sequence of frames
one frame at a time. The acoustic score of a given frame is a weighted av-
erage of the posterior probabilities of that frame computed over overlapping
windows.

There is a final consideration that is missing in this adaptation of the BLSTM
architecture to the streaming setup, that is, the normalization of acoustic fea-
tures. Acoustic features are mean normalized over the full sequence, but again

85

Chapter 2. Cascade-based speech translation

this is not possible in a streaming setup. We alleviate this problem by in-
troducing a configurable delay when starting to process an audio stream in
order to gather enough acoustic evidence to compute the required statistics to
normalize input features (Jorge, Adria Giménez, et al. 2020).

Language model

Similarly to AMs, LMs have significantly evolved from the count-based n-gram
model (Shannon 1948; S. F. Chen and Goodman 1999) to continuous neural
LMs based on LSTM RNN (Bengio et al. 2003; Schwenk 2007) and the Trans-
former architecture (Vaswani et al. 2017) with impressive results in ASR (Irie et
al. 2019). However, the integration of neural-based LMs into a streaming ASR
decoder requires an adaptation of their training procedure (Baquero-Arnal et
al. 2020). First, the full computation of the softmax function cannot be af-
forded under real-time constraints. Instead, a variance regularization (VR)
term is added during training, so that the sum of the softmax deviates mini-
mally from a constant value (Shi et al. 2014). This constant value is assumed
to be invariant during inference, significantly reducing the high computational
cost of the softmax function. Second, a key idea applicable specifically to
Transformer LMs is to limit the size of the word history. Though Transformer
LMs are robust dealing with long-range dependencies due to their ability to
attend to all previous words in a direct manner, this implies that every time
a next word is predicted the whole word history needs to be processed. For
the streaming case, we limit the size of the history to n words, avoiding an
unbounded growth of memory requirements for the internal state.

Decoding

In the hybrid approach, decoding is performed with the conventional beam-
search Viterbi algorithm (Viterbi 1967; Hermann Ney 1984). This algorithm
combines scores provided by the AM, the LM and the pronunciation dictio-
nary or lexicon, in order to find the most likely sequence of spoken words. Due
to this combination of external models, the decoding process becomes much
more complex than in end-to-end models. Nowadays, there are two predomi-
nant approaches to decoding, those based on Weighted Finite-State Transducer
(WFST) (Mohri and Riley 1999; Mohri and Riley 2001; Povey et al. 2011),
and those grounded on History Conditioned Search (HCS) (Hermann Ney and
Ortmanns 2000; Nolden 2017). Both approaches convert the AM and LM into
data structures to perform a time-synchronous search, to which several pruning

86

i
i

i
i

i
i

i
i

techniques will be applied in order to reduce the exponentially growing search
space.

These decoders leverage the discrete nature of count-based LMs to create the
skeleton of the aforementioned search space before decoding. However, with
the advent of neural-based LMs, it became unclear how to integrate these
continuous models into the discrete search space. For this reason, multi-pass
decoders benefited from neural-based LMs performing an additional rescoring
step, in which n-best hypotheses stored in a word-graph structure were re-
ranked to obtain significant accuracy improvements (Sundermeyer et al. 2014;
Xie Chen et al. 2017; Xu et al. 2018).

Obviously, this additional rescoring step increases the response time of ASR
systems compared to those based on one-pass decoders. In addition, search
errors propagated in previous passes cannot be fixed in the rescoring step.
One-pass decoders integrating neural-based LM have been proposed, such as
those in (Arısoy et al. 2014; Singh, Oualil, and Klakow 2017; K. Lee et al. 2018),
but few of them have reached the technology readiness level for a production
environment under streaming conditions. In (Jorge, Adrià Giménez, et al.
2019), we proposed a novel one-pass decoder that allows a seamless integration
of neural-based LMs, while keeping the system fast enough to perform real-time
streaming decoding.

Our decoder follows a similar structure to the HCS decoder proposed in (Nolden
2017), where hypotheses are organized according to the LM history. To do that,
we precompute a lookahead finite state model from a heavily pruned n-gram
model. This model provides the main static search structure at word and tri-
phoneme levels on which the decoding is based. Unlike other WFST-based
decoders, no finite-state reduction algorithm is applied. Moreover, Hidden
Markov Model (HMM) states are dynamically expanded on-demand during
decoding to reduce memory consumption.

Apart from conventional beam search decoding parameters, such as beam
width or the maximum number of active hypothesis, we enriched our decoder
with two additional LM-related decoding parameters to specifically deal with
neural-based LMs: the Language Model History Recombination (LMHR) and
the Language Model Histogram Pruning (LMHP).

Regarding LMHR, it is important to remark that, unlike count-based LMs,
neural-based LMs benefit from the unlimited context condensed in their in-
ternal state, a continuous vector representation, that potentially contains the
previous context observed so far. Not including any limitation on the previ-

87

Chapter 2. Cascade-based speech translation

ous context leads to the generation of similar hypotheses that only differ in
words far from the current time step. This fact limits the effectiveness of beam
search, reducing hypothesis diversity and exploration. The LMHR parameter
sets the length of the LM context, in terms of words, that is considered be-
fore performing hypothesis recombination. For example, setting LMHR to 3
means that hypotheses whose context is longer than three words are recom-
bined. LMHR differs from the conventional recombination induced by WFSTs,
as in that case recombination is limited to the precomputed transducer resulted
from combining the HCLG model (Mohri and Riley 1999). Indeed, LMHR val-
ues can easily go beyond the usual 4 or 5-grams commonly used to compute
WFSTs. In other words, the LMHR parameter enforces a structural limitation
to the previous LM context, while the internal continuous state of neural-based
LMs is preserved.

On the other hand, inference in neural-based LMs is computationally demand-
ing. In this sense, the LMHP parameter provides an additional mechanism
to control the number of active hypotheses at word level, that is, the number
of hypotheses that will be expanded when a word-end node is reached. Thus,
LMHP limits the number of queries (inferences) performed by the neural-based
LM speeding up the decoding process.

3.3 Simultaneous machine translation

Current state-of-the-art MT systems (Barrault et al. 2020) are based on the
Transformer architecture. However, this architecture was originally envisioned
to entirely process a sentence before generating the corresponding transla-
tion, and thus it is not well-suited for a streaming scenario under real-time
constraints. Recently, some variants of attention-based architectures that are
able to carry out simultaneous translation have been presented (Naveen Ari-
vazhagan et al. 2019; M. Ma et al. 2019; Raffel et al. 2017; X. Ma et al.
2020; Elbayad, Besacier, and Verbeek 2020). Basically, these variants limit the
attention mechanism to those input words available in the stream, since the
complete sentence cannot be observed. However, we focus on two Transformer-
based variants: the Monotonic Multi-Head Attention (MMA) framework (X.
Ma et al. 2020) and the efficient multi-path wait-k approach (Elbayad, Be-
sacier, and Verbeek 2020), since both have achieved competitive results on
reference tasks.

On the one hand, two attention mechanisms are discussed in (X. Ma et al.
2020), the Hard MMA (MMA-H) that attends only a single position in the in-
put (Raffel et al. 2017), and the Infinite Lookback MMA (MMA-IL) that keeps

88

i
i

i
i

i
i

i
i

track of all previous positions in the input (Naveen Arivazhagan et al. 2019).
However, MMA-IL attention mechanism is very computationally demanding
and streaming response-time requirements cannot be met. Therefore, we re-
sort to the MMA-H in this work. In MMA-H, a hyperparameter λ must be
adjusted in order to control the balance between system latency and quality.
Higher values of λ will bias the multiple heads in the attention mechanism to-
wards reading synchrony, increasing translation speed but degrading accuracy.

On the other hand, wait-k models read k words from the input sentence be-
fore alternating write/read operations of one word at a time, being the write
operation the generation of a target word (M. Ma et al. 2019). Wait-k mod-
els have proved to obtain better performance when trained for the specific k
value employed in decoding (Zheng et al. 2019). This is exactly what is tack-
led by (Elbayad, Besacier, and Verbeek 2020) when proposing their efficient
multi-path wait-k models. These models are trained across multiple values of
k, allowing to perform the decoding with different latency constraints.

The conventional offline MT decoding is carried out using beam search. How-
ever, the streaming setup conditions the decoding process in simultaneous MT.
First, the beam-search decoder is replaced by a greedy decoder to work under
real-time constraints. Secondly, the decoding algorithm must carry out simul-
taneous translation, and start translating without having received the entire
source sentence.

3.4 Direct segmentation model

Our streaming cascade-based ST system integrates the ASR and MT compo-
nents described above in Sections 3.2 and 3.3. However, streaming ST poses
additional challenges that combine those of translating error-prone ASR out-
put with those of simultaneous MT processing unbounded word sequences. As
discussed in Section 3.1, simultaneous Transformer-based MT systems trained
at the sentence level are not able to properly produce longer translations than
those observed in training. Besides, an additional related problem with Trans-
former models, already mentioned in Section 3.2, is the significant increase of
computational requirements as a function of the length of the input sequence.
Thus, an intermediate preprocessing step that perfectly accommodates the
continuous output of the streaming ASR system to the current capabilities
of simultaneous MT systems is needed to achieve real-time streaming ST. In
this regard, this section introduces a novel state-of-the-art segmentation model
specially suited for streaming cascade-based ST.

89

Chapter 2. Cascade-based speech translation

The goal of a segmenter in a ST pipeline is to split the continuous stream of
words generated by the upstream ASR system into non-overlapping chunks
that maximize the accuracy of the downstream MT system. This is necessary
in order to transform unbounded-length ASR transcriptions into sentence-like
chunks that can be processed by MT models, which have been trained us-
ing sentence-aligned data. Every time the segmenter emits an end-of-segment
event, the MT encoder and decoder are reset to make a fresh start of the trans-
lation process. Although recent advances in document-level MT could alleviate
the need for a segmenter (Junczys-Dowmunt 2019) in the future, as discussed
above it still remains a necessary component for streaming cascade-based ST.
In this work, the DS model is reviewed (Iranzo-Sánchez, Giménez, et al. 2020).
This model innovatively considers a word context not only into the past, but
also into the future, as well as acoustic information to take segmentation deci-
sions on the ASR output.

Formally, the segmentation problem is the task of splitting a sequence of input
words wJ1 into non-overlapping chunks. We represent this with a sequence of
split/non-split decisions, yJ1 , with yj = 1 if the associated word wj is the word
that ends a chunk; and yj = 0, otherwise. In this work, as mentioned above,
we incorporate acoustic word-based features x̌J1 aligned with the sequence of
words output by the ASR system. From a statistical viewpoint, the sequence
of split/non-split decisions is taken on the basis of

ŷJ1 = argmax
yJ1

p(yJ1 | wJ1 , x̌J1)

= argmax
yJ1

J∏
j=1

p(yj | yj−11 , wJ1 , x̌J1). (2.14)

However, in a streaming setup, we need to bound the sequence to d words into
the future (hereafter, future window) to meet latency requirements

ŷJ1=argmax
yJ1

J∏
j=1

p(yj | yj−11 , wj+d1 , x̌j+d1). (2.15)

Indeed, for computational reasons and to prevent an ever-growing unbounded
history, the word sequence wj+d1 is limit to n words into the past, and the
acoustic sequence x̌j+d1 drops its history as

90

i
i

i
i

i
i

i
i

ŷJ1=argmax
yJ1

J∏
j=1

p(yj | yj−1j−n, w
j+d
j−n, x̌j+dj). (2.16)

The DS model estimates the probabilistic term in Eq. 2.16 as schematically
depicted from bottom to top in Figure 2.3. First, the input word sequence wj+dj−n
is replaced by an extended version that incorporates previous split decisions
yj−1j−n. The new sequence w′j+dj−n inserts an end-of-chunk token into the text input
sequence every time a split decision has been taken. Next, the corresponding
word embeddings hj+dj−n of the input tokens are computed and input into a
GRU-based RNN (K. Cho, Merriënboer, et al. 2014), represented by function
f1(). So, the resulting text state vectors are defined as

sj+dj = f1(h
j+d
j−n). (2.17)

Acoustic word-based vectors x̌j+dj are obtained from three acoustic features as-
sociated to each word: duration of the current word, duration of the previous
silence (if any), and duration of the next silence (if any). Next, the split proba-
bility is computed by concatenating text and audio vectors of the current word
and those in the future window, and passing them through a FFN, represented
by function f2(), as

p(yj | yj−1j−n, w
j+d
j−n, x̌

j+d
j) ≈ f2([sj+dj ; x̌j+dj]). (2.18)

The incorporation of the acoustic word-based vectors into the segmentation
model has been shown to outperform a version of the segmentation model that
only depends on the word sequence wj+dj−n in order to decide whether to split
or not (Iranzo-Sánchez, Giménez, et al. 2020).

At training time, the components inside the dashed boundary in Figure 2.3 are
first pre-trained using only text data, and this allows training with more data,
as there is a limited amount of audio datasets that include explicit sentence-
level segmentation. Then, the RNN is frozen and training of the FFN continues
with the addition of acoustic word-based vectors.

The segmenter just described is a streaming-ready model, so no specific adap-
tation needs to be performed to the decoder in a streaming setup. A greedy
and a beam-search decoders were implemented to search for the most probable
sequence of split decisions according to Eq. 2.16, but no significant differences

91

Chapter 2. Cascade-based speech translation

wj−n

. . .

wj

. . .

wj+d

.

RNN / f1()

||

FFN / f2()

p(yj | yj−1j−n, w
j+d
j−n, x̌j+dj)

x̌j

. . .

x̌j+d

Figure 2.3: Architectural overview of the DS model. At the bottom, input acoustic word-
based vectors x̌j+dj are found. Then, inside the dashed boundary, the input word sequence
wj+dj−n is processed by an RNN and concatenated with the acoustic word-based vectors before
passing through a FFN to output p(yj | yj−1

j−n, w
j+d
j−n, x̌j+dj).

92

i
i

i
i

i
i

i
i

in performance were observed between them (Iranzo-Sánchez, Giménez, et al.
2020). Basically, this decoder moves a sliding window over the ASR output in
order to decide whether to split or not after the current word. If a split decision
is taken, an end-of-chunk token is inserted right after the current word wj, and
the decoding process continues.

3.5 Evaluation

In this section, after describing the experimental streaming setup, the ASR and
MT components are independently assessed. Then, the complete ST pipeline
concatenating the ASR system, the segmentation model and the simultaneous
MT system is finally evaluated in terms of accuracy and latency.

Experimental setup

In order to properly evaluate the accuracy and latency of the proposed ST
system, the testing conditions must mirror as close as possible those of a real
streaming ST use case. This is why we have decided to use the Europarl-ST
corpus (Iranzo-Sánchez, Silvestre-Cerdà, et al. 2020) for evaluation purposes.
The Europarl-ST corpus is a collection of interventions carried out by Members
of the European Parliament (MEP) between 2008 and 2012, jointly with their
corresponding transcriptions and translations. Unlike other corpus, the data
is provided aligned at both, segment and intervention levels. Therefore, the
segment-aligned data can be used during training, and entire interventions can
be used at testing time in order to simulate real streaming conditions. This is
the experimental setup that has been selected for this work. The advantage
of this setup is that, by using the entire interventions at testing time, we are
able to properly measure the performance of the streaming ST system in its
intended setting. As mentioned in Section 3.1, each intervention is several
minutes long, and this motivates the inclusion of the segmenter component, as
the MT system would be unable to translate the entire recording otherwise.
Additionally, the ST task of parliamentary debates is a realistic and challenging
task that currently receives much interest due to the actual need to find an
accurate enough solution in the near future (European Parliament and DG
Translation 2019).

In this work, a state-of-the-art streaming Spanish ASR system is cascaded
with simultaneous MT systems to perform ST from Spanish (Es) into French
(Fr) and English (En). The statistics of the language pairs of the Europarl-ST
corpus involved in our evaluation are shown in Table 2.19. For the purpose of

93

Chapter 2. Cascade-based speech translation

Table 2.19: Basic statistics of the Europarl-ST corpus for the training, development and
test sets for the Es-En and Es-Fr language pairs.

Training Dev
Lang Vids Chks Hrs Kwords Vids Chks Hrs Kwords
Pairs Src Trg Src Trg
Es-En 727 7402 21.6 203 200 202 1947 5.7 53 53
Es-Fr 439 4673 13.7 129 149 121 1115 3.2 30 35

Test
Lang Vids Chks Hrs Kwords
Pairs Src Trg
Es-En 206 1816 5.3 50 50
Es-Fr 124 1082 3.2 31 36

these statistics, an oracle segmentation based on end-of-sentence punctuation
marks was applied to split videos into chunks. Consequently, the average length
of the resulting chunks was 10 seconds, and 27 to 28 words for Spanish and
English, and 32 to 33 words for French.

Automatic Speech Recognition

The AMs integrated in our ASR system follow the hybrid approach introduced
in Section 3.2. First, a GMM-HMM is used to initialize the required alignments
to train the subsequent DNN architectures. Then, context-dependent FFN-
HMMs with three left-to-right states are trained. More precisely, our ASR
system uses 48-dimensional feature vectors as a result of preprocessing with
a Hamming window of 25ms shifted at 10ms intervals into 16 Mel-frequency
cepstral coefficients (MFCC) plus deltas and accelerations (Zolnay, Schluter,
and Hermann Ney 2005). The input to the FFN is a context of 11 frames
unrolled into a 528-dimensional vector. This FFN includes 8 layers containing
2048 hidden units each followed with Rectified Linear Units (ReLU), and a
final softmax layer with 10K labels corresponding to the number of clustered
subphonetic units considered in this task. This network is trained using plain
backpropagation to optimize cross-entropy. The feature extraction process, the
training of the GMM-HMM and the FFN-HMM systems were performed with
the transLectures UPV toolkit (TLK) (Agua et al. 2014).

The FFN was used to bootstrap a BLSTM-HMM with 8 layers and 512 units
per direction. Differently from the FFN, the BLSTM network uses 85-dimensional
filter-bank features (Aggarwal and Dave 2012). This network is trained us-

94

i
i

i
i

i
i

i
i

Table 2.20: Statistics of transcribed Spanish speech data sources used to train AMs.

Data source Hours
Internal: TV, entertainment 3034
Internal: education 306
Internal: user-generated content 202
Internal: politics 158
Internal: audiobooks 21
RTVE2018(Lleida et al. 2019) 205
TOTAL 3926

ing TensorFlow (Abadi et al. 2015) with cross-entropy loss during 16 epochs.
Dropout (G. E. Hinton et al. 2012) and specaugment (Park et al. 2019) reg-
ularization techniques were used to improve the generalization of the model.
We performed Back-Propagation Through Time (BPTT) limited to 50 frames
according to (Albert Zeyer, Doetsch, et al. 2017).

Table 2.20 shows statistics of the transcribed speech data sources used to train
our AMs. Figures of internal, private speech data sources are provided orga-
nized by domain. Overall, almost four thousand hours were used for training.
In addition, a multi-domain dev set of 41 hours, which included the dev set of
Europarl-ST, was used to tune model hyperparameters.

Table 2.21 shows statistics of data sources adding up to over 3.4 billion of words
devoted to LM training. First, we trained a 4-gram model with Kneser-Ney
discount (Kneser and Hermann Ney 1995) using the SRILM toolkit (Stol-
cke 2002). We limited the system vocabulary to the most probable 255K
words. Next, concerning the neural LMs, we trained both a LSTM-based and
a Transformer-based LMs (TLM). On the one hand, our LSTM LM, with a
256-dimensional embedding and two layers of 2048 hidden units, was trained
using the CUED-RNNLM toolkit (Xi Chen et al. 2016) for 6 epochs. BPTT
was set to consider the 6 previous words. Training criterion was based on the
Noise Contrastive Estimation (NCE) (Mnih and Teh 2012) to accelerate the
training process. Also, VR was used to speed up the inference process. For
this model, we sampled a 500M words subset from the available training data
to accelerate the training process. On the other hand, we trained a Trans-
former LM using a customized version of the FairSeq (Ott et al. 2019) toolkit,
with the same training dataset as the LSTM, using a configuration consisting
of a 24 layer network with 768 units per layer, 4096-unit FFN, 12 attention
heads, and an embedding of 768 dimensions. This model was trained during 8
epochs, with batches limited to 512 tokens, 512 sentences, and 512 words per

95

Chapter 2. Cascade-based speech translation

Table 2.21: Statistics of Spanish text resources used for language modelling. S=Sentences,
RW=Running words, V=Vocabulary. Units are thousands (K).

Corpus S(K) RW(K) V(K)
Internal: TV, entertainment 4799 59235 307
Internal: education 87 1526 35
Internal: politics 1361 35170 126
Opensubtitles (Tiedemann 2012) 212635 1146861 1576
UFAL (UFAL Medical Corpus 2018) 92873 910728 2179
Wikipedia (Wikipedia 2015) 32686 586068 3373
UN (Callison-Burch, Koehn, Monz, et al. 2012) 11196 343594 381
News Crawl (News Crawl corpus 2015) 7532 198545 648
eldiario.es (Eldiario.es 2017) 1665 47542 247
El Periódico (ElPeriodico.com 2017) 2677 46637 291
Common Crawl (CommonCrawl 2014) 1719 41792 486
News Commentary (News Crawl corpus 2015) 207 5448 83
TOTAL 369434 3423146 5785

sentence. Model parameters were updated every 32 batches. During inference,
VR was also used to speed up TLM score computation. Both neural LMs and
the 4-gram LM used the same vocabulary. The out-of-vocabulary (OOV) ratio
in this task for this vocabulary was less than 0.4%, in both dev and test sets.

Table 2.22 shows the figures of baseline experiments with perplexities, weights
for the interpolated models, and Word Error Rate (WER) for the three types of
LMs considered in this work: n-gram (NG), LSTM, and Transformer (TLM),
and their interpolated combinations. Hyperparameters were tuned on the dev
set as defined in (Baquero-Arnal et al. 2020). These baseline experiments allow
us to select the best LM combination for the streaming setup.

Regarding these results, while the difference in terms of perplexity is signifi-
cant when considering neural LMs and its combinations, this improvement is
not reflected in terms of WER, where the interpolated models provided very
similar figures. The conclusion that can be drawn after these results is that
the AM is sound, and it can depict promising paths during the decoding, not
requiring much help from the LM. This is reflected in the fact that a small
relative reduction of 6.7% in WER is the difference between the LMs with the
highest (n-gram) and the lowest (three-way interpolation) perplexity. There-
fore, in favor of studying the history limitation of the TLM, and to keep the
decoding process as lightweight as possible, we have selected for the following
experiments the interpolated model combining the n-gram and the TLM. The

96

i
i

i
i

i
i

i
i

Table 2.22: PPLs, interpolation weights and WERs for EuroParl dev and test sets.

Model PPL Weights WER
dev test dev test

NG 70.3 78.4 - 10.5 11.3
LSTM 46.3 54.4 - 10.2 10.9
TLM 32.1 37.6 - 9.9 10.7
NG+LSTM 41.7 48.0 (0.20/0.80) 10.0 10.8
NG+TLM 30.2 34.8 (0.10/0.90) 9.8 10.5
LSTM+TLM 32.0 37.5 (0.07/0.93) 9.9 10.6
NG+LSTM+TLM 30.2 34.8 (0.09/0.04/0.87) 9.8 10.5

interpolation of n-gram and TLMs was also proved in (Baquero-Arnal et al.
2020) to be an essential ingredient of our streaming ASR systems for English
when positively compared in well-established benchmarks to other state-of-
the-art streaming ASR systems (Moritz, Hori, and Le 2020; Zhang, Lu, et al.
2020; Zhou et al. 2020).

The following set of experiments are devoted to study the impact of the stream-
ing parameters presented in Section 3.2 on the system performance. These
parameters are the nlookahead that defines the length in seconds of the sliding
window and has a direct impact on the baseline latency, the history size for
the TLM, and finally the LMHR and LMHP, that are related to the prun-
ing process in order to minimize the computational requirements of the neural
LMs.

Figure 2.4 shows results on WER as a function of the nlookahead in seconds
on the Europarl-ST dev set. The rest of the parameters are fixed as defined
in the baseline experiments. As expected, lower WER figures are achieved
as the length of the lookahead window grows to consider more future frames
to compute the acoustic score. However, we need our system to work under
real-time constrains, meaning that we should ensure a reasonable trade-off
between WER and latency. In this case, setting this parameter to a particular
value introduces a fixed delay equal to nlookahead seconds, that again, is the
length of the sliding window that is applied over the input stream. Taking
into account our previous work in streaming ASR (Jorge, Giménez, Iranzo-
Sánchez, Silvestre-Cerdà, et al. 2020), an nlookahead value of 0.6 seconds is
a reasonable baseline delay, since subsequent components of the cascade ST
system will introduce additional delays. Hence, we fixed this value for the
following experiments.

97

Chapter 2. Cascade-based speech translation

 9.5

 9.6

 9.7

 9.8

 9.9

10.0

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

 10.7

 10.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WER

nlookahead(s)

Figure 2.4: WER vs nlookahead in seconds on the EuroParl-ST dev set.

As mentioned in Section 3.2, the computational cost of the TLM requires to
limit its history size in order to perform streaming decoding. For this reason,
Figure 2.5 explores the impact of the TLM history size, in terms of the number
of words n, evaluating the perplexity on the dev set.

As observed in Figure 2.5, increasing the history size consistently decreases
perplexity, reaching a minimum value with a history size of 50 words. Addi-
tionally, we have validated this parameter in terms of WER, but differences
were not significant on the Europarl-ST dev set. Therefore, we decided to
adopt a history size of 50 words.

Regarding decoding pruning parameters, we have also studied the effect of the
LMHR parameter that controls the length of the previous context to perform
hypothesis recombination during decoding. In line with the effect of history
size discussed above, LMHR had little impact in WER on the Europarl-ST
dev set. For this reason, and considering that a shorter context involves earlier
hypothesis recombination and consolidation reducing system latency, LMHR
was set to 3.

The second pruning-related parameter is the LMHP, that controls the number
of active hypotheses at word level during decoding. Consequently, this param-

98

i
i

i
i

i
i

i
i

 32

 34

 36

 38

 40

 10 20 30 40 50 60 70 80 90 100

PPL

n(words)

Figure 2.5: Perplexity as a function of the TLM history size measured in n words on the
EuroParl-ST dev set.

eter affects WER and the Real Time Factor (RTF) of the system. The RTF is
defined as the ratio between the decoding time of an audio input and its dura-
tion. Figure 2.6 illustrates WER vs. RTF results varying beam width without
limiting LMHP (LMHP=Inf) and fixing that value to 80. As observed, limiting
the number of active hypotheses to 80 has no negative impact on WER in line
with our previous work (Jorge, Giménez, Iranzo-Sánchez, Silvestre-Cerdà, et
al. 2020). This means that the information provided by the AM is definitively
enough to figure out the best path, so the number of active hypotheses query-
ing the LM are somehow limited in the Europarl-ST task. Considering this,
LMHP equal to 80 is adopted for the rest of the experiments, to ensure that
the performance of the decoder is kept even in difficult parts of the decoding.

To sum up, in this section we have defined the ASR system that will provide
the transcriptions to the MT system. The final ASR system is based on a
BLSTM acoustic model with a lookahead context window of 0.6 seconds, using
the interpolation of the n-gram model and the TLM with a limited history
of 50, with the pruning parameters LMHR equal to 3 and LMHP equal to
80. This system provides 9.8 and 10.5 WER points on Europarl-ST dev and

99

Chapter 2. Cascade-based speech translation

 9.7

 9.8

 9.9

10.0

 10.1

 10.2

0.5 0.6 0.7 0.8 0.9

LMHP=Inf
LMHP=80

WER

RTF

Figure 2.6: WER vs. RTF as a function of the beam width without limiting the value of
LMHP (LMHP=Inf) and considering LMHP equal to 80 on the Europarl-ST dev set.

test sets, respectively. These figures are good enough to provide high-quality
transcriptions to ease the downstream MT process.

Simultaneous Machine Translation

Offline and simultaneous MT systems were trained for each of the translation
directions using the Transformer BASE configuration (Vaswani et al. 2017)
implemented with the Fairseq toolkit (Ott et al. 2019). The initial models are
general out-of-domain systems trained with the data shown in Table 2.23. After
training finishes, domain adaptation by finetuning (Luong and Manning 2015)
was carried out using the Europarl-ST training data. Finetuning is performed
using the SGD optimizer and a fixed learning rate, equal to that used in the
general-domain model when training finished. Early stopping is carried out by
measuring performance against the Europarl-ST dev set.

In the case of the MMAH models, the trade-off between accuracy and latency
has been explored by training several models varying the hyperparameter λ.
Wait-k models are trained using the multi-path strategy sampling different
values of k at each training step, and therefore the value of k can be specified at

100

i
i

i
i

i
i

i
i

Table 2.23: Training data used for the general-domain neural MT systems in millions of
sentence pairs.

Corpus Es-En (M) Es-Fr (M)
Common Crawl (CommonCrawl 2014) 1.8 –
DGT (Tiedemann 2012) – 4.8
EU Bookshop (Tiedemann 2012) 5.2 4.9
EU Bulletin (EU Bulletin 2009) 1.0 –
JRC-Acquis (Tiedemann 2012) – 1.6
UN (Callison-Burch, Koehn, Monz, et al. 2012) 11.2 25.8
Wikipedia (Tiedemann 2012) 1.8 –

decoding time. The accuracy of MT systems is evaluated in terms of Bilingual
Evaluation Understudy (BLEU) (Papineni et al. 2002). BLEU gauges the
degree of n-gram overlapping between the automatic and reference translations
ranging n from 1 to 4. In addition, a penalization factor is included if the
automatic translation is shorter than the reference translation.

In addition to BLEU, the theoretical latency of simultaneous MT systems is
usually evaluated in terms of delay of the output with respect to the input
by three measures: Average Proportion (AP) (K. Cho and Esipova 2016),
Average Lagging (AL) (M. Ma et al. 2019) and Differentiable Average Lagging
(DAL) (Cherry and Foster 2019). To define AP, AL and DAL we need to
introduce function g(), that for each output position i, g(i) indicates how
many words from the input had been read when output word ei was written.
AP is an average delay, in terms of input words, taking into account the source
sentence length |w|, that is,

AP =
1

|w| · |e|

|e|∑
i=1

g(i). (2.19)

AL can be understood as the average delay, in terms of input words, of the
system with respect to an ideal translator that does not need to wait for input
words to generate the next word (wait-0 policy) (M. Ma et al. 2019), that is,

AL =
1

τ

τ∑
i=1

g(i)− i− 1

γ
(2.20)

where γ = |e|/|w|.

101

Chapter 2. Cascade-based speech translation

In order to account for differences in source and target length, the measure is
computed only up to the input position at which the entire source sentence
has been fully read

τ = argmin
i:g(i)=|w|

g(i) (2.21)

Both AP and AL, specially the former, present some issues (Cherry and Foster
2019). DAL tries to solve those issues by assigning a cost to write operations,
while at the same time presenting a measure that is differentiable and could
be part of a loss function. In order to do this, a modified delay g′(i) including
the cost of writing operations is computed as

g′(i) =

{
g(i) i = 1

max
(
g(i), g′(i− 1) + 1

γ

)
i > 1

(2.22)

So, the DAL is defined as

DAL =
1

|e|

|e|∑
i=1

g′(i)− i− 1

γ
(2.23)

First, we evaluate the performance of MT systems by themselves, using the
Europarl-ST dev set reference transcriptions and oracle segmentation based
on end-of-sentence punctuation marks, in order to measure the accuracy gap
incurred between offline and simultaneous MT systems. Table 2.24 reports
comparative BLEU and latency measures as a function of the hyperparameter
λ for MMAH and k for wait-k when translating from Spanish into English and
French. Values of λ and k ≤ 4 were selected so that similar latency figures
were obtained for MMAH and wait-k systems, and a fair comparison in terms
of BLEU is possible. In the case of wait-k, an exceptionally high value for k
(k = 32) simulating offline behavior was additionally tested to compare BLEU
scores with the offline systems. As observed, in this latter comparison, the
offline system supersedes the wait-k system by 4.9 and 3.7 BLEU points for
Es-En and Es-Fr, respectively. This gap in BLEU is the baseline translation
quality degradation of deploying simultaneous vs. offline MT systems in order
to guarantee low-latency ST.

In the case of MMAH systems, latency is correlated with λ, since as λ increases,
latency decreases. When comparing BLEU scores across λ values, we observe

102

i
i

i
i

i
i

i
i

Table 2.24: BLEU, AP, AL and DAL results on the Europarl-ST dev set for Es-En and Es-
Fr with reference transcriptions and oracle segmentation as a function of the hyperparameter
λ.

Model Es-En Es-Fr
λ/k BLEU AP AL DAL BLEU AP AL DAL

Offline - 44.3 1.00 29.68 29.68 33.5 1.00 31.09 31.09

MMAH
0.1 31.0 0.69 5.58 9.79 25.6 0.62 3.28 7.24
0.2 29.9 0.63 3.79 7.84 23.0 0.60 2.44 6.42
0.4 30.5 0.62 3.37 6.64 24.4 0.59 2.23 5.98

Wait-k

1 32.6 0.57 2.14 2.89 27.0 0.62 3.80 4.76
2 35.2 0.59 2.90 3.49 29.1 0.65 4.61 5.46
4 37.6 0.65 4.47 5.05 29.9 0.70 6.15 7.00
32 39.4 0.99 25.4 25.29 29.8 0.99 25.99 26.23

only a slight improvement from λ = 0.4 to λ = 0.1, since heads gain in freedom
to align far apart one from the others. In wait-k systems, higher values of k
have larger delays as the model must wait longer before starting to translate,
but this results in better translation quality. The value of k has a significant
effect on quality for Es-En, whereas for Es-Fr, k values higher than 4 have very
similar performance.

As reported in Table 2.24, for the smallest latency values, wait-k models out-
perform the equivalent MMAH models. As we increase k allowing for slightly
longer delays, wait-k models are much better than MMAH models. Specifi-
cally, the wait-4 configuration is 6.6 and 4.3 BLEU points better than the best
MMAH model in Es-En and Es-Fr, respectively. As a result of this comparison,
the multi-path wait-k approach was selected in the rest of the experiments.

Speech Translation

Once the ASR system has been adjusted for streaming conditions in Section 3.5
and the simultaneous MT system was selected in Section 3.5, we move on to
evaluate the complete ST pipeline, including the segmentation model which
allows for a seamlessly connection between the ASR and MT systems under a
streaming setup.

The architectural overview of the segmentation model provided in Section 3.4
is instantiated here. First, an embedding layer of size 512 followed by a GRU-
based RNN of the same size is used in order to process the ASR text output.
The generated word state vectors are then combined with the acoustic word-

103

Chapter 2. Cascade-based speech translation

based feature vectors and fed into a two-layer FFN with ReLU activation,
followed by a softmax output layer. During training, dropout of 0.2 is applied
after the text-based RNN as well as after each layer of the FFN. Chunks be-
longing to the split class are upsampled so that, on average, one third of the
samples of each batch are split samples. Otherwise, the model has trouble con-
verging, as the data is heavily unbalanced. As previously mentioned, training
is carried out by first using a model with only a text RNN, and once it achieves
convergence, its weights are frozen and training continues with the addition of
the acoustic features.

This segmentation model was trained using the Europarl-ST data, as well as
additional data from the Europarl corpus (Koehn 2005) from years not covered
by Europarl-ST. Its hyperparameters, history size and future window length,
were tuned on the Europarl-ST dev set. As in (Iranzo-Sánchez, Giménez, et
al. 2020), longer history sizes improve BLEU scores of the ST system up to a
certain point, but similar BLEU scores are obtained beyond a history size of 10
words. Thus, history size was fixed to 10 words in these experiments. However,
the future window length has a significant impact on the performance of the
ST system, not only in terms of BLEU scores, but also in latency. It should be
reminded that the future window length d is the number of future words the
segmenter needs to see in order to make a split decision after the current word.
So, a trade-off between translation quality and latency in the segmentation
model needs to be found in conjunction with the simultaneous MT model.

Indeed, there are two main factors that contribute to the quality-latency trade-
off of the ST system: the already mentioned future window length d of the
segmentation model and the hyperparameter k of the wait-k models, that is,
the number of source words that the simultaneous MT system needs to read
before starting the translation. At the beginning, given an input ASR stream,
the segmenter and wait-k models accumulatively wait for d+k−1 words before
the MT system starts writing the translation. Then, the MT system will write
a translated word each time a new input word is received from the segmenter,
following the wait-k schedule.

In Section 3.5, we have discussed theoretical latencies in terms of how many
words the output is behind the input for simultaneous MT systems. However,
the MT system must also be able to work fast enough not to fall behind the
ASR system in a streaming setup. High latencies in a streaming ST system
can be caused by waiting too long for the ASR input, or due to a high com-
putational cost of the MT system itself that makes it unfeasible to process
the ASR output under real-time constraints. This is specially crucial in the
ST case, because due to the dependency on the ASR input, and the realistic

104

i
i

i
i

i
i

i
i

testing conditions, the system must keep an adequate throughput during the
entire streaming session. A simultaneous MT system that translates signifi-
cantly ahead of the ASR output does nothing to improve the response time,
while at the same time, if at any point the MT system falls behind the ASR
stream, it will need to catch up at some point in the future. This means that
short bursts of translation speed can only be used to catch up and make up
for previous slowdowns, but otherwise offer no advantage. We will test the
behaviour of our cascade ST system by measuring its latency in our realistic
streaming scenario.

To this purpose, we define accumulative word-level latencies at three points in
the system, as the time elapsed between a word spoken, and: 1) The moment
the consolidated hypothesis for that word is provided by the ASR system;
2) The moment the segmenter has processed that word on the ASR consoli-
dated hypothesis; 3) The moment the MT system translates that word after
being processed by the segmenter. In addition, some considerations should be
done about how latencies have been estimated. On the one hand, it should
be noticed that this ST system is working with ASR consolidated hypothe-
ses in the sense that these hypotheses will not change as the audio stream is
further processed. Working with non-consolidated hypotheses it is also possi-
ble, and in fact it reduces drastically the ASR latency. However, although in
our experience non-consolidated hypotheses are suitable for an ASR stream-
ing scenario, we realised that when combined with an MT system it produces
an annoying flickering effect. For this reason, despite the increase in ASR la-
tency it was decided to work only on consolidated hypotheses. On the other
hand, determining when a spoken word has been translated is not a trivial
task since translation is not a monotonic process, and hence, a correspondence
between input and output words is required. Although it would be possible to
retrieve alignments from the translation process, in order to simplify the esti-
mation of the MT latency, it was decided to use the approximation recently
proposed in (N. Arivazhagan et al. 2020). In this approach, the estimation of
the alignment between words is approximated by assuming a uniform mono-
tonic alignment. More precisely, for a given output word ei the position j of
its corresponding word in the input sentence is calculated as j = i · |w|/|e|.

Table 2.25 reports accumulative word-level latencies, in terms of mean and
standard deviation, for the ASR system plus the segmentation model, before
detailing latencies of the complete ST system when incorporating the MT
system. As previously mentioned, latencies were computed using complete
MEP interventions. All reported latencies are measured on a machine with a
i7-3820 CPU and a RTX 2080Ti GPU.

105

Chapter 2. Cascade-based speech translation

Table 2.25: Accumulative word-level latencies in seconds (mean ± std. dev.) for the ASR
and segmenter components of the ST system on the Europarl-ST dev set.

Latency (seconds)
ASR 1.6 ± 0.5
+ Seg. (d=0) 2.0 ± 0.6
+ Seg. (d=1) 2.4 ± 0.7
+ Seg. (d=2) 2.8 ± 0.8
+ Seg. (d=4) 3.5 ± 0.9

As observed in Table 2.25, the ASR system introduces a latency of 1.6s. Around
0.9s is due to the lookahead context and other decoding aspects, while the other
0.7s is related to the fact we are working with consolidated hypotheses. The
segmenter adds an additional latency that ranges from 0.4s to 1.9s depending
on the future window length. This latency is mostly due to the need to wait
for the words in the future window to be consolidated by the ASR, as the time
taken by the segmenter to decide whether to split or not is negligible (' 0.01s).
In the case of d = 0, the additional delay of 0.4s with respect to the ASR system
is due to the fact that the segmenter needs to wait for the consolidation of the
next silence phoneme in order to compute the corresponding acoustic features.

Next, we focus on the trade-off between latency and quality of the complete
ST system. Figure 2.7 shows BLEU scores vs. average word-level latency in
seconds on the Europarl-ST dev set for Es-En (top) and Es-Fr (bottom) trans-
lation directions. Each curve represents a fixed value for the future window
length d = {0, 1, 2, 4} of the segmenter, while each point on this curve from
left to right correspond to k = {1, 2, 4, 8} of the wait-k model behind.

As observed, in general terms, for a given latency, it is more beneficial to use
a lower value of d such as 1 or 2, paired with a higher value of k, than to use
configurations with higher d but lower k. Therefore, we can conclude that, at
lower latency regimes, increasing k has a bigger positive impact than increasing
d. However, if we continue to increase k we quickly start to get diminishing
returns, at which point it is more efficient to increase latency by giving more
context to the segmenter. Overall, it can be said that the MT decoding strat-
egy has a bigger impact on translation quality than the segmenter context,
but segmentation quality remains a limiting factor for downstream MT per-
formance. This means that sometimes it will be necessary to increase d if a
certain MT quality threshold must be reached.

106

i
i

i
i

i
i

i
i

 22

 24

 26

 28

 30

 32

 34

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BLEU

Latency(s)

Es-En

Es-Fr

d=0

d=1
d=2

d=4

d=0

d=1
d=2

d=4

Figure 2.7: BLEU vs average word-level latency for Es-En (top) and Es-Fr (bottom) with
future window length d = {0, 1, 2, 4} of the segmentation model on Europarl-ST dev set.
Points on each curve from left to right represent increasing values of k = {1, 2, 4, 8} in the
wait-k MT system.

107

Chapter 2. Cascade-based speech translation

Table 2.26: BLEU scores under the input settings for the wait-k MT system evaluated on
the Es-En and Es-Fr Europarl-ST test sets.

Input Es-En Es-Fr
Ref. + Oracle Seg. 34.8 27.5
ASR + Oracle Seg. 31.8 24.7
ASR + DS 30.0 22.9

When looking for a final configuration to use, it would be ideal to choose one
that maximizes quality without adding so much latency that the user experi-
ence is negative. We propose to use a latency similar to that of a professional
(human) interpreter, so that our (artificial) interpreter can be used in a similar
way. Fortunately, there exists ample literature about measuring the Ear-Voice
Span (EVS) of human interpreters, which is the delay between a chunk being
spoken and its corresponding translation being produced. Many factors have
been shown to affect EVS (Yagi 2000), but a delay of 2-4 seconds is a reason-
able expected value (Barik 1973; Lederer 1978; T.-H. Lee 2002). Therefore,
we select a combination of d and k values that maximizes quality but does not
exceed a latency of 4 seconds. Based on this, we have chosen d = 1 with k = 4
for Es-En, and d = 0 with k = 2 for Es-Fr.

Next, we evaluate the proposed ST system on the Europarl-ST test set in
terms of accuracy and latency. First, in order to measure the degradation of
the ST performance introduced by upstream ASR and/or segmentation errors,
we compare the system accuracy depending on the input configuration: ASR
output segmented with the DS model, ASR output with oracle segmentation
and reference transcription with oracle segmentation. The oracle segmenta-
tion is based on end-of-sentence punctuation marks. Table 2.26 reports BLEU
scores for the input configurations mentioned above on the Es-En and Es-Fr
Europarl-ST test sets. First, the configuration of reference transcription plus
oracle segmentation defines an upper bound for BLEU scores when neither
ASR nor segmentation errors are present. Then, the ASR output plus oracle
segmentation allows to know how much translation accuracy degradation is
introduced by the DS model shown in the last row. As observed, the degra-
dation in BLEU scores with respect to the ASR output and DS model due to
the effect of segmentation errors is 1.8 points in both language pairs, while the
impact of segmentation plus ASR errors goes from 4.6 points for Es-Fr to 4.8
points for Es-En.

Table 2.27 shows accumulative word-level latencies for the three components of
the ST system on the Es-En and Es-Fr Europarl-ST test sets. As expected from

108

i
i

i
i

i
i

i
i

Table 2.27: Accumulative word-level latencies in seconds (mean ± std. dev.) for the ASR,
segmenter and MT components of the ST system on Es-En and Es-Fr Europarl-ST test sets.

Es-En Es-Fr
ASR 1.7 ± 0.5
+ Seg. 2.4 ± 0.7 2.0 ± 0.6
+ MT 4.0 ± 1.8 3.9 ± 1.9

hyperparameter tuning on the dev set, the average latency of the complete ST
systems is 4 seconds for both translation directions. Almost half of the latency
is explained by the ASR, while the other half is due to the segmenter plus the
MT system, though in different proportion depending on the language. As
observed, the MT component introduces the greater amount of variability in
the latency of the ST system.

Finally, we compare the translation accuracy and word-level latency of the DS
model with other streaming segmentation schemes, integrating them into our
streaming ST pipeline and tuning them on the dev set under the same maxi-
mum 4-second word-level latency constraint. Three segmentation schemes were
initially considered: a VAD-based segmenter (Silvestre-Cerdà et al. 2012), a
monolingual MT segmenter (E. Cho, Jan Niehues, and Waibel 2017) and an
ASR-based segmenter grounded on the by-product of the ASR decoding when
the special end-of-chunk token is recognized. However, the VAD-segmenter
was discarded because it makes the ST system to work in an off-line manner.
In other words, the VAD segmenter prevents the ST system from translat-
ing simultaneously since the ASR output only becomes available to the MT
system as complete chunks, and consequently only chunk-level latencies could
be measured. Table 2.28 shows comparative BLEU scores and accumulative
word-level latencies for the ST system as a function of the segmentation scheme
on the Europarl-ST test sets. As observed, the DS model and the ASR-based
segmenter achieved similar BLEU scores, but both better than the monolin-
gual MT segmenter. However, the DS model clearly exhibits a lower latency
variance than the ASR-based segmenter, since the latter defines chunks that
are approximately 60% longer than the former leading the simultaneous MT
system to incur in a greater latency variability. In addition, it should be re-
minded that the ASR-based segmenter is a by-product of the ASR system. On
the one hand, this means that the ASR-based segmenter is taking advantage
of the large amount of data devoted to train the ASR system, indeed one order
of magnitude larger than the DS model. But, on the other hand, the ASR-
based segmenter is fully dependent on the ASR system in contrast to the high

109

Chapter 2. Cascade-based speech translation

Table 2.28: Comparative BLEU scores and accumulative word-level latencies across seg-
mentation schemes evaluated on the Es-En and Es-Fr Europarl-ST test sets.

Es-En Es-Fr
BLEU Latency BLEU Latency

Mono. MT 28.1 3.6 ± 4.7 21.4 3.7 ± 4.4
ASR-based 29.9 3.2 ± 3.1 23.1 3.9 ± 3.9
DS 30.0 4.0 ± 1.8 22.9 3.9 ± 1.9

flexibility provided by the DS model, that can be trained independently from
the ASR system in terms of both, input features and model architecture.

3.6 Conclusions

In this work we have presented a state-of-the-art streaming ST system un-
der the cascade approach. After revisiting from a streaming viewpoint the
neural-based models behind the ASR and MT components, special attention
is devoted to the direct segmentation model that allows to accommodate the
continuous ASR output to the limited-length capacity of state-of-the-art si-
multaneous MT systems.

In ASR, the BLSTM network employed for acoustic modeling was modified
in order to consider a lookahead context of future frames to deal with the
progressive access to the input acoustic sequence in a streaming setup. Indeed,
WER figures proved the impact of the lookahead context in the ASR system.
On the other hand, neural-based LMs exploited the idea of the VR term to
minimize inference time, while limiting the history size in training and via
the LMHR and LMHP parameters in decoding had a minor effect in terms
of WER, but allowed for low latencies on the Europarl-ST benchmark under
real-time constraints.

Next, two state-of-the-art simultaneous MT systems, MMAH and multi-path
wait-k, were assessed before deploying a streaming cascade-based ST pipeline.
This pipeline integrating our DS model was extensively evaluated in conjunc-
tion with the best performing wait-k MT systems to guarantee low latency
for usability purposes while preserving translation quality. In this respect, the
DS model proved to play a crucial role in a streaming ST system to manage
unbounded audio streams.

In terms of future work, performance improvements could be obtained by a
closer coupling of the components of the cascade system. Currently, the si-

110

i
i

i
i

i
i

i
i

References

multaneous MT system has a translation policy that is independent from the
ASR input stream. A dynamic policy that takes into account how many ASR
words are ready could provide improvements in quality with little to none ad-
ditional latency. Another research line to improve performance is to consider
segmentation and translation as a joint problem, therefore avoiding a source of
cascading errors. Finally, an adequately modified document-level MT model
could carry out simultaneous translation without the need for a segmentation
model.

Acknowledgements

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation program under grant agreement
no. 761758 (X5Gon) and 952215 (TAILOR); the Government of Spain’s re-
search project Multisub, ref. RTI2018-094879-B-I00 (MCIU/AEI/FEDER,EU)
and FPU scholarships FPU14/03981 and FPU18/04135; and the Generalitat
Valenciana’s research project Classroom Activity Recognition, ref. PROME-
TEO/2019/111 and predoctoral research scholarship ACIF/2017/055.

References

Abadi, Martin et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org (cit. on p. 95).

Aggarwal, Rajesh and Mayank Dave (2012). “Filterbank optimization for ro-
bust ASR using GA and PSO”. In: International Journal of Speech Technol-
ogy 15, pp. 191–201 (cit. on p. 94).

Agua, Miguel A. del et al. (2014). “The Translectures-UPV Toolkit”. In: Ad-
vances in Speech and Language Technologies for Iberian Languages. Ed. by
Juan Luis Navarro Mesa et al. Springer International Publishing, pp. 269–
278. isbn: 978-3-319-13623-3. doi: 10.1007/978-3-319-13623-3_28 (cit.
on p. 94).

Arivazhagan, N. et al. (2020). “Re-Translation Strategies for Long Form, Si-
multaneous, Spoken Language Translation”. In: Proc. of ICASSP, pp. 7919–
7923 (cit. on pp. 83, 105).

Arivazhagan, Naveen et al. (2019). “Monotonic Infinite Lookback Attention for
Simultaneous Machine Translation”. In: Proc. of ACL. ACL, pp. 1313–1323.
doi: 10.18653/v1/P19-1126 (cit. on pp. 83, 88, 89).

Arısoy, Ebru et al. (2014). “Converting neural network language models into
back-off language models for efficient decoding in automatic speech recog-

111

https://doi.org/10.1007/978-3-319-13623-3_28
https://doi.org/10.18653/v1/P19-1126

Chapter 2. Cascade-based speech translation

nition”. In: IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing 22.1, pp. 184–192 (cit. on p. 87).

Bahar, Parnia, Tobias Bieschke, and Hermann Ney (Dec. 2019). “A compar-
ative study on end-to-end speech to text translation”. In: Proc. of IEEE
ASRU, pp. 792–799. doi: 10.1109/ASRU46091.2019.9003774 (cit. on p. 82).

Bahar, Parnia, Patrick Wilken, et al. (2020). “Start-Before-End and End-to-
End: Neural Speech Translation by AppTek and RWTH Aachen University”.
In: Proc. of IWSLT (cit. on pp. 82, 83).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: Proc. of
ICLR. Ed. by Yoshua Bengio and Yann LeCun (cit. on p. 82).

Baquero-Arnal, Pau et al. (2020). “Improved Hybrid Streaming ASR with
Transformer Language Models”. In: Proc. of Interspeech, pp. 2127–2131 (cit.
on pp. 86, 96, 97).

Barik, H. (1973). “Simultaneous Interpretation: Temporal and Quantitative
Data”. In: Language and Speech 16, pp. 237–270 (cit. on p. 108).

Barrault, Loïc et al. (2020). “Findings of the 2020 Conference on Machine
Translation (WMT20)”. In: WMT (cit. on p. 88).

Bengio, Yoshua et al. (2003). “A Neural Probabilistic Language Model”. In: J.
Mach. Learn. Res. 3, pp. 1137–1155 (cit. on p. 86).

Berard, Alexandre et al. (2018). “End-to-End Automatic Speech Translation
of Audiobooks”. In: Proc. of ICASSP. IEEE, pp. 6224–6228. doi: 10.1109/
ICASSP.2018.8461690 (cit. on p. 82).

Bourlard, Herve and Christian J Wellekens (1990). “Links between Markov
models and multilayer perceptrons”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 12.12, pp. 1167–1178 (cit. on p. 85).

Bozheniuk, Vitalii et al. (2020). “A comprehensive study of Residual CNNs for
acoustic modeling in ASR”. In: Proc. of ICASSP. IEEE (cit. on p. 85).

Callison-Burch, Chris, Philipp Koehn, Christof Monz, et al. (2012). “Findings
of the 2012 Workshop on Statistical Machine Translation”. In: Proc. of WMT.
ACL, pp. 10–51 (cit. on pp. 96, 101).

Chan, William et al. (2016). “Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition”. In: Proc. of ICASSP.
IEEE, pp. 4960–4964. doi: 10.1109/ICASSP.2016.7472621 (cit. on p. 82).

Chen, Stanley F. and Joshua Goodman (1999). “An empirical study of smooth-
ing techniques for language modeling”. In: Computer Speech and Language
13.4, pp. 359–394 (cit. on p. 86).

Chen, Xie et al. (2017). “Future word contexts in neural network language
models”. In: Proc of ASRU. IEEE Signal Processing Society, pp. 97–103 (cit.
on p. 87).

112

https://doi.org/10.1109/ASRU46091.2019.9003774
https://doi.org/10.1109/ICASSP.2018.8461690
https://doi.org/10.1109/ICASSP.2018.8461690
https://doi.org/10.1109/ICASSP.2016.7472621

i
i

i
i

i
i

i
i

References

Chen, Xi et al. (2016). “CUED-RNNLM — An open-source toolkit for efficient
training and evaluation of recurrent neural network language models”. In:
ICASSP 2016 (cit. on p. 95).

Cherry, Colin and George Foster (2019). “Thinking Slow about Latency Eval-
uation for Simultaneous Machine Translation”. In: arXiv:1906.00048 (cit. on
pp. 101, 102).

Cho, Eunah, Jan Niehues, Kevin Kilgour, et al. (2015). “Punctuation insertion
for real-time spoken language translation”. In: Proc. of IWSLT. ISCA (cit. on
p. 83).

Cho, Eunah, Jan Niehues, and Alex Waibel (2017). “NMT-Based Segmentation
and Punctuation Insertion for Real-Time Spoken Language Translation”. In:
Proc. of Interspeech. ISCA, pp. 2645–2649. doi: 10.21437/Interspeech.
2017-1320 (cit. on p. 109).

Cho, Kyunghyun and Masha Esipova (2016). “Can neural machine translation
do simultaneous translation?” In: arXiv preprint arXiv:1606.02012 (cit. on
p. 101).

Cho, Kyunghyun, Bart van Merriënboer, et al. (2014). “Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical Machine Translation”.
In: Proc. of EMNLP. ACL, pp. 1724–1734 (cit. on p. 91).

CommonCrawl (2014). http://commoncrawl.org/ (cit. on pp. 96, 101).
Dai, Zihang et al. (2019). “Transformer-XL: Attentive Language Models be-
yond a Fixed-Length Context”. In: Proc. of ACL, pp. 2978–2988 (cit. on
p. 83).

Elbayad, Maha, Laurent Besacier, and Jakob Verbeek (2020). “Efficient Wait-
k Models for Simultaneous Machine Translation”. In: Proc. of Interspeech,
pp. 1461–1465 (cit. on pp. 88, 89).

Eldiario.es (2017). https://www.eldiario.es/ (cit. on p. 96).
ElPeriodico.com (2017). https://www.elperiodico.com/ (cit. on p. 96).
European Parliament and DG Translation (2019). Live Speech to Text and
Machine Translation Tool for 24 Languages (cit. on p. 93).

EU Bulletin (2009). https : / / ec . europa . eu / archives / bulletin / en /
welcome.htm (cit. on p. 101).

Fügen, Christian, AlexWaibel, and Muntsin Kolss (2007). “Simultaneous trans-
lation of lectures and speeches”. In: Machine Translation 21.4, pp. 209–252.
doi: 10.1007/s10590-008-9047-0 (cit. on p. 83).

Gangi, Mattia Antonino Di et al. (2019). “Enhancing Transformer for End-to-
end Speech-to-Text Translation”. In: Proc. of MT Summit XVII Volume 1:
Research Track. EAMT, pp. 21–31 (cit. on p. 82).

Graves, Alex, Navdeep Jaitly, and Abdel-rahman Mohamed (2013). “Hybrid
speech recognition with deep bidirectional LSTM”. In: Proc. of ASRU. IEEE.
IEEE Signal Processing Society, pp. 273–278 (cit. on p. 85).

113

https://doi.org/10.21437/Interspeech.2017-1320
https://doi.org/10.21437/Interspeech.2017-1320
http://commoncrawl.org/
https://www.eldiario.es/
https://www.elperiodico.com/
https://ec.europa.eu/archives/bulletin/en/welcome.htm
https://ec.europa.eu/archives/bulletin/en/welcome.htm
https://doi.org/10.1007/s10590-008-9047-0

Chapter 2. Cascade-based speech translation

Gu, Jiatao et al. (2017). “Learning to Translate in Real-time with Neural Ma-
chine Translation”. In: Proc. of EACL. ACL, pp. 1053–1062 (cit. on p. 83).

Hinton, Geoffrey E et al. (2012). “Improving neural networks by preventing co-
adaptation of feature detectors”. In: arXiv preprint arXiv:1207.0580 (cit. on
p. 95).

Hinton, Geoffrey et al. (2012). “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups”. In: IEEE
Signal processing magazine 29.6, pp. 82–97 (cit. on p. 85).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”.
In: Neural computation 9.8, pp. 1735–1780 (cit. on p. 85).

Iranzo-Sánchez, Javier, Adrià Giménez, et al. (2020). “Direct Segmentation
Models for Streaming Speech Translation”. In: Proc. of EMNLP, pp. 2599–
2611 (cit. on pp. 83, 90, 91, 93, 104).

Iranzo-Sánchez, Javier, Joan Albert Silvestre-Cerdà, et al. (2020). “Europarl-
ST: A Multilingual Corpus For Speech Translation Of Parliamentary De-
bates”. In: Proc. of ICASSP. IEEE, pp. 8229–8233 (cit. on pp. 83, 93).

Irie, Kazuki et al. (2019). “Language Modeling with Deep Transformers”. In:
Proc. Interspeech 2019. ISCA, pp. 3905–3909. doi: 10.21437/Interspeech.
2019-2225 (cit. on pp. 82, 86).

Jia, Ye et al. (2019). “Direct Speech-to-Speech Translation with a Sequence-to-
Sequence Model”. In: Proc. of Interspeech. Ed. by Gernot Kubin and Zdravko
Kacic. ISCA, pp. 1123–1127. doi: 10.21437/Interspeech.2019-1951 (cit.
on p. 82).

Jorge, Javier, Adrià Giménez, Javier Iranzo-Sánchez, Jorge Civera, et al. (2019).
“Real-time One-pass Decoder for Speech Recognition Using LSTM Language
Models”. In: Proc. of Interspeech, pp. 3820–3824. published (cit. on p. 83).

Jorge, Javier, Adrià Giménez, Javier Iranzo-Sánchez, Joan Albert Silvestre-
Cerdà, et al. (Jan. 1, 2020). “LSTM-Based One-Pass Decoder for Low-Latency
Streaming”. In: Proc. of ICASSP. IEEE (cit. on pp. 82, 83, 97, 99).

Jorge, Javier, Adria Giménez, et al. (2020). “LSTM-Based One-Pass Decoder
for Low-Latency Streaming”. In: Proc. of ICASSP. IEEE, pp. 7814–7818 (cit.
on pp. 85, 86).

Jorge, Javier, Adrià Giménez, et al. (2019). “Real-Time One-Pass Decoder for
Speech Recognition Using LSTM Language Models”. In: Proc. of Interspeech,
pp. 3820–3824 (cit. on p. 87).

Junczys-Dowmunt, Marcin (2019). “Microsoft Translator at WMT 2019: To-
wards Large-Scale Document-Level Neural Machine Translation”. In: Proc.
of WMT, pp. 225–233 (cit. on p. 90).

Kneser, Reinhard and Hermann Ney (1995). “Improved backing-off for m-gram
language modeling”. In: Proc .of ICASSP. Vol. 1. IEEE, pp. 181–184 (cit. on
p. 95).

114

https://doi.org/10.21437/Interspeech.2019-2225
https://doi.org/10.21437/Interspeech.2019-2225
https://doi.org/10.21437/Interspeech.2019-1951

i
i

i
i

i
i

i
i

References

Koehn, Philipp (2005). “Europarl: A Parallel Corpus for Statistical Machine
Translation”. In: Proc. of MT Summit. AAMT, pp. 79–86 (cit. on p. 104).

Lederer, Marianne (1978). “Simultaneous Interpretation — Units of Meaning
and other Features”. In: Language Interpretation and Communication. Ed.
by David Gerver and H. Wallace Sinaiko. Springer US, pp. 323–332 (cit. on
p. 108).

Lee, Kyungmin et al. (2018). “Accelerating recurrent neural network language
model based online speech recognition system”. In: arXiv:1801.09866 (cit. on
p. 87).

Lee, Tae-Hyung (2002). “Ear Voice Span in English into Korean Simultaneous
Interpretation”. In: Meta 47.4, pp. 596–606 (cit. on p. 108).

Lleida, Eduardo et al. (2019). “Albayzin 2018 Evaluation: The IberSpeech-
RTVE Challenge on Speech Technologies for Spanish Broadcast Media”. In:
Applied Sciences 9.24. issn: 2076-3417. doi: 10.3390/app9245412 (cit. on
p. 95).

Luong, Minh-Thang and Christopher D. Manning (2015). “Stanford Neural
Machine Translation Systems for Spoken Language Domain”. In: Proc. of
IWSLT (cit. on p. 100).

Ma, Mingbo et al. (2019). “STACL: Simultaneous Translation with Implicit
Anticipation and Controllable Latency using Prefix-to-Prefix Framework”.
In: Proc. of ACL. ACL, pp. 3025–3036. doi: 10.18653/v1/P19-1289 (cit.
on pp. 83, 88, 89, 101).

Ma, Xutai et al. (2020). “Monotonic Multihead Attention”. In: Proc. ICLR
2020. OpenReview.net (cit. on p. 88).

Miao, H. et al. (2020). “Transformer-Based Online CTC/Attention End-To-
End Speech Recognition Architecture”. In: Proc. of ICASSP, pp. 6084–6088
(cit. on p. 83).

Mnih, Andriy and Yee Whye Teh (2012). “A fast and simple algorithm for train-
ing neural probabilistic language models”. In: arXiv preprint arXiv:1206.6426
(cit. on p. 95).

Mohri, Mehryar and Michael Riley (1999). “Integrated context-dependent net-
works in very large vocabulary speech recognition”. In: Proc. of ECSCT (cit.
on pp. 86, 88).

– (2001). “A weight pushing algorithm for large vocabulary speech recognition”.
In: Proc. of ECSCT (cit. on p. 86).

Moritz, N., T. Hori, and J. Le (2020). “Streaming Automatic Speech Recog-
nition with the Transformer Model”. In: Proc. of ICASSP, pp. 6074–6078
(cit. on pp. 83, 97).

News Crawl corpus (2015). http://www.statmt.org/wmt15/translation-
task.html (cit. on p. 96).

115

https://doi.org/10.3390/app9245412
https://doi.org/10.18653/v1/P19-1289
http://www.statmt.org/wmt15/translation-task.html
http://www.statmt.org/wmt15/translation-task.html

Chapter 2. Cascade-based speech translation

Ney, Hermann (1984). “The use of a one-stage dynamic programming algorithm
for connected word recognition”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 32.2, pp. 263–271 (cit. on p. 86).

Ney, Hermann and Stefan Ortmanns (2000). “Progress in dynamic program-
ming search for LVCSR”. In: Proc. of IEEE 88.8, pp. 1224–1240 (cit. on
p. 86).

Niehues, J. et al. (2019). “The IWSLT 2019 Evaluation Campaign”. In: Proc.
of IWSLT. ISCA. doi: 10.5281/zenodo.3525578 (cit. on p. 82).

Niehues, Jan et al. (2018). “Low-Latency Neural Speech Translation”. In: Proc.
of Interspeech. ISCA, pp. 1293–1297 (cit. on p. 83).

Nolden, D. (2017). “Progress in Decoding for Large Vocabulary Continuous
Speech Recognition”. PhD thesis. RWTH Aachen University, Germany (cit.
on pp. 86, 87).

Oda, Yusuke et al. (2014). “Optimizing segmentation strategies for simultane-
ous speech translation”. In: Proc. of ACL, pp. 551–556 (cit. on p. 83).

Ott, Myle et al. (2019). “fairseq: A Fast, Extensible Toolkit for Sequence Mod-
eling”. In: Proc. of NAACL-HLT: Demonstrations. ACL (cit. on pp. 95, 100).

Papineni, Kishore et al. (2002). “Bleu: a Method for Automatic Evaluation of
Machine Translation”. In: Proc. of ACL. ACL, pp. 311–318. doi: 10.3115/
1073083.1073135 (cit. on p. 101).

Park, Daniel S. et al. (2019). “SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition”. In: Proc. Interspeech, pp. 2613–
2617 (cit. on pp. 82, 95).

Pino, Juan et al. (2019). “Harnessing Indirect Training Data for End-to-End
Automatic Speech Translation: Tricks of the Trade”. In: Proc. of IWSLT.
ISCA. doi: 10.5281/zenodo.3525032 (cit. on p. 82).

Popel, Martin and Ondřej Bojar (2018). “Training tips for the Transformer
model”. In: The Prague Bulletin of Mathematical Linguistics 110.1, pp. 43–
70 (cit. on p. 83).

Povey, Daniel et al. (2011). “The Kaldi Speech Recognition Toolkit”. In: Proc.
of ASRU. IEEE Signal Processing Society (cit. on p. 86).

Raffel, Colin et al. (2017). “Online and Linear-Time Attention by Enforcing
Monotonic Alignments”. In: Proc. of ICML. Vol. 70. PMLR, pp. 2837–2846
(cit. on p. 88).

Rangarajan Sridhar, Vivek Kumar et al. (2013). “Segmentation Strategies for
Streaming Speech Translation”. In: Proc. of NAACL-HLT. ACL, pp. 230–238
(cit. on p. 83).

Russell, M. and R. Moore (1985). “Explicit modelling of state occupancy in hid-
den Markov models for automatic speech recognition”. In: Proc. of ICASSP.
Vol. 10, pp. 5–8 (cit. on p. 85).

116

https://doi.org/10.5281/zenodo.3525578
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.5281/zenodo.3525032

i
i

i
i

i
i

i
i

References

Sainath, Tara N et al. (2015). “Deep convolutional neural networks for large-
scale speech tasks”. In: Neural Networks 64, pp. 39–48 (cit. on p. 85).

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural
networks”. In: IEEE transactions on Signal Processing 45.11, pp. 2673–2681
(cit. on p. 85).

Schwenk, Holger (2007). “Continuous Space Language Models”. In: Computer
Speech and Language 21.3, pp. 492–518 (cit. on p. 86).

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016a). “Improving Neu-
ral Machine Translation Models with Monolingual Data”. In: Proc. of ACL.
ACL, pp. 86–96. doi: 10.18653/v1/p16-1009 (cit. on p. 82).

– (2016b). “Neural Machine Translation of Rare Words with Subword Units”.
In: Proc. of ACL. ACL, pp. 1715–1725. doi: 10.18653/v1/p16-1162 (cit. on
p. 82).

Shannon, C. E. (1948). “A Mathematical Theory of Communication”. In: Bell
System Technical Journal 27.3, pp. 379–423 (cit. on p. 86).

Shi, Yongzhe et al. (2014). “Efficient One-Pass Decoding with NNLM for
Speech Recognition”. In: IEEE Signal Processing Letters 21.4, pp. 377–381
(cit. on p. 86).

Silvestre-Cerdà, Joan Albert et al. (Nov. 22, 2012). “Albayzin Evaluation: The
PRHLT-UPV Audio Segmentation System”. In: Proc. of IberSPEECH 2012,
pp. 596–600. published (cit. on p. 109).

Singh, Mittul, Youssef Oualil, and Dietrich Klakow (2017). “Approximated and
Domain-Adapted LSTM Language Models for First-Pass Decoding in Speech
Recognition.” In: Proc. of Interspeech, pp. 2720–2724 (cit. on p. 87).

Stolcke, Andreas (2002). “SRILM - an extensible language modeling toolkit.”
In: Proc. of Interspeech. Ed. by John H. L. Hansen and Bryan L. Pellom.
ISCA, pp. 901–904 (cit. on p. 95).

Sundermeyer, Martin et al. (2014). “Lattice decoding and rescoring with long-
span neural network language models”. In: Proc. of ISCA (cit. on p. 87).

Tiedemann, Jörg (2012). “Parallel Data, Tools and Interfaces in OPUS”. In:
Proc. of LREC. ELRA, pp. 2214–2218 (cit. on pp. 96, 101).

UFAL Medical Corpus (2018). http://ufal.mff.cuni.cz/ufal_medical_
corpus (cit. on p. 96).

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Proc. of NIPS.
Ed. by Isabelle Guyon et al., pp. 5998–6008 (cit. on pp. 82, 86, 100).

Viterbi, Andrew (1967). “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm”. In: IEEE Transactions on Informa-
tion Theory 13.2, pp. 260–269 (cit. on p. 86).

Weiss, Ron J. et al. (2017). “Sequence-to-Sequence Models Can Directly Trans-
late Foreign Speech”. In: Proc. of Interspeech. ISCA, pp. 2625–2629. doi:
10.21437/Interspeech.2017-503 (cit. on p. 82).

117

https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1162
http://ufal.mff.cuni.cz/ufal_medical_corpus
http://ufal.mff.cuni.cz/ufal_medical_corpus
https://doi.org/10.21437/Interspeech.2017-503

Chapter 2. Cascade-based speech translation

Wikipedia (2015). https://www.wikipedia.org/ (cit. on p. 96).
Xu, H. et al. (2018). “A Pruned RNNLM Lattice-Rescoring Algorithm for
Automatic Speech Recognition”. In: Proc. of ICASSP, pp. 5929–5933 (cit.
on p. 87).

Yagi, Sane (2000). “Studying style in simultaneous interpretation”. In: Meta:
Journal des traducteurs/Meta: Translators’ Journal 45.3, pp. 520–547 (cit.
on p. 108).

Zeyer, A., R. Schlüter, and H. Ney (2016). “Towards Online-Recognition with
Deep Bidirectional LSTMAcoustic Models”. In: Proc. of Interspeech, pp. 3424–
3428 (cit. on p. 85).

Zeyer, Albert, Parnia Bahar, et al. (2019). “A comparison of Transformer and
LSTM encoder decoder models for ASR”. In: Proc. of ASRU. IEEE Signal
Processing Society, pp. 8–15 (cit. on p. 83).

Zeyer, Albert, Patrick Doetsch, et al. (2017). “A comprehensive study of deep
bidirectional LSTM RNNs for acoustic modeling in speech recognition”. In:
Proc. of ICASSP. IEEE, pp. 2462–2466 (cit. on pp. 85, 95).

Zeyer, Albert, Ralf Schlüter, and Hermann Ney (2016). “Towards Online-
Recognition with Deep Bidirectional LSTM Acoustic Models”. In: Proc. of
Interspeech 2016. Ed. by Nelson Morgan. ISCA, pp. 3424–3428. doi: 10.
21437/Interspeech.2016-759 (cit. on p. 83).

Zhang, Q., H. Lu, et al. (2020). “Transformer Transducer: A Streamable Speech
Recognition Model with Transformer Encoders and RNN-T Loss”. In: Proc.
of ICASSP, pp. 7829–7833 (cit. on pp. 83, 97).

Zheng, Baigong et al. (2019). “Simpler and Faster Learning of Adaptive Poli-
cies for Simultaneous Translation”. In: Proc. of EMNLP-IJCNLP. ACL,
pp. 1349–1354. doi: 10.18653/v1/D19-1137 (cit. on pp. 83, 89).

Zhou, W. et al. (2020). “The RWTH ASR System for Ted-Lium Release 2: Im-
proving Hybrid HMM With SpecAugment”. In: Proc. of ICASSP, pp. 7839–
7843 (cit. on p. 97).

Zolnay, András, Ralf Schluter, and Hermann Ney (2005). “Acoustic feature
combination for robust speech recognition”. In: Proc. of ICASSP 2005. Vol. 1.
IEEE, pp. I–457 (cit. on p. 94).

118

https://www.wikipedia.org/
https://doi.org/10.21437/Interspeech.2016-759
https://doi.org/10.21437/Interspeech.2016-759
https://doi.org/10.18653/v1/D19-1137

i
i

i
i

i
i

i
i

4 Stream-level Latency Evaluation for Simultaneous Machine
Translation

Javier Iranzo-Sánchez, Jorge Civera, Alfons Juan

Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 664-670

Punta Cana (Dominican Republic)

10.18653/v1/2021.findings-emnlp.58

7–11 November 2021

i
i

i
i

i
i

i
i

Stream-level Latency Evaluation for Simultaneous
Machine Translation

Javier Iranzo-Sánchez, Jorge Civera, Alfons Juan

Abstract

Simultaneous machine translation has recently gained traction thanks
to significant quality improvements and the advent of streaming ap-
plications. Simultaneous translation systems need to find a trade-
off between translation quality and response time, and with this
purpose multiple latency measures have been proposed. However,
latency evaluations for simultaneous translation are estimated at
the sentence level, not taking into account the sequential nature
of a streaming scenario. Indeed, these sentence-level latency mea-
sures are not well suited for continuous stream translation, result-
ing in figures that are not coherent with the simultaneous trans-
lation policy of the system being assessed. This work proposes a
stream-level adaptation of the current latency measures based on a
re-segmentation approach applied to the output translation, that
is successfully evaluated on streaming conditions for a reference
IWSLT task.

4.1 Introduction

Simultaneous speech translation systems just started to become available (Ba-
har et al. 2020; Elbayad, Nguyen, et al. 2020; Han et al. 2020; Pham et al.
2020) thanks to recent developments in streaming automatic speech recogni-
tion and simultaneous machine translation. These systems seamlessly translate
a continuous audio stream under real-time latency constraints. However, cur-
rent translation latency evaluations (Ansari et al. 2020) are still performed
at the sentence-level based on the conventional measures, Average Proportion
(AP) (Cho and Esipova 2016), Average Lagging (AL) (Ma et al. 2019) and
Differentiable Average Lagging (DAL) (Cherry and Foster 2019). These mea-
sures compute the translation latency for each sentence independently without

121

Chapter 2. Stream-level Latency Evaluation

taking into account possible interactions that lead to accumulated delays in a
real-world streaming scenario. Additionally, the current measures cannot be
used by systems that do not use explicit sentence-level segmentation (Schneider
and Waibel 2020).

In this work, we first revisit the conventional translation latency measures
in Section 4.2 to motivate their adaptation to the streaming scenario in Sec-
tion 4.3. Then, these adapted latency measures are computed and reported
on an IWSLT task in Section 4.4. Finally, conclusions and future work are
presented in Section 5.5.

4.2 Related work

Current latency measures for simultaneous translation can be characterised
as a normalisation of the number of read-write word operations required to
generate a translation y from a source sentence x

L(x,y) =
1

Z(x,y)

∑
i

Ci(x,y) (2.24)

with Z being a normalisation function, i an index over the target positions and
Ci a cost function for each target position i.

Depending on the latency measure, Ci is defined as

Ci(x,y) =

g(i) AP
g(i)− i−1

γ
AL

g′(i)− i−1
γ

DAL
(2.25)

with

g′(i) = max

{
g(i)

g′(i− 1) + 1
γ

(2.26)

where g(i) is the number of source tokens read when a token is written at
position i and γ is target-to-source length ratio |y||x| . Note that the AP cost
function considers the absolute number of source tokens that has been read
to output the i-th word, while AL and DAL cost functions account for the

122

i
i

i
i

i
i

i
i

number of source words the model lags behind a wait-0 oracle. This oracle
simply accumulates a uniform distribution of source words over target positions
according to the ratio 1

γ
. In the case of DAL, the recurrent definition of g′(i)

guarantees that the most expensive read-write operation is considered.

On the other hand, the normalisation function Z depends on the measure
according to

Z(x,y) =

|x| · |y| AP
argmin
i:g(i)=|x|

i AL

|y| DAL
(2.27)

The term in AP normalises the sum over the target sentence of absolute source
tokens, while AL and DAL does over the number of target positions, which in
the case of AL is limited to those target positions reading new source tokens.
Indeed, the normalization term of AL is referred to as τ . The sentence-level
latency measures just described are reported as an average value over an eval-
uation set of multiple sentence pairs, each one evaluated independently from
the others.

However, the latency evaluation of a continuous paired stream of sentences
has not received much attention, with the exception of the strategy pro-
posed by (Schneider and Waibel 2020). This evaluation strategy considers the
straightforward approach of concatenating all sentences into a single source-
target pair in order to compute the corresponding latency measure. Next
section outlines some drawbacks of this strategy (hereafter Concat-1) to mo-
tivate the discussion on how the current sentence-level latency measures could
be adapted to the streaming scenario.

4.3 Stream-level evaluation

Let us consider the translation of a stream of two sentences, the first sentence
has two input and two output tokens, while the second one has two input
and four output tokens with ratios γ1 = 1 and γ2 = 2, respectively. The
translation process is performed with a sentence-based wait-k system with
catch-up characterised by a function g(i) = bk + i−1

γ
c with k = 1.

Table 2.29 compares the computation of the latency measures for the Concat-
1 strategy (top) with the conventional strategy that considers independent
sentences (bottom). Note that the translation process has only been carried

123

Chapter 2. Stream-level Latency Evaluation

Table 2.29: Comparison of the latency metric computation between the Concat-1 (top)
and the conventional sentence-level (bottom) strategy when using a wait-1 system.

C
on

ca
t-
1

L

i 1 2 3 4 5 6
g(i) 1 2 3 3 4 4
i−1
γ

0 0.6 1.3 2.0 2.6 3.3

Ci

AP 1 2 3 3 4 4 0.7
AL 1 1.3 1.6 1 1.3 - 1.2
DAL 1 1.3 1.6 1.6 1.6 1.6 1.5

In
d.

Se
nt
.

i 1 2 1 2 3 4
g(i) 1 2 1 1 2 2
i−1
γ

0.0 1.0 0.0 0.5 1.0 1.5

Ci

AP 1 2 1 1 2 2 0.8
AL 1 1 1 0.5 1 - 0.9
DAL 1 1 1 1 1 1 1.0

out once, but both strategies are just interpreting the results differently as
first denoted by their i and g(i) values. The wait-0 oracle i−1

γ
of Concat-1,

with a single global γ = 3
2
underestimates the actual writing rate, and the

system accumulates more delay than in the evaluation strategy of independent
sentences, which uses a sentence-level estimation for γ.

These differences in results are magnified when computing latencies on a real
streaming evaluation set. On the one hand, AL and DAL tend to obtain scores
that do not reflect the real behaviour of the system when using a Concat-
1 strategy with a single global γ, since the source-target length ratio varies
wildly between different sentences. Therefore, the wait-0 oracle will sometimes
overestimate the actual writing rate, and sometimes it will underestimate it.
Moreover, the definition of DAL keeps the system from recovering from pre-
viously incurred delays, and therefore, every time the writing rate is under-
estimated, the system falls further and further behind the wait-0 oracle. On
the other hand, AP turns out to be little informative when the stream is long
enough, since AP always tends to be 0.5 because the delay incurred by a sys-
tem with a reasonable k is always negligible compared with the total source
length.

The accuracy of AL and DAL could be improved if sentence-level estimations
for γ would be available somehow in a streaming scenario. With the availability
of these estimations in mind, we formulate a streaming version of the cost
functions in Eq. 2.43 based on a global G(i) function, which returns the number

124

i
i

i
i

i
i

i
i

Table 2.30: Estimation of stream-level latencies measures on the same example proposed
in Table 2.29.

L

i 1 2 1 2 3 4
G(i+ |yn−1

1 |) 1 2 3 3 4 4
gn(i) 1 2 1 1 2 2
i−1
γn

0.0 1.0 0.0 0.5 1.0 1.5

Ci

AP 1 2 1 1 2 2 0.8
AL 1 1 1 0.5 1 - 0.9

DAL 1 1 1 1 1 1 1.0

of source tokens (including those from previous sentences) that have been read
as in the Concat-1 strategy:

Ci(xn,yn) =

gn(i) AP
gn(i)− i−1

γn
AL

g′n(i)− i−1
γn

DAL
(2.28)

with g′n(i) defined as

max

gn(i){
g′n−1(|xn−1|) + 1

γn−1
i = 1

g′n(i− 1) + 1
γn

i > 1

(2.29)

where gn(i) = G(i+ |yn−11 |)− |xn−11 |. Thus, the global delay is converted to a
local representation so that it can be compared with the local sentence oracle.

Table 2.30 shows the computation of the stream-level latency measures as pro-
posed in Eq. 2.45 for the same example calculated in Table 2.29. As observed,
unlike with the Concat-1 strategy, we obtain the same results as in the conven-
tional sentence-level estimation, while at the same time we keep the property
that previous delays affect future sentences by basing our computations on the
global delay G(i).

If we use a segmentation-free model whose output is a single text stream,
stream-level latency measures can be still computed by re-segmenting the out-
put into sentence-like units (chunks). Formally, a segmenter takes an input
stream Y and a set of reference sentences to compute a re-segmentation ŷN1
of Y . Once the re-segmentation is obtained, stream-level latency measures are
estimated by considering paired input-output segments (xn, ŷn). In our case,

125

Chapter 2. Stream-level Latency Evaluation

x1,1 x1,4

y1,1

y1,6

∆latency

(a)

x1,1 x1,4

y1,1

y2,1 ∆latency

(b)

Figure 2.8: The examples shown above illustrate how a model which follows a wait-k policy
can obtain AL/DAL values that differ from k. The bold lines show the behaviour of the
model, the dotted lines show the oracle policy. Left: writing rate error with k = 1; the
model uses γ̂ = 1, but the actual value is γ = 1.5. Right: segmentation error with k = 2; the
first translated word of the second sentence is wrongly assigned to the first sentence during
resegmentation, i.e. ŷ1 = (y1,1, y1,2, y1,3, y1,4, y2,1).

we re-segment by minimizing the edit distance between the stream hypothesis
and the reference translations, analogously to the translation quality evalu-
ation widely-used in speech translation (Matusov et al. 2005). Likewise, we
can resegment the output to compute latency measures if our system uses a
different segmentation than the reference.

Moreover, stream-level AL and DAL measures computed for a wait-k system
are coherently close to k with two caveats. First, there can be deviation from
the theoretical value of k due to a inaccurate estimation of the writing rate.
Given that the wait-k policy uses a fixed γ, there will be some sentences in
which this results in lower or higher writing rates than desirable. This is
a feature inherent to the fixed policy itself. Second, a deviation could also
occur due to re-segmentation errors. For instance, a word that is part of the
translation of the n-th segment can be wrongly included into the previous
n − 1-th segment causing an increase of the latency. Both sources of latency
are illustrated in Figure 2.8.

These two caveats given the definition of DAL imply that a system can never
recover from previous delays, which might be an acceptable solution when
computing latency measures at the sentence level, but it seems too strict and
unrealistic when computing latency measures for streams comprising tens of
thousands of words. To alleviate this problem, we propose to multiply the cost
of a write operation 1

γn
in g′n(i) by a scaling factor s ∈ [0, 1]. In practice, for

values of s close to 1, this means that the write operation costs slightly less for

126

i
i

i
i

i
i

i
i

the real system than for the oracle. We believe this is an acceptable practical
solution given that there are many ways that this could be achieved in real-
world tasks, such as rendering subtitles slightly faster or, in the case of cascade
speech-to-speech, slight reducing the duration of TTS segments or increasing
the playback speed. Finally, the scaling factor s can be also understood as a
hyperparameter that bridges the gap between AL (s = 0) and DAL (s = 1)
and it can be adjusted depending on the actual writing cost of the translation
task.

4.4 Experiments

The stream-level latency measures proposed in Section 4.3 are now computed
and evaluated on the IWSLT 2010 German-English dev set (Paul, Federico,
and Stüker 2010). To simulate a streaming scenario, all source sentences are
concatenated into a single input stream. Then, they are segmented into sen-
tences and translated with a wait-k fixed policy. As a result, it is expected that
a well-behaved latency measure should rank the systems by increasing order
of k.

Our streaming simultaneous translation system is based on a direct segmenta-
tion (DS) model (Iranzo-Sánchez et al. 2020) followed by a Transformer BASE
model (Vaswani et al. 2017) trained with the multi-k approach (Elbayad, Be-
sacier, and Verbeek 2020). The DS model was trained on TED talks (Cettolo,
Girardi, and Federico 2012) with a future window of length 0 and history size
of 10, while the translation model was trained on the IWSLT 2020 German-
English data (Ansari et al. 2020). This system, which we will refer to as Real,
uses catch-up with γ = 1.24. In addition to the Real system, three experimen-
tal setups based on different oracles are considered:

• In. Seg.: The input segmentation provided by the DS model is replaced
by the reference segmentation to gauge segmentation errors.

• Out. Seg.: The reference segmentation is used to link each translation
with its corresponding source sentence, therefore avoiding the need of
re-segmentation by minimum edit distance.

• Policy : The translation model is replaced by an oracle model that out-
puts the reference translation with the appropriate writing rate for each
sentence to account for errors due to a global γ.

127

Chapter 2. Stream-level Latency Evaluation

Table 2.31: Stream-level AL as a function of k, computed using the Concat-1 approach on
the IWSLT 2010 German-English dev set.

System 1 2 3 4 5
Real -9.7 -12.0 -45.2 -23.7 -8.5
+In. Seg. -42.9 -29.0 17.4 -10.1 25.5
+ Policy 14.2 15.1 16.0 16.8 17.6

AL (Table 2.31) and DAL (Table 2.32) have been computed using the Concat-
1 approach, to serve as a baseline for the developed measures. These results
confirm the problems of the Concat-1 approach, which have been identified and
discussed on Section 4.3. AP results have been excluded from the tables, as
no matter which setup is used, the computed AP is always 0.5. Likewise, the
obtained AL and DAL values offer little insight about the latency behaviour
of the model. These results are not only uninterpretable, but they also alter
the ranking of the models. This could be specially worrisome if the Concat-
1 approach was used to compare systems with adaptative policies that lack
a explicit latency control such as k, as it might be harder to detect wheter
the incoherent results are due to the adaptative policy or the latency measure
itself. The only setup which returns the correct ranking is the one using the
In. Seg. and Policy Oracles, but the latency results do not reflect the real
behaviour of the model. The full AL and DAL results, for values up to k = 10
are reported in the appendix.

Table 2.32: Stream-level DAL as a function of k, computed using the Concat-1 approach
on the IWSLT 2010 German-English dev set.

System 1 2 3 4 5
Real 15.0 11.0 17.4 11.3 20.3
+In. Seg. 4.5 8.5 37.1 24.6 52.3
+ Policy 85.8 86.7 87.7 88.7 89.7

Now that we have experimentally shown that the Concat-1 approach is unable
to properly compute latencies, we move onto computing the stream-adapted
version of the latency measures. The computation of stream-level AP (left),
AL (center) and, DAL (right) with s = 1.0 and s = 0.95 (dashed lines) as a
function of k in the multi-k approach are shown in Figure 2.9. The behaviour of
AP and AL is that expected for the four experimental setups defined above, but
the conventional DAL measure (s = 1.0) abruptly suffers the effect of not being
able to recover from accumulated delays due to the cost of write operations.
In contrast, DAL with s = 0.95 exhibits a smooth interpretable behaviour as a

128

i
i

i
i

i
i

i
i

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 1 2 3 4 5 6 7 8 9 10

AP

K

Real
In. Seg.

Out. Seg. + In. Seg.
Policy + Out. Seg. + In. Seg.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

AL

K

Real
In. Seg.

Out. Seg. + In. Seg.
Policy + Out. Seg. + In. Seg.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10

DAL

K

Real
In. Seg.

Out. Seg. + In. Seg.
Policy + Out. Seg. + In. Seg.

Figure 2.9: Stream-level AP (top-left), AL (top-right) and DAL (bottom) with s = 1.0
and s = 0.95 (dashed lines) as a function of k in the multi-k approach for four experimental
setups on the IWSLT 2010 German-English dev set.

129

Chapter 2. Stream-level Latency Evaluation

result of compensating for re-segmentation errors. Moreover, the gap between
"In. Seg." and "In. Seg. + Out. Seg." is not significant, therefore we believe
that, if the translation quality is good enough, the automatic re-segmentation
process is an acceptable way of computing stream-level latencies. Lastly, as
expected, if we use an oracle system that outputs the reference translation
with the appropriate writing rate for each sentence ("Policy + In. Seg. +
Out. Seg."), the obtained AL and DAL values are very close to the theoretical
value k. If we compute DAL using s = 0.95, we obtain similar values without
the need of using any oracle, while accounting for the additional cost of write
operations.

Thus, unlike the Concat-1 approach, our stream-level approach is highly effec-
tive for providing interpretable and accurate latency measures.

4.5 Conclusions

In this work, an adaptation of the current latency measures to a streaming
setup is proposed motivated by the lack of interpretability of sentence-level
latency measures in this setup.

This adaptation basically consists in the modification of the conventional la-
tency measures to move from a sentence-level evaluation based on a local delay
function to a stream-level estimation by using a global delay function that keeps
track of delays across the whole translation process. At the same time, a re-
segmentation approach has been proposed to compute these latency measures
on any arbitrary segmentation of the input stream used by the translation
model. The resulting measures are highly interpretable and coherent account-
ing for the actual behaviour of the simultaneous translation system in a real
streaming scenario.

Acknowledgements

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation program under grant agreement
no. 761758 (X5Gon) and 952215 (TAILOR) and Erasmus+ Education program
under grant agreement no. 20-226-093604-SCH; the Government of Spain’s re-
search project Multisub, ref. RTI2018-094879-B-I00 (MCIU/AEI/FEDER,EU)
and FPU scholarships FPU18/04135; and the Generalitat Valenciana’s research
project Classroom Activity Recognition, ref. PROMETEO/2019/111.

130

i
i

i
i

i
i

i
i

Table 2.33: Stream-level AL as a function of k, computed using the Concat-1 approach on
the IWSLT 2010 German-English dev set.

System 1 2 3 4 5 6 7 8 9 10
Real -9.7 -12.0 -45.2 -23.7 -8.5 -4.4 -17.4 -13.6 -14.2 -12.2
+In-Seg. -42.9 -29.0 17.4 -10.1 25.5 3.8 9.7 5.3 2.7 4.7
+Policy 14.2 15.1 16.0 16.8 17.6 18.2 18.9 19.5 20.1 20.6

Table 2.34: Stream-level DAL as a function of k, computed using the Concat-1 approach
on the IWSLT 2010 German-English dev set.

System 1 2 3 4 5 6 7 8 9 10
Real 15.0 11.0 17.4 11.3 20.3 25.1 11.3 14.4 17.7 17.9
+In-Seg. 4.5 8.5 37.1 24.6 52.3 27.8 21.5 33.9 31.2 31.8
+Policy 85.8 86.7 87.7 88.7 89.7 90.7 91.7 92.7 93.6 94.6

4.6 Reproducibility of proposed measures

The code for the proposed latency measures, as well as all the translations
have been published 5. A script is included to reproduce the results reported
in the paper. The full results for the Concat-1 method are reported on Tables
2.33 and 2.34

Table 2.35: Corpus used for MT model training

tokens(M)
Corpus sentences(M) German English
News Commentary 0.3 7.4 7.2
WikiTitles 1.3 2.7 3.1
Europarl 1.8 42.5 45.5
Rapid 1.5 26.0 26.9
MuST-C 0.2 3.9 4.2
Ted 0.2 3.3 3.6
LibriVox 0.1 0.9 1.1
Paracrawl 31.4 465.2 502.9

131

Chapter 2. Stream-level Latency Evaluation

4.7 MT System

Table 2.35 lists the corpus that were selected for training out of the IWSLT
2020 allowed data 6.

The multi-k system has been trained with the official implementation 7. The
model was trained for 0.5M steps on a machine with 2 2080Ti GPUs, which
took 6 days. The following command was used to train it:

fairseq-train $CORPUS_FOLDER \
-s $SOURCE_LANG_SUFFIX \
-t $TARGET_LANG_SUFFIX \
--user-dir $FAIRSEQ/examples/waitk \
--arch waitk_transformer_base \
--share-decoder-input-output-embed \
--left-pad-source False \
--multi-waitk \
--optimizer adam \
--adam-betas ’(0.9, 0.98)’ \
--clip-norm 0.0 \
--lr-scheduler inverse_sqrt \
--warmup-init-lr 1e-07 \
--warmup-updates 4000 \
--lr 0.0005 \
--min-lr 1e-09 \
--dropout 0.3 \
--weight-decay 0.0 \
--criterion label_smoothed_cross_entropy \
--label-smoothing 0.1 \
--max-tokens 4000 \
--update-freq 4 \
--save-dir $MODEL_OUTPUT_FOLDER \
--no-progress-bar \
--log-interval 100 \
--max-update 500000 \
--save-interval-updates 10000 \
--keep-interval-updates 20 \
--ddp-backend=no_c10d \
--fp16

5https://github.com/jairsan/Stream-level_Latency_Evaluation_for_Simultaneous_
Machine_Translation

6http://iwslt2020.ira.uka.de/doku.php?id=offline_speech_translation
7https://github.com/elbayadm/attn2d

132

https://github.com/jairsan/Stream-level_Latency_Evaluation_for_Simultaneous_Machine_Translation
https://github.com/jairsan/Stream-level_Latency_Evaluation_for_Simultaneous_Machine_Translation
http://iwslt2020.ira.uka.de/doku.php?id=offline_speech_translation
https://github.com/elbayadm/attn2d

i
i

i
i

i
i

i
i

References

4.8 Segmenter System

The Direct Segmentation system has been trained with the official implemen-
tation 8. The ted corpus was used as training data (See Table 2.35). The
following command was used to train the segmenter system:

len=11
window=0
python3 train_text_model.py \
--train_corpus train.ML$len.WS$window.txt \
--dev_corpus dev.ML$len.WS$window.txt \
--output_folder $output_folder \
--vocabulary $corpus_folder/train.vocab.txt \
--checkpoint_interval 1 \
--epochs 15 \
--rnn_layer_size 256 \
--embedding_size 256 \
--n_classes 2 \
--batch_size 256 \
--min_split_samples_batch_ratio 0.3 \
--optimizer adam \
--lr 0.0001 \
--lr_schedule reduce_on_plateau \
--lr_reduce_patience 5 \
--dropout 0.3 \
--model_architecture ff-text \
--feedforward_layers 2 \
--feedforward_size 128 \
--sample_max_len $len \
--sample_window_size $window

References

Ansari, Ebrahim et al. (2020). “FINDINGS OF THE IWSLT 2020 EVALU-
ATION CAMPAIGN”. In: Proc. of IWSLT. Online: ACL, pp. 1–34 (cit. on
pp. 121, 127).

Bahar, Parnia et al. (2020). “Start-Before-End and End-to-End: Neural Speech
Translation by AppTek and RWTH Aachen University”. In: Proc. of IWSLT
(cit. on p. 121).

Cettolo, Mauro, Christian Girardi, and Marcello Federico (2012). “WIT3: Web
Inventory of Transcribed and Translated Talks”. In: Proc. of EAMT, pp. 261–
268 (cit. on p. 127).
8https://github.com/jairsan/Speech_Translation_Segmenter

133

https://github.com/jairsan/Speech_Translation_Segmenter

Chapter 2. Stream-level Latency Evaluation

Cherry, Colin and George Foster (2019). “Thinking Slow about Latency Eval-
uation for Simultaneous Machine Translation”. In: arXiv:1906.00048 (cit. on
p. 121).

Cho, Kyunghyun and Masha Esipova (2016). “Can neural machine translation
do simultaneous translation?” In: arXiv preprint arXiv:1606.02012 (cit. on
p. 121).

Elbayad, Maha, Laurent Besacier, and Jakob Verbeek (2020). “Efficient Wait-
k Models for Simultaneous Machine Translation”. In: Proc. of Interspeech,
pp. 1461–1465 (cit. on p. 127).

Elbayad, Maha, Ha Nguyen, et al. (2020). “ON-TRAC Consortium for End-to-
End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020”.
In: Proc. of IWSLT. ACL, pp. 35–43 (cit. on p. 121).

Han, Hou Jeung et al. (2020). “End-to-End Simultaneous Translation Sys-
tem for IWSLT2020 Using Modality Agnostic Meta-Learning”. In: Proc. of
IWSLT. ACL, pp. 62–68 (cit. on p. 121).

Iranzo-Sánchez, Javier et al. (2020). “Direct Segmentation Models for Stream-
ing Speech Translation”. In: Proc. of EMNLP, pp. 2599–2611 (cit. on p. 127).

Ma, Mingbo et al. (2019). “STACL: Simultaneous Translation with Implicit
Anticipation and Controllable Latency using Prefix-to-Prefix Framework”.
In: Proc. of ACL. ACL, pp. 3025–3036. doi: 10.18653/v1/P19-1289 (cit.
on p. 121).

Matusov, Evgeny et al. (2005). “Evaluating machine translation output with
automatic sentence segmentation”. In: Proc. of IWSLT. ISCA (cit. on p. 126).

Paul, Michael, Marcello Federico, and Sebastian Stüker (2010). “Overview of
the IWSLT 2010 evaluation campaign”. In: Proc. of IWSLT. ISCA, pp. 3–27
(cit. on p. 127).

Pham, Ngoc-Quan et al. (2020). “KIT’s IWSLT 2020 SLT Translation System”.
In: Proc. of IWSLT. ACL, pp. 55–61 (cit. on p. 121).

Schneider, Felix and Alexander Waibel (2020). “Towards Stream Translation:
Adaptive Computation Time for Simultaneous Machine Translation”. In:
Proc. of IWSLT. ACL, pp. 228–236 (cit. on pp. 122, 123).

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Proc. of NIPS.
Ed. by Isabelle Guyon et al., pp. 5998–6008 (cit. on p. 127).

134

https://doi.org/10.18653/v1/P19-1289

i
i

i
i

i
i

i
i

5 From Simultaneous to Streaming Machine Translation by
Leveraging Streaming History

Javier Iranzo-Sánchez, Jorge Civera, Alfons Juan

Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp.
6972-6985

Dublin (Ireland)

10.18653/v1/2022.acl-long.480

22–27 May 2022

i
i

i
i

i
i

i
i

From Simultaneous to Streaming Machine
Translation by Leveraging Streaming History

Javier Iranzo-Sánchez, Jorge Civera, Alfons Juan

Abstract

Simultaneous Machine Translation is the task of incrementally trans-
lating an input sentence before it is fully available. Currently, si-
multaneous translation is carried out by translating each sentence
independently of the previously translated text. More generally,
Streaming MT can be understood as an extension of Simultaneous
MT to the incremental translation of a continuous input text stream.
In this work, a state-of-the-art simultaneous sentence-level MT sys-
tem is extended to the streaming setup by leveraging the streaming
history. Extensive empirical results are reported on IWSLT Trans-
lation Tasks, showing that leveraging the streaming history leads to
significant quality gains. In particular, the proposed system proves
to compare favorably to the best performing systems.

5.1 Introduction

Simultaneous Machine Translation (MT) is the task of incrementally translat-
ing an input sentence before it is fully available. Indeed, simultaneous MT
can be naturally understood in the scenario of translating a text stream as
a result of an upstream Automatic Speech Recognition (ASR) process. This
setup defines a simultaneous Speech Translation (ST) scenario that is gain-
ing momentum due to the vast number of industry applications that could be
exploited based on this technology, from person-to-person communication to
subtitling of audiovisual content, just to mention two main applications.

These real-world streaming applications motivate us to move from simulta-
neous to streaming MT, understanding streaming MT as the task of simul-
taneously translating a potentially unbounded and unsegmented text stream.
Streaming MT poses two main additional challenges over simultaneous MT.

137

Chapter 2. Streaming Machine Translation

First, the MT system must be able to leverage the streaming history beyond
the sentence level both at training and inference time. Second, the system
must work under latency constraints over the entire stream.

With regard to exploiting streaming history, or more generally sentence con-
text, it is worth mentioning the significant amount of previous work in offline
MT at sentence level (Tiedemann and Scherrer 2017; Agrawal, Turchi, and
Negri 2018), document level (Scherrer, Tiedemann, and Loáiciga 2019; S. Ma,
D. Zhang, and Zhou 2020; Z. Zheng et al. 2020; Li et al. 2020; Maruf, Saleh,
and Haffari 2021; B. Zhang et al. 2021), and in related areas such as language
modelling (Dai et al. 2019) that has proved to lead to quality gains. Also, as
reported in (Li et al. 2020), more robust ST systems can be trained by taking
advantage of the context across sentence boundaries using a data augmenta-
tion strategy similar to the prefix training methods proposed in (Niehues et al.
2018; M. Ma et al. 2019). This data augmentation strategy was suspected to
boost re-translation performance when compared to conventional simultaneous
MT systems (Arivazhagan, Cherry, Macherey, and Foster 2020).

Nonetheless, with the notable exception of (Schneider and Alexander Waibel
2020), sentences in simultaneous MT are still translated independently from
each other ignoring the streaming history. (Schneider and Alexander Waibel
2020) proposed an end-to-end streaming MT model with a Transformer archi-
tecture based on an Adaptive Computation Time method with a monotonic
encoder-decoder attention. This model successfully uses the streaming history
and a relative attention mechanism inspired by Transformer-XL (Dai et al.
2019). Indeed, this is an MT model that sequentially translates the input
stream without the need for a segmentation model. However, it is hard to in-
terpret the latency of their streaming MT model because the authors observe
that the current sentence-level latency measures, Average Proportion (AP) (K.
Cho and Esipova 2016), Average Lagging (AL) (M. Ma et al. 2019) and Differ-
entiable Average Lagging (DAL) (Cherry and Foster 2019) do not perform well
on a streaming setup. This fact is closely related to the second challenge men-
tioned above, which is that the system must work under latency constraints
over the entire stream. Indeed, current sentence-level latency measures do not
allow us to appropriately gauge the latency of streaming MT systems. To
this purpose, (Iranzo-Sánchez, Civera Saiz, and Juan 2021) recently proposed
a stream-level adaptation of the sentence-level latency measures based on the
conventional re-segmentation approach applied to the ST output in order to
evaluate translation quality (Matusov et al. 2005).

In this work, the simultaneous MT model based on a unidirectional encoder-
decoder and training along multiple wait-k paths proposed by (Elbayad, Be-

138

i
i

i
i

i
i

i
i

sacier, and Verbeek 2020) is evolved into a streaming-ready simultaneous MT
model. To achieve this, model training is performed following a sentence-
boundary sliding-window strategy over the parallel stream that exploits the
idea of prefix training, while inference is carried out in a single forward pass on
the source stream that is segmented by a Direct Segmentation (DS) model (Iranzo-
Sánchez et al. 2020). In addition, a refinement of the unidirectional encoder-
decoder that takes advantage of longer context for encoding the initial posi-
tions of the streaming MT process is proposed. This streaming MT system is
thoroughly assessed on IWSLT translation tasks to show how leveraging the
streaming history provides systematic and significant BLEU improvements over
the baseline, while reported stream-adapted latency measures are fully consis-
tent and interpretable. Finally, our system favourably compares in terms of
translation quality and latency to the latest state-of-the-art simultaneous MT
systems (Ansari et al. 2020).

This paper is organized as follows. Next section provides a formal framework
for streaming MT to accommodate streaming history in simultaneous MT. Sec-
tion 5.3 presents the streaming experimental setup whose results are reported
and discussed in Section 5.4. Finally, conclusions and future work are drawn
in Section 5.5.

5.2 Streaming MT

In streaming MT, the source stream X to be translated into Y comes as an
unsegmented and unbounded sequence of tokens. In this setup, the decoding
process usually takes the greedy decision of which token appears next at the
i-th position of the translation being generated

Ŷi = argmax
y∈Y

p
(
y
∣∣ XG(i)

1 , Y i−1
1

)
(2.30)

where G(i) is a global delay function that tells us the last position in the source
stream that was available when the i-th target token was output, and Y is the
target vocabulary.

However, taking into account the entire source and target streams can be
prohibitive from a computational viewpoint, so the generation of the next
token can be conditioned to the last H(i) tokens of the stream as

Ŷi=argmax
y∈Y

p
(
y
∣∣ XG(i)

G(i)−H(i)+1, Y
i−1
i−H(i)

)
. (2.31)

139

Chapter 2. Streaming Machine Translation

Nevertheless, for practical purposes, the concept of sentence segmentation is
usually introduced to explicitly indicate a monotonic alignment between source
and target sentences in streaming MT. Let us consider for this purpose the
random variables a and b for the source and target segmentation of the stream,
respectively. Variables a and b can be understood as two vectors of equal
length denoting that the n-th source sentence starts at position an, while the
n-th target sentence does so at position bn.

In the next sections, we reformulate simultaneous MT in terms of the more
general framework of streaming MT. This reformulation allows us to consider
opportunities for improvement of previous simultaneous MT models.

Simultaneous MT with streaming history

In the conventional simultaneous MT setup, the aforementioned variables a and
b are uncovered at training and inference time, while in streaming MT a and
b are considered hidden variables at inference time that may be uncovered by
a segmentation model. In fact, in conventional simultaneous MT the history
is limited to the current sentence being translated, while in streaming MT
we could exploit the fact that the history could potentially span over all the
previous tokens before the current sentence.

To this purpose, the global delay function G(i) introduced above would replace
the sentence-level delay function g(i) commonly used in simultaneous MT.
However, it should be noticed that we could express g(i) as G(i) − an with
bn ≤ i < bn+1. Delay functions are defined as a result of the policy being
applied. This policy decides what action to take at each timestep, whether
to read a token from the input or to write a target token. Policies can be
either fixed (M. Ma et al. 2019; Dalvi et al. 2018) depending only on the
current timestep, or adaptive (Arivazhagan, Cherry, Macherey, Chiu, et al.
2019; X. Ma et al. 2020; B. Zheng et al. 2020) being also conditioned on the
available input source words. Among those fixed policies, the sentence-level
wait-k policy proposed by (M. Ma et al. 2019) is widely used in simultaneous
MT with the simple local delay function

g(i) = k + i− 1. (2.32)

This policy initially reads k source tokens without writing a target token, and
then outputs a target token every time a source token is read. This is true in
the case that the ratio between the source and target sentence lengths is one.

140

i
i

i
i

i
i

i
i

However, in the general case, a catch-up factor γ computed as the inverse of
the source-target length ratio defines how many target tokens are written for
every read token, that generalises Eq. 2.32 as

g(i) =

⌊
k +

i− 1

γ

⌋
. (2.33)

The wait-k policy can be reformulated in streaming MT so that the wait-k
behaviour is carried out for each sentence as

G(i) =

⌊
k +

i− bn
γ

⌋
+ an − 1 (2.34)

where bn ≤ i < bn+1.

In streaming MT, we could take advantage of the streaming history by learn-
ing the probability distribution stated in Eq. 2.31, whenever streaming sam-
ples would be available. However, training such a model with arbitrarily long
streaming samples poses a series of challenges that need to be addressed.
Firstly, it would be necessary to carefully define G(i) and H(i) functions so
that, at each timestep, the available source and target streams are perfectly
aligned. Given that the source-target length ratio may vary over the stream, if
one uses a wait-k policy with a fixed γ, there is a significant chance that source
and target are misaligned at some points over the stream. Secondly, every tar-
get token can potentially have a differentG(i) andH(i), so the encoder-decoder
representation and contribution to the loss would need to be recomputed for
each target token at a significant computational expense. Lastly, current MT
architectures and training procedures have evolved conditioned by the avail-
ability of sentence-level parallel corpora for training, so they need to be adapted
to learn from parallel streams.

To tackle the aforementioned challenges in streaming MT, a compromise prac-
tical solution is to uncover the source and target sentence segmentations. At
training time, parallel samples are extracted by a sentence-boundary sliding
window spanning over several sentences of the stream that shifts to the right
one sentence at a time. In other words, each sentence pair is concatenated with
its corresponding streaming history that includes previous sentence pairs sim-
ulating long-span prefix training. Doing so, we ensure that source and target
streams are properly aligned at all times, and training can be efficiently carried
out by considering a limited history. The inference process is performed in a
purely streaming fashion in a single forward pass as defined in Eq. 2.31 with

141

Chapter 2. Streaming Machine Translation

H(i) being consistently defined in line with training, so that the streaming
history spans over previous sentences already translated.

Partial Bidirectional Encoder

In simultaneous MT, the conventional Transformer-based bidirectional encoder
representation (of the l-th layer) of a source token at any position j is con-
strained to the current n-th sentence

e
(l)
j = Enc

(
e
(l−1)
an:G(i)

)
(2.35)

where an ≤ j ≤ G(i), while the decoder can only attend to previous tar-
get words and the encoding of those source words that are available at each
timestep

s
(l)
i = Dec

(
s
(l−1)
bn:i−1, e

(l−1)
an:G(i)

)
. (2.36)

As a result, the encoder and decoder representations for positions j and i,
respectively, could be computed taking advantage of subsequent positions to
position j up to position G(i) at inference time. However, at training time,
this means that this bidirectional encoding-decoding of the source sentence
has to be computed for every timestep, taking up to |y| times longer than the
conventional Transformer model.

To alleviate this problem, (Elbayad, Besacier, and Verbeek 2020) proposes a
wait-k simultaneous MT model based on a modification of the Transformer ar-
chitecture that uses unidirectional encoders and multiple values of k at training
time. In this way, the model is consistent with the limited-input restriction of
simultaneous MT at inference time. The proposed unidirectional encoder can
be stated as

e
(l)
j = Enc

(
e
(l−1)
an:j

)
, (2.37)

that is more restrictive than that in Eq. 2.35, and it consequently conditions
the decoder representation, since G(i) in Eq. 2.36 depends on the specific k
value employed at each training step.

142

i
i

i
i

i
i

i
i

As mentioned above, the unidirectional encoder just requires a single forward
pass of the encoder at training time, and therefore there is no additional com-
putational cost compared with a conventional Transformer. However, it does
not take into account all possible input tokens for different values of k. Indeed,
the encoding of the j-th input token will not consider those tokens beyond the
j-th position, even if including them into the encoding process does not prevent
us from performing a single forward pass.

A trade-off between the unidirectional and bidirectional encoders is what we
have dubbed Partial Bidirectional Encoder (PBE), which modifies the unidi-
rectional encoder to allow the first k − 1 source positions to have access to
succeeding tokens according to

e
(l)
j = Enc

(
e
(l−1)
an:max(an+k−1,j)

)
. (2.38)

PBE allows for a longer context when encoding the initial positions and is
consistent with Eq. 2.36. At training time a single forward pass of the encoder-
decoder is still possible as in the unidirectional encoder, and therefore no
additional training cost is incurred. At inference time, we fall back to the
bidirectional encoder.

Figure 2.10 shows a graphical comparison of the attention mechanism in j = 3
across the bidirectional (top-left), unidirectional (top-right) and PBE (bottom)
encoders with k = 4 for two consecutive timesteps i = 1 with G(1) = 4 and
i = 2 with G(2) = 5. As observed, PBE can take advantage of additional
positions from j + 1 up to k with respect to the unidirectional encoder.

In a streaming setup, the bidirectional encoder-decoder of Eqs. 2.35 and 2.36
are not necessarily constrained to the current sentence and could exploit a
streaming history of H(i) tokens

e
(l)
j =Enc

(
e
(l−1)
G(i)−H(i)+1:G(i)

)
(2.39)

s
(l)
i =Dec

(
s
(l−1)
i−H(i):i−1, e

(l−1)
G(i)−H(i)+1:G(i)

)
. (2.40)

Likewise, the proposed PBE with streaming history states as follows

e
(l)
j =Enc

(
e
(l−1)
G(i)−H(i)+1:max(G(i)−H(i)+k,j)

)
. (2.41)

143

Chapter 2. Streaming Machine Translation

X1 X2 X3 X4 X5

G(2) = 5

e3

X1 X2 X3 X4 X5

G(1) = 4

e3

X1 X2 X3 X4 X5

G(2) = 5

e3

X1 X2 X3 X4 X5

G(1) = 4

e3

X1 X2 X3 X4 X5

G(2) = 5

e3

X1 X2 X3 X4 X5

G(1) = 4

e3

Figure 2.10: Comparison of attention positions in j = 3 for bidirectional (top-left), unidi-
rectional (top-right) and PBE (bottom) encoders with k = 4 in two consecutive timesteps
i = 1 with G(1) = 4 and i = 2 with G(2) = 5.

5.3 Experimental setup

Table 2.36: Basic statistics of the training data from the IWSLT 2020 Evaluation Campaign
(M = Millions).

Corpus Doc Sents(M) Tokens(M)
German English

News-Comm. X 0.3 7.4 7.2
Wikititles 1.3 2.7 3.1
Europarl X 1.8 42.5 45.5
Rapid X 1.5 26.0 26.9
MuST-C X 0.2 3.9 4.2
TED X 0.2 3.3 3.6
LibriVox 0.1 0.9 1.1
Paracrawl 31.4 465.2 502.9

144

i
i

i
i

i
i

i
i

A series of comparative experiments in terms of translation quality and la-
tency have been carried out using data from the IWSLT 2020 Evaluation Cam-
paign (Ansari et al. 2020), for both German→English and English→German.
For the streaming condition, our system is tuned on the 2010 dev set, and
evaluated on the 2010 test set for comparison with (Schneider and Alexander
Waibel 2020). Under this setting, words were lowercased and punctuation was
removed in order to simulate a basic upstream ASR system. Also, a second
non-streaming setting is used for the English→German direction to compare
our system with top-of-the-line sentence-based simultaneous MT systems par-
ticipating in the IWSLT 2020 Simultaneous Translation Task.

Table 2.36 summarizes the basic statistics of the IWSLT corpora used for train-
ing the streaming MT systems. Corpora for which document information is
readily available are processed for training using the sliding window technique
mentioned in Section 5.2. Specifically, for each training sentence, we prepend
previous sentences, which are added one by one until a threshold h of history
tokens is reached. Sentence boundaries are defined on the presence of special
tokens ([DOC],[CONT],[BRK],[SEP]) as in (Junczys-Dowmunt 2019). Byte
Pair Encoding (Sennrich, Haddow, and Birch 2016) with 40K merge operations
is applied to the data after preprocessing.

Our streaming MT system is evaluated in terms of latency and translation
quality with BLEU (Papineni et al. 2002). Traditionally, latency evaluation in
simultaneous MT has been carried out using AP, AL and DAL. However, these
measures have been devised for sentence-level evaluation, where the latency of
every sentence is computed independently from each other and as mentioned
before, they do not perform well on a streaming setup. Thus, we revert to
the stream-based adaptation of these measures proposed in (Iranzo-Sánchez,
Civera Saiz, and Juan 2021) unless stated otherwise.

Latency measures for a sentence pair (x,y) are based on a cost function
Ci(x,y) and a normalization term Z(x,y)

L(x,y) =
1

Z(x,y)

∑
i

Ci(x,y) (2.42)

where

145

Chapter 2. Streaming Machine Translation

Ci(x,y) =

g(i) AP
g(i)− i−1

γ
AL

g′(i)− i−1
γ

DAL
(2.43)

and

Z(x,y) =

|x| · |y| AP
argmin
i:g(i)=|x|

i AL

|y| DAL
(2.44)

Latency measures can be computed in a streaming manner by considering a
global delay function G(i), that is mapped into a relative delay so that it can
be compared with the sentence-level oracle delay. For the i-th target position
of the n-th sentence, the associated relative delay can be obtained from the
global delay function as gn(i) = G(i + bn) − an. So, the stream-adapted cost
function of the latency measures is defined as

Ci(xn,yn) =

gn(i) AP
gn(i)− i−1

γn
AL

g′n(i)− i−1
γn

DAL
(2.45)

with g′n(i) defined as

max

gn(i){
g′n−1(|xn−1|) + 1

γn−1
i = 1

g′n(i− 1) + 1
γn

i > 1

(2.46)

This definition assumes that the source and target sentence segmentation of the
stream are uncovered, but this is not always the case (Schneider and Alexander
Waibel 2020) or they may not match that of the reference translations. How-
ever, sentence boundaries can be obtained by re-segmenting the system hy-
pothesis following exactly the same procedure applied to compute translation
quality in ST evaluation. To this purpose, we use the MWER segmenter (Ma-
tusov et al. 2005) to compute sentence boundaries according to the reference
translations.

146

i
i

i
i

i
i

i
i

Our streaming MT models have been trained following the conventional Trans-
former BASE (German↔English streaming MT) and BIG (English→German
simultaneous MT) configurations (Vaswani et al. 2017). As in (Schneider and
Alexander Waibel 2020), after training is finished, the models are finetuned on
the training set of MuST-C (Di Gangi et al. 2019).

The proposed model in Section 5.2 assumes that at inference time the source
stream has been segmented into sentences. To this purpose, we opt for the
text-based DS model (Iranzo-Sánchez et al. 2020), a sliding-window segmenter
that moves over the source stream taking a split decision at each token based
on a local-context window that extends to both past and future tokens. This
segmenter is streaming-ready and obtains superior translation quality when
compared with other segmenters (Stolcke 2002; E. Cho, Niehues, and Alex
Waibel 2017). As the future window length of the DS segmenter conditions
the latency of the streaming MT system, this length was adjusted to find
a tradeoff between latency and translation quality. The DS segmenter was
trained on the TED corpus (Cettolo, Girardi, and Federico 2012).

5.4 Evaluation

Figure 2.11 reports the evolution of BLEU scores on the German-English
IWSLT 2010 dev set as a function of the k value in the wait-k policy for a
range of streaming history lengths (h = {0, 20, 40, 60, 80}). We show results
for the 3 encoders introduced previously. History lengths were selected taking
into account that the average sentence length is 20 tokens. A history length of
zero (h = 0) refers to the conventional sentence-level simultaneous MT model.
The BLEU scores for the offline MT systems with a bidirectional encoder are
also reported using horizontal lines, in order to serve as reference values. We
report offline results for h = 0 and the best performing history configuration,
h = 60. All systems used the reference segmentation during decoding.

As observed, BLEU scores of the simultaneous MT systems leveraging on the
streaming history (h > 0) are systematically and notably higher than those of
conventional sentence-based simultaneous MT system (h = 0) over the range
of wait-k values. Indeed, as the streaming history increases, BLEU scores also
do reaching what it seems the optimal history length at h = 60 and slightly
degrading at h = 80. As expected, when replacing the unidirectional encoder
by the PBE, BLEU scores improve as the wait-k value increases, since PBE
has additional access to those tokens from j + 1 up to k. For instance, for
k = 32 and h = 60, PBE is 0.7 BLEU points above the unidirectional encoder.
On the other hand, it can be observed how using an encoder which is not fully

147

Chapter 2. Streaming Machine Translation

 24

 26

 28

 30

 32

 34

 36

 38

 40

 1 2 4 8 16 32

Offline h=60

Offline h=0

BLEU

wait-k

h=80

h=60

h=40

h=20

h=0

Unidir.

Bidir.

PBE

Figure 2.11: BLEU scores on the German-English IWSLT 2010 dev set as a function of
the k value in the wait-k policy for a range of streaming history (h) lengths and encoder
type (See Appendix 5.6 for a close-up).

bidirectional during training, creates a performance gap with respect to the
offline bidirectional model when carrying out inference in an offline manner
(k ≥ 32). It can be also observed how the PBE model is better prepared for
this scenario and shows a smaller gap. It is important to keep in mind that
although both offline and PBE models behave the same way during inference
for a large enough k, during training time the PBE model, trained using the
multi-k with k randomly sampled for each batch, has been optimized jointly
for low, medium and high latencies.

In general, the bidirectional encoder shows poor performance for simultaneous
MT. This can be explained by the fact that there exists a mismatch between the
training condition (whole source available) and the inference condition (only a

148

i
i

i
i

i
i

i
i

 20

 22

 24

 26

 28

 30

 32

 34

 2 4 6 8 10 12

BLEU

AL

oracle

w=0
w=1

w=2

w=3 w=4 20

 22

 24

 26

 28

 30

 32

 34

 4 6 8 10 12 14 16 18

BLEU

DAL

oracle

w=0
w=1

w=2

w=3 w=4

Figure 2.12: BLEU scores versus stream-adapted AL and DAL (scale s=0.85) with seg-
menters of future window length w = {0, 1, 2, 3, 4} on the IWSLT 2010 test set. Points over
each curve correspond to k = {1, 2, 4, 8, 16} values of the wait-k policy used at inference
time.

prefix of the source is available for k < 32). These results are consistent with
(Elbayad, Besacier, and Verbeek 2020). Keep in mind that this bidirectional
model is different from the offline one because it has been subject to the con-
straints of Eq. 2.36 during training. As a result of the BLEU scores reported
in Figure 2.11, the streaming MT system with h = 60 and PBE was used in
the rest of the German-English experiments.

Following (Schneider and Alexander Waibel 2020)’s setup, the test set is low-
ercased and concatenated into a single stream. In order to measure the latency
of the pipeline defined by the segmenter followed by MT system, it is necessary
to take into account not only the latency of the MT system but also that of
the segmenter. Thankfully this is straightforward to do in our pipeline, as a
segmenter with a future window of length w modifies the pipeline policy so
that, at the start of the stream, w READ actions are carried out to fill up the
future window. Then, every time the MT system carries out a READ action,

149

Chapter 2. Streaming Machine Translation

it receives one token from the segmenter. Thus, the integration of the seg-
menter into the pipeline is transparent from a latency viewpoint. Figure 2.12
shows BLEU scores versus stream-adapted AL and DAL (s scale = 0.85) fig-
ures reported with segmenters of future window length w = {0, 1, 2, 3, 4} for
a streaming evaluation on the IWSLT 2010 test set. Points over each curve
correspond to k = {1, 2, 4, 8, 16} values of the wait-k policy used at inference
time. Results for a w = 0 oracle are also shown as an upper-bound.

As shown, stream-adapted AL and DAL figures achieved by our streaming
MT system are reasonable, lagging 2-10 tokens behind the speaker for nearly
maximum BLEU scores with a best BLEU score of 29.5 points. The same
happens with AP figures ranging from 0.6 for w = 0 to 1.3 for w = 4. These
figures highlight the advantages of tying together our translation policy with
the sentence segmentation provided by the DS model. Every time the DS
model emits an end-of-sentence event, the MT model is forced to catch-up and
translate the entire input. In this way, the MT model never strays too far from
the speaker, even if the source-target length ratio differs from the γ defined
at inference time. See Appendix 5.6 for streaming translation results in the
reverse direction (English → German).

Next, we compare our proposed streaming MT (STR-MT) model with the
λ = 0.3 ACT system (Schneider and Alexander Waibel 2020) in terms of BLEU
score and stream-adapted latency measures on Table 2.37. Stream-level AL
and DAL indicate that the ACT models lags around 100 tokens behind the
speaker. Although both MT systems achieve similar translation quality levels,
they do so at significantly different latencies, since the ACT model lacks a
catch-up mechanism to synchronize and keep the pace of the speaker.

The STR-MT model is now compared on the English-German IWSLT 2020
simultaneous text-to-text track (Ansari et al. 2020) with other participants:
RWTH (Bahar et al. 2020), KIT (Pham et al. 2020) and ON-TRAC (Elbayad,
Nguyen, et al. 2020). This comparison is carried out in order to assess whether
the proposed streaming MT system is competitive with highly optimized sys-
tems for a simultaneous MT task. Given that the test set of this track remains

Table 2.37: Latency and quality comparison of ACT (Schneider and Alexander Waibel
2020) and the proposed STR-MT on the IWSLT 2010 De-En test set.

Model BLEU AP AL DAL
ACT 30.3 10.3 100.1 101.8
STR-MT 29.5 1.2 11.2 17.8

150

i
i

i
i

i
i

i
i

blind, we use the results reported on the MuST-C corpus as a reference. In
order to evaluate all systems under the same conditions, the reference segmen-
tation of the MuST-C corpus is used instead of the DS model. Additionally,
given that all other participants translate each sentence independently, the
conventional sentence-level AL latency measure is reported. Figure 2.13 shows
the comparison of BLEU scores versus AL measured in terms of detokenized
tokens. As defined in the IWSLT text-to-text track, three AL regimes, low
(AL ≤ 3), medium (3 < AL ≤ 6) and high (6 < AL ≤ 15) were considered.

 22

 24

 26

 28

 30

 32

 2 4 6 8 10

Low Medium High

BLEU

AL

ON-TRAC

KIT
STR-MT

RWTH

Figure 2.13: Comparative BLEU scores versus AL at three regimes, low, medium, and high
latency, for IWSLT 2020 simultaneous text-to-text track participants, RWTH, ON-TRAC,
KIT and our streaming MT (STR-MT) system on the MuST-C corpus.

ON-TRAC and our streaming MT system exhibit a similar progression, which
is to be expected given that they are both based on the multi-k approach.
However, our system consistently outperforms the ON-TRAC system by 1-2
BLEU. This confirms the importance of utilizing streaming history in order
to significantly improve results, and how the proposed PBE model can take
better advantage of the history.

151

Chapter 2. Streaming Machine Translation

RWTH and KIT systems are closer in translation quality to our proposal than
ON-TRAC, for AL between 5 and 7. However, these systems do not show a
flexible latency policy and are not comparable to our system at other regimes.
Indeed, for that to be possible, these systems need to be re-trained, in contrast
to our system in which latency is adjusted at inference time.

5.5 Conclusions

In this work, a formalization of streaming MT as a generalization of simul-
taneous MT has been proposed in order to define a theoretical framework in
which our two contributions have been made. On the one hand, we success-
fully leverage streaming history across sentence boundaries for a simultaneous
MT system based on multiple wait-k paths that allows our system to greatly
improve the results of the sentence-level baseline. On the other hand, our PBE
is able to take into account longer context information than its unidirectional
counterpart, while keeping the same training efficiency.

Our proposed MT system has been evaluated under a realistic streaming set-
ting being able to reach similar translation quality than a state-of-the-art
segmentation-free streaming MT system at a fraction of its latency. Addi-
tionally, our system has been shown to be competitive when compared with
state-of-the-art simultaneous MT systems optimized for sentence-level trans-
lation, obtaining excellent results using a single model across a wide range of
latency levels, thanks to its flexible inference policy.

In terms of future work, additional training and inference procedures that take
advantage of the streaming history in streaming MT are still open for research.
One important avenue of improvement is to devise more robust training meth-
ods, so that simultaneous models can perform as well as their offline coun-
terparts when carrying out inference at higher latencies. The segmentation
model, though proved useful in a streaming setup, adds complexity and can
greatly affect translation quality. Thus, the development of segmentation-free
streaming MT models is another interesting research topic.

152

i
i

i
i

i
i

i
i

Acknowledgements

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ments no. 761758 (X5Gon) and 952215 (TAILOR), and Erasmus+ Educa-
tion programme under grant agreement no. 20-226-093604-SCH (EXPERT);
the Government of Spain’s grant RTI2018-094879-B-I00 (Multisub) funded by
MCIN/AEI/10.13039/501100011033 & “ERDF A way of making Europe”, and
FPU scholarships FPU18/04135; and the Generalitat Valenciana’s research
project Classroom Activity Recognition (ref. PROMETEO/2019/111). The
authors gratefully acknowledge the computer resources at Artemisa, funded by
the European Union ERDF and Comunitat Valenciana as well as the technical
support provided by the Instituto de Física Corpuscular, IFIC (CSIC-UV).

5.6 Extended Streaming Translation Results

Figure 2.14 shows a close-up of Figure 2.11, which contains results for the
German-English IWSLT 2010 dev set. We can observe how the PBE models
obtain consistent quality improvements over their unidirectional counterparts.

Apart from the previously reported German → English streaming MT re-
sults, we have also conducted experiments in the reverse direction, English →
German. These are shown in Figure 2.15. The results show a similar trend
to previous experiments, with the addition of streaming history allowing our
systems to obtain significant improvements over the sentence-based baseline.
Unlike the previous case, the optimum history size in this case is h = 40 instead
of h = 60.

In order to enable streaming translation, the best performing h = 40 systems
has been combined with a German DS system. Similarly to previous experi-
ments, we have conducted tests using different values of w and k in order to
balance the latency-quality trade-off, shown in Figure 2.16. Under the stream-
ing condition, the wait-k policy and DS model allow the model to follow closely
the speaker while achieving good quality, with a latency that can be easily ad-
justed between 4 and 15 tokens depending on the requirements of the task.
There are diminishing returns when increasing the latency above 6-7 tokens,
as only marginal gains in quality are obtained.

153

Chapter 2. Streaming Machine Translation

 30

 31

 32

 33

 34

 35

 36

 37

 38

 4 8 16 32

Offline h=0

h=80

h=60

h=40

h=20

h=0

Unidir.

Bidir.

PBE

Figure 2.14: BLEU scores on the German-English IWSLT 2010 dev set as a function of the
k value in the wait-k policy for a range of streaming history (h) lengths with a unidirectional
encoder (solid lines), PBE (dashed line) or bidirectional (dashed line with points). This is a
close-up of Figure 2.11.

5.7 Efficiency of the proposed models

During training of the unidirectional and PBE encoders, the constraints im-
posed by Eqs. 2.37 and 2.38 are efficiently implemented by full self-attention,
as in the bidirectional encoder, followed by an attention mask, for each token
to only attend those tokens fulfilling the constraints. The attention mask sets
the weights of the other tokens to −∞ before application of the self-attention
softmax. This is exactly the same mechanism used in the standard Trans-
former decoder to prevent the auto-regressive decoder from accessing future
information.

This means that the three encoder types have an identical computational be-
havior. We are not aware of alternative GPU-based acceleration techniques to
speed up the training of the unidirectional encoder. If so, this could be also
applicable to the training of the standard Transformer decoder.

154

i
i

i
i

i
i

i
i

 25

 26

 27

 28

 29

 30

 31

 1 2 4 8 16 32

Offline h=0

Offline h=40

BLEU

wait-k

h=60

h=40

h=20

h=0

Figure 2.15: BLEU scores on the English-German IWSLT 2010 dev set as a function of
the k value in the wait-k policy for a range of streaming history (h) lengths using a PBE
encoder.

During inference time, however, the unidirectional encoder has some advan-
tages. Given that the unidirectional encoder is incremental, meaning that the
encodings of old tokens do not change when a new token becomes available, the
process can be sped up by only computing the encoding of the newly available
token. Although encoder self-attention still needs to be computed, a single vec-
tor is used as the query instead of the full matrix. Table 2.38 shows inference
statistics for the different components of the En → De Transformer Big with
h=60. Two setups have been tested: CPU-only inference, and GPU inference.
Results were obtained on an Intel i9-7920X machine with an NVIDIA GTX
2080Ti.

155

Chapter 2. Streaming Machine Translation

 18

 20

 22

 24

 26

 28

 30

 2 4 6 8 10 12

BLEU

AL

oracle

w=0

w=1

w=2

w=3

w=4

 18

 20

 22

 24

 26

 28

 30

 4 6 8 10 12 14 16 18

BLEU

DAL

oracle

w=0

w=1

w=2

w=3

w=4

Figure 2.16: BLEU scores versus stream-adapted AL and DAL (scale s=0.85) with seg-
menters of future window length w = {0, 1, 2, 3, 4} on the English-German IWSLT 2010 test
set. Points over each curve correspond to k = {1, 2, 4, 8, 16} values of the wait-k policy used
at inference time.

The unidirectional encoder is four times faster than the bidirectional encoder
when run on a CPU. However, both encoders perform the same when run
on a GPU. For the streaming MT scenario considered in this work, no latency
reduction is gained by not re-encoding previous tokens due to the GPU paralel-
lization capability. When run on a GPU, the proposed model works seamlessly
under real-time constraints.

156

i
i

i
i

i
i

i
i

Table 2.38: Latency of translating a token (in seconds) for the proposed En-De h=60
Transformer Big model.

Component CPU GPU
Unidir. Encoder 0.034s 0.002s
Bidir. Encoder 0.138s 0.002s
Decoder 0.242s 0.004s

5.8 MT System configuration

The multi-k systems have been trained with the official implementation (https:
//github.com/elbayadm/attn2d). Models are trained for 0.5M steps on a ma-
chine with 4 2080Ti GPUs. Total training time was 40h for BASE models, and
60h for BIG models. The following command was used to train them:

cri=label_smoothed_cross_entropy;
ex=simultaneous_translation
fairseq-train $CORPUS_FOLDER \
-s $SOURCE_LANG_SUFFIX \
-t $TARGET_LANG_SUFFIX \
--user-dir $FAIRSEQ/examples/$ex \
--arch $ARCH waitk_transformer_base \
--share-decoder-input-output-embed \
--left-pad-source False \
--multi-waitk \
--optimizer adam \
--adam-betas ’(0.9, 0.98)’ \
--clip-norm 0.0 \
--lr-scheduler inverse_sqrt \
--warmup-init-lr 1e-07 \
--warmup-updates 4000 \
--lr 0.0005 \
--min-lr 1e-09 \
--dropout 0.1 \
--weight-decay 0.0 \
--criterion $cri \
--label-smoothing 0.1 \
--max-tokens $TOK \
--update-freq 2 \
--save-dir $MODEL_OUTPUT_FOLDER \
--no-progress-bar \
--log-interval 100 \
--max-update 500000 \
--save-interval-updates 10000 \

157

https://github.com/elbayadm/attn2d
https://github.com/elbayadm/attn2d

Chapter 2. Streaming Machine Translation

--keep-interval-updates 20 \
--ddp-backend=no_c10d \
--fp16

with

ARCH=waitk_transformer_base;
TOK=4000

for the BASE configuration, and

ARCH=waitk_transformer_big;
TOK=2000

for the BIG one.

For finetuning, we change to the following:

--lr-scheduler fixed \
--lr 4.47169e-05 \

For the streaming translation scenario, the data is lowercased and all punctu-
ation signs are removed. For the simultaneous scenario (IWSLT 2020 simul-
taneous text- to-text), it is truecased and tokenized using Moses. We apply
language identification to the training data using langid (Lui and Baldwin
2012) and discard those sentences that have been tagged with the wrong lan-
guage. SentencePiece (Kudo and Richardson 2018) is used to learn the BPE
units, and we use whitespace as a suffix in order to know when an entire target
word has been written during decoding.

In order to obtain samples that can be used for training streaming MT models,
a sliding window that moves over whole sentences is used to extract consistent
source-target samples. Figure 2.17 shows an example of corpus construction
using h = 5. The generated streaming data is upsampled to keep a 1-to-3 ratio
with the regular sentence-level data.

158

i
i

i
i

i
i

i
i

Sentece pair Source Target
1 x1,1 x1,2 y1,1 y1,2
2 x2,1 x2,2 x2,3 y2,1 y2,2
3 x3,1 x3,2 x3,3 y3,1 y3,2 y3,3
4 x4,1 x4,2 y4,1 y4,2

Sentence pair Source
1 [DOC] x1,1 x1,2 [BRK]
2 [DOC] x1,1 x1,2 [SEP] x2,1 x2,2 x2,3 [BRK]
3 [DOC] x1,1 x1,2 [SEP] x2,1 x2,2 x2,3 [SEP] x3,1 x3,2 x3,3 [BRK]
4 [CONT] x3,1 x3,2 x3,3 [SEP] x4,1x4,2 [END]

Sentence pair Target
1 [DOC] y1,1 y1,2 [BRK]
2 [DOC] y1,1 y1,2 [SEP] y2,1 y2,2 [BRK]
3 [DOC] y1,1 y1,2 [SEP] y2,1 y2,2 [SEP] y3,1 y3,2 y3,3 [BRK]
4 [CONT] y3,1 y3,2 y3,3 [SEP] y4,1y4,2 [END]

Figure 2.17: Illustrated example of sample construction with history. Starting from a
corpus of ordered sentence pairs (top), streaming samples are constructed (bottom) using
h = 5. Past history is shown in light gray. Sentence boundary and document tokens
(Junczys-Dowmunt 2019) are not counted for the history size limit. Notice how, for the last
sample, the pair (x2,y2) is not included in the sample, as the history size limit would have
otherwise been exceeded on the source side.

159

Chapter 2. Streaming Machine Translation

5.9 Segmenter System configuration

The Direct Segmentation system has been trained with the official implementa-
tion (https://github.com/jairsan/Speech_Translation_Segmenter). The
following command was used to train the segmenter system:

python3 train_text_model.py \
--train_corpus train.$len_$window.txt \
--dev_corpus dev.$len_$window.txt \
--output_folder $out_f \
--vocabulary $corpus_f/train.vocab.txt \
--checkpoint_interval 1 \
--epochs 15 \
--rnn_layer_size 256 \
--embedding_size 256 \
--n_classes 2 \
--batch_size 256 \
--min_split_samples_batch_ratio 0.3 \
--optimizer adam \
--lr 0.0001 \
--lr_schedule reduce_on_plateau \
--lr_reduce_patience 5 \
--dropout 0.3 \
--model_architecture ff-text \
--feedforward_layers 2 \
--feedforward_size 128 \
--sample_max_len $len \
--sample_window_size $window

with the following configurations:

(len=11; window=0)
(len=12; window=1)
(len=13; window=2)
(len=14, window=3)
(len=15, window=4)

160

https://github.com/jairsan/Speech_Translation_Segmenter

i
i

i
i

i
i

i
i

References

References

Agrawal, Ruchit, M. Turchi, and M. Negri (2018). “Contextual Handling in
Neural Machine Translation: Look Behind, Ahead and on Both Sides”. In:
Proc. of EAMT, pp. 11–20 (cit. on p. 138).

Ansari, Ebrahim et al. (2020). “FINDINGS OF THE IWSLT 2020 EVALU-
ATION CAMPAIGN”. In: Proc. of IWSLT. Online: ACL, pp. 1–34 (cit. on
pp. 139, 145, 150).

Arivazhagan, Naveen, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu,
et al. (2019). “Monotonic Infinite Lookback Attention for Simultaneous Ma-
chine Translation”. In: Proc. of ACL. ACL, pp. 1313–1323. doi: 10.18653/
v1/P19-1126 (cit. on p. 140).

Arivazhagan, Naveen, Colin Cherry, Wolfgang Macherey, and George Foster
(2020). “Re-translation versus Streaming for Simultaneous Translation”. In:
arXiv preprint arXiv:2004.03643 (cit. on p. 138).

Bahar, Parnia et al. (2020). “Start-Before-End and End-to-End: Neural Speech
Translation by AppTek and RWTH Aachen University”. In: Proc. of IWSLT.
ACL, pp. 44–54 (cit. on p. 150).

Cettolo, Mauro, Christian Girardi, and Marcello Federico (2012). “WIT3: Web
Inventory of Transcribed and Translated Talks”. In: Proc. of EAMT, pp. 261–
268 (cit. on p. 147).

Cherry, Colin and George Foster (2019). “Thinking Slow about Latency Eval-
uation for Simultaneous Machine Translation”. In: arXiv:1906.00048 (cit. on
p. 138).

Cho, Eunah, Jan Niehues, and Alex Waibel (2017). “NMT-Based Segmentation
and Punctuation Insertion for Real-Time Spoken Language Translation”. In:
Proc. of Interspeech. ISCA, pp. 2645–2649. doi: 10.21437/Interspeech.
2017-1320 (cit. on p. 147).

Cho, Kyunghyun and Masha Esipova (2016). “Can neural machine translation
do simultaneous translation?” In: arXiv preprint arXiv:1606.02012 (cit. on
p. 138).

Dai, Zihang et al. (2019). “Transformer-XL: Attentive Language Models be-
yond a Fixed-Length Context”. In: Proc. of ACL, pp. 2978–2988 (cit. on
p. 138).

Dalvi, Fahim et al. (2018). “Incremental Decoding and Training Methods for Si-
multaneous Translation in Neural Machine Translation”. In: Proc. of NAACL-
HLT. ACL, pp. 493–499 (cit. on p. 140).

Di Gangi, Mattia A. et al. (2019). “MuST-C: a Multilingual Speech Translation
Corpus”. In: Proc. of NAACL-HLT. ACM, pp. 2012–2017 (cit. on p. 147).

161

https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.21437/Interspeech.2017-1320
https://doi.org/10.21437/Interspeech.2017-1320

Chapter 2. Streaming Machine Translation

Elbayad, Maha, Laurent Besacier, and Jakob Verbeek (2020). “Efficient Wait-
k Models for Simultaneous Machine Translation”. In: Proc. of Interspeech,
pp. 1461–1465 (cit. on pp. 138, 142, 149).

Elbayad, Maha, Ha Nguyen, et al. (2020). “ON-TRAC Consortium for End-to-
End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020”.
In: Proc. of IWSLT. ACL, pp. 35–43 (cit. on p. 150).

Iranzo-Sánchez, Javier, Jorge Civera Saiz, and Alfons Juan (2021). “Stream-
level Latency Evaluation for Simultaneous Machine Translation”. In: Find-
ings of ACL: EMNLP. ACL, pp. 664–670 (cit. on pp. 138, 145).

Iranzo-Sánchez, Javier et al. (2020). “Direct Segmentation Models for Stream-
ing Speech Translation”. In: Proc. of EMNLP, pp. 2599–2611 (cit. on pp. 139,
147).

Junczys-Dowmunt, Marcin (2019). “Microsoft Translator at WMT 2019: To-
wards Large-Scale Document-Level Neural Machine Translation”. In: Proc.
of WMT, pp. 225–233 (cit. on pp. 145, 159).

Kudo, Taku and John Richardson (2018). “SentencePiece: A simple and lan-
guage independent subword tokenizer and detokenizer for Neural Text Pro-
cessing”. In: Proc. of EMNLP: System Demonstrations. ACL, pp. 66–71 (cit.
on p. 158).

Li, Daniel et al. (2020). “Sentence Boundary Augmentation For Neural Ma-
chine Translation Robustness”. In: arXiv preprint arXiv:2010.11132 (cit. on
p. 138).

Lui, Marco and Timothy Baldwin (2012). “langid.py: An Off-the-shelf Lan-
guage Identification Tool”. In: Proc. of ACL: System Demonstrations. ACL,
pp. 25–30 (cit. on p. 158).

Ma, Mingbo et al. (2019). “STACL: Simultaneous Translation with Implicit
Anticipation and Controllable Latency using Prefix-to-Prefix Framework”.
In: Proc. of ACL. ACL, pp. 3025–3036. doi: 10.18653/v1/P19-1289 (cit.
on pp. 138, 140).

Ma, Shuming, Dongdong Zhang, and Ming Zhou (2020). “A Simple and Effec-
tive Unified Encoder for Document-Level Machine Translation”. In: Proc. of
ACL. Ed. by Dan Jurafsky et al. ACL, pp. 3505–3511 (cit. on p. 138).

Ma, Xutai et al. (2020). “Monotonic Multihead Attention”. In: Proc. ICLR
2020. OpenReview.net (cit. on p. 140).

Maruf, Sameen, Fahimeh Saleh, and Gholamreza Haffari (2021). “A Survey on
Document-level Machine Translation: Methods and Evaluation”. In: arXiv
preprint arXiv:1912.08494 (cit. on p. 138).

Matusov, Evgeny et al. (2005). “Evaluating machine translation output with
automatic sentence segmentation”. In: Proc. of IWSLT. ISCA (cit. on pp. 138,
146).

162

https://doi.org/10.18653/v1/P19-1289

i
i

i
i

i
i

i
i

References

Niehues, Jan et al. (2018). “Low-Latency Neural Speech Translation”. In: Proc.
of Interspeech. ISCA, pp. 1293–1297 (cit. on p. 138).

Papineni, Kishore et al. (2002). “Bleu: a Method for Automatic Evaluation of
Machine Translation”. In: Proc. of ACL. ACL, pp. 311–318. doi: 10.3115/
1073083.1073135 (cit. on p. 145).

Pham, Ngoc-Quan et al. (2020). “KIT’s IWSLT 2020 SLT Translation System”.
In: Proc. of IWSLT. ACL, pp. 55–61 (cit. on p. 150).

Scherrer, Yves, Jörg Tiedemann, and Sharid Loáiciga (2019). “Analysing con-
catenation approaches to document-level NMT in two different domains”. In:
Proc. of DiscoMT@EMNLP. ACL, pp. 51–61 (cit. on p. 138).

Schneider, Felix and Alexander Waibel (2020). “Towards Stream Translation:
Adaptive Computation Time for Simultaneous Machine Translation”. In:
Proc. of IWSLT. ACL, pp. 228–236 (cit. on pp. 138, 145–147, 149, 150).

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016). “Neural Machine
Translation of Rare Words with Subword Units”. In: Proc. of ACL. ACL,
pp. 1715–1725 (cit. on p. 145).

Stolcke, Andreas (2002). “SRILM - an extensible language modeling toolkit.”
In: Proc. of Interspeech. Ed. by John H. L. Hansen and Bryan L. Pellom.
ISCA, pp. 901–904 (cit. on p. 147).

Tiedemann, Jörg and Yves Scherrer (2017). “Neural Machine Translation with
Extended Context”. In: Proc. of DiscoMT@EMNLP. ACL, pp. 82–92 (cit. on
p. 138).

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Proc. of NIPS.
Ed. by Isabelle Guyon et al., pp. 5998–6008 (cit. on p. 147).

Zhang, Biao et al. (2021). “Beyond Sentence-Level End-to-End Speech Transla-
tion: Context Helps”. In: Proc. of ACL. ACL, pp. 2566–2578 (cit. on p. 138).

Zheng, Baigong et al. (2020). “Simultaneous Translation Policies: From Fixed
to Adaptive”. In: Proc. of ACL. ACL, pp. 2847–2853 (cit. on p. 140).

Zheng, Zaixiang et al. (2020). “Towards Making the Most of Context in Neural
Machine Translation”. In: Proc. of IJCAI, pp. 3983–3989 (cit. on p. 138).

163

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

i
i

i
i

i
i

i
i

Chapter 3

General discussion of the results

165

Chapter 3. General discussion of the results

This chapter highlights some important aspects and provides an integrated
discussion of the results, in relation with the scientific goals that had been
defined for the thesis:

• How can we obtain a ST dataset that can be used for realis-
tic, multilingual development and evaluation of streaming ST
systems?

• How can the output of the ASR system be processed and seg-
mented in order to maximize the performance of the cascaded
MT system?

• How can the performance of streaming ST systems be evaluated
with a procedure that takes into account the sequential nature
of the problem and is at the same time interpretable?

• How can a streaming ST system best take advantage of contex-
tual information in order to improve translation quality?

In order to obtain a reliable ST dataset that could serve as the backbone
of further research, the Europarl-ST corpus was collected and presented in
Paper 1. This sets up the foundation for the follow-up research carried out,
as Europarl-ST provides a reliable and realistic benchmark for training and
evaluation of streaming ST models. Out of all the contributions presented, the
Europarl-ST corpus is by far the most impactful breakthrough achieved on this
thesis. The corpus has become one of the de-facto benchmarks for ST, and as
of June 2023, it has amassed more than 100 citations. We have also been made
aware through informal conversations that this corpus is also used internally
by some of the major technology players in the sector. Indeed, Europarl-ST
is also being used as the main evaluation benchmark for both ASR and ST at
the MLLP research group.

Originally envisioned as a benchmark for realistic, long-form ST, the evaluation
procedure for Europarl-ST was described as follows:

1. Take the audio of the whole intervention of a Member of the European
Parliament (MEP), and segment it into the type of segments expected by
the ST system.

2. Transcribe and translate each segment.

3. Re-align the hypothesis with the reference, and use the re-aligned version
for evaluation.

166

i
i

i
i

i
i

i
i

This matches the standard evaluation procedure for long-form ST (as well
as ASR if you stop before the last step), and ensures a realistic evaluation
under the same conditions as the real, inference-time scenario. However, the
vast majority of papers using Europarl-ST for evaluation do not follow this
procedure, and instead use the pre-computed segments that were released with
the corpus. These segments were originally released in order to reduce the
human effort needed to start training a system with Europarl-ST, but when
used for system evaluation they are not as reliable. Whereas the MEP speeches
have been filtered in order to exclude bad quality samples, the pre-computed
segments are generated using automatic audio and sentence alignment models,
and are then truncated so that no audio segment exceeds 20 seconds. Indeed,
this automatic procedure adds an additional step of noise that makes segment-
level evaluation not as reliable as the intended intervention-level evaluation.
Furthermore, isolated segment translation is a much simpler and limited task
than long-form translation, and research findings that have only been tested
on short, isolated segments might not hold when tested with a real, long-form
task.

Table 3.1: Overview of the Europarl-ST train set, version v1.1. The rows indicate the
source language (audio, transcription), and the columns the target language (translations).
Each entry indicates the amount of audio hours available.

src/tgt en fr de it es pt pl ro nl
en - 81 83 80 81 81 79 72 80
fr 32 - 21 20 21 22 20 18 22
de 30 18 - 17 18 18 17 17 18
it 37 21 21 - 21 21 21 19 20
es 22 14 14 14 - 14 13 12 13
pt 15 10 10 10 10 - 9 9 9
pl 28 18 18 17 18 18 - 16 18
ro 24 12 12 12 12 12 12 - 12
nl 7 5 5 4 5 4 4 4 -

The original Europarl-ST publication showed experiments between 4 language
pairs (English, German, French and Spanish). Italian and Portuguese were also
included in the original release, but no experiments were carried out for those
two languages. The development of additional alignment systems allowed us
to expand the amount of languages covered. As a result, a new v1.1 version of
the corpus was released, which adds Polish, Romanian and Dutch to the list of
supported languages. An overview of the latest version of the corpus in shown
in Table 3.1.

167

Chapter 3. General discussion of the results

Table 3.2: BLEU score on the Europarl-ST set. These results show the effect of using
different segmenter models for processing the transcriptions of an ASR system.

Segmenter En-De En-Es En-Fr Es-En Fr-En De-En
Baseline (VAD) 26.5 35.5 29.3 33.8 29.9 25.8
Text(RNN) 27.6 37.0 29.4 34.7 31.6 28.1
Audio w/o RNN 28.4 37.2 30.0 34.4 32.1 28.3
Audio w/ RNN 28.4 37.3 30.1 33.9 32.1 28.2
Text(XLM-Roberta) 29.1 38.6 31.5 36.4 33.3 29.1
Oracle 31.6 41.3 33.6 38.1 35.3 31.3

Paper 2 of this thesis focused on the second scientific question. With regards
to dealing with unpunctuated ASR output, our experiments shown how the
simple technique of pre-processing the MT source training data using the same
recipe as the LM training data provides impressive results when compared with
the do-nothing baseline. Alternatively, an specific punctuation step could be
applied, but adding yet another model to the pipeline would significantly in-
crease complexity. The majority of casing and punctuation research is focused
on the offline scenario, so it would have also represented an additional chal-
lenge to adapt it to the online scenario. As a result, we selected the simpler
yet effective approach of pre-processing the MT data so that it resembles ASR
transcriptions.

Under the the Direct Segmentation framework, segmentation can be under-
stood as a classification problem on which the decision to split is based on the
current word of the stream, the past history and a small future window. In the
original publication, an RNN followed by a series of feed-forward layers is used
to obtain the probabilities of the split decision, but this is not a requirement.
Any model that works over sequences can be used as a drop-in replacement for
the RNN.

In recent years, pre-trained LM have become the state-of-the-art technique for
many text tasks, so replacing the RNN with one of these models could further
improve the results. In order to test this hypothesis, an XLM-Roberta Base
model (Conneau et al. 2020)1, fine-tuned on the Europarl-ST train set, was
used to segment the text, which was then translated with the same transla-
tion model used in the original publication. Table 3.2 shows the results on
the Europarl-ST test set when segmenting the ASR output with different seg-
menters.

1xlm-roberta-base

168

i
i

i
i

i
i

i
i

It can be observed how the XLM-Roberta text model obtains improvements
of 1-2 BLEU over its RNN counterpart, and significantly reduces the gap with
respect to the oracle results. This highlights the flexibility of the streaming
Direct Segmentation approach. In the future, any additional breakthroughs in
text classification could also be easily integrated under this framework.

Moreover, there have been parallel developments in segmentation using audio
information. In particular, the SHAS technique has shown promising results
(Tsiamas et al. 2022) when applied to the offline case. These findings support
our hypothesis that audio information is key for achieving good segmentation
quality.

On Paper 3, the previously developed techniques were integrated into a pipeline
that uses a streaming ASR system, and all system hyperparameters where
jointly optimized. The most relevant result of this paper is the fact that joint
optimization of cascade model hyperparameters is required in order to achieve
the best possible results. Figure 3.1 better illustrates this by highlighting the
combinations of segmenter window d and MT wait k that belong to the Pareto
frontier, that is, points for which an increase in quality implies additional
latency, and vice versa. This shows how, depending on the required goal, it
might be better to allocate more latency to either the segmenter or the MT
model. If the hyperparameters had been selected for each system in isolation
(for example by first selecting a segmenter model and then adjusting the MT
policy), sub-optimal results would have been obtained.

Additionally, for the first time on this thesis, simultaneous MT system were
considered. In the previous contribution, real-time translation was tackled by
calling an offline MT system every time a new segment was detected by the
segmenter. If the segments are small enough, this is perceived by the user as
real-time translation, but significantly better results can be achieved by using
an actual real-time model trained for this task.

Paper 4 introduces a latency evaluation framework for the streaming MT sce-
nario. Up to this point, latency had been measured using either simultaneous
metrics or word-level latency in seconds, but only at the segment-level. Pre-
vious attempts at computing simultaneous metrics (AP, AL, and DAL) for
long streams had failed because the assumptions made in standard simulta-
neous MT metrics (constant oracle writing rate) do not hold when applied to
long text streams. The proposed re-segmentation approach fixes this issue by
computing local oracles which are consistent with the actual behaviour of the
model. There are significant advantages of the proposed approach which make
it the ideal candidate for streaming evaluation:

169

Chapter 3. General discussion of the results

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BLEU

d=0

d=1

d=2

d=4

Figure 3.1: BLEU vs average word-level latency for Es-En with future window length
d = {0, 1, 2, 4} of the segmentation model on Europarl-ST dev set. Points on each curve
from left to right represent increasing values of k = {1, 2, 4, 8} in the wait-k MT system.
The points belonging to the Pareto frontier are highlighted with a circle.

170

i
i

i
i

i
i

i
i

• The interpretation of the metrics is unchanged from their sentence-level
counterparts, so it is easy to understand how the system is behaving.

• Minimum distance re-segmentation is a well understood technique that
is also used for quality evaluation.

• The approach can be used to compare systems that use different segmen-
tations.

• The metrics are computation-agnostic, so they can be used to compare
systems running on different hardware setups.

A similar approach, called Translation Lag (TL) (Arivazhagan et al. 2020) uses
the re-segmentation technique for computing latency using timestamps mea-
sured in seconds. A corresponding source word is computed for each output
word, using the same monotonic alignment provided by the target-to-source
length ratio γ of the re-computed segment. The cost assigned to each target
word is the difference (in seconds) between the source word being spoken, and
the target word being produced by the MT system. The final result is the aver-
age of the costs over all target words. Both approaches, that is, stream-adapted
AP/AL/DAL and TL, were developed independently from each other. Using
the stream-adapted metrics has the advantage of being computation-agnostic,
so different approaches can be fairly compared across different hardware setups.
When looking at system deployment in an specific hardware configuration, TL
can be used in order to guarantee that the model is actually ready to translate
in real-time. Thus, both approaches complement each other. Further research
could share new insights on the effects of the differences between the two imple-
mentations, such as the final result being an average of sentence-level averages
(stream-adapted AP/AL/DAL) or an average over all target word costs (TL).

All the previous developments come together in Paper 5, which uses the stream-
ing segmenter developed in Papers 2 and 3, as well as the streaming metrics of
Paper 4, in order to build and evaluate a streaming-specific MT model. Un-
like a standard sentence-level MT model, the proposed streaming model uses a
sliding history window that moves over the translation stream in order to pro-
vide the model with additional contextual information that would be ignored
otherwise. The final result is a streaming MT system that achieves a similar
quality level than the previous state-of-the-art approach but at a fraction of
the latency.

When this thesis was started, cascaded ST systems were the clear winners
when compared with end-to-end ST systems. During these past few years,
significant advances in end-to-end ST have shrunk this gap significantly, but it

171

Chapter 3. General discussion of the results

remains unclear when or if they will overtake end-to-end ST systems. On the
one hand, the simplicity and ease of maintainability of having a single system is
attractive when compared with a cascade composed of multiple systems with
multiple points of failure. On the other hand, the fact that ASR and MT
are mature tasks with widespread adoption means that for many use cases a
cascaded ST system can be implemented in a fraction of the time that it takes
to train a ST system from scratch, by using pre-existing ASR and MT models.
Changes in how systems are trained, such as the raise of pre-trained models
and massively crawled unsupervised data might also shake things up. Current
ST systems also make heavy use of data augmentation, multi-task training
regimes and specific components, so the lines between cascaded and end-to-
end systems become very blurry at times. Given that it is impossible to predict
which new techniques will be developed to improve ST performance, it seems
safe to say that not only small differences in translation quality, but significant
engineering and organizational considerations will be the deciding factor when
choosing between end-to-end and cascaded systems for many organizations in
the short and medium term.

This thesis has been developed with the financial support of the FPU scholar-
ship program of the Government of Spain (FPU18/04135), which allowed the
author to focus its time on training and research activities. Likewise, before
the start of this thesis, the author worked for a year under EU’s Horizon 2020
project X5gon (761758), during which the key issues to be addressed by this
thesis were identified. The results obtained during this thesis were integrated
into the aforementioned X5gon project, as well as Government of Spain’s Mul-
tisub (RTI2018-094879-B-I00) and Erasmus+ EXPERT (no. 20-226-093604-
SCH) research projects, and the CERN-UPV technology transfer contract. The
author gratefully acknowledges the computer resources at Artemisa, funded by
the European Union ERDF and Comunitat Valenciana as well as the technical
support provided by the Instituto de Física Corpuscular, IFIC (CSIC-UV).

Some of the papers presented in this thesis have been carried out in collabo-
ration with other researchers from the MLLP group. The conceptual design,
implementation and evaluation of the main contributions of this thesis have
all been implemented by the author of this thesis. The supervisors of this
thesis, professors Alfons Juan and Jorge Civera provided invaluable guidance
with regards to the scientific problems that should be addressed by this thesis.
Researchers of the MLLP ASR team collaborated on the papers that use the
output of ASR systems instead of the reference transcriptions. Specifically,
recent advances in streaming ASR technology (Jorge Cano 2022) allowed this

172

i
i

i
i

i
i

i
i

work to use realistic, high-quality real-time ASR transcriptions as input to the
streaming MT systems developed during this thesis.

Likewise, as a result of multiple research collaborations, some additional sci-
entific contributions have also been co-authored with other MLLP research
members that have not been included on this thesis. Some of the develop-
ments carried out during this thesis, most notably the streaming MT systems,
where then used as input for some of the publications.

• Improved Hybrid Streaming ASR with Transformer Language Models;
Baquero-Arnal, Pau ; Jorge, Javier; Giménez, Adrià ; Silvestre-Cerdà,
Joan Albert ; Iranzo-Sánchez, Javier; Sanchis, Albert ; Civera, Jorge
; Juan, Alfons; InterSpeech 2020, Conference Core A

• LSTM-Based One-Pass Decoder for Low-Latency Streaming; Jorge, Javier;
Giménez, Adrià; Iranzo-Sánchez, Javier; Silvestre-Cerdà, Joan Albert;
Civera, Jorge, Sanchís; Albert, Juan; Alfons; ICASSP 2020 , Conference
Core A

• Europarl-ASR: A Large Corpus of Parliamentary Debates for Streaming
ASR Benchmarking and Speech Data Filtering/Verbatimization; Gar-
cés Díaz-Munío, Gonçal V; Silvestre-Cerdà, Joan Albert ; Jorge, Javier;
Giménez, Adrià; Iranzo-Sánchez, Javier; Baquero-Arnal, Pau; Roselló,
Nahuel; Pérez-González-de-Martos, Alejandro; Civera, Jorge; Sanchis,
Albert; Juan, Alfons; InterSpeech 2021, Conference Core A

• Towards simultaneous machine interpretation; Pérez-González-de-Martos,
Alejandro; Iranzo-Sánchez, Javier; Giménez Pastor, Adrià ; Jorge,
Javier; Silvestre-Cerdà, Joan-Albert; Civera, Jorge; Sanchis, Albert; Juan,
Alfons; InterSpeech 2021, Conference Core A

• MLLP-VRAIN UPV systems for the IWSLT 2022 Simultaneous Speech
Translation and Speech-to-Speech Translation tasks; Iranzo-Sánchez,
Javier; Jorge, Javier; Pérez-González-de-Martos, Alejandro; Giménez
Pastor, Adrià ; V. Garcés Díaz-Munío; Gonçal; Baquero-Arnal, Pau;
Silvestre-Cerdà, Joan-Albert; Civera, Jorge; Sanchis, Albert; Juan, Al-
fons; IWSLT 2022, Workshop

173

Chapter 3. General discussion of the results

References

Arivazhagan, N. et al. (2020). “Re-Translation Strategies for Long Form, Si-
multaneous, Spoken Language Translation”. In: Proc. of ICASSP, pp. 7919–
7923 (cit. on p. 171).

Conneau, Alexis et al. (2020). “Unsupervised Cross-lingual Representation
Learning at Scale”. In: Proc. of ACL, pp. 8440–8451 (cit. on p. 168).

Jorge Cano, Javier (2022). “Streaming Automatic Speech Recognition with
Hybrid Architectures and Deep Neural Network Models”. PhD thesis. Uni-
versitat Politècnica de València (cit. on p. 172).

Tsiamas, Ioannis et al. (2022). “SHAS: Approaching optimal Segmentation for
End-to-End Speech Translation”. In: Proc. Interspeech 2022, pp. 106–110
(cit. on p. 169).

174

i
i

i
i

i
i

i
i

Chapter 4

Conclusions and future work

The findings reported on this thesis are the result of almost 4 years of work
devoted to addressing the challenges that need to be solved for the develop-
ment of a realistic, streaming ST system that can work in a real production
environment. To summarize, the main contributions of this thesis are:

• A multilingual ST dataset that enables the development and evaluation
of streaming ST systems

• A novel streaming-ready segmenter that can use both audio and text
features to segment ASR transcriptions into chunks to be translated by
the MT model

• An evaluation framework for adapting simultaneous MT metrics to the
streaming scenario

• A streaming-specific MT system that uses contextual information from
the streaming process in order to improve translation quality

These very productive 4 years have laid the foundation for further development
of streaming ST systems, providing answers to the data-availability and eval-
uation problems that had plagued the ST community for a significant number
of years. When this thesis started, neural ST, and specially streaming neural
ST, was still on its infancy, but now it’s reaching a mature state with signifi-

175

Chapter 4. Conclusions and future work

cant results and applications. The author hopes that this research project has
helped to move the field forward.

With regards to future work, there are many challenges that need to be ad-
dressed for streaming ST. Although the segmenter introduced in this thesis
is a powerful and elegant solution for segmentation, it nevertheless adds an
additional model into the cascade pipeline. Furthermore, as the results of this
thesis has shown, segmentation errors can have significant impacts on trans-
lation quality. An interesting research direction would be to move towards a
segmentation-free MT model, that can directly process and translate an un-
bounded text stream. This is no easy feat to achieve, but it would allow for
more control over the translation policy and improve translation quality by
eliminating cascading errors.

Current automatic evaluation metrics, be it either computation-agnostic stream
metrics (AP/AL/DAL) or word-level real latency (in seconds), are computed
as sentence-level or word-level averages over an entire evaluation set, but this
ignores the effects of long-tail catastrophic delays that can significantly alter
user perception. This is a problem that affects both simultaneous and stream-
ing ST. Our proposed automatic streaming ST evaluation addresses some of
these problems, but further analysis should be conducted to measure how sys-
tems and metrics behave when faced with these issues.

The results obtained by pre-trained models have dramatically improved dur-
ing these past few years, and they have become the state-of-the-art approach
across many tasks. There exist some preliminary works on evaluating their
performance for MT (Zhu et al. 2023; Bawden and Yvon 2023), but they all
focus on the offline task. Further research needs to be carried out in order to
assess their performance for the simultaneous and streaming case, and whether
any specific technique needs to be developed to adapt them to this scenario.
Computational efficiency is crucial for the streaming task, something which
might tip the scales towards more efficient solutions at the expense of some
translation quality.

Last but not least, the vast majority of work in ST uses only acoustic or tex-
tual information during the translation process. Multimodal ST (also known
as audio-visual ST) adds a third source of information: a video feed. This
field has started to gather recent attention with the release of the MuAViC
dataset (Anwar et al. 2023). The experiments carried out in this thesis show
that adding contextual information to the streaming ST system is particularly
helpful because it can help alleviate the fact that the model has only access to
a partial prefix. Likewise, having access to a video feed of the speaker could

176

i
i

i
i

i
i

i
i

References

be another important source to bridge the gap with the offline task, specially
for use cases such as lecture translation, where the text present in the slides
would allow the model to anticipate the missing content.

References

Anwar, Mohamed et al. (2023). “MuAViC: A Multilingual Audio-Visual Corpus
for Robust Speech Recognition and Robust Speech-to-Text Translation”. In:
arXiv:2303.00628 (cit. on p. 176).

Bawden, Rachel and François Yvon (2023). “Investigating the Translation Per-
formance of a Large Multilingual Language Model: the Case of BLOOM”.
In: arXiv:2303.01911 (cit. on p. 176).

Zhu, Wenhao et al. (2023). “Multilingual Machine Translation with Large Lan-
guage Models: Empirical Results and Analysis”. In: arXiv:2304.04675 (cit.
on p. 176).

177

	Agradecimientos
	Abstract
	Resumen
	Resum
	Contents
	List of acronyms
	1 Introduction
	1 Motivation
	2 Scientific goals
	3 Preliminaries
	3.1 Machine Learning
	3.2 Machine Translation
	3.3 Transformer architecture
	3.4 Data processing and benchmarking
	3.5 Evaluation of results

	4 List of publications
	4.1 Paper 1
	4.2 Paper 2
	4.3 Paper 3
	4.4 Paper 4
	4.5 Paper 5

	References

	2 Selected Papers
	1 Europarl-ST: A Multilingual corpus for Speech Translation of Parliamentary Debates
	1.1 Introduction
	1.2 Data collection and processing
	1.3 Experiments and results
	1.4 Conclusions

	References
	2 Direct Segmentation Models for Streaming Speech Translation
	2.1 Introduction
	2.2 Statistical framework
	2.3 Direct Segmentation Model
	2.4 Experimental setup
	2.5 Evaluation
	2.6 Conclusions
	2.7 Reproducibility
	2.8 ASR Systems
	2.9 MT Systems
	2.10 Segmentation Systems

	References
	3 Streaming cascade-based speech translation leveraged by a direct segmentation model
	3.1 Introduction
	3.2 Streaming automatic speech recognition
	3.3 Simultaneous machine translation
	3.4 Direct segmentation model
	3.5 Evaluation
	3.6 Conclusions

	References
	4 Stream-level Latency Evaluation for Simultaneous Machine Translation
	4.1 Introduction
	4.2 Related work
	4.3 Stream-level evaluation
	4.4 Experiments
	4.5 Conclusions
	4.6 Reproducibility of proposed measures
	4.7 MT System
	4.8 Segmenter System

	References
	5 From Simultaneous to Streaming Machine Translation by Leveraging Streaming History
	5.1 Introduction
	5.2 Streaming MT
	5.3 Experimental setup
	5.4 Evaluation
	5.5 Conclusions
	5.6 Extended Streaming Translation Results
	5.7 Efficiency of the proposed models
	5.8 MT System configuration
	5.9 Segmenter System configuration

	References

	3 General discussion of the results
	References

	4 Conclusions and future work
	References

