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La creciente demanda de alimentos con características lo más parecidas al producto 

fresco, está impulsando el desarrollo de nuevas tecnologías “no térmicas” de conservación. Dentro 
de las más prometedoras se encuentran el tratamiento por Pulsos Eléctricos de Alta Intensidad 
(PEF) y la tecnología de Altas Presiones Hidrostáticas (HHP). Estas tecnologías permiten conservar, 
en mayor medida que los tratamientos térmicos, la calidad (sabor, aroma, color y vitaminas) de 
determinados alimentos frescos e inactivar microorganismos y enzimas, incrementando su vida útil 
en refrigeración y facilitando su comercialización. El objetivo general de la presente tesis doctoral ha 
sido el procesado por PEF y HHP solos o combinados con calor de una nueva bebida mezcla de 
zumo de naranja y leche incluyendo aspectos microbiológicos y de calidad. El plan de trabajo 
comenzó con la elaboración y caracterización físico-química y sensorial del nuevo producto eligiendo 
la formulación adecuada para desarrollar los estudios cinéticos y de vida útil. Los parámetros de 
calidad más importantes en el nuevo producto fueron la actividad enzimática y el contenido en aroma 
(concentración de compuestos volátiles). En el caso del zumo de naranja la pectin metil esterasa 
(PME) es una de las enzimas de mayor importancia. Se evaluó el efecto del tratamiento por PEF, 
HHP y calor en la inactivación de PME. Todas las tecnologías estudiadas lograron un nivel de 
inactivación enzimática del 90%. Se observó la aparición de dos fracciones con diferente resistencia 
al tratamiento, por ello, el modelo bifásico fue el que mejor describió las curvas de inactivación de 
PME mediante tratamiento combinado de HHP y calor en el producto. Posteriormente se estudió la 
variación en el contenido en aroma (concentración de compuestos volátiles) tras el tratamiento de 
HHP, PEF y calor en el producto siendo la tecnología por PEF la que mejor preservó el aroma 
original del producto fresco. Una vez establecidos los estudios relacionados con aspectos de calidad 
en el producto se realizaron los estudios microbiológicos. Se estudió la influencia de las variables del 
proceso por PEF en la inactivación de un microorganismo alterador (Lactobacillus plantarum) en el 
producto. La intensidad de campo eléctrica, tiempo de tratamiento y temperatura fueron las variables 
que más influyeron produciendo un aumento de la inactivación con un menor gasto energético. Más 
tarde, se estudiaron las cinéticas de inactivación de L. plantarum mediante la combinación de la 
tecnología de PEF y calor. A su vez, se eligió el modelo matemático de Weibull como el que mejor 
describía las curvas de supervivencia del microorganismo tras el tratamiento por PEF siendo el 

parámetro tcw  un índice de resistencia del microorganismo al tratamiento. Entre los 

microorganismos patógenos, Salmonella typhimurium se ha demostrado como un problema de 
seguridad alimentaria en alimentos ácidos como el zumo de naranja por lo que se decidió estudiar 
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sus cinéticas de inactivación por PEF en función de las características del alimento, pH y 
concentración de estabilizante (pectina). Una disminución del pH favoreció la inactivación mientras 
que el porcentaje de pectina no tuvo un efecto significativo. Finalmente se realizó un estudio de vida 
útil del producto en refrigeración tras el tratamiento de PEF y calor demostrando la viabilidad de la 
tecnología de PEF para obtener alimentos con similar vida útil que el tratamiento térmico pero con 
mejor calidad final.  



 

 

 
The growing demand of food with characteristics similar to the fresh product is enhancing 

the development of nonthermal preservation technologies. Among them High Hydrostatic Pressure 
(HHP) and Pulsed Electric Field (PEF) processing are the most promising. These technologies allow 
the preservation of food quality (flavor, aroma, color and vitamins) in a greater extent than thermal 
technology. The microbial and enzyme inactivation degree obtained through these technologies allow 
extending the shelf-life of the product at chilled storage facilitating its commercialization. The general 
objective of the present doctoral thesis was to study the PEF and HHP processing alone or combined 
with thermal treatment in a new beverage based on the mixture of orange juice and milk including 
microbiological and quality aspects. The work plan began with the preparation and physicochemical 
and sensorial characterization of the new product, choosing the adequate formulation for developing 
the kinetic and shelf-life studies. The main quality parameters in an orange juice based product were 
the enzyme activity and the aroma content (volatile compounds concentration). In an orange juice, 
pectin methyl esterase (PME) is one of the most relevant enzymes. A study of the influence of PEF, 
HHP and thermal processing on PME inactivation was developed. The different technologies could 
inactivate 90% of PME. The appearance of two fractions with different resistance to the treatment 
was observed and a biphasic model was used to describe PME inactivation curves by a combined 
HHP and thermal treatment. The study of the effect of the different processing technologies on aroma 
content (volatile compounds concentration) was also performed. The results revealed PEF 
technology as the best process to preserve the original aroma of the product. Once studies related to 
quality parameters were established, the microbiological aspects related to the new product were 
also performed. The influence of PEF processing variables on the inactivation of a spoilage 
microorganism (Lactobacillus plantarum) was carried out in the new product. Electric field, treatment 
time and temperature were the most influential variables, producing higher inactivation with lesser 
energy consumption. A kinetic study of PEF inactivation of L. plantarum was also developed. Weibull 
model was chosen as the one which best described microorganism survival curves after PEF 

treatment and the tcw  parameter could be considered as an index of the microorganism treatment 

resistance. Within the pathogen microorganisms, it has been demonstrated that Salmonella 

typhimurium could originate a food safety problem in acid foods such as orange juice. In order to 
study the microorganism behavior against PEF treatment a kinetic study was done based on the food 
characteristics such as pH and stabilizer concentration (pectin). It was found that any pH diminish 
favored inactivation while pectin concentration did not have a significant effect. Finally a shelf-life 
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study after PEF and thermal treatment was carried out in the beverage stored at refrigeration 
temperature. The study showed the viability of PEF technology to obtain food with similar shelf-life 
than thermal treatment but better final product quality. 



 

 

 
La creixent demanda d’aliments amb unes característiques pròximes als productes frescos, 

està impulsant el desenvolupament de noves tecnologies “no tèrmiques” de conservació. Entre les 
que ofereixen més opcions de futur, es troben el tractament amb Polsos Elèctrics d’Alta Intensitat 
(PEF) i la tecnologia d’Altes Pressions Hidrostàtiques (HHP). Aquestes noves tecnologies permeten 
conservar en un alt grau la qualitat de determinats aliments frescos (sabor, aroma, color i vitamines) 
i, a més, inactivar microorganismes i enzimes, que incrementen la seua vida útil en refrigeració i 
faciliten la seua comercialització. L’objectiu general d’aquesta tesi doctoral ha estat l’estudi del 
processat d’una nova beguda (un barreig de suc de taronja i llet) per PEF i HHP sols o combinats 
amb calor, incloent-hi aspectes microbiològics i de qualitat. El pla de treball va començar amb 
l’elaboració i la caracterització físico-química i sensorial del nou producte i l’elecció de la formulació 
adequada per desenvolupar els estudis pertinents. Els paràmetres de qualitat més importants en els 
sucs de fruita son l’activitat enzimàtica i el contingut en aroma (concentració de compostos volàtils). 
En el cas del suc de taronja, la pectin metil esterasa (PME) és una de las enzimes de major 
importància. Per això es va realitzar un estudi per avaluar la influència de les diferents tecnologies de 
conservació (PEF, HHP i calor) en la inactivació enzimàtica. Les tecnologies estudiades van 
aconseguir un grau d’inactivació del 90%. Després de l’estudi es va observar l’aparició de dos 
fraccions amb diferent resistència al tractament. Així mateix, el model bifàsic va ser el que millor va 
descriure les corbes d’inactivació de PME, mitjançant el tractament combinat de HHP i calor en el 
producte. Es va estudiar també la variació en la concentració de compostos volàtils després del 
tractament de HHP, PEF i calor en el producte. La tecnologia de PEF va ser la que millor va 
preservar l’aroma original del producte fresc. Una vegada es van establir el estudis relacionats amb 
el paràmetres de qualitat es van estudiar els aspectes microbiològics. El inici va consistir en la 
realització d’un estudi per determinar la influència de les variables del procés per PEF en la 
inactivació d’un microorganisme alterador en el producte (Lactobacillus plantarum). La intensitat de 
camp elèctric, el temps de tractament i la temperatura, van ser les variables que més van influir, 
produint un augment de la inactivació i alhora una menor despesa energètica. A continuació es van 
estudiar las cinètiques d’inactivació de L. plantarum mitjançant la combinació de la tecnologia de 
PEF i calor. Al mateix temps, es va elegir el model matemàtic de Weibull per ser el que millor 
descrivia les corbes de supervivència del microorganisme després del tractament amb PEF. Es va 

considerar el paràmetre tcw  com a l’índex de resistència del microorganisme al tractament. Entre 

els microorganismes patògens, s’ha demostrat últimament que Salmonella typhimurium pot 
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ocasionar un problema de seguretat alimentària en aliments àcids, com és el cas del suc de taronja. 
Per aquest motiu, es va decidir estudiar les cinètiques d’inactivació d’aquest microorganisme per 
PEF, en funció de les característiques de l’aliment (pH i concentració d’estabilitzant). Una disminució 
del pH va afavorir la inactivació, mentre que el percentatge de pectina no va tenir un efecte 
significatiu. Finalment, es va realitzar un estudi de la vida útil del producte en refrigeració després del 
tractament de PEF i calor. El resultat d’aquesta última experiència va demostrar la viabilitat de la 
tecnologia de PEF per obtenir aliments amb una vida útil similar, però amb millor qualitat final. 
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One of the main duties of any national sanitary authority is to guarantee a 

food supply in safety conditions and recommend those with high nutritional value. 

In that sense, there is a scientific evidence that vegetables and fruit consumption 

can lessen the impact of illnesses such as cancer, cardiovascular and brain illnesses 

or diabetes. Nowadays fruit and vegetable consumption is considered the most 

important strategy to prevent the appearing of cancer after reducing tobacco. The 

HWO recommends at least 400 grams or five rations of fruit and vegetable 

consumption per day, including 30 grams of legumes, seeds and nuts (Southon and 

Faulks, 2002). 

A growing rhythm of life is generating a higher demand of “ready to eat” 

food. On the other hand there is also a higher interest on food quality (low-

preservative content food and products with characteristics near to the fresh 

product) and biofood. It is supposed that such food has all food safety guaranties 

and an adequate shelf-life in refrigeration conditions. The industry is conscious 

about the changes in the consumer tendencies. A significant fact is the appearance 

in the market of a great variety of minimally processed food that need chilled chain 

for its storage and distribution (fruit juices, sauces, precooked products, fresh pasta, 

among others). Within these products, refrigerated juices and the combination of 

fruit juice and milk have been on the increase lately. They offer an interesting 

flavor mixture and provide essential nutrients to the daily intake such as vitamin-C, 

vitamin-D, calcium and natural antioxidants, among others. 

The majority of such products are processed by a mild pasteurization 

treatment. However, thermal treatment alters the original food characteristics such 

as vitamins, color and flavor, among others. In that sense, since twenty years ago, 

scientists have begun to develop alternative technologies that could guaranty food 

safety and improve the overall product quality. These technologies have been 

called “Emerging preservation technologies” or “Nonthermal technologies” 

because are based in other aspects different from heat (Raso and Barbosa, 2003).  

Within these technologies, Pulsed Electric Field (PEF) and High 

Hydrostatic Pressure (HHP) processes are the most important due to their 
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application and promising results. In Spain, HHP technology is present in the 

industry and several companies have recently marketed different sliced-jam and 

precooked products treated by HHP. In the rest of Europe, commerce of HHP 

treated food is growing including a wide range of products. It is believed that the 

technology would expand to other industrial fields (Trujillo et al., 2002). 

PEF is a more recent technology and several industrial-scale equipments 

have been developed in USA and a great number of bench-scale equipments are 

spread in different researching groups, three of them in Spain. Nowadays a 

company has marketed mixtures of different fruit juices processed by combined 

PEF and thermal treatment in USA. It is also believed that the introduction of PEF 

technology as a method for liquid food pasteurization would increase in the future 

(Clark, 2006). 
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2.1 HIGH NUTRITIONAL FOOD: FRUIT JUICE-MILK BASED 

PRODUCTS  

Nowadays, new technologies, new food production practices and new food 

processes are being developed to satisfy the needs of a changing society. At the 

same time, new products are marketed with the purpose to provide to the consumer 

improved nutritional food with functional properties. The global market of 

functional food is estimated in approximately 33 billions US$, from which 2 billion 

US$ belongs to the European market. The key-sector of functional food is dairy 

food reaching sales for approximately 1.35 billion US$ in 2003 (Menrad, 2004). 

Germany is the most dynamic European country in the development and sales of 

functional food. The market volume of functional dairy food has passed from 5 

million US$ in 1995 to 419 million US$ in 2002 (Hilliam, 2003a). Other important 

category of functional products is the non-alcoholic beverages fortified with 

vitamins A, C or E and other functional ingredients. The market volume for these 

beverages was 89 million US$ in 2002 against 15 million US$ in 1996 (Hilliam, 

2003b).  

Regarding to Spain, the total juice consumption was 18.4 1/ per capita in 

2005 belonging 10% to short-term life products (Artiach, 2005). There is no data 

related to the consumption of juice and milk based products in Spain but during last 

years a great variety of new products of such nature have appeared in the market 

showing a consumer growing interest.   

 

2.2 THERMAL TREATMENT 

 Since decades ago, thermal treatment has been the most widespread 

method for food preservation. Through the years microbiologically safe food with 

low enzyme activity have been produced but at the expense of the final product 

quality. Nowadays, sterilization and pasteurization are the most common methods 

for food preservation.    
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 In order to design the optimum thermal treatment (intensity and type of 

treatment), it is necessary to clearly identify the food physicochemical and 

microbiological characteristics that most influence on the process such as: pH (acid 

and basic food), viscosity (particulate food), food composition (fat content, 

proteins, sugar and additives), natural flora, endogenous enzymes and 

thermophysical properties (specific heat capacity and thermal conductivity) 

(Ramaswamy and Chen, 2002). 

 

2.2.1 Influence of thermal treatment on fruit juices quality 

Fruit juices are products susceptible to the loss of their organoleptic 

characteristics such as color (luminosity loss), water-soluble vitamins, carotenoids, 

changes in the physical properties (viscosity), flavor and volatile compounds 

content loss (aroma). At the same time, the temperature increases the rate of non-

enzymatic browning reactions (Maillard reaction, sugar caramelization and 

ascorbic acid oxidative reaction) and as a result, a reduction in the sensorial quality 

and nutritional value of the juice is produced (Primo, 1979; Gerardi et al., 1983; 

Lafuente, 1985). The characteristic juice flavor is also altered appearing a defect 

known as “boiled taste”.  

The extent of loss after the thermal treatment depends on its nature. On that 

basis, the highest loss of nutrients is produced in the sterilization process due to the 

severity of the treatment. In addition, food can be deteriorated during the storage 

by enzyme or microorganism fractions resistant to the treatment, increasing the rate 

as the storage temperature rises. The type of packaging and oxygen concentration 

in the headspace will also influence the degradation of the juice (Martín et al., 

1995).  

2.2.2 Methods for thermoresistance measurement  

Different methods to measure the microorganism and enzyme 

thermoresistance as well as quality factor degradation are well established 

depending on treatment characteristics (time-temperature combination) and food. 
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In the present doctoral thesis, the TDT (Thermal Death Time) disk/tube method 

and capillary tubes method have been developed.  

 

2.2.2.1 TDT disk/tube 

This method consists in enclosing the sample in a stainless steel tube (13 

mm inner diameter) or disk (3x3 cm) closing it with a sealed screw top. Thermal 

treatment is carried out in a water bath with temperature control and immediately 

cooled in ice-water after the preset times. To measure the heating time or come-up 

time (CUT), a thermocouple connected to a data logger is introduced in the inner 

side of the tube/disk containing the sample measuring the time to reach the 

different treatment temperatures (Figure 2.2.1). Generally the sample is pre-heated 

to 40ºC to avoid a long come-up time. The come-up time in the disk method is 

shorter due to the minor sample volume used in the analysis.  

The method with tubes is usually used in quality studies when higher 

sample volume is needed for the analysis (~20 mL). The method with disks is more 

convenient when the quantity of the sample needed is relatively small (1 mL) or 

when using high viscosity foods. The main advantage of this method is the low 

cost and simplicity. However, the failure of sealing may produce the contamination 

of the sample.  

 
   (A)     (B) 

Figure 2.2.1-TDT tube with an inner thermocouple (A). Instituto de 

Agroquímica y Tecnología de Alimentos, Valencia (Spain). TDT disk (B). 

Eastern Regional Research Center, USDA, PA, (USA). 



 INTRODUCTION 

  
9 

2.2.2.2 Capillary tubes 

This method is based on a modification of that proposed by Stern and 

Proctor, (1954). This method consists in introducing the sample in a ring-marked 

microhematocrit capillary tube with an inner diameter of 0.7-2.5 mm and a volume 

ranging from 50-1000 μL (Figure 2.2.2). Tubes are sealed by pulling off both ends 

in an oxygen gas flame and then heated in a stirred oil or water bath. After the 

preset times, the sample is withdrawn from the bath and immediately cooled in ice-

water. Tubes are opened in aseptic conditions. 

The main advantages of this method are the short come-up (6-8 seconds, 

depending on the temperature) and its suitability to temperatures up to 130ºC. 

Nevertheless, this method is more laborious.   

 

 
Figure 2.2.2: Capillary tubes (200 μL). Instituto de Agroquímica y Tecnología 

de Alimentos, Valencia (Spain). 

 

2.2.3.3 Industrial scale-up 

Once thermoresistance studies have been performed and optimum 

treatments have been established, it is important to scale them up into a semi-

industrial equipment. In the present doctoral thesis, a plate heat exchanger has been 

used for such purpose (Figure 2.2.3). 
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Figure 2.2.3: Plate heat exchanger. Eastern Regional Research Center, USDA, 

PA, (USA). 

 

2.3 NONTHERMAL PRESERVATION TECHNOLOGIES 

Nonthermal preservation technologies are defined as those that do not use 

temperature as the main factor in microbial and enzyme inactivation. In the 

majority of these technologies a moderate temperature rise is produced, however, it 

does not reach the level of a thermal treatment (Raso and Barbosa, 2003). 

The main goal of the nonthermal preservation technologies is to obtain 

microbiologically safe food with a low enzyme activity keeping the original 

sensorial properties such as flavor, aroma and color and nutritional properties such 

as vitamins. In essence preserving the characteristics of the fresh food. Within 

these technologies is worthy to remark the use of natural antimicrobials, 

irradiation, high intensity luminic pulses, high intensity magnetic pulses, high and 

low intensity ultrasounds, UV radiation and radiofrequency electric fields, among 

others (Barbosa et al., 1998). Nowadays the most promising and applicable 

technologies are High Hydrostatic Pressure (HHP) and Pulsed Electric Field (PEF). 

These are the subject matter of this doctoral thesis and are described in the 

following lines.   
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2.4 HIGH HYDROSTATIC PRESSURE (HHP) 

HHP technology is lately acquiring high relevancy as an alternative of 

thermal treatment in the preservation of certain type of products (meat products, 

fruit and vegetable juices and sauces). The first product treated by HHP appeared at 

the beginning of the 90’s in Japan. The company Heidi-ya began to distribute 

pasteurized products by HHP such as marmalades, sauces and fruit juices, among 

others (Rovere, 2002). Nowadays, great number of companies commercialize HHP 

treated products (Figure 2.4.1). In Spain, several meat and canned industries 

commercialize products treated with this technology and it is believed that this 

tendency will increase in the future (Norton and Sun, 2007).  

HHP technology is based in two fundamental principles. The Chatelier 

principle that establishes that pressure helps all the reactions and structural changes 

that lead to a volume diminish. On the other hand, the isostatic principle that 

establishes that pressure distribution is proportional in all food parts independently 

of its shape and size (Heremans, 2002). 

Van der Berg et al., (2002) estimated the cost of processing a litre of a 

product by HHP in 10-20 euro-centimes against 2-4 euro-centimes with heat. 

Rastogi et al., (2007) observed the same energy proportion to comprise a litre of 

water by HHP (19.2 kJ at 400 MPa) and heat a litre of water (20.9 kJ from 20 to 

25ºC). A better design of the process and materials along with the combination 

with other technologies (moderate temperature, antimicrobials and CO2) will 

permit in a near future talking about a HHP sterilization process (Smelt et al., 

2002).     

 

2.4.1 HHP treatment system 

The main components of the HHP equipment are as follow:  

- Vessel and yoke 

- Hydraulics (generation pressure system) 

- Temperature control system 
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Figure 2.4.1: Number of HHP equipment installed in Europe by 

Hyperbaric® versus (A) year of instalment and (B) industrial sector for the 

instalment (Urrutia-Benet, 2005). 

 

In general term, the operation mechanism of HHP equipment consists in 

pumping a pressurizing fluid (water or oil) from a deposit where it is contained to 

the treatment vessel. Once the vessel is filled with the liquid and no air is inside, 

pressure is built-up by a hydraulic pump. Pressure is transmitted through the liquid 

to the vessel up to reaching the desired pressure value. This method is called 

“indirect pumping” and it requires static seals (Figure 2.4.4-B). A “direct pumping” 

method has been also designed consisting in a piston that directly compresses the 
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vessel increasing the pressure. In this system dynamic seals are required (Figure 

2.4.4-A). 

 

 
(A)     (B) 

Figure 2.4.2: HHP lab-scale equipment: (A)-Laboratory of Food Process, 

Katholieke Universiteit Leuven, (Belgium), (B)-Instituto de Agroquímica y 

Tecnología de Alimentos, Valencia, (Spain). 

 

 
Figure 2.4.3: HHP industrial-scale equipment (Hyperbaric S.A., Burgos, 

Spain). 
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Figure 2.4.4: Illustration of a direct pressurization (A) and indirect 

pressurization (B) (Rovere, 2002). 

 

Temperature is controlled by a thermostated mantle connected to a cryostat 

that surrounds the vessel. This method is adequate in an isothermal treatment. 

However, in a nonisothermal treatment, the above temperature control is very slow 

and the use of a heat exchanger is preferred. The measure of the temperature is 

usually carried out by thermocouples placed inside the vessel in contact with the 

pressure medium. Improvement of the temperature control by measuring the 

temperature of food during the HHP treatment should be considered (van den Berg 

et al., 2002).   

Several companies in Japan, USA and Europe (one of them in Spain) 

design and commerce HHP industrial and laboratory scale equipments. The 

equipments are design with a capacity up to 500 L and provide pressures up to 800 

MPa. For technical reasons the majority of the equipments are static. The pressure 

medium is regularly water or glycol-oil mixture and food is packaged in a flexible 

material with no headspace to resist the volume variation during the treatment. 

HHP treatment of fruit juice is based on a pressure range of 400-500 MPa during 1-

5 min under room temperature. Lately, different continuous equipments have 

appeared. The principle of its functioning is pumping the product to the vessel and 

then pressurized by a floating piston that separates the product from the pressure 
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medium. Other continuous equipments have lastly been marketed based on various 

consecutive treatment vessels (van der Berg et al., 2002). 

 

2.4.1.1 One step treatment 

This is the most widespread HHP treatment for both industries and 

laboratories. It is based on building up the pressure up to the working pressure 

level, keeping it during the holding time and depressurization the system (Figure 

2.4.5).  

 
Figure 2.4.5: One step treatment. 

 

2.4.1.2 Multi-step treatment  

The treatment is based on the combination of consecutive one-step 

treatments. The total treatment time will be the sum of the single time of every 

treatment (Figure 2.4.6). It is believed that the multi-step treatment produces an 

increase in the microorganism inactivation due to higher cellular stress by the 

successive compressing and decompressing.  
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Figure 2.4.6: Multi-step treatment (2 steps). 

 

2.4.1.3 Step-wise treatment 

This treatment is a nonisobaric process and is used when the pressure value 

during the treatment is wanted to vary. A direct application of this type of 

treatment is the HHP spore germination (phenomenon explained later). 

 

                             
 

Figure 2.4.7: Step-wise treatment 

 

2.4.2 HHP technology related factors 

 

  2.4.2.1 Pressure level and treatment time 

Pressure level and treatment time are the two most important variables in 

the HHP technology. As general rule an increase in the pressure value produces 

higher inactivation shorten the treatment time. In the equipment design is important 

to know the relation between P-t to reach the required inactivation degree. 

Generally a treatment time more than 20 min would not produce a significant 
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inactivation increase being 5 min the optimum value (Balasubramaniam et al., 

2004). Vegetative cells need pressure values between 200-400 MPa while enzymes 

and bacterial spores need higher pressure values (500-1000 MPa) and combination 

with moderate temperature (30-60ºC). Increasing the required pressure value will 

increase the cost of the equipment as well the total operating time. These 

circumstances will make the final product more expensive. A way to reduce the 

required pressure level is increase the initial temperature of the product (Figure 

2.4.8). 
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Figure 2.4.8: T-P combination to obtain 1 log reduction of different 

microorganisms and enzymes (Ludikhuyze et al., 2002). 

    

2.4.2.2 Temperature: adiabatic heating 

During the compression the temperature of all compressible materials 

increases due to the adiabatic heating. The general expression used to illustrate the 

temperature rise during the compression in adiabatic-isentropic conditions is as 

follow (Toepfl et al., 2006):   

 

pC
T

dp
dT

⋅
⋅

=
ρ
β

      Equation 2.4.1 
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where β, ρ and Cp are thermal expansivity, density and specific heat 

capacity of the pressurizing fluid, respectively. The thermophysical properties are 

pressure and temperature dependent. When these properties are known, it is 

possible to estimate the temperature profile during the compression. Different 

pressure transmitting media show different adiabatic heating curves that can be 

obtained from the mixtures of pure substances. The main ingredient in many 

products is water, allowing estimating the temperature rise during the treatment 

using its thermodynamic properties. Water has a low compression heating value 

while the temperature rise in fat-containing food can be three times higher (Table 

2.4.1). The heat transfer of the pressure medium can be used to increase the food 

temperature during and after the adiabatic heating.  

Figure 2.4.9 shows the pressure and temperature variation during the HHP 

treatment. Ps and Pf represent the atmospheric pressure (0.1 MPa). Tm is the 

maximum process temperature. The difference in room temperature before and 

after HHP treatment (Ts y Tf) generally indicates the heat loss produced during the 

treatment (with the presumption that the depressurizing time only takes few 

seconds) (Balasubramaniam et al., 2004). 

 

Table 2.4.1: Adiabatic heating in different food (Toepfl, et al., 2006). 

Substance T increase / 100 MPa (ºC) 

Water ~3.0 

Potato purée ~3.0 

Orange juice ~3.0 

Tomato sauce ~3.0 

Milk (2% fat) ~3.0 

Salmon ~3.2 

Chicken fat ~4.5 

Beef fat ~6.3 

Olive oil 6.3-8.7 

Soya oil 6.2-9.1 
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Figure 2.4.9: HHP common variables: temperature, pressure and treatment 

time (Balasubramaniam et al., 2004). 

    

2.4.2.3 Pressurization/depressurization time 

The temperature rise during compression depends on the required pressure 

value and come-up time (CUT). Higher CUT will increase the temperature that 

follows the pressure rising. The pressurizing/depressurizing time will depend on 

the equipment used. Automatic equipments where the pressurizing/depressurizing 

time will depend on the equipment facilities and manual equipments where the 

pressure is building-up manually being this variable able to control (Rovere, 2002).   

 

 2.4.3 Food and packaging related factors 

 

  2.4.3.1 Type of packaging 

One of the most important factors in HHP treatment is the use of an 

appropriate packaging material. Their physical and mechanical properties will 
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influence the treatment effectiveness. In general, the packaging must be resistant to 

high pressure levels maintaining their sealing properties to prevent quality losses 

during the treatment. During HHP treatment the volume loss suffered by the 

packaging can reach 15% turning back to its original volume during 

decompression. For that reason, at least a packaging inter-phase must be flexible to 

transmit the pressure adequately. According to that, metal, glass or rigid plastic 

materials are not suitable for the treatment. Flexible plastic (bags, tubes or trays) 

are up to now the best options for HHP treatment, however, systematic studies are 

necessary to improve the design of packaging and seals to acquire resistance to 

higher pressure values. The type of packaging used for some fruit juices, sauces 

and milk, among others, are good examples where packaging and sealing should be 

redesign for a HHP treatment purpose (Rastogi, et al., 2007).      

 

  2.4.3.2 Presence of air 

The presence of air is other important factor intimately related with the 

food and packaging. As stated before, the packaging volume tends to be reduced 

during HHP treatment. The presence of air (headspace) which is more 

compressible than water could produce the packaging breakage. The texture loss 

produced by the air compression in food such as strawberries, lettuces or prefrozen 

bread is other of the HHP main effects.    

 

2.4.3.3 Water activity 

In general by diminishing the food water activity the treatment efficacy 

decreases due to a less pressure transmission. In the enzyme denaturation process it 

is also necessary the presence of water (Van den Broeck et al., 1999 b). As a 

consequence, dried or dehydrated food should be evaluated for being treated by 

HHP. 
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2.4.3.4 pH 

A decrease in the pH value generally improves the effectiveness of the 

treatment. Gram- bacteria seem to be more acid-tolerant and thus baroresistant than 

Gram+ bacteria (Alpas et al., 2000).     

 

2.4.4 HHP microbial inactivation  

 

2.4.4.1 Spore inactivation 

Spore formation is a surviving strategy of some microorganisms to adverse 

conditions being Bacillus and Clostridium genus the most important in food. 

Despite that applying high pressure levels spore counts in food can be reduced, in 

order to reach an sterilization process, it is necessary the combination with other 

technologies. A combined HHP and thermal treatment has been used in numerous 

studies with promising results in spore inactivation (3 log reductions in Clostridium 

sporogenes and Bacillus coagulans after 500 MPa combined with 60-70ºC) 

(Roberts and Hoover, 1996; Mills et al., 1998).  

 Different spore germination methods have been proposed by the 

combination of a germinant, pressure and moderate temperature (Sojka y Ludwig., 

1994 and 1997; Raso et al., 1998; Wuytack et al., 1998; Black et al., 2006). It is 

based on a step-wise treatment (Figure 2.4.7) applying a treatment at low pressure 

levels (200-300 MPa) combined with the use of a germinant to induce spore 

germination, followed by a combined HHP and thermal treatment (500-600 MPa, 

30-50ºC) to inactivate vegetative cells. Up to now, this type of treatment is under 

study due to the variability in the germination of a spore population and differences 

among different microorganisms. The absence of spore germination kinetic studies 

is also remarkable. In spite of the good results obtained, it is still not possible to 

talk about a sterilization process (Wuytack, 1999).  
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2.4.4.2 Vegetative cells inactivation 

The mechanism of microorganism inactivation by HHP is a combination of 

different reactions, such as noncovalent bonds breakdown and cell membrane 

permeability increase that modifies the ions efflux leading to a decrease in the 

intracellular pH. At low pressure levels the morphological damage produced in the 

cellular membrane is often reversible while at higher levels the death of the 

microorganism is produced by an irreversible damage (Rastogi, et al., 2007). 

Generally the microorganism baroresistance is inversely proportional to the 

membrane rigidity. Pressure values between 200-600 MPa at room temperature are 

often enough to inactivate the majority of vegetative cells including molds and 

yeasts. An initial temperature rise between 45 and 50ºC increase the inactivation 

level producing a synergetic effect (Smelt et al., 2002).       

The microorganism baroresistance also depends on the species. Molds and 

yeasts are less baroresistant and are frequently inactivated at 200-300 MPa. Gram- 

bacteria are often more sensitive to the treatment than Gram+ bacteria and a 

treatment at 400 MPa is generally enough to inactivate them. However, there are 

numerous exceptions to this affirmation. It has been demonstrated that some E. coli 

O157:H7 strains are more baroresistant. The combination of HHP with other 

technologies such as acidification or antimicrobials (ascorbic acid, nisin o 

lysozyme) seems to reduce microorganism baroresistance (Smelt et al., 2002).      

 

2.4.5 HHP enzyme inactivation 

Enzymes are a special type of proteins with an enormous catalytic power 

and a great specificity. Their biological activity arises from active sites brought 

together by a three-dimensional configuration. They have two important regions; 

one that recognizes the substrate and other that catalyzes the reaction once the 

substrate has been bound (Ludikhuyze et al., 2002). These two are called the active 

site and take place in a small part of the enzyme total volume. Changes in the 

active site or protein denaturation can produce an activity loss or functionality 

variations (Tsou, 1986). In general, covalent bonds are not affected by HHP 
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treatment because the primary structure of the enzyme will not be damage. The 

hydrogen bonds are also relatively baroresistant and secondary structure will not be 

affected up to pressure values around 700 MPa. However, HHP treatment affects 

electrostatic and hydrophobic interactions that maintain the tertiary and quaternary 

structures stability (Ludikhuyze et al., 2002). 

Within the enzymes, the most important in fruit juices are the following: 

• Polyphenol oxidase (PPO): it is responsible of the enzymatic browning. 

• Lipoxygenase (LOX): It induces changes in flavor, color and nutritional 

value. 

• Pectin methyl esterase (PME): it is responsible of cloud loss and 

consistency changes. 

• Peroxidase (POD): it increases the production of undesirable flavors. 

HPP treatment also produces structure damage in the active site interfering 

in the enzyme-substrate union. As for the microorganism, the baroresistance varies 

among different enzymes. In fruit juices enzyme baroresistance is generally higher 

than the majority founded microorganisms. For that reason, fruit juice preservation 

treatment is based on the inactivation of the enzymes responsible for its 

deterioration (PME in orange juice or PPO in apple juice, among others). However, 

there is no relation between enzyme baroresistance and thermoresistance among 

different enzymes.  

Enzyme baroresistance also depends greatly on its origin. Depending on 

the fruit and variety, enzyme structure can differ varying the resistance to the 

treatment. As illustration, orange PME presents different fractions with different 

treatment resistance and orange variety (Navel and Valencia var., among others) 

seems to modify the behavior against the treatment. Other conditions such as 

harvest season could also affect enzyme baroresistance.    

Food characteristics also affect the extent of enzyme baroresistance. As 

same as occurs to the microorganisms, pH diminishes enzyme baroresistance in an 

acid environment. However, exceptions to this affirmation have been found. 

Orange PME presents greater baroresistance at pH values of orange juice (Van den 
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Broeck et al., 1999 a). Sugar content also seems to protect the enzyme against the 

treatment due to a decrease in water activity content (Marshall et al., 1985; 

Seyderhelm et al., 1996; Van den Broeck et al., 1999 b). In overall, the influence of 

food composition is not clear and further discussion is presented in the results 

section. 

Other important fact in the HHP treatment of the enzyme is the enzyme 

activation phenomenon at low pressure levels. Several studies state that by 

applying a treatment around 100-400 MPa at room temperature an enzyme 

activation phenomenon (PPO and PME) is observed, increasing its activity after the 

treatment (Asaka and Hayashi, 1991; Asaka et al., 1994). An increase in the 

cellular membrane permeabilization by the HHP treatment has been proposed as 

the principal reason. Part of the enzyme bounded to the juice pulp could be 

released after the treatment producing an increase in the enzyme activity. Different 

changes that increase the enzyme-substrate union also seems to be one of the other 

main causes. 

 

2.4.6 HHP advantages and disadvantages 

 

2.4.6.1 Advantages 

Within the main advantages of HHP technology, it can be remarked: 

• Pressure transference in the whole system is instantaneous and independent 

of the food size and geometry. 

• Microbial death and enzyme inactivation is produced at room temperature 

improving the overall food quality. 

• Creation of new food textures. 

 

2.4.6.2 Disadvantages 

Within the main disadvantages of HHP technology, it can be remarked: 

• Continuous food processing equipment has not been well established. 

• High equipment cost. 

http://sauwok.fecyt.es/apps/FSTA/CIW.cgi?SID=N1piPbgmp2F8iEp948O&Func=OneClickSearch&field=AU&val=Asaka+M&curr_doc=4/4&Form=FullRecordPage&doc=4/4
http://sauwok.fecyt.es/apps/FSTA/CIW.cgi?SID=N1piPbgmp2F8iEp948O&Func=OneClickSearch&field=AU&val=Hayashi+R&curr_doc=4/4&Form=FullRecordPage&doc=4/4
http://sauwok.fecyt.es/apps/FSTA/CIW.cgi?SID=N1piPbgmp2F8iEp948O&Func=OneClickSearch&field=AU&val=Asaka+M&curr_doc=4/3&Form=FullRecordPage&doc=4/3
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• It is necessary to have qualified staff and adequate facilities. 

• Low efficacy in food with occluded air and low water activity. 

• Food sterilization by HHP has not been established. 

 

2.5 PULSED ELECTRIC FIELD (PEF) 

The main basic principle of this technology consists in the generation of a 

high voltage to a food situated between two electrodes separated by an insulator. 

Treatment time range from 1-2500 μs and electric field strength between 10-80 

kV/cm. Either PEF equipment design and microorganism and enzyme inactivation 

kinetics are the basic principles to obtain microbiologically safe food with a long 

shelf-life keeping the sensorial and nutritional properties of fresh product.   

PEF technology is a promising alternative specially indicated to pasteurize 

liquid food such as fruit and vegetables juices, milk and liquid egg with 

thermolabile nutritional components. Nowadays good expectations for using such 

technology to an industrial level are expected. Various companies manufacturing 

PEF processing units have appeared in recent years, among them, Diversified 

Technologies Corp. in USA and ScandiNova Systems AB in Sweden are the most 

important. In addition, Genesis Juice Corp. in Oregon State (USA), commercialize 

different fruit juice mixtures processed by a combined PEF and thermal treatment 

(60ºC) (Figure 2.5.1). The PEF equipment was designed at Ohio State University 

(OSU, USA) and is combined with a plate heat exchanger (Figures 2.5.2 and 

2.5.3). Besides, there are serious expectations in using PEF in other countries such 

as Brazil to export fresh orange juice to USA. 

PEF technology applications are mainly focused on food preservation, 

however, PEF treatment has also been applied in different studies to improve the 

extraction of different components by increasing the permeability of plant cells 

from diverse foodstuff (Ade-Omawaye, et al., 2001) and by improving the juice 

yield and quality parameters (Guderjan et al., 2007, Schilling et al., 2007). 
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Figure 2.5.1-Fruit juices treated by PEF. Genesis Juice Corp. (Prof. H. 

Zhang). 

 

 
   (A)     (B) 

Figure 2.5.2- Treatment chambers-(A). PEF industrial-scale equipment-(B). 

Ohio State University, OH, (USA). (Prof. H. Zhang). 
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Figure 2.5.3-PEF industrial-scale equipment combined with a heat exchanger 

(Prof. H. Zhang). 

 

2.5.1 PEF treatment system 

 PEF processing system is mainly constituted by:  

- Power source  

- Switches 

- Resistors 

- Capacitor bank 

- Transformer 

- Pump system 

- Treatment chambers 

- Voltage, current and temperature probes 

- Oscilloscope 

- Cooling system 

- Aseptic packaging equipment (optional)   

A power source is used to charge the capacitor bank and a switch to 

discharge energy to the treatment chambers. The different disposition and number 

of the components (resistors, power source and switches) give rise to different 

pulse waveforms. An oscilloscope is used to monitor voltage, current and pulse 
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width. The cooling system (thermostated bath) avoids an excessive temperature 

rise due to the ohmic heating (Barbosa et al., 1998). 

A restricting factor in a PEF treatment is the dielectric breakdown. The 

phenomenon is produced when electric field exceeds the dielectric strength of the 

food, causing the interruption of the treatment. Main causes such as high treatment 

intensity, high product electrical conductivity or the presence of air bubbles are 

discussed. The dielectric breakdown is also known as “arc” or “spark” due to the 

formation of a spark inside of the treatment chamber (Barbosa et al., 1998). During 

latest years the practice of including an overpressure valve at the entrance of the 

treatment chambers has been adopted. This valve increases the internal pressure 

diminishing the presence of air bubbles. Normally 25 psi (1.72 bar) values are 

adequate to avoid problems with the presence of air. 

Main components of the PEF equipment used in this doctoral thesis are 

shown in Figure 2.5.4. 

 

 
   (A)     (B) 

Figure 2.5.4: PEF laboratory equipment-(A). Main components of PEF 

equipment: insulator, treatment chambers and thermocouples-(B). Instituto 

de Agroquímica y Tecnología de Alimentos, Valencia, (Spain). 
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2.5.1.1 Treatment chambers 

Two principle types of chambers are used in the PEF technology 

depending on the working system. Continuous chambers used for pasteurization of 

liquid food and static chambers working in batch mode more suitable for studies in 

solid food (components extraction). Nowadays, the majority of laboratories use 

continuous chambers (Barbosa et al., 1999). 

 According to the chamber distribution and geometry, it can be 

distinguished (Figure 2.5.5): 

• Parallel-plate chamber: static chamber with a lesser electrode distance 

than the surface among them.  

• Coaxial chamber: continuous chamber constituted by two cylindrical 

electrodes where the food is flowing between them. 

• Co-field chamber: continuous chamber where the direction of the 

electric field is parallel to the food flowing. This type of chamber 

configuration has been used in the present work (Figure 2.5.6). 

 

 
 

Figure 2.5.5: Scheme of treatment chambers configuration: co-field, coaxial 

and parallel (Barbosa et al., 1998). 

 

Chambers should be designed to obtain a uniform electric field that 

improve treatment effectiveness, energy saving and avoid dielectric breakdown 

phenomenon. Within three studies published in recent years (Evrendilek et al., 

2004; Roodenburg et al., 2005 a and b) it was observed that PEF treatment in 
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orange juice and beer produced the dissolution of the main components that 

composed the treatment chamber (nickel, chrome, manganese, iron and zinc). The 

analysis of the metal concentration in the PEF treated samples showed that they 

were under the maximum standards stated by the European legislation for fruit 

juices and water for human consumption. However, the flavor of the PEF treated 

samples was significantly different from the fresh ones containing a certain 

“metallic” taste. It has been recently adopted to include designing materials such as 

titanium much more resistant to metal migration. 

 

 
Figure 2.5.6: Components of a co-field treatment chamber. ). Instituto de 

Agroquímica y Tecnología de Alimentos, Valencia, (Spain). 

 

2.5.2 PEF technology related factors 

  

2.5.2.1 Electric field strength (E) 

The electric field applied inside the chambers is defined by the relation 

between the electrical potential difference applied in two electrodes and the 

distance between them.  The electric field for a flat geometry and a co-field design 

is defined as:  

 d
VE =

       Equation 2.5.1  
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where E, is the electric field (kV/cm), V is the potential difference (kV) 

and d is the distance between electrodes (cm).  

 Electric field is the most influential factor in PEF treatment. The external 

electric field induces a potential difference across the cellular membrane. 

Maximum value that the membrane could withstand is known as critical 

transmembrane potential or critical electric field (Ec). When the external electric 

field exceeds Ec value, membrane breakdown is produced Such value principally 

depends on the microorganism and environment and differences in the electric field 

value affect the treatment effectiveness (Qin et al., 1998). 

 

2.5.2.2 Pulse waveform and polarity 

The main pulse waveforms used in a PEF treatment are: 

•  Exponential decay wave: is defined by a voltage increase up to the 

selected peak value, decreasing exponentially to its initial value 

(Figure 2.5.7).   

• Square wave: is defined by a rapid voltage increase up to the selected 

peak value during a period of time and rapidly descending to its initial 

value (Figure 2.5.8). 

Various studies state that greater microbial inactivation is produced by 

applying square wave pulses comparing to exponential decay wave with the same 

energy applied (Zhang et al., 1994 b; Rodrigo et al., 2003 b).   

 

 
Figure 2.5.7: Exponential decay wave (Barbosa et al., 1999). 
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Figure 2.5.8: Square wave (Barbosa et al., 1999). 

 

Pulses can also be classified in monopolar or bipolar depending on their 

polarity. Bipolar pulses apply a positive pulse followed by a negative or the 

opposite way causing a reversal of the electric charge. The application of bipolar 

pulses changes the direction of movement of charged ions in the cell membrane 

causing a structural fatigue, increasing the susceptibility to electrical breakdown. 

This phenomenon will promote the microorganism death (Ho et al., 1995) (Figure 

2.5.9). In the case of monopolar pulses (Figure 2.5.10), same polarity is maintained 

and seem to be less effective on microorganism inactivation (Barbosa et al., 1998). 

In turn, monopolar pulses separate charged particles forming a deposit on the 

electrode, distorting the electric field. In the enzyme inactivation the relation 

between pulse polarity and the reached inactivation has not been established yet 

(Giner et al., 2001; Élez et al., 2006 a). 

 
Figure 2.5.9: Bipolar square wave (Barbosa et al., 1999). 
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2.5.2.3 Temperature (T) 

PEF treatment produces a temperature rise due to the ohmic heating. 

Temperature rise increases when the treatment intensity also increases (electric 

field and treatment time). Such rise generally favors enzyme and microorganism 

inactivation, producing a synergetic effect (pulses-temperature) at 35-60ºC. An 

increase in the membrane permeability and fluidity and subsequent structural 

fatigue seem to be the main effects of T on microorganism inactivation (Jayaram et 

al., 1992). Sepulveda, et al., (2005) argued that at low temperatures the 

phospholipids of the microorganism membrane are attached creating a gel-shaped 

rigid structure. At greater temperatures the membrane adopts a crystalline liquid 

appearance that diminishes its physical stability being more susceptible to PEF 

treatment. In the enzyme inactivation, a temperature rise would favor structural 

changes and charges alteration leading to enzyme denaturation and activity loss. 

 

2.5.2.4 Treatment time (t) 

Treatment time is defined as:  

 
wnt ×=         Equation 2.5.2 

 

where t is the treatment time (µs), n is the number of pulses and w the pulse 

width (μs). In general, a treatment time increase causes a temperature rise and 

greater inactivation. Nevertheless, the relation between the survivors number or 

enzyme activity and treatment time is not linear observing the appearance of 

shoulders and tailing phenomena. In that sense, once certain inactivation is 

produced, a rise in the treatment time and thus in the energy applied, do not 

produce any significant increase in the inactivation (Raso et al., 2000, Aronsson et 

al., 2001).    
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2.5.2.5 Pulse width (w) 

Pulse width is defined as the pulse duration in microseconds (μs) (Figure 

2.5.10). In an exponential decay wave, it is defined as the elapsing time from the 

maximum peak value to a value 37% lesser. Several authors have tried to 

determine the optimum pulse width based on microbial inactivation obtained (Raso 

et al., 2000). It has been proved that a value close to 2 μs obtains a greater 

microbial reduction within a lesser energy consumption. A pulse width increase 

does not produce in many cases any significant effect on the inactivation degree. 

However, several studies conclude that a pulse width increase produces higher 

microbial inactivation (Aronsson et al., 2001; Abram et al., 2003, Élez et al., 2005), 

but only under low field intensities (25-28 kV/cm). In the enzyme inactivation by 

PEF, Giner et al., (2001) and Élez et al., (2006 b) observed a greater POD and PPO 

inactivation by increasing pulse width. As a conclusion, it seems that pulse width 

effectiveness depends on the treatment conditions and type of study. 

 
Figure 2.5.10: Pulse width (w) (Barbosa et al., 1999). 

 

2.5.3 Product related factors 

Product physicochemical characterization is essential since it directly 

affects PEF treatment effectiveness. Electrical conductivity, pH, water activity, 

particle size or viscosity seem to be the most important. Several studies have 

observed that factors such as the presence of fat and sugar seem to protect the 

microorganism and enzyme against treatment (Bendicho et al., 2003 a). On the 

contrary, other studies do not show any significant effect of food composition on 

PEF microbial inactivation (Reina et al., 1998; Dutreux et al., 2000; Mañas et al., 
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2001). It seems that the different food constituents and target microorganism do not 

affect equally on the inactivation degree. Further discussion is provide in the 

present doctoral thesis  

 

2.5.3.1 Electrical conductivity 

In general high electrical conductivity foods are more difficult to be 

processed by PEF due to a less electrical resistivity (Barbosa et al., 1999). In turn, 

lesser microbial inactivation is produced due to a greater solutes concentration that 

increases membrane rigidity turning it more stable to the treatment (Wouters et al., 

2001). 

A decrease in the electrical conductivity will produce higher conductivity 

difference between the microorganism and the environment, creating a flux of ionic 

substances through the membrane. This would increase cell membrane weakening 

and permeability making it more susceptible to the treatment (Wouters et al., 1999; 

Dutreux et al., 2000). However, Álvarez et al., (2000 and 2003) observed that by 

increasing the medium conductivity (2, 3 and 4 mS/cm) the inactivation of S. 

senftenberg and L. monocytogenes also increased. The fact that by increasing 

conductivity it was necessary to apply greater voltage to obtain the same electric 

field could be the main reason.  

 

2.5.3.2 pH  

Generally microorganisms have a greater treatment resistance at the 

optimum growth pH. When pH varies from the optimum value, treatment 

resistance decreases. Various studies demonstrate that any food pH diminishing 

favors PEF microbial inactivation due to an additional cell stress. In an acid 

environment, a greater H+ ions transporting to cell is produced and due to the 

higher membrane permeability after PEF treatment a cytoplasm pH reduction is 

produce leading to cellular death. Intracellular pH modification can also unchain 

chemical variation in compounds such as DNA and ATP (Vega-Mercado et al., 

1996, Wouters et al., 2001).    



 INTRODUCTION 

  
36 

pH resistance differs among different microorganisms. Differences in the 

optimum growth pH seem to be the most probable cause of the observed 

differences (Álvarez et al., 2000; Aronsson and Rönner, 2005). Evrendilek and 

Zhang, (2003) demonstrated that pre-adapting E. coli 0157:H7 to the acid 

environment the pulsoresistance increased. This circumstance could occur in fruit 

juice processing where any adaptation to the acid environment could cause greater 

resistance to the subsequent preservation treatment.  

 

2.5.3.3 Viscosity (particulate food) 

 Viscosity is considered a limiting factor in the PEF treatment. The presence 

of particles could induce to a sudden change in electrical conductivity, causing an 

increase in the electric field and the subsequent treatment interruption. An increase 

in food viscosity would also difficult to obtain an adequate flow-regime (laminar-

turbulent). This fact confirms that the use of an adequate pump is essential.      

 

  2.5.3.4 Water activity 

Food water activity could also affect PEF treatment effectiveness. Álvarez 

et al., (2002) observed lesser PEF inactivation of L. monocytogenes reducing food 

water activity from 0.99 to 0.93. Such authors hypothesized about an increase in 

membrane rigidity that would lead to a wall cell greater PEF resistance. In turn, 

cellular wall contraction would decrease the cellular size affecting PEF treatment 

effectiveness (Aronsson and Rönner, 2001).  

 

2.5.4 PEF microbial inactivation   

 Development of new food preservation technologies demands the 

knowledge of the different mechanisms of microorganism inactivation. The 

majority of studies agree to remark that PEF treatment produces a series of 

structural and functional changes in the cellular membrane that lead to a 

microorganism death (Mañas and Pagán, 2005). 
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 Zimmermann, (1986) observed that charged particles of a cell tend to 

accumulate in the inner and outer membrane surface generating 10 mV 

transmembrane potential. When an external electric field is applied, a great 

quantity of charged particles is accumulated on both sides compressing the 

membrane. As commented earlier, cellular membrane can hold an Ec maximum 

value. When the applied electric field exceeds Ec value, an electrocompression 

effect by the accumulation of charges is produced leading to the formation of pores 

in the membrane. Size and quantity of pores will depend on the applied electric 

field and treatment time. In general it can be divided in “reversible” and 

“irreversible” pores. “Reversible” pores are those formed at low treatment 

conditions returning to the membrane initial form after the treatment. This could 

cause certain cell injury known as sublethal damage leading to cellular death in 

stress conditions such as low pH and refrigeration temperature. On the contrary, if 

the electric field is higher than Ec, “irreversible” pores are produced leading to the 

death of the microorganism (Figure 2.5.11). Besides structural changes in the 

membrane, other changes have been observed inside the cell indicating that pores 

formation is not the only PEF microbial inactivation mechanism; however, it is the 

most important (Harrison et al., 1997).  

 

 
Figure 2.5.11: Effect of PEF treatment on cell membrane (Barbosa et al., 

1999). 
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Within microorganism factors related to PEF it can be remarked: 

 

2.5.4.1 Type of microorganism 

Food prevailing natural flora (Gram+, Gram- , yeasts, molds or esporulated 

microorganisms) could give an idea of cell characteristics such as membrane size 

and structure being useful for an appropriate PEF treatment design. 

Several studies have observed that Gram+ have greater PEF resistance than 

Gram-, mainly due to membrane composition (Hülsheger et al., 1981). Yeasts are 

more sensitive to PEF treatment because its higher size and pulses affect directly 

into their structures (Qin et al., 1998) (Figure 2.5.12). On the other hand, PEF 

treatment has been demonstrated to be unable to inactivate spores. Pagán et al., 

(1998) and Cserhalmi et al., (2002) did not observe significant differences in the 

inactivation of B. subtilis and B. cereus spores after the combined PEF and thermal 

treatment (60ºC). The combination of PEF treatment with other barrier 

technologies (natural antimicrobials or germinants) would lead an extent of 

inactivation degree. 

 

2.5.4.2 Microorganism inoculum size 

Different studies have tried to asses the effect of the inoculum size on PEF 

microbial inactivation and results have raised different conclusions. Several studies 

observed no significant effect on PEF inactivation after increasing the 

microorganism initial concentration (Álvarez et al., 2000). On the contrary, Zhang 

et al., (1994) and Damar et al., (2002) observed that by increasing S. cerevisiae and 

E. coli O157:H7 initial concentration (103-108 CFU/mL) PEF inactivation 

diminished possibly due to a protecting mechanism by the formation of aggregates. 

In conclusion, it seems that the influence of this parameter on pulses effectiveness 

is affected by the microorganism and treatment conditions. 
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Figure 2.5.12: Cellular size comparison (Qin et al., 1998). 

 

2.5.4.3 Growth phase 

Membrane cell characteristics are different in each microorganism 

development stage. In logarithmic phase cell membrane is more sensitive to an 

external factor because its continuous division (Pothakamury et al., 1996; Wouters 

et al., 1999; Álvarez et al., 2000; Rodrigo et al., 2003 a). Wouters et al., (2001) did 

not observe significant differences on membrane permeability after PEF treatment 

between cells recovered in stationary and logarithmic phase. The authors admitted 

that other factors could also affect PEF inactivation. Stationary phase cells adapt 

better to stress conditions to assure their survival in the environment, causing 

physiological changes that could induce to a greater resistance to PEF treatment.   

 

2.5.5 PEF enzyme inactivation 

Enzymes structure is formed by noncovalent bonds (hydrogen bonds, 

electrostatic interactions, van der Waals forces and hydrophobic bonds) and in 

some cases bisulphite bonds that provide great stability. Nevertheless, any change 

might cause their denaturation (Ho et al., 1997). PEF treatment could impact such 

interactions affecting the three-dimensional structure (secondary, tertiary and 

quaternary) or the globular protein conformation. The difference in the enzyme 

inactivation degree could be mainly related to the secondary and tertiary structure.     

Different studies based on PEF enzyme inactivation have observed 

conformational changes and alteration of protein helix alignment due to the 

movement of charges produced by the PEF treatment. Zhang et al., (2005) 
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observed loss in α-helix conformation content in a POD after combined PEF and 

thermal treatment. Bendicho et al., (2003) observed perturbations in the charged 

groups due to changes in the electric field value. This fact caused activity loss due 

to the difficulty of active site-substrate union. Enzyme PEF resistance varies 

depending on the number of hydrogen bonds and the perturbation around metal site 

(Ca2+) necessary to maintain its activity. 

Yang et al., (2004) observed the inactivation mechanism of several 

enzymes by PEF concluding that increasing the size and complexity of the enzyme 

structure was an indicator of a higher thermoresistance but not pulse-resistance. 

Higher inactivation at higher electrical conductivity was also observed due to a 

higher temperature increase for the same treatment conditions and higher ions flux 

affecting to the enzyme electrostatic interactions. Despite of the results obtained, 

the information about PEF inactivation of enzymes is very limited. 

 

2.5.6 PEF advantages and disadvantages  

 

2.5.6.1 Advantages  

• Effective to inactivate pathogen and spoilage microorganisms.  

• Synergy with moderate temperature, natural antimicrobials and pH.  

• Similar shelf-life that conventional process but preserving better 

vitamins and flavor. 

• It allows continuous food processing.   

• Similar energy consumption that thermal treatment in a counterflow 

process.  

 

2.5.6.2 Disadvantages 

• High equipment and operation cost.  

• Only valid for non-particulate and low electrical conductivity liquid 

foods. 
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• Unable for a sterilization process purpose. 

 

2.6 ORANGE JUICE ENZYME ACTIVITY 

 

2.6.1 Pectins  

 One of the most important physical characteristics of the orange juice is the 

turbidity. This parameter is also called juice “cloud” and its loss causes an 

important juice destabilization leading to a clarified juice with no commercial 

value. 

Juice contained in the orange fruit vacuoles does not present turbidity. 

Turbidity comes from cell fragments colloidally dispersed in the juice 

corresponding to the cell disruption at the extraction moment. Colloidal suspension 

is composed by approximately 30% of proteins, 20% of hesperidins, 15% of 

cellulose and hemicellulose, 5% of pectins and 30% unknown (Klavons et al., 

1987).  

One of the most important components of the juice “cloud” are pectins. 

Pectins are the juice natural colloid that contributes to the formation of turbidity, 

keeping pulp particles in suspension. The total proportion of pectins in the juice 

depends on the pressure used in the extraction and pulp residual content.   

 

2.6.2 Pectolytic enzymes: pectin methyl esterase (PME)  

The orange juice enzyme activity is mainly due to a pectolytic enzyme, 

pectin methyl esterase (PME). PME is mainly found in the solid parts of the fruit 

(pulp and juice cells) and subsequently in decreasing order in flavedo, albedo and 

seeds.   

PME is a high specific enzyme that catalyzes the hydrolysis of pectin 

methylester groups (demethylation) releasing alcohol and pectinic acid. Due to this 

reaction the pH diminishes increasing the quantity of free carboxyl groups and 

producing methanol. This reaction has a great technological relevance in juice 

industry processing producing colloidal unbalance destabilizing the suspension 
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formed by pectin mycelia. The generated carboxylic groups by the demetolixation 

process react with the Ca2+ and Mg2+ ions of the juice having as a result aggregates 

that are precipitated and deposited on the bottom of packaging (Figure 2.6.1).  

 

 
Figure 2.6.1: Three-dimensional structure by ions interaction (Plinik and 

Voragen, 1991). 

 

As commented before, orange PME activity produces a suspension of pulp 

sediment, leading a whey with no commercial value. Orange PME also produces 

the gelification of concentrate juices. This is one of the major problems associated 

with the quality loss of these type of juices (Versteeg et al., 1980). Orange juice 

physical stability is traditionally obtained with thermal treatment but producing an 

overall food quality loss. Orange juice thermal preservation treatment (90 ºC, 1 min 

or 95 ºC, 30 s) is based on PME complete destruction (> 90%) (Cameron et al., 

1994). Such conditions are higher than the microorganism thermoresistance found 

in the juice.  

 

2.7 ORANGE JUICE MICROBIAL CHARACTERIZATION 

 

2.7.1 Salmonella typhimurium 

Salmonella enterica subgroup enterica serotype Typhimurium (also known 

as Salmonella typhimurium as simplification) belongs to the Enterobacteriaceae 
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family. Salmonella is a bacillus (1-2 μm), Gram-, facultative anaerobic, non spore-

forming and motive bacteria. Is a glucose fermentative microorganism releasing 

acid and gas. Its optimum growth temperature is approximately 38ºC being able to 

growth in a range of temperatures between 5 and 46ºC. It is a relatively 

thermolabile microorganism and temperatures between 65-70ºC are enough to 

inactivate it. Recently, it has been known that the most common Salmonella food 

infection is caused by S. typhimurium (Forsythe et al., 2003).  

It is estimated that 31% of USA annual food outbreaks belongs to 

Salmonella (35.000 outbreaks cases per year) (IFT, 2004). S. typhimurium infection 

does not cause a severe illness and normally is non-fatal. The illness is 

characterized for causing diarrhoeas, abdominal aches, vomits, nauseas and mild 

fever. The incubation period varies between 16-72 h and the sickness lasts between 

2-7 days (Mossel, 2002). 

The infective dose varies depending on the age and person health status, 

food and Salmonella strain but in general varies between 20 and 106 CFU/mL 

(Mossel, 2002) Unfortunately in immunedeficient people (elder people, children or 

hospitalised people) Ssalmonella infection ends up with death if appropriate 

treatment is not prescribed on time. The majority of Salmonella infections are 

taking place in summer.  

This microorganism is frequently found in food such as: 1) beef, poultry 

and seafood; 2) nonpasteurized products such as egg products, milk and dairy 

products; 3) other Salmonella-free food but contaminated with some of those 

mentioned above (1 and 2). Lately, different cases of Salmonella contamination 

have been found in orange juice (Cook et al., 1998; Castillo et al., 2006 and Khan 

et al., 2007).  The acid-tolerance of different Salmonella strains has been studied by 

several researchers (Parish et al., 1997 and Ray, 2004 in orange juice; Pao et al., 

1998 on orange surface; Yuk and Schneider, 2006 in various fruit juices and 

simulated gastric juice). 

 

http://es.wikipedia.org/wiki/Bacilo
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Figure 2.7.1: Electron microscopy of Salmonella typhimurium (Mossel, 2002). 

 

2.7.2 Lactobacillus plantarum  

Lactobacillus plantarum is a non-starter homofermentative lactic bacteria 

(NSLAB) belonging to streptobacterium family. L. plantarum is Gram+, non 

spore-forming with no respiratory metabolism, microaerobic and catalase- 

producing a viscosity increase during its growth. Lactobacillus genus is often 

associated with diary products. It is often responsible of the final stages in lactic 

fermentation due to its acid-tolerance growing at pH values less than 5. 

Lactobacillus genus is rarely pathogen.   

Within the spoilage microorganisms L. plantarum is frequently found in 

fruit juice based products. It is characterized to convert additives found in fruit 

juice such as malic and citric acid into lactic acid producing a sour flavor and taste 

(Bay, 2004). Many authors have observed a high acid-tolerance (Pao and Davis, 

2001; McDonald et al., 1990). 
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Figure 2.7.2: Electron microscopy of Lactobacillus plantarum (Mossel, 2002). 

 

2.7.3 Orange juice microbial safety 

During last decades, natural squeezed juice has acquired great relevance. It 

is prepared at the moment of purchasing or is storaged in a container in continuous 

agitation without having any preservation treatment. In occasions, the hygienic 

conditions are not appropriate (inadequate cleaning surfaces and equipments and 

inappropriate orange storage) leading to a pathogen inoculation through cross- 

contamination having as a result a public health problem.        

In the latest years the United States have suffered pathogen 

microorganism’s outbreaks in non-pasteurized orange juice. Salmonella Hartford, 

Bacillus cereus, Clostridium botulinum and Escherichia coli 0157:H57 were 

detected in non-pasteurized orange juice, causing 66 infection cases and the death 

of a child (Morris, 1998). The survival in acid environments is considered unlikely 

probable. However recent studies have showed that some E. coli strains, including 

three pathogens of 0157:H7 and various Salmonella strains (including S. 

typhimurium) have become acid-tolerant and thermoresistant after a previous 

adaptation at pH=5, as it possible occurs in orange juice processing (Morris, 1998).    

Due to these facts, the FDA (USA Food and Drug Administration) 

proposed the implantation of a HACCP system in the entire non-pasteurized fruit 

juice processing. It should be also included an information label indicating that the 
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juice had not been processed to guarantee pathogen destruction. It was also 

recommended an educational programme for industries and consumers in order to 

minimize the risk associated to fresh juice consumption. After that, FDA made 

public a regulation indicating that the process that could obtain an equivalent 

reduction of five log cycles of E. coli, could guarantee microbiological safety of 

those products. The above came up at the end of 1998 and with the available 

information thermal pasteurization was the unique procedure to obtain such 

inactivation level (Morris, 1998). However, the regulation was only applied at 

industrial level leaving aside bars, restaurants and other groups where non-

pasteurized juice is sold.       

As stated earlier, the application of a mild thermal pasteurization process 

produces overall quality loss avoiding using by companies the term “fresh” to 

satisfy consumer tendencies. A possible solution to this crisis might come by the 

application of a nonthermal food process, such as High Hydrostatic Pressure (HHP) 

or Pulsed Electric Field (PEF)  

 

2.8 INACTIVATION KINETIC MODELS 

Generally the use of survival/inactivation curves has been extended since 

years to study microbial resistance, enzyme inactivation and quality factor 

degradation kinetics to different lethal agents. These survival/inactivation curves 

represent the survivors/enzyme activity/compound concentration number against 

the treatment. These graphs are often described through several mathematic models 

from which different parameters are obtained allowing the quantification and 

prediction of bacterial resistance/enzyme inactivation.  

The acquisition of these kinetic parameters is basic in the development of a 

food preservation process. The industrial practical application of microbial 

modelling comes from optimising the process conditions, improving food safety 

and allowing starting up a HACCP plan. Lately, food safety policies have been 

designed by different European governments and Food safety Agencies (European 

and Spanish) based on microbiological risk analysis studies. Within these studies, 
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predictive microbiology and inactivation kinetic models are playing a fundamental 

role. 

 

2.8.1 Microorganism inactivation kinetic models  

2.8.1.1 Bigelow   

 Classic kinetic models suppose a linear relation between the survivors 

fraction and treatment time. The model developed by Bigelow, (1921) has been 

mainly used to explain survival curves by thermal treatment:  

D
tSLog −=)(            Equation 2.8.1  

 

where S is the survival fraction calculated as the relation between the 

survivors after the treatment (N) and the initial number of microorganisms (N0), t is 

the treatment time and D is the kinetic parameter, showing the time required to 

achieve one decimal reduction and it can be calculated as the negative inverse of 

the inactivation curve slope. 

The evidence of deviations from the traditional models with the appearance 

of shoulders and tailing phenomena in the survival curves have been observed in 

PEF treatment (Figure 2.8.1). The validity of Bigelow model for interpreting PEF 

kinetic inactivation data should be evaluated.  

 

2.8.1.2 Hülsheger 

 The pioneers on microbial mathematical modelling were Hülsheger and 

Niemann (1980). The model was based on the survivors fraction dependency (S), 

treatment time (t) and critical treatment time (tc) for which S=1, according to the 

following relationship: 
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where bt is the regression coefficient, t is the treatment time and tc is the 

critical time expressed (the maximum treatment time in which the survival fraction 

equals 1). 

 

 
Figure 2.8.1: Illustration of different nonlinear survival curves. 

 

2.8.1.3 Weibull   

 This model consists in a distribution function that considers the 

microorganism as a population where every individual has a different resistance to 

the treatment. The inactivation curves represent the resistance distribution of the 

population to the treatment. Under this perspective, it is easier to explain the non-

existing linear relation between treatment time and microorganism death. Besides 

its simplicity (two parameters) is very versatile, allowing to describe curves with 

shoulders and tailing phenomena and straight lines. This distribution has served for 

describing heat and PEF inactivation curves in several studies (Peleg et al., 1995; 

Rodrigo et al., 2003 a) and it is defined as:  
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       Equation 2.8.3  

where t is the treatment time, a and b are scale and shape parameters, 

respectively. The b value gives an idea of the form of the curve, if b>1 the curve is 

concave upwards (it forms shoulders) indicating some activation phenomenon is 

produced or higher treatment resistance at the initial stage. If b<1 the curve is 

concave downwards (it forms tails) indicating that survival fraction is the most 

resistant to the treatment conditions. If b=1 the curve is a straight line and can be 

described by linear models indicating that every cell has the same resistance to the 

treatment    

Other kinetic parameter used from the Weibull equation is the mean critical 

time ( tcw ) that can be defined by the time when microorganism death is high in 

response to the PEF treatment, expressed by the following equation: 

 

⎟
⎠
⎞⎜

⎝
⎛ −+Γ= 11* bacwt         Equation 2.8.4  

 

where a and b are the parameters of the Weibull equation and Γ is the 

gamma function. 

 

2.8.2 Enzyme inactivation kinetic models  

   

2.8.2.1 Primary models 

Traditionally linear models have been applied to describe enzyme 

inactivation kinetics by heat, obtaining parameters such as D and z values 

(described later). However, in the case of different enzymes thermal inactivation 

curves have been observed to behave differently due to the presence of different 

fractions exhibiting different stabilities (Hou et al., 1997; Lee et al., 2003; 
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Tajchakavit and Ramaswamy, 1997; Van den Broeck et al., 1999 a; Wicker and 

Temelli, 1988; Cameron et al., 1998; Han et al., 2000; Versteeg et al., 1980). 

Nevertheless, in many cases only part of the curve (activity related to the most 

abundant fraction) has been modelled to obtain the previously described 

parameters. Lately some microbial inactivation kinetic models (Weibull 

distribution) have been applied to describe enzyme inactivation kinetics (Soliva et 

al., 2006; Élez et al., 2006 a). However the most common equations used to 

describe thermal and high pressure inactivation kinetics of different enzymes are 

the following:  

 

For a thermal and high pressure treatment, inactivation kinetics of different 

enzymes founded in fruit juices were properly described using the biphasic model 

(primary model) which is usually applied when different fractions are present with 

different processing stabilities inactivating according to first-order kinetics defined 

by (Van den Broeck et al., 2000): 

 

A = AL exp (-kL· t) + AS exp (-kS · t)   Equation 2.8.5 

 

where A is the dependent variable and can be expressed as enzyme activity 

(U/mL), AL and AS refer, respectively, to the activity of the labile and stable 

fraction (U/mL), kL and kS the inactivation rate constant of the labile and stable 

fraction (min-1) and t the independent variable expressed as the treatment time 

(min).  

A special case of first-order kinetics is the fractional conversion model 

(primary model), which is usually applied when a fraction is inactivated and 

another fraction remains constant and a nonzero residual activity after prolonged 

treatment is observed (Van den Broeck et al., 1999 a and b): 

 

A = A∞ + (A0 - A∞) exp (-k t)    Equation 2.8.6 
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where A is the dependent variable and can be expressed as enzyme activity 

(U/mL), A0 and A∞ refer, respectively, to the initial enzyme activity and to the 

residual activity after prolonged treatment time (U/mL), k the inactivation rate 

constant (min-1) and t the independent variable expressed as the treatment time 

(min).  

  2.8.2.2 Secondary models 

The temperature dependence of inactivation rate constants of the different 

fractions can be estimated using the Arrhenius model (secondary model) 

(Arrhenius, 1889): 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

TTR
Ekk aL

LoL
11)ln()ln(

0
  Equation 2.8.7  

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

TTR
Ekk aS

Sos
11)ln()ln(

0
  Equation 2.8.8 

where ln(kL) and ln(kS) are the dependent variables and are expressed as the 

inactivation rate constant of the labile and stable fraction, respectively (min-1), EaL 

and EaS are the activation energy of the labile and stable fraction respectively 

(kJ/mol), kL0 and kS0 the inactivation rate constant at a reference temperature of the 

labile and stable fraction, respectively (min-1), T is the independent variable 

expressed as the absolute temperature (K), T0 the reference temperature (K) and R 

(8.314 J/mol K) is the universal gas constant.  

The pressure dependence of the enzyme inactivation rate constants at a 

constant temperature of different fractions can be calculated using the linearized 

Eyring equation (secondary model) (Eyring, Johnson, & Gensler, 1946): 
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where kL and kS are the dependent variables and are expressed as the 

inactivation rate constant of the labile and stable fraction respectively (min-1), VaL 

and VaS are the activation volume of the labile and stable fraction, respectively 

(cm3/mol), kL0 and kS0 are the inactivation rate constant at a reference pressure of 

the labile and stable fraction, respectively (min-1), T is the absolute temperature 

(K), P is the independent variable expressed as the pressure (MPa), Pref is the 

reference pressure (MPa) and R (8.314 J/mol K) is the universal gas constant.  

 

2.8.3 z parameter  

 This parameter has been frequently used in microorganism and enzyme 

thermal inactivation. It describes the primary parameter variation (secondary 

parameter). Generally it has been used to describe the variation of D parameter 

toward an external factor such as temperature, pH, aw, among others. It is obtained 

from the logarithm of D values at different temperatures as the negative inverse of 

curve slope. It can be also calculated by the following equation (secondary model):  

 

( ) ( )
zTT

DLogDLog 1

21

21 =
−
−

        Equation 2.8.11 

where D is the decimal reduction time defined as the time required to achieve 

one decimal reduction and T the temperature (ºC). 

z parameter could also be used to describe the variation of other kinetic 

parameters such as a and tcw  of Weibull model or tc of Hülsheger model among 

others. Further discussion is presented in this doctoral thesis. 

 

2.8.4 Model fit validity 

 A least square procedure was used to fit the models to the experimental 

data. This method consists basically on searching the parameters values that 

minimize the sum of squares of residuals between experimental and predicted 
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values. Least-squares fitting was applied checking the assumptions of normal data 

distribution, constancy of variance and independent distribution of residues. 

 

2.8.5 Goodness of fit  

To estimate the model fitting to the experimental data the Accuracy factor 

(Af) and Mean square error (MSE) parameters were used (Ross, 1996) and can be 

defined as follows: 

 

n
observedfittedLog

Af

∑

=

)/(

10    Equation 2.8.12 

where n is the number of observations and the predicted and observed 

values are referred to the survival fraction. The meaning of this statistic is the 

closer to 1 the Af values, the better the model fit the data. 

Mean square error (MSE) is also calculated as follows: 

 

pn
observedfittedMSE
−

∑ −
=

2)(
   Equation 2.8.13 

where n is the number of observations, the predicted and observed values 

are referred to the survival fraction and p is the number of parameters to be 

estimated by the model. The meaning of this statistic is the smaller the MSE values, 

the better the model fit the data. 
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The through knowledge of the state of art of the different nonthermal technologies 

and juice processing industry leaded to the definition of the main objective of the 

present doctoral thesis based on the application of a combined PEF, HHP and 

thermal processing in a new beverage based on the mixture of orange juice and 

milk. To reach such objective, the following partial objectives were proposed:  

 

• Preparation and physicochemical and sensorial characterization of a new 

product based on orange juice and milk.  

• Study the PME inactivation and volatile compounds content loss by HHP, 

PEF and thermal treatment in the orange juice-milk based product. 

• Obtain the combined HHP and thermal inactivation kinetics of pectin 

methyl esterase (PME) in the orange juice-milk based product. 

• Study the influence of PEF processing variables on the inactivation of L. 

plantarum in the orange juice-milk based product.  

• Obtain the combined PEF and thermal inactivation kinetics of a spoilage 

microorganism (Lactobacillus plantarum) in the orange juice-milk based 

product. 

• Obtain PEF inactivation kinetics of a pathogen microorganism (Salmonella 

typhimurium) based on the influence of food characteristics such as pH and 

stabilizer concentration in the orange juice-milk based product. 

• Study the shelf-life of the orange juice-milk based product after PEF and 

thermal treatment at refrigeration conditions. 
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4.1.1 ABSTRACT 
A new product based on the mixture of orange juice and milk suitable for Pulsed Electric Field 

(PEF) processing was developed. New methodology was established and four formulations were 
chosen based on orange juice concentration (15, 25, 50 and 70%). The election of the final 

formulation was based on the physicochemical characteristics, PEF inactivation of E. coli and 
sensorial evaluation. E. coli inactivation degree was lesser by increasing orange juice 

concentration due to a conductivity and viscosity sample increase but without significant 
differences between 15, 25 and 50% samples (p>0.05). There were no significant differences 

among the 50 and 70% samples on aspect, viscosity and global appreciation sensory 
parameters. The 50% sample was chosen as the most appropriate for PEF treatment due to its 
adequate inactivation degree, appropriate physicochemical characteristics and good sensorial 

acceptance.   
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4.1.2 INTRODUCTION 

Acidified milk drinks comprise a large range of products, from those 

usually prepared from fermented milk with stabilizers and sugar to those prepared 

by direct acidification with fruit juices and/or acids. The pH of these products 

ranges from 3.4 to 4.6 and because of the instability of caseins in this pH range, a 

stabilizer needs to be added to prevent protein aggregation and achieve optimal 

mouth feel (Nakamura et al., 2006).  

Caseins at neutral pH in milk are present in the form of micelles, and these 

protein particles are stabilized by steric repulsive interactions. During acidification, 

at a pH around the isoelectric point (pH 4.6) the micelles aggregate, mainly 

because of the collapse of the extended layer formed by κ-casein on the surface of 

the micelle (De Kruif, 1998). At a pH below their isoelectric points, milk proteins 

are positively charged; negatively charged pectins are employed as stabilizers in 

products such as acidified milk drinks and yoghurt (Pereyra et al., 1997). 

Pectin, an anionic polysaccharide generally extracted from citrus fruits or 

apple pomace, is mainly composed of a backbone of galacturonic acid, partly 

methyl esterified, and by hairy regions containing rhamnose, galactose, arabinose, 

xylose, and glucose. It has been demonstrated that, below pH 5.0, the 

polysaccharide chains of high methoxyl pectin (HMP) adsorb on the surface of the 

casein micelles, via the charged blocks of the pectin chains and the uncharged 

blocks of HMP extend into solution contributing to stabilization via steric repulsion 

(Pereyra et al., 1997). 

The initial characteristics of an orange juice-milk based product to be 

suitable for PEF processing should be the following: i) juice concentration that 

provide an important Vit-C supply ii) simplest product as possible iii) good 

sensorial acceptance; iv) adequate physicochemical characteristics (low electrical 

conductivity and viscosity that allows an adequate flow rate) and with no 

suspension particles. 

Recent foodborne E. coli outbreaks involving apple cider, fresh apple juice 

and orange juice have highlighted the acid-tolerance and probable low infective 



Orange juice-milk product RESULTS 

  
62 

dose of this pathogen (Zhao et al., 1993; Parish et al., 1997; Cook et al., 1998; 

Sivapalasingam et al., 2004). These findings strengthen the need to carry out 

extensive studies in order to check the nature of death of E. coli in an acid food 

pasteurized by using PEF technology. FDA made public a new regulation based on 

the requirement of an equivalent five log cycles reduction of E. coli in these 

products to guarantee their microbiological safety (Morris, 1998). 

The objective of the present study was to develop a new beverage based on 

the mixture of orange juice and milk suitable for a PEF treatment. 

 

4.1.3 MATERIALS AND METHODS 

 

4.1.3.1 Composition and product physicochemical characterization 

The product was composed by pasteurized orange juice from squeezed 

oranges (García-Carrión, Spain) kept frozen until used (the pulp was removed), 

commercial UHT skimmed milk, high methoxyl citrus pectin such as stabilizer 

(Unipectine AYD 250, Cargill, USA), commercial citric acid, sugar, and distilled 

water . 

The physicochemical characterization of the product was based on the 

following parameters: electrical conductivity (Crison 525 conductimeter, Crison 

Instruments, Spain), pH (Crison 2001 pHmeter, Crison Instruments, Spain), Brix 

degrees (Atago RX-1000 digital refractometer, Atago Company, Japan) and 

viscosity (Haake VT5 Viscotester, Thermo Electron Corporation, UK).  

 

4.1.3.2 PEF treatment 

An OSU-4D bench-scale continuous processing unit was used to treat the 

food sample. Six co-field chambers with a diameter of 0.23 cm and a gap distance 

of 0.293 cm between electrodes were connected in series. One cooling coil was 

connected before and after each pair of chambers and submerged in a circulating 

bath (Polystat, Cole Parmer, USA) to maintain the selected initial temperature at 

35ºC (60ºC maximum temperature of the treatment). The temperature was recorded 
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by thermocouples (T type) at the entrance and exit of each pair of chambers. The 

first treatment chamber can be considered as the initial temperature and the exit of 

the last treatment chamber as the final temperature. The values were recorded with 

a data logger (Control Company, USA). Pulse waveform, voltage and current in the 

treatment chambers were monitored with a digital oscilloscope (Tektronix TDS 

210, Tektronix, USA). The flow rate was set at 60 mL/min with a peristaltic pump 

(XX 80002 30, 6-600 r.p.m., Millipore, USA). A bipolar square-wave of 2.5 μs 

was selected. Treatment time ranged from 0 to 110 μs and the electric field was set 

at 40 kV/cm. Samples were collected after each treatment time. They were serially 

diluted in sterile 0.1% peptone water, plated in Nutrient Broth Agar, and incubated 

for 24 h at 37ºC. The beverage was inoculated with the contents of a thawed E. coli 

at a final concentration of approximately 106 CFU/mL. 

 

4.1.3.3 Escherichia coli 

Escherichia coli CECT 516 (ATCC 8739) was obtained from the Spanish 

Type Culture Collection (Valencia, Spain). This strain has been used in previous 

PEF studies, in apple and orange-carrot juices (Evrendilek et al., 1999; Rodrigo, et 

al., 2003 a; Selma et al., 2004), and its ability to grow under acidic conditions has 

been proved (Evrendilek, et al., 1999). Cells were obtained according to Rivas et 

al., (2006). For that, the culture was inoculated in nutrient broth (NB) (Scharlab 

Chemie, Spain) and incubated at 37ºC with continuous agitation at 200 rpm for 4 h 

to obtain the cells in the exponential growth stage. The cells were centrifuged twice 

at 3220 g at 4ºC for 15 min and then resuspended in NB. After the second 

centrifugation the cells were resuspended in NB with 20% glycerol and then 

dispensed in 2-mL vials. The 2-mL vials were immediately frozen and stored at -

80ºC until needed. 

 

4.1.3.4 Sensory analysis 

A panel of 53 untrained assessors evaluated the differences in aspect, 

flavor, viscosity and global preference among samples by ranking test (ISO, 1988 
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a). The evaluation was carried out the same day of sample preparation in a 

standardised test room (ISO, 1988 b) with separate booths. Samples (30 mL) were 

served at refrigerated temperature (8±1)ºC in transparent glasses coded with three 

random digit numbers. Panellists tasted approximately the same volume of each 

sample and mineral water was provided to the assessors to rinse their mouth. 

Samples were arranged from higher to lesser preference. Data acquisition and 

analysis were performed using Compusense® five release 4.6 (Compusense, 

Canada) applying a Friedman analysis. The significance differences between 

samples were detected by a Tukey test (p≤0.05).  

 

4.1.4 RESULTS AND DISCUSSION 

 

4.1.4.1 Elaboration methodology and physicochemical product 

characterization 

A previous study on fruit juice and milk based products commercialized in 

2004 provided the basic information to characterize the type and proportion of the 

main ingredients.  

Based on that information, four formulations were prepared varying orange 

juice content (15, 25, 50 and 70%) keeping milk concentration constant (20%) and 

completing up to 100% with water. A physicochemical characterization of the 

different formulations was performed. 

The elaboration methodology was based on the addition of a milled sugar 

and pectin mixture to water pre-heated to 80ºC, keeping it in continuous agitation 

for 10 min (in order to dissolve completely the pectin). Once at room temperature, 

milk was added keeping it in continuous agitation for 5 min. This step is important 

since the pectin-milk casein union is formed avoiding its precipitation. Then, 

orange juice was added (previously filtered through a 0.29 mm sieve) keeping it in 

continuous agitation for 5 min to uniform the mixture. Finally the product was kept 

at cooling temperatures until use (Figure 4.1.1). 
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Results of physicochemical characterization are shown in Table 4.1.1. An 

increase in the orange juice content produced a decrease in the pH value while 

increasing the electrical conductivity and Brix degrees. Viscosity increased above 

50% formulation. The most important physicochemical parameter on PEF 

treatment is the electrical conductivity because high values (>3.0 mS/cm) make 

difficult the application of the treatment. A viscosity increase also make difficult to 

obtain an adequate working flow-rate (120 mL/min, laminar-turbulent). As a result 

of the physicochemical characterization all formulations would be adequate for 

PEF treatment except the 70% sample due to its high viscosity and electrical 

conductivity. 

 

4.1.4.2 Effect of food composition on PEF inactivation of E.coli  

Figure 4.1.2 shows PEF inactivation degree of E. coli in the different 

formulations. It was observed an increase in the inactivation by decreasing the 

juice content, possibly due to a lower electrical conductivity, Brix degrees and 

viscosity. However, no significant differences among the 15, 25 and 50% samples 

were found (Table 8.2.1). In conclusion, based on microbial inactivation the three 

previously described formulations would be adequate for PEF treatment. 

 

4.1.4.3 Sensory analysis 

Table 4.1.2 shows the samples ranking based on the sensorial evaluation in 

relation to the aspect, flavor, viscosity and global appreciation. A lesser 

punctuation is an indicator of a greater acceptance. The greater acceptance sample 

in all the parameters studied was the 50% juice content, showing no significant 

differences with the 70% sample in aspect, viscosity and global appreciation 

(p>0.05). There were no significant differences between 70% and 25% samples 

(p>0.05) in global appreciation. In relation to the sensorial evaluation the 50% 

juice sample is the more suitable for PEF treatment.  

Facing the results, it is concluded that the product with 50% juice content 

is the one that provide all suitable conditions for PEF treatment due to the 
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inactivation level obtained, physicochemical characteristics and sensorial 

evaluation. This formulation will be used in the present doctoral thesis for the 

inactivation kinetic studies. 

 

 
Figure 4.1.1: Orange juice-milk based product. 
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Figure 4.1.2: Effect of food composition on PEF inactivation of E. coli at 40 

kV/cm. The standard deviation was expressed by error bars. 
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Table 4.1.1: Physicochemical characterization of different formulations. 

Product Juice 

(% v/v) 

Water 

(% v/v) 

Milk 

(% v/v) 

Sugar 

(% w/v) 

Pectin 

(% w/v) 

pH Electrical conductivity 

(mS/cm) 

ºBrix Viscosity 

(mPa·s) 

1 15 65 20 7.5 0.3 4.37a±0.00b 2.13±0.00 11.87±0.02 20.00±1.00 

2 25 55 20 7.5 0.3 4.29±0.01 2.27±0.01 12.15±0.07 20.00±0.00 

3 50 30 20 7.5 0.3 4.09±0.00 2.86±0.01 14.30±0.01 22.00±1.00 

4 70 10 20 7.5 0.3 4.04±0.01 3.13±0.01 15.80±0.00 24.00±1.00 
a Value based on mean of three replicates. 
b Standard deviation. 

 

Table 4.1.2: Sample ranking based on aspect, viscosity, flavor and global appreciation. 

RANK SUMS1 SAMPLE 

ASPECT FLAVOR VISCOSITY GLOBAL 

50 % 86 a2 78ª 91ª 78ª 

70 % 89ª 116b 106ª 111ab 

25 % 150b 146b 146b 143b 

15 % 205c 190c 187c 198c 
1Rank sums: Assessors order sum (1, 2, 3, 4). 
2 Different letters indicate significant differences among samples (95%, Tukey’s test). 
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4.2.1 ABSTRACT 
The effects of thermal, pulsed electric field (PEF) and high hydrostatic pressure (HHP) 

processing on pectin methyl esterase (PME) activity and volatile compounds concentration 
in an orange juice-milk beverage (OJMB) were studied. Thermal treatment (85 ºC for 1 min) 
and combined thermal and PEF treatment (25 kV/cm at 65 ºC initial temperature) or thermal 
and HHP treatment (650 MPa at 50 ºC initial temperature) were needed to inactivate 90% of 
PME revealing the resistance of orange PME to the different preservation methods. At 25ºC 
PME activity was enhanced after PEF treatment. Twelve volatile compounds were extracted 
by SPME and selected for quantification by GC-MS following the application of the different 
treatments. The average loss in concentration of volatile compounds was between 16.0 and 

43.0% after thermal treatment depending on the temperature. After PEF treatment the 

average loss was between -13.7 and 8.3% at an initial temperature of 25 ºC depending on 
electric field strengths, 5.8 to 21.0% at 45 ºC and 11.6 to 30.5% at 65 ºC. After HHP 

treatment the average loss was between -14.2 to 7.5% at an initial temperature of 30 ºC 
depending on the pressure levels and 22.9 to 42.3% at 50 ºC. The results showed the 

potential of the nonthermal technologies in providing food with a higher standard of quality 
compared to thermal processing. 
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4.2.2 INTRODUCTION 

The use of High Hydrostatic Pressure (HHP) as a food preservation 

technology is gaining relevance in recent years, especially in Japan where the use 

of HHP has been adopted for the preservation of fruit juices, jams, sauces, rice, 

cakes and desserts (Norton and Sun, 2007). Nowadays in Europe and the USA, 

several companies in the meat, dairy and beverage industry have commercialized 

HHP treated products and it is thought that this trend will increase (Trujillo et al., 

2002). Regarding the use of Pulsed Electric Fields (PEF), different research groups 

are working on the use of PEF for preservation of fruit and vegetable juices, milk 

and liquid egg (Sampedro et al., 2005; Rodrigo et al., 2005; Sampedro et al., 2006). 

The use of PEF by the juice processing industry is now becoming a reality in the 

USA where several types of fruit juices treated by PEF have been commercialized 

(Clark, 2006). 

 A large quantity of minimally processed foods have appeared on the 

market with characteristics similar to the original fresh food in response to a 

growing demand for natural foods that are perceived by consumers as healthy. 

Among them are beverages based on a mix of fruit juices and milk fortified with 

vitamins, minerals, and fiber as the most widely consumed functional foods 

(Pszczola, 2005); however, there are limited data related to quality and safety of 

these products. 

 Pectin Methyl Esterase (PME) is an important enzyme in orange juice 

based products and PME spoilage effects in orange juice are well known as cloud 

loss or gelification of juice concentrates (Tribess and Tadini, 2006). Thermal 

preservation treatments (88-95 ºC, 15-30 s) are based on the PME inactivation level 

achieved (>90%) due to its higher thermotolerance than those of majority of 

microorganisms found naturally in these products (Irwe and Olson, 1994). Due to 

the nature of the product (juice-milk mixture) a residual PME activity could 

instabilize the system. 

 The analysis of the volatile compounds has been performed by several 

authors to study the effect of PEF, thermal and HHP treatment on orange juice 
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aroma (Jia et al., 1999; Yeom et al., 2000; Ayhan et al., 2002; Min et al., 2003; 

Baxter et al., 2005) but there is no study on the effect of PEF and HHP treatment 

on the volatile compounds in a mixture of orange juice and milk. 

 The aim of this work was to study the effects of PEF, HHP and thermal 

processes on PME activity and volatile compounds in an orange juice-milk based 

beverage. 

 

4.2.3 MATERIAL AND METHODS 

 

4.2.3.1 Beverage preparation 

Fresh Valencia var. oranges were purchased at a local supermarket. The 

oranges were squeezed with a juice extractor (Zumex 38, Zumex, S.A., Spain) and 

the juice was filtered with cheese cloth and stored at -40 ºC. The OJMB contained 

the following ingredients: fresh orange juice (500 mL/L), commercial UHT 

skimmed milk (200 mL/L), high methoxyl citrus pectin (Unipectine AYD 250, 

Cargill, USA) (3 g/L), sucrose (75 g/L), and deionized water (300 mL/L). Prior to 

mixing, solid ingredients were dissolved in water in the weight proportions 

indicated. The beverage was prepared just before use. The OJMB preparation and 

physicochemical characteristics were described in Chapter 1. 

 

4.2.3.2 Thermal treatment  

Isothermal inactivation experiments were carried out in a water bath with 

temperature control, in a range from 60-90 ºC for 1 min. One mL of sample was 

enclosed in a 1 mL thermal death time (TDT) disk (Jin et al., 2007). The samples 

were preheated to 40 ºC (results indicated that no PME inactivation was produced 

at this temperature, data not shown) in order to shorten and standardize the come-

up time. The time needed to reach the final temperatures from the preheating 

temperature of 40 ºC was about 1 min. After treatment at the preset temperatures, 

the samples were withdrawn from the water bath and immediately cooled and kept 

in ice-water. The residual PME activity was measured within 2 h. 
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4.2.3.3 PEF treatment 

An OSU-4F bench-scale continuous unit (Ohio State University, USA) was 

used to provide PEF treatment. Six co-field chambers with a diameter of 0.23 cm 

and a gap distance of 0.29 cm between electrodes were connected in series. One 

cooling coil was connected before and after each pair of chambers and submerged 

in a circulating bath (model 1016S, Fisher Scientific, PA, USA) to maintain the 

selected temperature (25, 45 and 65 ºC). The temperature was recorded by 

thermocouples (K type) at the entrance and exit of each pair of chambers. The 

entrance of the first treatment chamber can be considered as the initial temperature 

and the exit of the last treatment chamber as the final temperature. The values were 

recorded with a data logger (Model 800024, Sper Scientific, Taiwan). Pulse 

waveform, voltage, and current in the treatment chambers were monitored with a 

digital oscilloscope (Tektronix TDS 210, USA). The flow rate (120 mL/min) was 

controlled with a digital gear pump (Model 75211-30, Cole Parmer, USA). A 

bipolar square-wave of 2.5 µs was selected. Treatment time was set at 50 μs and 

the electric field at 15, 20, 25 and 30 kV/cm. One sample was collected after each 

treatment time and immediately cooled in ice-water.  

 

4.2.3.4 HHP treatment 

All pressure experiments were performed in a laboratory-scale vessel high-

pressure processor (model 2L, Autoclave Systems Inc., USA). Combined thermal 

and high-pressure treatments were applied in the range of 450-650 MPa at initial 

temperatures of 30 and 50 ºC. The pressure medium was deionized water. A 

thermostated mantel, which surrounded the vessel, was connected to a cryostat 

keeping the vessel wall temperature constant during the experiment. Temperature 

was recorded by a thermocouple placed inside the vessel. The samples were filled 

in 2 mL eppendorf tubes and were enclosed in the pressure vessel already 

equilibrated at an initial temperature. The vessel was then pressurized and after a 

preset hold-time (15 min), decompressed. After pressure release the samples were 

immediately cooled in ice-water.  
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4.2.3.5 Analysis of headspace volatile compounds 

Volatile compounds were extracted with a modification of the method 

described by (Fan and Gates, 2001) using a solid-phase microextraction (SPME) 

method. A 2 mL aliquot beverage was transferred into 6 mL serum vial. The vial, 

sealed by a teflon-lined septum and a screw cap, was pre-heated at 60 ºC for 2 min 

before a SPME fiber, coated with 100 µm of poly(dimethylsiloxane), was inserted 

into the headspace of the vial. After 30 min incubation, the SPME fiber with 

adsorbed volatile compounds was removed from the vial and inserted into the GC 

injection port at 250 ºC and held there for 5 min to desorb volatile compounds. 

Volatile compounds were separated by a Hewlett-Packard 6890N/5973 GC-MSD 

(Agilent Technologies, USA) equipped with a DB-Wax trace analysis column (30 

m × 0.32 mm i.d., 0.5 µm film thickness). The temperature of the GC was 

programmed from 60 to 96 ºC at 8 ºC·min-1, increased to 120 ºC at 12 ºC·min-1, 

then increased to 220 ºC at 10 ºC·min-1 and held for 3 min at the final temperature. 

Helium was the carrier gas at a linear flow speed of 39 cm·sec-1. Compounds were 

identified by comparing spectra of the sample with those contained in the National 

Institute of Standards and Technology Library (NIST02). The relative amount of 

each compound was expressed as peak area.  

 

4.2.3.6 PME activity measurement 

PME activity was determined by measuring the release of acid over time at 

pH 7 and 22 ºC following the procedure described by (Van den Broeck et al., 

1999). The reaction mixture consisted of 1 mL of sample and 30 mL of 0.35 % 

citrus pectin solution (Sigma, USA) containing 125 mM NaCl. During hydrolysis 

at 22ºC, pH was maintained at 7.0 by adding 0.0001 N NaOH using an automatic 

pH-stat titrator (Titralab, Radiometer Analytical, SAS). After the first 1 min the 

consumption of NaOH was recorded every 1 s for a 3 min reaction period. PME 

activity was expressed in units (U/mL), defined as micromoles of acid produced 

per minute at pH 7 and 22 ºC. The detection limit was established at 0.019 U/ml. 

Residual activity was expressed as the relation between the PME activity after the 
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treatment (A) expressed in U/mL and the initial activity (A0) expressed also in 

U/mL. 

 

4.2.3.7 Experimental Design and Statistical Analysis 

A hierarchical experimental design was used to study the influence of the 

different technologies studied: in thermal treatment, seven temperatures in PEF 

treatment, four electric field strengths and three temperatures and in HHP 

treatment, five pressures and two temperatures. The statistical analysis was 

performed using the Statgraphics software (Statistical Graphics Corp., USA), 

applying a univariant ANOVA test with a significance level of 95.0%. 

 

4.2.4 RESULTS AND DISCUSSION 

 

4.2.4.1 Effect of treatment on PME activity in the orange juice-milk 

based beverage 

Figure 4.2.1 shows the thermal inactivation of PME in the OJMB in the 

range of 60-90 ºC for 1 min. Approximately 4-5 % of the PME remained after the 

90 °C treatment. Several authors (Veersteg et al., 1980; Wicker and Temelli, 1988; 

Snir et al., 1996; Cameron et al., 1996; Tajchakavit and Ramaswami, 1997; 

Cameron et al., 1998; Lee et al., 2003; Do Amaral et al., 2005) have also observed 

a residual activity after thermal treatment, considered the stable fraction, between 

4-8.3% in Navel and Valencia var. oranges reflecting the thermotolerance of the 

orange PME. To achieve a level of 90 % of PME inactivation, 85 ºC for 1 min or 

90 ºC for 30 s was needed. No inactivation was found below 65 ºC for 1 min. At 60 

ºC the PME activity was increased as a result of the treatment. This phenomenon 

could be explained by some activation effect produced by the heat. (Körner et al., 

1980) found an optimum temperature of 60 ºC for the activity of two PME 

fractions purified from Valencia flavedo and Shamouti juice. The relationship 

between the temperature and the residual activity of PME seemed to be linear from 
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60-80 ºC and after that a tailing phenomenon was observed, suggesting the 

presence of a thermostable fraction in the OJMB.  
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Figure 4.2.1: Isothermal inactivation of PME in the orange juice-milk based 

beverage. The standard deviation was expressed by error bars. 

 

 Table 4.2.1 shows the combined thermal and PEF inactivation of PME in 

the OJMB in the range of 15-30 kV/cm and initial temperatures of 25-65 ºC. At 

low treatment temperature (25 ºC) some activation effect was found as indicated by 

an increase in PME activity (between 11-60%) after the PEF treatment. PEF 

treatment has also been applied in different studies in recent years to improve the 

extraction of different components by increasing the permeability of plant cells 

from diverse foodstuff (Ade-Omowaye et al., 2001) and by improving the juice 

yield and quality parameters (Guderjan et al., 2007; Schilling et al., 2007). 

Therefore application of mild PEF treatments could increase the permeability of 

the orange pulp by facilitating the release of the bound PME. In those studies, after 

the PEF treatment, PME activity measured as “free” enzyme, increased. Van Loey 

et al., (2002) noticed that after PEF treatment, PPO in apple juice and PME in 

orange juice were activated due to increases in cell permeabilization and release of 
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the enzyme from plant cells. In addition, some authors have also observed an 

enhancing effect of diverse enzymes after PEF treatment, such as alkaline 

phosphatase and peroxidase in milk (Grahl and Märkl, 1996), lysozyme and pepsin 

in buffer solutions (Ho et al., 1997), PME in orange juice (Yeom et al., 2002), 

pepsin in an aqueous solution (Yang et al., 2004) and protease in milk (Bendicho et 

al., 2005). They argued that PEF treatment could create more active sites or 

increase the size of the existing sites converting the enzyme into a more active 

form. 

 

Table 4.2.1: PME residual activity after combined PEF and thermal treatment 

in the orange juice-milk based beverage 

Residual Activity (A/A0) 

T (ºC) 

E  

(kV/cm) 

25  45 65 

15 1.594a±0.150b 0.947±0.010 0.541±0.012 

20 1.484±0.001 0.634±0.032 0.482±0.057 

25 1.303±0.001 0.642±0.045 0.213±0.048 

30 1.118±0.060 0.465±0.021 0.089±0.010 
a Value based on mean of three replicates. 
b Standard deviation. 

 

By increasing the temperature, the inactivation reached a maximum of 91% 

inactivation after 30 kV/cm, 65 ºC (final temperature 80 ºC) and 50 µs. The 

residence time at this temperature was a few seconds. At these conditions the 

temperature could affect the enzyme to some extent. To check the thermal effect of 

the temperature in the PEF treatment, low electric field intensities, high frequency 

and low pulse duration were applied (3-5 kV/cm, 3000-3500 Hz, 1 µs) obtaining 

the same final treatment temperature (80 ºC). The results showed that slight PME 

inactivation was achieved after low intensity PEF treatment alone (<10%) 

demonstrating the synergetic effect between the temperature and PEF treatment.   
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Figure 4.2.2 represents the combined thermal and HHP inactivation of 

PME in the OJMB at 30 and 50 ºC for 15 min. At 25 ºC and low pressures (450 

MPa) no inactivation effect was observed, revealing the pressure tolerance of the 

orange PME. By increasing the temperature to 50 ºC (final temperature 65 ºC) and 

pressure to 650 MPa the inactivation increased and reached a maximum of 90.5 %. 

Several authors have observed this resistance to pressure treatment. (Nienaber and 

Shellhammer, 2001; Truong et al., 2002) found that PME was stable under pressure 

below 400 MPa and combination of high temperature and high pressure (40-50 ºC 

and 600-700 MPa) were necessary to inactivate it. 
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Figure 4.2.2: Combined HHP and thermal inactivation of PME in the orange 

juice-milk based beverage. The standard deviation was expressed by error 

bars. 

 

4.2.4.2 Effect of treatment on the volatile compounds concentration in 

the orange juice-milk based beverage 

Twelve volatile compounds could be identified accurately from the OJMB. 

The majority of the compounds were hydrocarbons among which limonene and 

valencene were the most abundant constituting more than 90% of the total 

compounds.  
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 Figure 4.2.3 shows the effect of thermal treatment on the relative 

concentration of volatile compounds in the OJMB. The average loss of volatile 

compounds after thermal treatment at the different temperature range for 1 min was 

between 16.0-43.0%. There were no significant differences in the concentration of 

volatile compounds due to the increase in temperature up to 80ºC (Table 8.2.2). 

The compounds could be divided in two groups. One group considered as 

relatively low-molecular-weight (MW 136) including (β-pinene, α-pinene, β-

myrcene, limonene, α-phellandrene, 3-carene and 4-carene) and a second group 

considered as relatively high-molecular-weight (MW 142-204) including nonanal, 

decanal, caryophyllene, dodecanal and valencene. The higher average loss was 

observed in β-pinene (48%), α-pinene (42%) and 3-carene (41%) which belong to 

the first group, and counted for an average loss of 35%. On the other hand the high-

molecular-weight compounds seemed to be less sensitive to the thermal treatment 

with a slight increase in nonanal content at temperatures below 70 ºC. At higher 

temperatures, nonanal and caryophyllene (12%) which have higher boiling points 

had an average loss of 21%, lower than the loss of lower boiling point compounds. 

Boff et al., (2003) came to the same conclusions observing that in the thermal 

processing of an orange juice, low-molecular-weight compounds (β-myrcene, 

limonene and α-pinene) were more sensitive to the thermal treatment than 

relatively higher-molecular-weight compounds (decanal, caryophyllene and 

valencene). 

Figure 4.2.4 shows the effect of the combined thermal and PEF treatment 

(at initial temperatures 25, 45 and 65 ºC) on the concentration of volatile 

compounds in the OJMB. The average loss was between -13.7 to 8.3% at 25 ºC, 

5.8 to 21.0% at 45 ºC and 11.6 to 30.5% at 65 ºC after PEF treatment. An increase 

in the electric field strength did not produce a significant decrease in the average 

loss of volatile compounds content except at high electric fields (25 and 30 kV/cm 

at 25 and 65ºC) (Table 8.2.3). An increase in the temperature only decreased 

significantly the average loss of volatile compounds content at 65ºC (Table 8.2.4).  
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Figure 4.2.3: Effect of thermal treatment for 1 min on the volatile compounds 

content in the orange juice-milk based beverage. The standard deviation was 

expressed by error bars. 

 

 At 25 and 45 ºC and electric field strength below 25 kV/cm and 65 ºC at 15 

kV/cm, several compounds increased its content after PEF treatment (β-pinene, 

limonene, 3-carene, 4-carene, nonanal, decanal and dodecanal). Ayhan et al., 

(2002) obtained similar results observing that several compounds (myrcene, 

limonene and α-pinene) increased its content after PEF. Steffen and Pawliszyn, 

(1996) found that in a complex matrix such as orange juice, with the presence of 

suspended solids, a portion of analytes could be trapped in the pulp. PEF 

technology has been used to improve the extraction of different compounds by 

increasing the membrane permeabilization. This fact could explain why PEF 

treatment could facilitate the release of several compounds from the suspended 

solids to the liquid phase facilitating its extraction into the headspace.  
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Figure 4.2.4: Effect of combined PEF and thermal treatment (25, 45 and 65ºC) 

on volatile compounds content in the orange juice-milk based beverage. The 

standard deviation was expressed by error bars. 
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To check the hypothesis of higher concentration of certain compounds in 

the pulp, the orange juice was centrifuged in order to separate into serum and pulp. 

The concentration of different compounds was studied in both fractions. Nonanal, 

3-carene, 4-carene, limonene and α-phellandrene were found in higher quantity in 

the pulp (data not shown). This fact could explain that the compounds could be 

released to the liquid phase by the PEF treatment and be extracted in the headspace 

more readily. Compounds more sensitive to the PEF treatment were β-myrcene, α-

pinene and caryophyllene whereas the less sensitive compounds were limonene, 4-

carene and nonanal. Opposite to the thermal treatment, the compounds that were 

present in the pulp at higher proportions were also higher after PEF treatment. 

Figure 4.2.5 shows the loss of volatile compounds concentration in the 

OJMB after the combined thermal and HHP (at 30 and 50 ºC initial temperatures) 

treatment. The average loss at 30 ºC was between -14.2 and 7.5%. An increase in 

the pressure value did not produce a significant decrease in the average loss of 

volatile compounds content (Table 8.2.5). However an increase in the initial 

treatment temperature produced a significant decrease in the loss of volatile 

compounds content (Table 8.2.6). Only β-myrcene content was lost at every 

pressure value (~50%) and limonene, α-pynene, β-pynene, 3-carene and α-

phellandrene were not affected at 650 MPa. On the other hand, the rest of 

components in the OJMB increased in their contents after treatment with lower 

pressures. Similar to the PEF treatment, it seems that the HHP treatment released 

several compounds that are found in the solid phase of the orange juice. At 50 ºC 

(final temperature 65 ºC) the average loss was increased in all compounds 

(32.80%). At 650 MPa and 50 ºC the loss of volatile compounds was the same as 

the maximum which was reached after the thermal treatment (85-90 ºC). 

Valencene, limonene and caryophyllene were the compounds less sensitive to the 

HHP treatment whereas β-myrcene, α-phellandrene and 3-carene at 50 ºC were 

more sensitive to the HHP treatment. 
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The combination of different nonthermal technologies and thermal 

treatment (PEF at 65 ºC initial temperature and HHP at 50 ºC initial temperature) 

inactivated 90% of PME whereas high temperature treatments (85-90 ºC) were 

needed for thermal treatment. At this temperature the loss of different volatile 

compounds were significantly higher than PEF and similar to HHP at 50 ºC. 

Concentrations of several compounds were enhanced after PEF and HHP treatment 

at low temperatures. The sensitivity of volatile compounds differed with the 

different treatments applied. The high-molecular-weight compounds were more 

resistant to the thermal treatment and the pulp-related compounds were more 

resistant to the PEF and HHP treatments. Based on these results it is possible that 

PEF treatment can achieve a similar PME inactivation than thermal processing 

with a better orange juice-milk beverage fresh aroma.  
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Figure 4.2.5: Effect of combined HHP and thermal treatment (30 and 50ºC) on 

volatile compounds content in the orange juice-milk based beverage. The 

standard deviation was expressed by error bars
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4.3.1 ABSTRACT 
The inactivation kinetics of PME in an orange juice-milk beverage system treated by thermal (65-
80ºC) and combined thermal (25-65ºC)-high pressure (0.1-700 MPa) processes were fitted using 
a biphasic model. About 6-8 % of the initial activity corresponding to the heat and pressure stable 
fraction was observed. For complete inactivation a treatment at 90ºC, 1 min or 700 MPa at 55ºC 
for 2 min was necessary showing the protective effect of the orange-milk media. The extent of 

inactivation was different in the orange matrices showing that PME was more thermostable in the 
orange juice-milk based beverage system as compared to the purified enzyme in a buffer system. 
On the other hand, the purified enzyme in a buffer system showed the highest pressure stability. 

Parameters such as pH (from acid in the orange juice matrices to basic in the buffer), matrix 
composition (from less to more complex) and purification level of the enzyme (purified in the 

buffer or nature in the orange juice) play an important role in the stability of the PME against the 
different processing technologies studied. 
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4.3.2 INTRODUCTION 

In recent years a large quantity of new pasteurised liquid foods requiring 

chilled storage and distribution have appeared on the European market. Among 

these, fruit-juice mixes, vegetable soups and different sauces are predominant; they 

are produced from food ingredients of very different natures, leading to complex 

compositions. The fruit juice mixes include beverages based on a mixture of fruit 

juices and milk, fortified with vitamins, minerals, fiber and these products 

represent the most widely consumed functional foods (Pszczola, 2005).  

For these systems only limited data on quality and safety aspects are 

available in open literature and it is essential to evaluate the potential use of 

alternative technologies, such as High Hydrostatic Pressure (HHP), in order to 

preserve their freshness, as well as their nutritional and functional properties. 

Studies on the application of HHP to different juice matrices have recently become 

available but studies on more complex fruit juice based foods (including fat, 

proteins and additives such as pectin and sugar in an acid environment) are still 

lacking.  

Pectin methyl esterase (PME) is an important enzyme in orange juice 

products and its effects on quality aspects such as cloud stability are well known 

(Cameron et al., 1998; Do Amaral et al., 2005). Orange PME is a thermal and high 

pressure stable enzyme composed by several fractions with different processing 

stabilities (stable and labile fraction). The orange PME stable fraction is mainly 

responsible for the destabilization of orange juice (cloud loss) at 5ºC and also to a 

lesser extent at 30ºC (Cameron et al., 1998; Versteeg et al., 1980). It has been 

shown that the enzyme remains active (between 90-95 % retention at pH 3.5 for 60 

h and 80 % retention at 4ºC for 42 days) in a single strength orange juice (Hou et 

al., 1997). This fraction is thermo tolerant and severe conditions are necessary to 

inactivate it (90ºC, 1 min or 95ºC, 30 s) (Cameron et al., 1994; Do Amaral et al., 

2005). Normally industry adopts these conditions to pasteurize orange juice (88-

90ºC, 15-30 s) (Irwe and Olson, 1994). PME is also pressure tolerant (is stable at 

P<400 MPa); therefore, a combination of high T and high P (40-50ºC and 600-700 
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MPa) is necessary to inactivate it (Nienaber and Shellhammer, 2001; Truong et al., 

2002).   

There are a number of studies available on the heat inactivation of PME in 

orange juice (Versteeg et al., 1980; Tajchakavit and Ramaswamy, 1997; Lee et al., 

2003), in orange pulp (Wicker and Temelli, 1988) as well as on the purified 

enzyme isolated from oranges (Cameron et al., 1994; Cameron and Grohmann, 

1996; Van den Broeck et al., 1999 a; Han et al., 2000). HHP inactivation of 

purified PME has been studied in buffer systems (Van den Broeck et al., 1999 b; 

Van den Broeck et al., 2000) and in orange juice (Nienaber et al., 2001; 

Seyderhelm et al., 2004) but there are no studies on the behavior of PME during 

thermal and/or HHP treatment of beverages based on fruit juices and milk. 

Traditionally linear models have been applied to describe enzyme 

inactivation kinetics by heat, obtaining parameters such as D and z values. 

However, in the case of orange PME the thermal inactivation curves have been 

observed to behave differently due to the presence of different fractions exhibiting 

different stabilities. A number of authors have demonstrated the appearance of such 

fractions; two fractions with different thermal stabilities were observed in orange 

Valencia var. juice or pulp (Wicker and Temelli, 1988; Hou, et al., 1997; 

Tajchakavit and Ramaswamy, 1997; Van den Broeck, et al., 1999 a; Lee, et al., 

2003), four fractions with different thermostability (Cameron et al., 1998) and 

seven fractions in the peel (Han, et al., 2000). In the case of orange juice Navel var. 

three fractions with different thermostability were found (Versteeg, et al., 1980). 

Nevertheless, in many cases only part of the curve (activity related to the most 

abundant fraction) has been modelled to obtain the previously described 

parameters. In this study a biphasic model is proposed to characterize the behavior 

of the different fractions against the treatment. 

The aim of the present work was to study the inactivation kinetics of PME 

in an orange juice-milk based beverage system as well as different orange matrices 

under combined conditions of HHP and heat. 
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4.3.3 MATERIAL AND METHODS 

 

4.3.3.1 Orange juice and beverage preparation 

Fresh Valencia Navel var. oranges were purchased at a local supermarket. 

The oranges were peeled and squeezed with the aid of a juice centrifuge and the 

juice was kept at -40ºC until use. The beverage contained the following 

ingredients: fresh orange juice (500 mL/L), commercial UHT skimmed milk (200 

mL/L), high methoxyl citrus pectin (Unipectine AYD 250, Cargill, USA) (3 g/L), 

sugar (75 g/L), and distilled water (300 mL/L). The beverage preparation and 

physicochemical characteristics were described in Chapter 1. The beverage was 

prepared just before use.  

 

4.3.3.2 PME activity measurement 

PME activity was determined by measuring the release of acid over time at 

pH 7 and 22 ºC following the procedure described by (Van den Broeck et al., 

1999). The reaction mixture consisted of 2.5 mL of sample and 30 mL of 0.35% 

apple pectin solution (70-75 % esterification, Fluka, Belgium) containing 125 mM 

NaCl. Before injection, the pectin solution was adjusted to pH 7.0. During 

hydrolysis at 22ºC, pH was maintained at 7.0 by adding 0.005 N NaOH using an 

automatic pH-stat titrator (Metrohm, Switzerland). After the first 300-400 s the 

consumption of NaOH was recorded every 10 s for a 10-15 min reaction period. 

PME activity expressed in units (U) is defined as micromoles of acid produced per 

minute at pH 7 and 22ºC. The detection limit was established at 0.057 U. Residual 

activity was expressed as the relation between the PME activity after the treatment 

(A) expressed in U/mL and the initial activity (A0) expressed also in U/mL. 

 

4.3.3.3 Experimental design 

A hierarchical experimental design was used to study the influence of the 

different treatments on PME activity: six temperatures and six treatment times 

were used for the thermal treatment. Four pressure levels, four temperatures and 
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five treatment times were used for the combined thermal-high pressure treatment. 

The statistical analysis was performed using the SAS® software, applying a 

nonlinear regression. To study the influence of the orange matrices, between 

eighteen and fourteen temperatures and one treatment time were used for the 

thermal treatment and ten pressure levels and one treatment time for the high 

pressure treatment.  

 

4.3.3.4 Thermal inactivation at atmospheric pressure 

Isothermal inactivation experiments were carried out in a water bath with 

temperature control, in a temperature range from 45-90ºC for 1-90 min. Beverage 

sample (8 mL) was enclosed in 10 mL stainless steel tubes. Prior to each treatment 

the samples were preheated at 40ºC (measurements indicated that no inactivation 

was observed at this temperature, data not shown) in order to shorten and 

standardize the come-up time. Under these conditions a come-up time of 2.5 min 

was observed using a tube with an inner thermocouple connected to a data logger. 

After the preset time intervals including the come-up time, the samples were 

withdrawn from the water bath and immediately cooled in ice-water. The residual 

PME activity was measured within 2 h storage in an ice-water bath. 

 

4.3.3.5 Combined thermal and high-pressure inactivation  

All pressure experiments were performed in laboratory scale multi-vessel 

high-pressure equipment (HPIU-10000, Resato, The Netherlands). Combined 

thermal and high-pressure treatments were applied in the ranges of 25-65ºC and 

0.1-700 MPa for 2-75 min. The pressure medium was a glycol-oil mixture (TR15, 

Resato, The Netherlands). A thermostated mantel, which surrounds each vessel, 

was connected to a cryostat keeping the temperature constant during the 

experiment. The samples were filled in 15 mL plastic tubes with flexible stoppers 

and were enclosed in the pressure vessel already equilibrated at a preset 

temperature. Pressure was built up slowly (100 MPa/min) to minimize the adiabatic 

heating. After pressure build-up, an equilibrium period of 2 min was taken into 
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account in order to allow temperature to evolve its desire value. After the 

equilibration period, one vessel was decompressed and the sample was 

immediately cooled representing the blank. Then the rest of vessels were 

decompressed after preset time intervals. After pressure release the samples were 

immediately cooled in ice-water and the residual PME activity was measured 

within 2 h storage in an ice-water bath. 
 

4.3.3.6 Orange PME purification 

Orange PME was extracted using a 0.2 M Tris buffer with 1M NaCl at pH 

8. Afterwards, the extract was partially purified by ammonium sulphate 

precipitation. The fraction precipitating between 30% and 80% ammonium 

sulphate saturation was collected and dissolved in 20 mM Tris buffer, pH 7.5 and 

kept at -80ºC until use. This crude extract of orange PME was further purified 

following the procedure described by (Ly Nguyen et al., 2002) based on affinity 

chromatography using a NH-Sepharose 4B-PME-inhibitor column, pooling and 

desalting the different fractions of PME. 

 

4.3.3.7 Data analysis and parameter estimation 

For the thermal and high pressure ranges under study, inactivation kinetics 

of orange PME in the orange juice-milk based beverage was properly described 

using the biphasic model which is usually applied when two fractions are present 

with different processing stabilities, one stable and one labile fraction and both 

inactivating according to first-order kinetics and can be defined by (Van den 

Broeck et al., 2000):  

 

A=AL exp (-kL·t)+As exp (-kS t)     Equation 4.3.1 

 

 where A is the dependent variable and can be expressed as enzyme activity 

(U/mL), AL and AS refer, respectively, to the activity of the labile and stable fraction 

(U/mL), kL and kS the inactivation rate constant of the labile and stable fraction 
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(min-1) and t the independent variable expressed as the treatment time (s). The 

different parameters (AL, AS, kL, kS) were estimated through a nonlinear regression 

using the SAS® software. 

 A special case of first order kinetics is the fractional conversion model, 

which is usually applied when a fraction is inactivated and another fraction remains 

constant and a nonzero residual activity after prolonged thermal/pressure treatment 

is observed (Van den Broeck et al., 1999 a and b): 

 

A = A∞ + (A0 - A∞) exp (-k t)     Equation 4.3.2 

  

 where A is the dependent variable and can be expressed as enzyme activity 

(U/mL), A0 and A∞ refer, respectively, to the initial enzyme activity and to the 

residual activity after prolonged treatment time (U/mL), k the inactivation rate 

constant (min-1) and t the independent variable expressed as the treatment time (s). 

The different parameters (k and A∞) were estimated through a nonlinear regression 

using the SAS® software. 

 The temperature dependence of inactivation rate constants of the labile and 

stable fraction can be estimated using the Arrhenius model (Arrhenius, 1889): 
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 where ln(kL) and ln(kS) are the dependent variables and are expressed as the 

inactivation rate constant of the labile and stable fraction respectively (min-1), EaL 

and EaS are the activation energy of the labile and stable fraction respectively 

(kJ/mol), kL0 and kS0 the inactivation rate constant at a reference temperature of the 
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labile and stable fraction respectively (min-1), T is the independent variable 

expressed as the absolute temperature (K), T0 the reference temperature (K) and R 

(8.314 J/mol K) is the universal gas constant. The different parameters (EaL, EaS, 

kL0 and kS0) were estimated through a linear regression using the SAS® software. 

 The pressure dependence of the enzyme inactivation rate constants at a 

constant temperature of the labile and stable fraction can be calculated using the 

linearized Eyring equation (Eyring, et al., 1946): 
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 where ln(kL) and ln(kS) are the dependent variables and are expressed as the 

inactivation rate constant of the labile and stable fraction respectively (min-1), VaL 

and VaS are the activation volume of the labile and stable fraction respectively 

(cm3/mol), kL0 and kS0 are the inactivation rate constant at a reference pressure of 

the labile and stable fraction respectively (min-1), T is the absolute temperature (K), 

P is the independent variable expressed as the pressure (MPa), Pref is the reference 

pressure (MPa) and R (8.314 J/mol K) is the universal gas constant. The different 

parameters (VaL, VaS, kL0 and kS0) were estimated through a linear regression using 

the SAS® software. 

The corrected R2 was calculated to check how well the model fits to the 

experimental enzyme inactivation curve and can be defined as follows: 
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where m is the number of observations, j is the number of model 

parameters, SSQ is the sum of squares, and SD is the standard deviation. 

 

4.3.3.8 Effect of food matrix 

The effect of different orange matrices on the thermal PME inactivation 

was carried out in a water bath with temperature control. Treatments of 5 min in a 

temperature range from 45-90ºC were carried out. Samples were enclosed in 10 mL 

metal tubes. The effect of the different matrices on high-pressure PME inactivation 

was performed applying pressures in the range of 350-800 MPa for 15 min at 25ºC. 

Samples were filled in 15 mL plastic tubes with flexible stoppers.  

 

4.3.4 RESULTS AND DISCUSSION 

 

4.3.4.1 Thermal inactivation of the PME in the orange juice-milk 

based beverage 

Data for isothermal inactivation of PME in the orange juice-milk based 

beverage obtained in the range from 65-80ºC could be accurately modelled 

applying a special case of first-order kinetics, the biphasic model assuming the 

occurrence of two fractions with different stability levels and obtaining the rate 

constants (k) of both fractions and the percentage of stable fraction (Eq.4.3.1) 

(Table 4.3.1). The percentage (6-8%) of stable fraction estimated was in line with 

data obtained by several authors (4-8.3%) in different varieties of oranges (Navel 

and Valencia var.) (Cameron and Grohmann, 1996; Cameron et al., 1998; Do 

Amaral et al., 2005; Lee et al., 2003; Snir et al., 1996; Tajchakavit and 

Ramaswamy, 1997; Versteeg, et al., 1980; Wicker and Temelli, 1988). It has been 

stated that the amount of orange PME stable fraction is variable and depends to a 

large extent on the orange variety used and the time of harvest (Snir et al., 1996). 

Irwe and Olson (1994) and Van den Broeck et al., (1999 a) found strong 

differences in the thermal and pressure stability of PME from different orange 

varieties: Valencia and Navel var.   



HHP inactivation kinetics of PME  RESULTS 

  
93 

It was necessary to increase the temperature to 90ºC for 1 min to inactivate 

the stable fraction (data not shown). Snir et al., (1996) found that the stable fraction 

is the one that remains after treatment, at 70ºC, 5 min, but in our study slightly 

different conditions (applying 80ºC, 5 min or 90°C, 1 min) were found to 

distinguish the stable fraction. These results are in line with those obtained by Han 

et al., (2000), who also found similar conditions to distinguish the thermolabile and 

thermostable fractions.  

From 75-80ºC only the rate constants of the heat stable fraction were 

estimated because the inactivation of the labile fraction was too fast to be 

determined accurately. Based on the inactivation rate constants, the activation 

energy of the labile and stable fraction (EaL and EaS) were estimated (Eq. 4.3.3 and 

Eq. 4.3.4) (Table 4.3.1). The inactivation rate constants of the stable fraction were 

found to be less temperature sensitive than the rate constants of the labile fraction. 

From 65-72.5ºC only the labile fraction was inactivated whereas the stable fraction 

did not inactivate. In this temperature domain a fractional conversion model was 

also used to estimate the rate constant of the heat labile fraction and the percentage 

of stable fraction (Eq. 4.3.2) (Table 4.3.1). It could be seen that the inactivation 

parameters and percentage of stable fraction obtained by both models were similar. 

The corrected R2 values ranged from 0.995 to 0.999 indicating the biphasic model 

could accurately describe the thermal inactivation curves of PME in the orange 

juice-milk based beverage (Figure 4.3.1). 

The k values obtained in the thermal inactivation study were compared to 

those obtained by other authors in less complex media. Van den Broeck et al., 

(1999 a) studied the thermal inactivation of PME purified from Navel oranges 

obtaining k values at 65ºC of 0.889, 1.536, 0.288 and 0.234 min-1 in deionized 

water and citric buffer at pH of 3.2, 3.7 and 4.2 respectively. The Ea values ranged 

from 404.9 to 292.6 kJ/mol. Comparing these data with those obtained in the 

orange juice-milk based beverage at the same conditions, it can be observed that 

the k values are much lower while the value of the activation energy is higher 
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(528.23 kJ/mol). This indicates that the PME in the milk-juice beverage is more 

thermally resistant and the k values less sensitive to heat. 

 

Table 4.3.1: Biphasic and fractional conversion kinetic parameters estimate ± 

standard error describing isothermal inactivation of PME in the orange juice-

milk based beverage at atmospheric pressure. 

Biphasic Model 
Fractional  

Conversion T (ºC) 

kL
a

 (min-1) kS
b

 (min-1) k (min-1) 

65 0.173c±0.057d - 0.085±0.019 

70 0.215±0.115 - 0.166±0.024 

72.5 1.789±0.194 - 1.538±0.130 

75 - 1.747±0.241 - 

77.5 - 1.740±0.084 - 

80 - 6.617±0.839 - 

% heat stable 

fraction - 7.90±0.250 6.29±0.639 

EaS
e (kJ/mol) - 605955±89312 - 

EaL
f (kJ/mol) 532603±32043 - 528233±32810.3 

a: Kinetic constant of the labile fraction  
b: Kinetic constant of the stable fraction  
c: Value based on mean of three replicates 
d: Standard error 
e Activation energy of the heat stable fraction  
f Activation energy of the heat labile fraction 

 

 

 

 

 



HHP inactivation kinetics of PME  RESULTS 

  
95 

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50 60 70 80

Time (min)

A/
Ao

65ºC 70ºC 72,5ºC 75ºC 77,5ºC 80ºC
 

Figure 4.3.1: Isothermal inactivation of PME in the orange juice-milk 

beverage fitted by a biphasic model. 

 

4.3.4.2 Combined thermal and high-pressure inactivation of PME in 

the orange juice-milk based beverage 

Inactivation kinetics of PME in the orange juice-milk based beverage were 

studied by combining pressures and temperatures and the occurrence of two 

fractions with different high pressure stability was also observed. Taking this fact 

into account, the biphasic model was used to estimate the inactivation rate 

constants (k) and the percentage of stable fraction (Eq. 4.3.1) (Table 4.3.2). 

Goodner et al., (1998) and Van den Broeck et al., (2000) also observed several 

fractions with different pressure stabilities in an orange juice from Valencia var. 

and in a PME fraction purified from Navel var. oranges respectively. 

A 7 % of the initial activity was estimated as the pressure stable fraction. 

At pressure level until 550 MPa and temperature until 55ºC only the labile fraction 

was inactivated. Based on the inactivation rate constants, the activation volume of 

the labile and stable fraction (VaL and VaS) were estimated (Eq. 4.3.5 and Eq. 4.3.6) 

(Table 4.3.2). 

Based on the activation volume, the inactivation rate constant of the labile 

fraction was more pressure dependent than the inactivation rate constant of the 
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stable fraction. The biphasic model could also describe the combined thermal and 

high pressure treatment with corrected R2 values ranging from 0.961 to 0.998 

(Figure 4.3.2). Van den Broeck et al., (2000) obtained the k values after the 

combined thermal and high pressure treatments of the PME purified from Navel 

oranges in citric buffer at pH of 3.7. The k values ranged from 3.95 to 5.41 min-1 

after the combined 25ºC and 600 to 700 MPa treatment and from 2.92 to 20.80 

min-1 for the combined 45ºC and 550 to 700 MPa treatment. As for thermal 

treatments, the k values were much higher than those obtained in our study 

meaning that the enzyme is more pressure resistant in the orange juice-milk based 

beverage.  

 

4.3.4.3 Effect of orange matrices 

Based on the results obtained comparing the orange juice-milk based 

beverage with other matrices in the literature was found interesting to check the 

effect of different orange matrices on the stability of orange PME against thermal 

and high pressure treatment. In the Figure 4.3.3 is represented the thermal 

inactivation of orange PME in different matrices in the range of 45-90ºC. As for 

PME inactivation in the orange juice-milk based beverage, no inactivation was 

found below 63ºC for 5 min and around 3.5% remaining activity was found at 

91°C. In the case of orange juice no inactivation was achieved below 50ºC and 

around 8% remaining activity was found at 83°C. As for inactivation of purified 

PME around 6% remaining activity was found at 72.5°C. Analyzing the results it 

could be stated that the PME inactivation in the orange juice-milk based beverage 

was slower than in the other media, meaning that PME was more thermostable in 

the orange juice-milk based beverage environment. In addition, PME was found to 

be more thermostable in orange juice compared to the purified enzyme in a buffer 

system at pH 7. This fact could mean that the pH or level of PME purification 

affects the thermal inactivation mechanism of PME. 
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Table 4.3.2: Biphasic kinetic parameters estimate ± standard error describing the combined thermal and high pressure 

inactivation of PME in the orange juice-milk beverage. 

25ºC 45ºC 55ºC 65ºC P  

(MPa) kL
a (min-1) kS

b (min-1) kL (min-1) kS (min-1) kL (min-1) kS (min-1) kL (min-1) kS (min-1) 

500 - - - - - - 0.353±0.064 - 

550 0.264c±0.071d - 0.245±0.031 - 0.365±0.046 - 0.415±0.023 0.011±0.001 

600 0.293±0.033 0.014±0.001 0.320±0.024 0.014±0.001 0.794±0.051 0.015±0.001 0.775±0.048 0.031±0.002 

650 0.399±0.056 0.020±0.002 0.704±0.045 0.026±0.001 0.935±0.124 0.027±0.001 0.927±0.067 0.037±0.001 

700 0.709±0.077 0.023±0.001 1.130±0.097 0.025±0.002 1.672±0.101 0.032±0.002 - - 

VaL
e (cm3/mol) -66.608±4.80 -74.615±7.63 -59.081±7.49 -44.227±3.86 

VaS
f (cm3/mol) -49.987±4.45 -54.243±6.87 -57.653±6.03 -52.786±4.23 

a: Kinetic constant of the labile fraction  b: Kinetic constant of the stable fraction  c: Value based on mean of three replicates 
d: Standard error  e:Activation volume of the heat stable fraction  f:Activation volume of the heat labile fraction 
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Figure 4.3.2: Combined thermal and high-pressure inactivation of PME in the 

orange juice-milk beverage fitted by a biphasic model. 

 

The pressure inactivation of orange PME in different matrices in the range 

of 350-800 MPa is presented in Figure 4.3.4. No pressure inactivation was 

observed below 400 MPa in the orange juice-milk based beverage and orange juice 

environment and below 550 MPa for the purified enzyme in a buffer system. 

Truong, (2002) also found a pressure threshold of 400 MPa below which no PME 

inactivation was observed in a single-strength orange juice. A remaining activity of 

17% and 6% was observed respectively after a treatment at 750 MPa in the orange 

juice-milk based beverage system and a treatment of 700 MPa in orange juice. A 

remaining activity of 20% was observed after a treatment at 800 MPa for the 

purified enzyme. Opposite to thermal treatment, the high pressure inactivation of 

purified PME was less pronounced than in all other matrices tested meaning that 

the purified enzyme was more pressure-stable. As observed in the thermal 

treatment, the level of purification of the enzyme could affect the stability of the 

enzyme, increasing in this case its pressure resistance. On the other hand, the pH of 

the buffer was close to 7 so the enzyme pressure resistance is increased at neutral 
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pH values showing that the inactivation mechanism differs between both 

technologies. 
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Figure 4.3.3: Isothermal inactivation of purified PME, PME in the 

orange juice-milk based beverage and PME in orange juice. The standard 

deviation was expressed by error bars. 

 

The higher stability of PME in the orange juice-milk based beverage can be 

explained by the fact that factors, such as pH, ºBrix, Ca2+ion content, orange 

variety, time of harvesting and purification level of the enzyme affect the 

sensitivity of the orange PME to the different preservation treatments. There is also 

a theory that when the composition of the orange juice-milk based beverage is 

more complex it protects PME against thermal treatment. This could be due to the 

milk environment, in which proteins can bind with the enzyme, thus becoming 

more resistant (Kumura et al., 1993). The presence of sucrose can also protect the 

enzyme against thermal or pressure treatment. Seyderhelm et al., (2004) and Van 

den Broeck et al., (1999 a) found that at higher sucrose content the pressure 

inactivation of pectinarase was lower arguing that sucrose decreased the water 
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activity and since denaturation of enzymes requires water it protects the PME 

against the thermal treatment.  
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Figure 4.3.4: Pressure inactivation of purified PME, PME in an orange 

juice-milk based beverage and PME in orange juice. The standard deviation 

was expressed by error bars. 

A biphasic model was fitted to the thermal and combined thermal and high 

pressure inactivation data of PME in juice and milk-based beverage assuming that 

two fractions with different stabilities occur. After thermal and combined thermal 

and high pressure treatments between 6-8% of stable fraction was found. Severe 

conditions based on combining high temperatures and high pressures were 

necessary to completely inactivate the enzyme. Similar treatments performed by 

other authors in simpler media yielded higher PME inactivation rate, which implies 

that the complex composition of the matrix play an important role in enzyme 

stability. Different PME thermal and high pressure stabilities were found 

depending on the media studied. PME was found to be more thermostable in the 

orange juice-milk beverage media but more pressure-stable in the purified enzyme 

in a buffer system, meaning that the composition, pH or enzyme purification level 

affect the PME stability against the different technologies studied. The inactivation 

mechanism of PME against thermal and high pressure differs and more studies are 

needed to understand it. 
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4.4.1 ABSTRACT 
This work studies the effect of electric field strength, treatment time, process temperature, 

and pulse width on the inactivation of Lactobacillus plantarum inoculated in an orange juice-
milk based beverage. For any given quantity of energy applied, the highest degree of 

inactivation was achieved with high field intensities and short treatment times. The 
inactivation curve had different slopes, one up to application of 200-285 J/mL, a second 

stage up to application of 813-891 J/mL in which the inactivation did not increase 
significantly, and a third stage up to application of 1069-1170 J/mL. When the process 

temperature was raised to 55ºC the inactivation increased by 0.5 log, achieving an energy 
saving of up to 60%. No increase in inactivation was achieved when the pulse width was 

increased from 2.5 to 4 μs. The inactivation achieved with L. plantarum in this beverage is 

less than that reported by other authors in foods with a simpler composition. 
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4.4.2 INTRODUCTION 

Mixed fruit juices and milk beverages fortified with vitamins, minerals and 

fiber are among the most widely consumed functional foods (Pszczola, 2005) and 

consumption of these products has increased by 30% in Europe in the last 10 years, 

but only 10% belong to the short shelf-life group that needs a chilled chain for their 

storage and distribution (MAPA, 2003). Nevertheless, it is thought that the trend 

will increase in the next few years, partly owing to the application of emerging 

nonthermal technologies such as High Hydrostatic Pressure (HHP) and Pulsed 

Electric Fields (PEF), which find an interesting field for application in these kinds 

of products because they allow cold pasteurization while at the same time 

preserving their nutritional components. Studies on the possibility of applying PEF 

in fruit juices have proliferated in recent years, concentrating mainly on apple and 

orange juice and other substrates of a different nature such as soymilk (Li and 

Zhang, 2004), apple cider (Evrendilek et al., 2000), chocolate milk (Evrendilek et 

al., 2001), mixed juices (Rodrigo et al., 2001; Rodrigo et al., 2003 a), model beer 

(Ulmer et al., 2002), horchata (Spanish beverage) (Selma et al., 2003) and beer 

with gas (Evrendilek et al., 2004). However, there are no studies on the application 

of PEF in the inactivation of microorganisms in juice-milk mixtures such as the 

beverage under study. 

In studies on inactivation of microorganisms by PEF, some works were 

focused on analyzing the influence of process variables on the inactivation, using 

buffers or foods with a simple composition as a suspension medium such as skim 

milk (Martín et al., 1997), phosphate buffer (Wouters et al., 1999), NaCl and 

peptone solution (Aronsson et al., 2001; Aronsson and Rönner, 2001), sodium 

phosphate buffer (Abram et al., 2003), citrate phosphate McIlvaine buffer (Álvarez 

et al., 2003) and apple juice from concentrate (Heinz et al., 2003). Some of these 

studies (Wouters et al., 1999; Abram et al., 2003; Álvarez et al., 2003; Heinz et al., 

2003) are accompanied by a calculation of the energy applied, which makes it 

possible to assess their possible applicability in the industry by comparison with 

the energy cost of traditional heat treatments, and it can also be useful for 
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comparing PEF inactivation treatments of microorganisms in various conditions. 

To establish the optimum PEF treatment conditions in a new product requires not 

only studies on the influence of the various process parameters on the death of the 

microorganism and quality factors, but also the choice of a reference 

microorganism on which to carry out the studies.  

Lactobacillus plantarum is capable of growing over a wide pH range and 

spoiling minimally processed or fresh fruit juices owing to its aciduric nature, 

producing a ‘‘butter’’ off-flavor and swelling of packages. Parish and Higgins 

(1988) isolated four strains of L. plantarum in a commercial fresh orange juice and 

then, in a later study, Parish et al., (1990) observed that the population did not 

decrease in a reconstituted orange juice of pH 3.9 after 14 days at 4 ºC. Some 

authors have studied the inactivation of L. plantarum by PEF in different 

substrates, orange-carrot juice (Rodrigo et al., 2001), HEPES buffer (Wouters et 

al., 2001), model beer (Ulmer et al., 2002), sodium phosphate buffer (Abram et al., 

2003), buffered peptone water (Rodrigo et al., 2003 b), buffered peptone water and 

orange-carrot juice (Selma et al., 2004). The growth of the microorganism in this 

beverage was studied in a previous work demonstrating its capability to spoilage 

these kinds of products (Sampedro et al., 2006). 

The aim of this work was to study the influence of the process variables 

(electric field intensity (E), treatment time (t), pulse width (W), and temperature 

(T)) on the inactivation by PEF of L. plantarum inoculated in an orange juice–milk 

based beverage, and to make an analysis of the energy applied in each case to 

determine the efficiency of the process from the viewpoint of the possible use of 

PEF in the industry. 

 

4.4.3 MATERIALS AND METHODS 

 

4.4.3.1 Food sample 

The beverage contained the following ingredients: pasteurized orange juice 

from squeezed oranges (García-Carrión, Spain) kept frozen until used (the pulp 



Effect of PEF parameters on L. plantarum  RESULTS 

  
105

was removed), commercial UHT skimmed milk, high methoxyl citrus pectin such 

as stabilizer (Unipectine AYD 250, Cargill, USA), commercial citric acid, sugar, 

and distilled water. The beverage preparation and physicochemical characteristics 

were described in Chapter 1. The beverage was prepared just before use.  

 

4.4.3.2 Lactobacillus plantarum  

The culture of L. plantarum CECT 220 was provided by the Spanish Type 

Culture Collection. Cells were obtained according to Sampedro et al., (2006). For 

that, the freeze-dried microorganism was dissolved in 15 mL of MRS broth 

(Scharlau Chemie S.A., Barcelona, Spain) during 30 min at 37ºC. Then, the content 

was placed in 500 mL of MRS broth with continuous agitation at 37ºC. The 

exponential phase was reached after 12-16 h and the stationary growth stage after 

16-20 h. 500 mL of the culture was centrifuged twice (Beckman J-25) at 3220g, 5 

min and 4ºC and dissolved in 100 and 50 mL of MRS broth, respectively. The 

content was transferred to 2 mL vials with 1 mL of suspension and 1 mL of 

glycerol 20% diluted with MRS broth and kept at 80ºC. No cell viability decrease 

was observed during frozen storage (data not shown). Just before the PEF 

treatment (5 min) the beverage was inoculated with the thawed microorganism, 

reaching a final concentration of 3-4 107 CFU/mL. 

 

4.4.3.3 PEF treatment 

An OSU-4D bench-scale continuous unit (Ohio State University, USA) 

was used to treat the food sample. Six co-field chambers with a diameter of 0.23 

cm and a gap distance of 0.293 cm between electrodes were connected in series. 

One cooling coil was connected before and after each pair of chambers and 

submerged in a circulating bath (Polystat, Cole Parmer, USA) to maintain the 

selected initial temperature (35 or 55ºC, final maximum temperature 55 and 72ºC). 

The temperature was recorded by thermocouples (T type) at the entrance of the 

first treatment chamber (initial temperature) and at the exit of the last treatment 

chamber (final temperature). The values were recorded with a data logger (Control 
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Company, USA). Pulse waveform, voltage, and current in the treatment chambers 

were monitored with a digital oscilloscope (Tektronix TDS 210, Tektronix, USA). 

The flow rate was set at 60 mL/min with a peristaltic pump (XX 80002 30, 6–600 

rpm, Millipore, USA). A bipolar square-wave of 2.5 μs was selected. Treatment 

time ranged from 0 to 180 μs, and the electric field was set at 35 and 40 kV/cm. A 

negative control was carried out immediately after the microorganism was added to 

the beverage (700 mL) and after the treatment to ensure no inactivation took place 

because of the acid environment. One sample was collected after each treatment 

time. They were serially diluted in sterile 0.1% peptone water, plated in MRS agar, 

and incubated for 48 h at 37ºC. The experiments were performed to obtain three 

valid repetitions.  

The influence of the temperature was studied by applying electric field 

strengths of 35 and 40 kV/cm treatment times between 0 and 180 μs, pulse width 

of 2.5 μs (110-356 Hz) and initial temperature of 55ºC. The influence of the pulse 

width was also studied by applying 4 μs width pulses (68-123 Hz), electric field 

strength of 35 and 40 kV/cm and treatment times ranging from 0 to 180 μs 

combined with temperature  (35 and 55ºC). The energy input (Q) was calculated by 

the following equation used by Abram et al., (2003), Min et al., (2003) and Pérez 

and Pilosof, (2004): 

 

Q (J L-1) = E2σt       Equation 4.4.1 

 

where E is the electric field strength (kV/cm), σ is the electrical 

conductivity of the product (S/m) calculated for each process temperature (Figure 

8.2.1) and t is the treatment time (s). 

 

4.4.3.4 Statistical analysis 

A hierarchical experimental design was used to study the influence of the 

different parameters: two electric field strengths, seven treatment times, two pulse 
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widths, and two temperatures. The statistical analysis was performed using the 

SPSS 12.0 software, applying a univariant ANOVA test with a significance level of 

95.0%. 

 

4.4.4 RESULTS 

 

4.4.4.1 Effect of electric field strength 

Figure 4.4.1 showed the survival curves against treatment time (Figure 

4.4.1a) and energy applied (Figure 4.4.1b) for L. plantarum with the application of 

E=35 and 40 kV/cm. The curves had different slopes. The cell population of the 

microorganism decreased rapidly with short treatments (40 μs or 200-285 J/mL) 

with an inactivation of 1.5 log but there was a more resistant fraction remaining 

(40-110 μs with 40 kV/cm or 130 μs with 35 kV/cm with the application of 813-

891 J/mL). This residue was inactivated slowly when the treatment times were 

increased, without producing significant differences in the survival fraction (Table 

8.2.7). A final application of 110-130 μs (40 kV/cm) or 180 μs (35 kV/cm) with 

1069-1170 J/mL increased the inactivation to 1.9-2.1 log. A maximum inactivation 

of 2.12 log was achieved using E = 40 kV/cm, t = 130 μs, and T<55ºC. 

Comparison of the two field intensities studied showed that greater 

inactivation was achieved by applying 40 kV/cm and 130 μs (2.12 log), using 1069 

J/mL of energy, than by 35 kV/cm, 180 μs and 1170 J/mL (1.9 log). When short 

treatment times (40-60 μs) were applied, there were non-significant differences 

between the 35 and 40 kV/cm fields (Table 8.2.8). When treatment time was 

increased (80 and 130 μs), the differences were higher and significant differences 

among the electric field strengths were found (Table 8.2.8 and Table 4.4.1). Taking 

these differences into account, during the first phase of inactivation treatment time 

was the variable with the greatest influence, and as longer treatment times were 

applied the inactivation was increasingly due to the electric field intensity.  
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Figure 4.4.1: Inactivation curves as a function of the treatment time 

(A) and energy applied (B) for L. plantarum with T=35 ºC and pulse width of 

2.5 μs. The standard deviation was expressed by error bars. 

 

4.4.4.2 Effect of temperature 

The influence of process temperature was studied by setting the bath 

temperature at 35 or 55ºC. The results showed that when temperature increased 

there was an increase on inactivation for all the treatment times. The analysis of 

variance showed significant differences in the logarithm of the survivor fraction 

between the two values of temperature at 35 kV/cm (Figure 4.4.2a) and 40 kV/cm 

(Figure 4.4.2b) (Table 8.2.9). A maximum inactivation of 2.46 log was achieved 

with E=40 kV/cm, 130 μs, 2.5 μs, and 1358 J/mL, which was an increase of almost 
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0.5 log with respect to the temperature of 35ºC. The inactivation at 55ºC followed 

the same trend as at 35ºC, with a rapid inactivation being produced with 40 μs and 

not increasing significantly for intermediate times (Table 8.2.10).  

 

Table 4.4.1: Effect of electric field strength on the inactivation of L. plantarum 

in the juice-milk beverage. 

Treatment time  

(μs) 

E  

(kV/cm) 

S  

(CFU/mL) 

Differences  

(%) 

40 0.029a±0.002b 40 

 35 0.032±0.002 

8.6 

 

40 0.023±0.002 60 

35 0.026±0.005 

11.90 

40 0.019±0.001 80 

35 0.024±0.001 

21.15* 

40 0.008±0.001 130 

35 0.016±0.003 

52.87* 

a The value is the average of three replicates 
b Standard deviation 
* Showing significant differences 

 

From the point of view of energy, was observed that for a given quantity of 

energy applied (890 J/mL) the inactivation increased with temperature, attaining 

1.8 log at 35ºC and 2.0 log at 55ºC at 40 kV/cm (Figure 4.4.2 c). When the 

temperature was increased to 55ºC the same degree of inactivation was achieved 

with a reduction in the energy consumed. To achieve 1.8 log reductions with 35 ºC 

it was necessary to apply 890 J/mL whereas with 55ºC only 352 J/mL was needed. 
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Figure 4.4.2: Effect of treatment temperature on the inactivation of L. 

plantarum as a function of treatment time with E=35 kV/cm (A) and E=40 

kV/cm (B) and as a function of energy applied with E=40 kV/cm (C) and pulse 

width of 2.5 μs. The standard deviation was expressed by error bars. 
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4.4.4.3 Effect of pulse width 

The influence of pulse width was studied by applying pulse widths of 2.5 

and 4 μs. When 40 kV/cm was applied, varying the pulse width did not produce a 

significant increase in the inactivation (Table 8.2.11), and in fact a greater 

inactivation was achieved with 2.5 μs (Figure 4.4.3b). With 35 kV/cm there were 

also no significant differences when the pulse width was increased (Table 8.2.11), 

but a slightly greater inactivation was achieved with 4 μs (Figure 4.4.3a).  

Analysis of the energy applied showed that for a given quantity of energy 

an increase in pulse width did not produce an increase in the degree of inactivation 

at 35 kV/cm (Figure 4.4.3c) and 40 kV/cm (Figure 4.4.3d). When the temperature 

was increased to 55ºC results were similar to those obtained for 35ºC. There were 

no significant differences on inactivation between using pulse widths of 2.5 or 4 μs 

with the same quantity of energy applied for 40 kV/cm (Table 8.2.12) (Figure 

4.4.4a). Applying 35 kV/cm was also confirmed that there was a slightly greater 

inactivation with a pulse width of 4 μs but without significant differences (Table 

8.2.12) (Figure 4.4.4b). With 4 μs there was also a greater inactivation when the 

process temperature was increased from 35 to 55ºC, which also implied a saving in 

the energy consumed to attain the same degree of inactivation (Figure 4.4.5 a and 

b). 
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Figure 4.4.3: Influence of pulse width in the inactivation of L. 

plantarum at 35 ºC as a function of treatment time with E=35 kV/m (A) and 

E=40 kV/cm (B) and energy applied with E=35 kV/cm (C) and E=40 kV/cm 

(D). The standard deviation was expressed by error bars. 
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Figure 4.4.4: Influence of pulse width in the inactivation of L. plantarum at 55 

ºC as a function of energy applied with E=35 kV/cm (A) and E=40 kV/cm (B). 

The standard deviation was expressed by error bars. 
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Figure 4.4.5: Effect of treatment temperature on the inactivation of L. 

plantarum as a function of energy applied with E=35 kV/cm (A) and E=40 

kV/cm (B) and pulse width of 4 μs. The standard deviation was expressed by 

error bars. 

 

4.4.5 DISCUSSION 

Various factors influence the effectiveness with which the application of 

PEF inactivates microorganisms. In general, when the electric field or the treatment 

time increases there is an increase in the inactivation, but in this study there was a 

very rapid decrease in the number of microorganisms at the start of the treatment 

and as the treatment continued the microorganism became more pulse-resistant. 

The same conclusions were reached by Raso et al., (2000) and Aronsson et al., 

(2001), who observed that at any electric field strength investigated the inactivation 

was very fast in the first moments of the treatment and then the number of 

survivors decreased slowly. The reduction in the viability was caused mostly by the 

first pulses, and increasing the number of pulses did not have the same effect as the 

first ones.  

If the effect of electric field strength is expressed in terms of energy, it 

would succeed in inactivating a substantial fraction of microorganisms with a small 

amount of energy at the start of the treatment and it would be necessary to go 

beyond a minimum level to increase the inactivation for a given electric field 
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intensity. Some authors showed that there were minimum field intensities or 

treatment times at which pore formation took place in the membrane of the 

microorganism, depending among other things on the geometry and size of the cell 

(Li and Zhang, 2004; Picart et al., 2002; Ulmer et al., 2002; Wouters et al., 1999). 

In the smallest cells it is usually necessary to apply higher field intensities to cause 

electroporation (Heinz et al., 2002). In our case, this was applicable to the quantity 

of energy, and therefore, once electroporation took place, it was necessary to go 

beyond a certain energy level to increase the inactivation.  

When the variable temperature is taken into account, an increase in process 

temperature produced an increase in the degree of inactivation achieved. The 

increase in inactivation with temperature is attributed to a decrease in the electrical 

breakdown potential of the membrane (Reina et al., 1998), which increases the 

fluidity of the cell membrane, affecting its physical stability and decreasing the 

critical field intensity so that electroporation takes place (Aronsson et al., 2001). 

Some authors have studied the heat inactivation of L. plantarum in different 

substrates. Tait et al., (1991) studied the heat inactivation of L. plantarum in a 

buffer at pH 4 obtaining a D value of 1.81 min at 50ºC and at pH 7 obtaining a D 

value of 3.64 min at 55ºC. In a further study, De Angelis et al., (2004) obtained a D 

value of 32.9, 14.7 and 7.14 s at 60, 72 and 75ºC of L. plantarum in sterile milk. It 

could be deduced that the treatment time used in this study is not enough to 

produce heat inactivation of the microorganism. Moreover, increasing the initial 

treatment temperature achieved equal or greater levels of inactivation with the 

application of much small quantities of energy, which in our case meant a saving of 

up to 60%. Wouters et al., (1999) observed that when they applied 40 J/mL a 

greater inactivation was achieved with a process temperature of 40ºC than with 20 

or 30ºC for Listeria innocua in sodium-phosphate buffer. In order to obtain a 

reduction of 5 log, Heinz et al., (2003) observed that with an initial temperature of 

45ºC it was necessary to apply 100 kJ/kg, whereas if the temperature was increased 

to 65ºC less than 10 kJ/kg was needed.  
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It could be also verified that an increase in pulse width did not produce an 

increase in inactivation independently from temperature and electric field strength. 

Raso et al., (2000) and Mañas et al., (2001) also found that for electric fields of 22 

and 33 kV/cm and same treatment time the inactivation was independent of the 

pulse width when it ranged between 2-15 μs and 1.2-1.9 μs, respectively. However, 

some authors have demonstrated that at a higher pulse width the inactivation is also 

higher, but by applying a higher treatment time and in consequence more energy 

(Martín et al., 1997; Martín-Belloso et al., 1997). But in this work the treatment 

time and energy were the same for the different pulse widths. Nevertheless, some 

authors concluded that applying the same quantity of energy, the inactivation 

achieved was greater at higher pulse width. Aronsson et al., (2001) increased the 

pulse duration from 2 to 4 μs for the same treatment time, they found that the 

inactivation was greater with 4 μs but the differences were greater at high electric 

field intensities and Abram et al., (2003) also found that when they increased the 

pulse width over 1 μs, with E=25 kV/cm and the same energy input, the 

inactivation increased with the pulse width. The effect of pulse width is not clear 

and seems to vary depending on the conditions applied such as electric field.  

According to this, in our study it could be seen that the field intensity was 

related with the effectiveness of the pulses, because at smaller intensities there was 

greater inactivation with the larger pulse width. Wouters et al., (1999) came to the 

same conclusion, observing that varying the pulsed width (2, 3 and 3.9 μs) the 

inactivation achieved was greater applying the largest pulse width at an intensity of 

28 kV/cm but at 36 kV/cm there were not significant differences in the inactivation 

when the pulse width was varied. Further experiments are needed to clarify the 

effect of pulse width on the inactivation of microorganisms by PEF.  

In connection with what was stated earlier, L. plantarum is not a 

particularly small cell and therefore, a priori, it should not be a particularly pulse-

resistant microorganism. In this respect, other authors have achieved greater levels 

of inactivation for other strains of the same microorganism in simpler substrates. 



Effect of PEF parameters on L. plantarum  RESULTS 

  
117

Reductions of 3.6 log was reached by Wouters et al., (2001) after E=25 kV/cm and 

120 J/mL in a phosphate buffer (pH 4.5 and 0.15 S/m), and Ulmer et al., (2002) 

reached 4 log after E=34.8 kV/cm and 50 kJ/kg in a model beer (pH 3.6 and 

electrical conductivity of 0.120-0.178 S/m). Abram et al., (2003) reached 3.66 log 

reductions after E=33.4 kV/cm, t = 90 μs, pulse width of 5 μs, and energy applied 

of 100 kJ/L in a Na phosphate buffer (pH 4.5 and 0.1 S/m).  

If the treatment intensity expressed as quantity of energy applied is 

compared, in this work was applied 100 kJ/L and achieved 2.1 log or 135 kJ/L and 

achieved 2.5 log. The authors cited earlier achieved greater levels of inactivation 

by applying energy quantities 10 times smaller in other substrates and with 

different PEF equipment. One of the causes could be the electric conductivity, 

which in many cases was considerably less than that of our beverage (0.286 S/m) 

and could affect the effectiveness of the treatment. Nevertheless, in similar 

conditions with the application of exponential wave pulses, Rodrigo et al., (2001) 

achieved 2.5 log after E=35.8 kV/cm and 46.3 μs in orange-carrot juice with an 

electric conductivity of 0.455 S/m. The composition also seemed to affect the 

effectiveness of the treatment. Some works show that fat and other components 

could protect the microorganism (Martín et al., 1997; Min et al., 2002) although 

there are other authors who did not observe this phenomenon (Dutreux et al., 2000; 

Mañas et al., 2001; Reina et al., 1998).  

In a study to optimize process conditions, the treatments and the design of 

the equipment for products of this kind should be aimed at the application of high 

field intensities and short treatment times, which, on the lines of heat treatment 

based on HTST, could be called high electric field short time (HFEST). It would be 

necessary to preheat the sample to 30-50ºC and apply pulses of short duration. This 

combination of factors would involve a smaller energy cost to obtain a given 

degree of inactivation, so that in future it could be possible to equate pulses with 

heat treatment and perform an industrial scale-up. Moreover, optimization of these 

factors could increase the inactivation and thus obtain degrees of inactivation close 

to what is recommended by the authorities concerned with food safety. 
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Nevertheless, there is a need for systematic studies on the influence of pulses in 

foods with a more complex composition to compare their effectiveness and 

understand the mechanisms by which they act. 
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4.5.1 ABSTRACT 
The inactivation kinetics of Lactobacillus plantarum in an orange juice-milk beverage treated by 

Pulsed Electric Fields (PEF) were studied. Experimental data were fitted to Bigelow and 
Hülsheger kinetic models and Weibull frequency distribution function. Results indicate that both 

Hülsheger model and Weibull function fit well the experimental data being Accuracy factor 

values (Af) closer to 1 and Mean Square Error (MSE) closer to 0. The tcw  parameter can be 

considered as a kinetic indicator as it expresses the microorganism’s resistance to treatment 
by electric pulses. An increase in temperature favored the inactivation of L. plantarum by PEF 

as reflected by a decreased in tcw  value. Under the same conditions to those studied by 

other authors we reached less inactivation of L. plantarum in the beverage used in this study 
than in substrates with a simpler composition. 
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4.5.2 INTRODUCTION 

The consumption of fruit juices and drinks based on juice and milk 

subjected to a low pasteurization and stored under refrigeration has experienced a 

spectacular increase in the last few years, particularly in developed countries. This 

is in response to a growing demand for minimally processed foods that are 

perceived by consumers as healthier. The potential attraction of these products is 

that they preserve the original characteristics of fresh food whilst offering 

innovative new flavor mixtures. Over the last few years, nonthermal technologies 

such as the Pulsed Electric Fields (PEF) have been studied on both, laboratory and 

industrial scale and can be used in the preservation of food as fruit juices, milk and 

liquid whole egg (Sampedro et al., 2005; Rodrigo et al., 2005). They have the 

potential to inactivate microorganisms while maintaining the products original 

characteristics. However, studies showing the capability of PEF as an alternative to 

heat in the inactivation of microorganism in foods with a complex composition are 

scarce (Vega-Mercado et al., 1996; Sharma et al., 1998; Evrendilek et al., 2000; 

Evrendilek et al., 2001; Ulmer et al., 2002; Rodrigo et al., 2001; Rodrigo et al., 

2003 a; Selma et al., 2003; Selma et al., 2004; Li and Zhang, 2004; Evrendilek et 

al., 2004).  

Lactobacillus plantarum is a spoilage microorganism frequently found in 

juice based products. Between 2.7 and 8.9% of L. plantarum on the orange’s 

surface enters the juice during extraction and that this level remained constant 

overtime (Pao and Davis, 2001). When the juice is mixed with other substrates to 

produce a more sophisticated or nutritional foodstuff, contamination is transferred 

and there is the likelihood that L. plantarum grows and spoils the product. The 

inactivation of this microorganism by PEF has been studied in different substrates 

and foodstuffs (Rodrigo et al., 2001; Wouters et al., 2001; Ulmer et al., 2002; 

Rodrigo et al., 2003 a; Abram et al., 2003; Selma et al., 2003). However, the nature 

of the inactivation of the microorganism by pulse treatment has not been studied in 

foods made by a mixture of fruit juice and milk where different components and 

their interactions can affect the death of the microorganism.  
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Different authors have tried to model the microorganism inactivation 

curves through predictive mathematical models that fit approximately to the curve 

shape which relates the survivor fraction with treatment time at different field 

intensities. The majority of inactivation curves have been analyzed by predictive 

models which presume a linear behavior (Bigelow, 1921; Hülsheger et al., 1981) 

and several authors have applied it to PEF technology (Pothakamury et al., 1995; 

Martín-Belloso et al., 1997 a and b; Sensoy et al., 1997; Raso et al., 1998; Wouters 

et al., 1999). As in many emergent preserving technologies, the relationship 

between the log of the survival fraction and the treatment time does not follow in 

many cases a lineal behavior, rendering curves with tails or shoulders that make 

difficult the application of a lineal model. Trying to give an explanation for such 

behavior, several authors have assumed that each cell has a different resistance to 

pulse treatment and that the resulting inactivation curve is the sum of a series of 

lethal events expressed in the form of distribution. One frequency distribution 

model widely applied to interpret biological phenomena was developed (Weibull, 

1951). This distribution has been applied by some authors to describe inactivation 

curves after PEF treatment (Rodrigo et al., 2001; Rodrigo et al., 2003 a and b, 

Álvarez et al., 2003 a and b; Lebovka and Vorobiev, 2004). The aim of this work is 

to characterize the inactivation by PEF of L. plantarum in an orange juice-milk 

beverage as an influence of temperature throughout the treatment and substrate as 

well as select the best model to describe the survival curves. 

 

4.5.3 MATERIAL AND METHODS 

 

4.5.3.1 Food sample 

The beverage contained the following ingredients: pasteurized orange juice 

from squeezed oranges (García-Carrión, Spain) kept frozen until use (with the pulp 

removed) (500 mL/L), commercial UHT skimmed milk (200 mL/L), high 

methoxyl citrus pectin (3 g/L) (Unipectine AYD 250, Cargill, USA), commercial 

citric acid (1 g/L), sugar (75 g/L) and distilled water (300 mL/L). The beverage 
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preparation and physicochemical characteristics were described in Chapter 1. The 

beverage was prepared just before use. 

 

4.5.3.2 Lactobacillus plantarum 

The culture of L. plantarum 220 was provided by the Spanish type culture 

collection. Cells were obtained according to Sampedro et al., (2006). For that, the 

frozen microorganism was placed in 2 mL vials with MRS broth (Scharlab 

Chemie, Spain) and 20% sterile glycerol with an initial concentration of 5×109 

CFU/mL in exponential growth stage. A vial was diluted and inoculated in 500 mL 

of MRS broth to achieve an initial concentration of 103-104 CFU/mL in continuous 

agitation at 37ºC. The exponential phase was reached between 12 and 16 h and the 

stationary growth stage between 16 and 20 h. The microorganism was kept for 13 h 

to reach the early exponential growth stage. A 500 ml of culture was centrifuged 

twice (Beckman J-25) at 3220 g, 5 min and 4ºC and dissolved in 100 and 50 mL of 

MRS broth, respectively. The content was transferred into 2 mL vials with 1 mL of 

suspension and 1 mL of glycerol 20% diluted with MRS broth and kept at -80ºC. 

Before the PEF treatment, the beverage was inoculated with the defrozen 

microorganism reaching a final concentration of 3-4×107 CFU/mL. 

 

4.5.3.3 PEF treatment 

An OSU-4D bench-scale continuous processing unit was used to treat the 

food sample. Six co-field chambers with a diameter of 0.23 cm and a gap distance 

of 0.293 cm between electrodes were connected in series. One cooling coil was 

connected before and after each pair of chambers and submerged in a circulating 

bath (Polystat, Cole Parmer, USA) to maintain the selected initial temperature (35 

and 55ºC) (55 and 72ºC maximum temperature of the treatment). The temperature 

was recorded by thermocouples (T type) at the entrance of the first treatment 

chamber (initial temperature) and at the exit of the last treatment chamber (final 

temperature). The values were recorded with a data logger (Control Company, 

USA). Pulse waveform, voltage and current in the treatment chambers were 
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monitored with a digital oscilloscope (Tektronix TDS 210, Tektronix, USA). The 

flow rate was set at 60 mL/min with a peristaltic pump (XX 80002 30, 6-600 

r.p.m., Millipore, USA). A bipolar square-wave of 2.5 μs was selected. Treatment 

time ranged from 0 to 700 μs and the electric field was set at 15, 25, 35, and 40 

kV/cm. Samples were collected after each treatment time. They were serially 

diluted in sterile 0.1% peptone water, plated in MRS agar and incubated for 48 h at 

37ºC. The experiments were performed to obtain three valid repetitions. The 

influence of the temperature was studied applying electric field strengths of 35 and 

40 kV/cm, treatment times between 40 and 180 μs and reaching temperatures 

below 72ºC. 

 

4.5.3.4 Mathematical models 

The data analysis of two valid replicates used the following models: 

Bigelow, (1921):   

D
tSLog −=)(     Equation 4.5.1 

where S is the survival fraction after the treatment, t is the treatment time 

expressed in μs and D is the kinetic parameter, showing the time required to 

achieve one decimal reduction, is also expressed in μs and it can be calculated as 

the negative inverse of the inactivation curve slope. 

Hülsheger et al., (1981): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

c
t t

tLnbSLn *)(
   Equation 4.5.2 

where bt is the regression coefficient, t is the treatment time in μs and tc is 

the critical time expressed in μs (the maximum treatment time in which the 

survival fraction equals 1) 

Weibull, (1951):  
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    Equation 4.5.3 

where a and b are scale and shape parameters, respectively. The b value 

gives an idea of the form of the curve, if b>1 the curve is concave downwards (it 

forms shoulders), if b<1 the curve is concave upwards (it forms tails) and if b=1 

the curve is a straight line and can be described by linear models. 

The critical mean time ( tcw ), can be defined by the maximum death per 

time in response to the PEF treatment and can be expressed by the following 

equation: 

 

⎟
⎠
⎞⎜

⎝
⎛ −+Γ= 11* bacwt     Equation 4.5.4 

where a and b are the parameters of the Weibull equation and Γ is the 

gamma function.  

 

4.5.3.5 Statistical analysis  

The models were externally validated with a third valid replicate by using 

the Accuracy factor parameter (Af) (Ross, 1996). This factor gives and idea of the 

model fitting to the survivor curve of the microorganism and can be defined as 

follows: 

n
observedfittedLog

Af

∑

=

)/(

10    Equation 4.5.5 

 

where n is the number of observations and the fitted and observed values 

are referred to the survival fraction. The meaning of this statistic is the closer to 1 

the Af values, the better the model fit the data.  

Mean square error (MSE) was also calculated as follows: 
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pn
observedfittedMSE
−

∑ −
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2)(
 Equation 4.5.6 

 

where n is the number of observations, the fitted and observed values are 

referred to the survival fraction and p is the number of parameters to be estimated 

by the model. The meaning of this statistic is the smaller the MSE values, the better 

the model fit the data. 

 

4.5.4 RESULTS AND DISCUSSION 

The growth of L. plantarum in the juice-milk beverage has been studied in 

this work and results showed an increase of 3 log after 20 h (Figure 4.5.1). The 

growth ability of L. plantarum in acid products has been demonstrated before. 

McDonald et al., (1990) studied the microorganism growth in a buffer with a pH of 

around 3 Results of our study indicate that L. plantarum could be a spoilage 

problem for the juice processing industry if it is not adequately controlled. Even 

more, the problem could be more acute in this kind of beverages because milk and 

sugar can supply additional nutrients to the microorganism.  

The survivor curves show the relationship between the survivor’s fraction 

of L. plantarum in the beverage with treatment time at different electric field 

intensities and are characterized by a rapid decrease in the number of 

microorganisms followed by a tail. Different mathematical models were fitted to 

the data in order to select one which best describe this concave upwards behavior. 

Table 4.5.1 shows the calculated kinetic parameters and the Af and MSE 

values of different models for each survivor curve. Results indicate that both 

Hülsheger model and Weibull function fit well the experimental data being Af 

values closer to 1 and MSE closer to 0 but only Bigelow (D value) and Weibull 

( tcw ) equations have parameters that decrease significantly as the field intensity 

increases (Table 8.2.13 and 8.2.14). Consequently they can be considered as 

behavior indexes for the death of L. plantarum by PEF in the beverage. 
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Figure 4.5.1: Growth curve of L. plantarum in the orange juice-milk beverage 

at 37ºC. 

 

Applying the critical time parameter (tc) or the scale parameter (a) of the 

Hülsheger and Weibull models, respectively, are therefore unable to provide a 

logical interpretation of the behavior of the microorganism as they are not 

representative of the treatment intensity. Af values ranged from 1.4 to 2.0 and from 

1.0 to 1.1 for the Bigelow and Weibull models, respectively. Accuracy factors 

closer to 1 indicate better predictions. Considering the MSE values, in general 

values are closer to 0 in the case of Weibull as well as in the Bigelow model. 

Consequently, in this study the Weibull model appears to be the more appropriate 

model to interpret the death of L. plantarum in the juice–milk beverage. Figure 

4.5.2 shows the fitted curves using the Weibull model. It appears that the model fits 

better the experimental data obtained at higher field intensities, probably because at 

those high field intensities tails are less apparent. 

Temperature can play an important role in pulsed electric field treatments. 

Figure 4.5.3 shows the evolution of the survivor’s fraction with treatment time and 

temperature at 40 kV/cm. Increasing the initial process temperature (from 35 to 

55ºC) increased the actual inactivation. The lower pulse-resistance was reflected by 
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a significant decrease in the tcw  value, from 7.0 μs to 5.1 μs at 35 and 55ºC 

respectively (Table 8.2.15).  
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Figure 4.5.2: Survival curves of L. plantarum in juice-milk based 

beverage at different electric field strengths at initial T of 35◦C adjusted to the 

Weibull model. The standard deviation was expressed by error bars. 
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Figure 4.5.3: Effect of T in the survival fraction of L. plantarum and tcw of the 

Weibull model in the beverage with E=40 kV/cm. The standard deviation was 

expressed by error bars. 
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Other authors have observed a higher inactivation level than ours 

combining pulses and temperature in different microorganisms and substrates 

(Pothakamury et al., 1995; Aronsson and Rönner, 2001; Heinz et al., 2003). For 

this reason, it is necessary to study in greater depth how to optimize pulse 

treatment alone or combined with heat to achieve improved inactivation in 

complex foods. 

In the last few years, some authors have observed that by decreasing 

electric conductivity of food the effectiveness of pulses increases (Raso et al., 

1998; Wouters et al., 1999; Rodrigo et al., 2003 b). Some explanations have been 

proposed to this event. According to Sensoy et al., (1997) when the medium 

conductivity is decreased, it increases the conductivity difference between the 

microorganism’s cytoplasm and the medium, causing an additional pressure in the 

microorganism membrane due to the osmotic forces and making it more sensitive 

to the pulse treatment.  

Food composition (proteins, fat, etc.) can cause resistance to the treatment 

and protect the microorganism against pulses. Inactivation achieved in E. coli was 

greater in milk diluted two or three times compared to milk diluted only once, this 

may be because of lower protein content and greater resistance, enabling the 

absorption of free radicals and ions that actively participate in cell breaking 

(Martín-Belloso et al., 1997) and the same conclusions were obtained by (Min et 

al., 2002) with E. cloacae in chocolate liquor. Whereas Reina, et al., (1998), 

Dutreux et al., (2000) and Mañas et al., (2001) did not found differences in the 

inactivation of L. monocytogenes, E. coli and L. innocua and E. coli respectively in 

substrates with different concentration in fat.  

To illustrate the effect of food composition, the results of this work were 

compared with the tcw  values for the same strain of L. plantarum obtained in 

other products, orange-carrot juice (conductivity of 0.455 S/m) and peptone water 

(conductivity of 0.6 S/m) (Rodrigo et al., 2001; Rodrigo et al., 2003 a) in Table 

4.5.2. For 25 kV/cm a tcw  value of 32.0 μs in peptone water and 50.5 μs in the 
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juice-beverage was obtained. When applying 35 kV/cm a 6.7 μs tcw  for the 

orange-carrot juice and 9.4 μs for the juice-milk beverage were achieved. This 

appears to indicate that the more complex the substrates, the more resistant the 

microorganism to pulses. Furthermore, because of distinct substrate composition 

the differences are more pronounced between the peptone water and the orange-

milk beverage than between the orange-milk beverage and the orange-carrot juice. 

So, pulses are more effective in simpler foods despite of pulsed electric fields are 

more effective at low conductivity levels. Therefore, we can conclude despite that 

conductivity is the main cause affecting pulse effectiveness, there are other factors 

that can influence its effect. Among the reasons for the lower inactivation might be 

the incorporation of additives such as pectin, milk protein and fat which seem to 

protect the microorganisms from pulses.  

To conclude, the Weibull model gives a good adjustment and the tcw  parameter 

can describe the lethality of treatment it is therefore the model which best describes 

the inactivation curves of L. plantarum in the beverage. The combination of 

temperature and PEF produces an increase in inactivation as shown by a decreasing 

tcw . Compared with other substrates studied in similar conditions by other 

authors, the complexity of the beverage produces a decrease in final inactivation.
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Table 4.5.1: Kinetic parameters Af and MSE values of Bigelow, Hülsheger and Weibull models for L. plantarum survivor 

curves at initial treatment temperature of 35ºC. 

Bigelow Hülsheger Weibull E  

(kV/cm) D (μs) Af MSE tc (μs) bt Af MSE tcw  (μs) a b Af MSE 

15 294.74a ± 6.79 b 1.63 0.16 22.44 ± 1.57 1.31 ± 0.01 1.14 0.16 61.11 ± 4.26 29.07 ± 3.66 0.49 ± 0.01 1.17 0.20 

25 130.21 ± 3.87 2.01 0.48 0.18 ± 0.10 0.57 ± 0.03 1.09 0.22 50.55 ± 2.84 0.03 ± 0.03 0.16 ± 0.01 1.10 0.22 

35 68.02 ± 0.65 1.65 0.41 1.38 ± 0.20 0.94 ± 0.06 1.09 0.14 9.40 ± 1.21 0.44 ± 0.10 0.26 ± 0.02 1.09 0.15 

40 51.17 ± 1.29 1.41 0.24 2.55 ± 0.47 1.18 ± 0.09 1.05 0.07 7.15 ± 0.56 1.18 ± 0.24 0.33 ± 0.02 1.05 0.08 
a :Value based on mean of three replicates 
b: Standard deviation 
 

Table 4.5.2: Kinetic parameters of Weibull model for L. plantarum in orange-carrot juice (Rodrigo et al., 2001), peptone 

water (Rodrigo et al., 2003) and the beverage studied. 

Peptone Water Orange-Carrot Juice Orange Juice-Milk Beverage 

E  

(kV/cm) 
Calculated tcw   

(µs) 

tcw   

(µs) 

tcw  

(µs) 

25 32.06 - 50.55 

35 - 6.77 9.40 
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4.6.1 ABSTRACT 
The inactivation kinetics of Salmonella typhimurium in an orange juice-milk beverage treated 
by Pulsed Electric Fields (PEF) were studied. Experimental data were fitted to Bigelow and 

Hülsheger kinetic models and Weibull frequency distribution function. Results indicate that both 
Hülsheger model and Weibull function fit well the experimental data being Accuracy factor 

values (Af) closer to 1. The tcw  parameter can be considered as a kinetic indicator as it 

expresses the microorganism’s resistance to treatment by electric pulses. The effect of pH 
(3.4, 4 and 4.5) and pectin concentration (0.1, 0.3 and 0.6%) were also studied. A decrease in 

pH favored the inactivation of S. typhimurium by PEF as reflected by a decreased in tcw  

value. The zpH parameter based on tcw  indicated a value of 3.41 and 1.74 for 15 and 40 

kV/cm respectively. Variation in the pectin concentration had no significant effect on the 
inactivation of S. typhimurium (p>0.05). The z% was 8.11 and 4.85 for 15 and 40 kV/cm 

respectively.
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4.6.2 INTRODUCTION 

Consumption of juices and non-carbonated beverages based on mixes of 

citric juices and milk has increased by 30% in Europe in the last ten years, but only 

10% belong to the short shelf-life group that needs a chilled chain for their storage 

and distribution (Artiach, 2005). Nevertheless, it is thought that the trend will 

increase in the next few years, partly owing to the application of emerging non-

thermal technologies such as High Hydrostatic Pressure (HHP) and Pulsed Electric 

Fields (PEF), which find an interesting niche for application in those type of 

products because they allow cold pasteurization of the product preserving its 

nutritional components. Studies on the possibility of applying PEF in fruit juices 

have proliferated in recent years, concentrating mainly on apple and orange juice 

and other substrates of a different nature with complex composition such as 

soymilk (Li and Zhang, 2004), apple cider (Evrendilek et al., 2000), chocolate milk 

(Evrendilek et al., 2001), mixed juices (Rodrigo et al., 2001; Rodrigo et al., 2003 

a), model beer (Ulmer et al., 2002), horchata (Spanish beverage) (Selma et al., 

2003) and beer with gas (Evrendilek et al., 2004). However studies showing the 

capability of PEF as an alternative to heat in the inactivation of microorganisms in 

food with a complex composition such as the beverage under study are scarce. 

Different outbreaks in orange juice products involving Salmonella genus 

have appeared in the last years around the world. Cook et al., (1998) and Khan et 

al., (2007) reported 2 Salmonella outbreaks in Florida and Arizona states (USA) in 

non-pasteurized orange juice. Five Salmonella enterica serotypes were found in the 

juice and packaging samples. Different samples recovered from the industry 

revealed cleaning installation deficiencies. These studies demonstrated the 

capability of Salmonella to contaminate and survive in non-pasteurized orange 

juice. Castillo et al., (2006) performed a study on the sanitary and cleaning 

conditions of different small street sellers in the city of Guadalajara (Mexico) 

during 2005. The study was based on samples from orange juice, orange surface 

and different utensils used for cleaning purposes. The authors observed a high 

Salmonella prevalence (14.3, 20.0 and 22.8%) in orange juice, orange surface and 
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cleaning utensils respectively. It were found 3 principal serotypes and among them 

was S. typhimurium. The contamination found in the orange juice samples reached 

in some cases 105 CFU/mL. The lack of properly hygienic conditions in utensils 

and equipments, cross-contamination or the non adequate storage conditions are 

the possible causes of the high Salmonella prevalence.  

The acid-tolerance of different Salmonella strains has been previously 

studied by different authors. Parish et al., (1997) studied the growth of different 

Salmonella serovars in orange juice at different pH values (3.5-4.4) incubated at 0 

and 4ºC. The juice was inoculated with 106 CFU/mL surviving 27 days at pH 3.5, 

46 days at pH 3.8, 60 days at pH 4.1 and 73 days at pH 4.4. Later on, Pao et al., 

(1998) studied the growth of different pathogen microorganisms (among them 

Salmonella) on the orange surface. They obtained a survival period of 14 days at 

24ºC and pH of 6-6.5 being inhibited at 4-8ºC. The authors concluded that the 

refrigeration of raw material could be a good practice to reduce Salmonella 

prevalence in the orange fruit. Yuk and Schneider (2006) showed that the acid pre-

adaptation of several Salmonella strains in fruit juices produced higher resistance 

to the gastric juice. The resistance varied depending on the adaptation temperature, 

type of juice (organic acid) and serotype used. The study demonstrated that the acid 

pre-adaptation in diverse fruit juices could increase the probability of infection 

developing.  

Parameters such as pH, initial contamination, sugars content or enzyme 

activity have a great variability during the orange harvest season. Due to this fact, 

is important to know the effect of the product physicochemical characterization on 

PEF microbial inactivation. Several authors have studied PEF inactivation of 

Salmonella typhimurium (Liang et al., 2002; Álvarez et al., 2003) and the effect of 

the pH in several Salmonella strains (Álvarez, et al., 2000) but there are no studies 

on a mixture of orange juice and milk. On the other hand, companies are 

continuously creating new food formulation and composition to make it more 

suggestive to the consumer. Food based on the mixture of different fruit juices and 

milk with the addition of an adequate stabilizer (pectin derivatives) is essential to 

http://apps.isiknowledge.com/FSTA/CIW.cgi?SID=Y2K@cO@lfLBlJDGPDoN&Func=OneClickSearch&field=AU&val=Liang+Z&curr_doc=4/9&Form=FullRecordPage&doc=4/9
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maintain the product stability. For this reason, is important to know the effect of 

pectin concentration on PEF Salmonella inactivation. 

The aim of the present work is to study the influence of the pH and pectin 

concentration on the inactivation by PEF of S. typhimurium inoculated in an orange 

juice-milk based beverage. 

 

4.6.3 MATERIALS AND METHODS 

 

4.6.3.1 Food Sample 

The beverage contained the following ingredients: 50% pasteurized orange 

juice from squeezed oranges provided by (García-Carrión, Spain) kept frozen until 

used (the pulp was removed), 20% commercial UHT skimmed milk, 0.3% high 

methoxyl citrus pectin such as stabilizer (Unipectine AYD 250, Cargill, USA), 

7.5% sugar, and 30% distilled water. The beverage preparation and 

physicochemical characteristics were described in Chapter 1. The beverage was 

prepared just before use.  

 

4.6.3.2 Salmonella typhimurium 

The culture of Salmonella typhimurium CECT 443 was provided by the 

Spanish Type Culture Collection. Cells were obtained according to Sampedro et 

al., (2006). For that, the frozen microorganism was placed in 2-mL vials with 

Tryptic Soy Broth (TSB) (Scharlab CHEIME, Spain) and 20% sterile glycerol with 

an initial concentration of 6x108 CFU/mL in stationary growth stage. A vial was 

diluted and inoculated in 500 mL of TSB to achieve an initial concentration of 103-

104 CFU/mL at 37 ºC. The exponential phase was reached after 10 hours and the 

stationary growth stage after 14 hours. The 500 mL of the culture was centrifuged 

twice (J-25, Beckman, USA) at 3220 x g, 5 min and 4ºC, and was dissolved in 100 

and 50 mL of TSB respectively. The content was transferred to 2-mL vials with 1 

mL of suspension and 1 mL of glycerol 20% diluted with TSB and kept at -80ºC 

observing no cell viability decrease during the frozen storage (data not shown). Just 
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before the PEF treatment (5 min) the beverage (700 mL) was inoculated with the 

defrozen microorganism in stationary growth phase reaching a final concentration 

of 3.5x106 CFU/mL. 

 

4.6.3.3 PEF treatment  

An OSU-4D bench-scale continuous unit was used to treat the food sample. 

Eight co-field chambers with a diameter of 0.23 cm and a gap distance of 0.293 cm 

between electrodes were connected in series. One cooling coil was connected 

before and after each pair of chambers and submerged in a circulating bath 

(Polystat, Cole Parmer, USA) to maintain the selected temperature at 5ºC. The 

temperature was recorded by thermocouples (K type) at the entrance of the first 

treatment chamber (initial temperature) and at the exit of the last treatment 

chamber (final temperature). The values were recorded with a data logger (Control 

Company, USA). Pulse waveform, voltage, and current in the treatment chambers 

were monitored with a digital oscilloscope (Tektronix TDS 210, Tektronix, USA). 

The flow rate was set at 30 mL/min with a peristaltic pump (XX 80002 30, 6-600 

rpm, Millipore, USA). A bipolar square-wave of 2.5 μs was selected. Treatment 

time ranged from 0 to 2500 μs, and the electric field was set at 15, 25, 35 and 40 

kV/cm for the product at pH=4 and 0.3% of pectin concentration. A negative 

control was carried out immediately after the microorganism was added to the 

beverage and after the treatment to ensure no inactivation took place because of the 

acid environment. Samples were collected after each treatment time. The different 

treatments were serially diluted in sterile 0.1% peptone water, plated in Tryptic soy 

agar (TSA) and incubated for 24 h at 37 ºC. The experiments were performed to 

obtain three valid repetitions. The effect of pH (3.5, 4 and 4.5) and pectin 

concentration (0.1, 0.3 and 0.6%) was studied at 15 and 40 kV/cm for treatment 

times ranged from 0 to 2500 μs. 

 

4.6.3.4 Mathematical models 

The data analysis of two valid replicates used the following models: 



PEF inactivation kinetics of S. typhimurium RESULTS 

  
138

Bigelow, 1921:    

D
tSLog −=)(      Equation 4.6.1 

where S is the survival fraction after the treatment, t is the treatment time 

expressed in μs and D is the kinetic parameter, showing the time required to 

achieve one decimal reduction, is also expressed in μs and it can be calculated as 

the negative inverse of the inactivation curve slope. 

Hülsheger et al., (1981):   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

c
t t

tLnbSLn *)(
   ºEquation 4.6.2 

where bt is the regression coefficient, t is the treatment time in μs and tc is 

the critical time expressed in μs (the maximum treatment time in which the 

survival fraction equals 1) 

Weibull, 1951:     

b

a
tSLn ⎟
⎠
⎞

⎜
⎝
⎛−=)(

    Equation 4.6.3 

where a and b are scale and shape parameters, respectively. The b value 

gives an idea of the form of the curve, if b>1 the curve is concave downwards (it 

forms shoulders), if b<1 the curve is concave upwards (it forms tails) and if b=1 

the curve is a straight line and can be described by linear models. 

The critical mean time ( tcw ) can be defined by the maximum death per 

time in response to the PEF treatment and can be expressed by the following 

equation: 
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⎟
⎠
⎞⎜

⎝
⎛ −+Γ= 11* bacwt     Equation 4.6.4 

where a and b are the parameters of the Weibull equation and Γ is the 

gamma function.  

 

4.6.3.5 Statistical analysis  

The models were externally validated with a third valid replicate by using 

the Accuracy factor parameter (Af) (Ross, 1996). This factor gives and idea of the 

model fitting to the survivor curve of the microorganism and can be defined as 

follows: 

n
observedfittedLog

Af

∑

=

)/(

10    Equation 4.6.5 

where n is the number of observations and the fitted and observed values 

are referred to the survival fraction. The meaning of this statistic is the closer to 1 

the Af values, the better the model fit the data.  

 

4.6.4 RESULTS 

 Figure 4.6.1 shows the S. typhimurium counts in the orange juice-milk 

based product. It could be observed a 12 h latent phase demonstrating the survival 

of the microorganism in these kind of products. An increase in the microorganism 

growth was observed reaching a concentration of 6.88x107 CFU/mL after 24 h. 

Figure 4.6.2 shows the survival curves for S. typhimurium in the orange 

juice-milk product at pH=4 after PEF treatment. Different mathematical models 

were fitted to the data in order to select one which best describe the different 

behavior.  

Table 4.6.1 shows the kinetic parameters and Af values of the Bigelow, 

Hülsheger and Weibull models in the different survival curves. Results indicate 

that Bigelow, Weibull and Hülsheger equations had parameters (D, tc and tcw ) 

that decreased significantly as the field intensity increased with no significant 
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differences between 35 and 40 kV/cm (Table 8.2.16, 8.2.17 and 8.2.18). 

Consequently they can be considered as behavior indexes for the death of S. 

typhimurium by PEF in the product.  
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Figure 4.6.1: Salmonella typhimurium counts at 37 ºC in the orange 

juice-milk based product. The standard deviation was expressed by error 

bars. 

 

The scale parameter (a) of the Weibull model was unable to provide a 

logical interpretation of the behavior of the microorganism as it was not 

representative of the treatment intensity. The tcw  parameter could represent an 

index for the S. typhimurium resistance to the PEF treatment. The shape parameter 

(n) of the Weibull model was always below 1 indicating the tail phenomenon with 

a more pronounced behavior at high electric fields. Af values ranged from 1.56-

1.22, 1.04-1.24 and 1.04-1.12 for the Bigelow, Hülsheger and Weibull models, 

respectively. Af values closer to 1 indicate better predictions. Consequently, in this 

study the Weibull model appeared to be the more appropriate model to describe the 

death of S. typhimurium after PEF treatment in the juice-milk product (Figure 

4.6.2). 
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Sampedro et al., (2006) and Rivas et al., (2006) studied the PEF 

inactivation kinetics of L. plantarum (Gram+) and E. coli (Gram-) recovered in 

logarithmic phase in the orange juice-milk based product. Comparing the tcw  

values for both microorganisms it could be observed a higher pulse-resistance of L. 

plantarum reflected by an increase in tcw  value (Table 4.6.2). Different studies 

have showed higher PEF treatment resistance in Gram+ bacteria due principally to 

differences in membrane composition (Hülsheger et al., 1981). Comparing tcw  

values of both microorganisms with the one of S. typhimurium (Gram-) recovered 

in stationary phase, it was observed that tcw  value was significantly higher than 

the rest of microorganisms studied (Table 8.2.19) demonstrating a higher pulse-

resistance. In consequence the growth phase plays an important role in the 

microorganism resistance to PEF treatment. 
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Figure 4.6.2-Survival curves of S. typhimurium in the juice-milk based 

beverage at (♦) 15 kV/cm, (▲) 25 kV/cm, (■) 35 kV/cm and (●) 40 kV/cm at 

pH=4 adjusted to the Weibull model (―).The standard deviation was 

expressed by error bars. 
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Table 4.6.1: Kinetic parameters and Af and MSE values of Bigelow, Hülsheger and Weibull models for S. typhimurium 

survivor curves. 

Bigelow Hülsheger Weibull 
E  

(kV/cm) 
D  

(μs) 
Af tc (μs) bt Af 

tcw   

(μs) 
a b Af 

15 1454.65a ± 27.33b 1.22 53.82 ± 1.48 0.77 ± 0.00 1.24 478.51 ± 9.21 331.38 ± 2.24 0.62 ± 0.01 1.10 

25 454.25 ± 15.31 1.47 23.33 ± 1.09 0.99 ± 0.01 1.10 111.45 ± 0.47 33.19 ± 1.29 0.50 ± 0.00 1.12 

35 234.81 ± 7.32 1.56 4.60 ± 1.07 0.89 ± 0.09 1.04 38.38 ± 8.54 2.51 ± 0.81 0.27 ± 0.03 1.04 

40 149.01 ± 2.17 1.44 1.36 ± 0.02 0.76 ± 0.02 1.12 24.61 ± 1.60 6.48 ± 1.03 0.38 ± 0.01 1.08 

Table 4.6.2: Comparison of tcw values of Salmonella typhimurium (Gram-, 

Stat. phase), Lactobacillus plantarum (Gram+, Log. phase) and Escherichia coli (Gram-, 

Log. phase) in the orange juice-milk based product. 

E (kV/cm) Salmonella typhimurium Lactobacillus plantarum Escherichia coli 

 tcw  (μs) tcw  (μs) tcw  (μs) 

15 478.51a ± 9.21b 61.11 ± 4.26 5.37 ± 0.69 

25 111.45 ± 0.47 50.55 ± 2.84 2.80 ± 0.06 

35 38.38 ± 8.54 9.40 ± 1.21 1.98 ± 0.55 

40 24.61 ± 1.60 7.15 ± 0.56 1.60 ± 0.99 

a :Value based on mean of three replicates 
b: Standard deviation 

a :Value based on mean of three replicates b: Standard deviation
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4.6.1 Effect of pH 

Figure 4.6.3 and 4.6.4 show the evolution of the survivor’s fraction with 

treatment time and pH at 15 kV/cm and 40 kV/cm respectively fitted to the Weibull 

model. Decreasing the pH (from 4.5 to 3.5) and increasing the electric field 

strength increased the actual inactivation. The lower pulse-resistance was reflected 

by a decreasing in the tcw  value but with no differences between pH value of 4 

and 4.5 (Table 4.6.3 and Table 8.2.20). The tcw  parameter could represent a 

resistance index of S. typhimurium to the PEF treatment varying the product pH. 

Other authors have observed higher inactivation level than the reached in this study 

after PEF treatment in simpler substrates at different pH values. Liang et al., (2002) 

obtained 5.9 log in Salmonella typhimurium after 50 pulses, 90 kV/cm at 55 ºC in a 

freshly squeezed orange juice at pH=3.8. Álvarez et al., (2003) reached a 7 log 

cycle inactivation in Salmonella typhimurium after 28 kV/cm, 1300 μs and 35ºC in 

citrate-phosphate McIlvaine buffer at pH 7.0. The higher complexity of the product 

composition could be a cause of this phenomenon. For this reason, it is necessary 

to study in greater depth how to optimize pulse treatment alone or combined with 

an acidic environment to achieve improved inactivation in complex foods. 

 

Table 4.6.3: Effect of pH and electric field on tcw  value. 

3.5 4 4.5 E  

(kV/cm) tcw  (µs) tcw  (µs)  tcw  (µs) 

15 249.05a±25.83b 371.40±39.65 488.74±16.69 

40 16.66±1.50 40.03±9.21 61.36±4.45 
a :Value based on mean of three replicates 
b: Standard deviation 
 

Figure 4.6.5 shows the estimation of zpH parameter at different pH values. 

zpH value was 3.41 (R2=0.989) and 1.74 (R2=0.962) at 15 kV/cm and 40 kV/cm 
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respectively. It was observed that the zpH value was lower at 40 kV/cm indicating 

that tcw  sensitivity to pH variation was higher than at 15 kV/cm. 
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Figure 4.6.3-Survival curves of S. typhimurium in the juice-milk based 

beverage at 15 kV/cm at pH=3.5(♦), pH=4(■) y pH=4.5(▲) adjusted to the 

Weibull model (―).The standard deviation was expressed by error bars. 
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Figure 4.6.4-Survival curves of S. typhimurium in the juice-milk based 

beverage at 40 kV/cm at pH=3.5(♦), pH=4(■) y pH=4.5(▲) adjusted to the 

Weibull model (―).The standard deviation was expressed by error bars. 

 



PEF inactivation kinetics of S. typhimurium  RESULTS 

  
145 

 

y = 0.2928x + 1.3806
R2 = 0.9887

y = 0.5662x - 0.7275
R2 = 0.9619

1
1.2
1.4

1.6
1.8

2
2.2

2.4
2.6
2.8

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
pH

Lo
g 

(t
cw

)

 
Figure 4.6.5: zpH estimation at E = 15 kV/cm (♦) and E = 40 kV/cm (■).  

 

4.6.2 Effect of pectin concentration 

Figure 4.6.6 and 4.6.7 show the evolution of the survivor’s fraction with 

treatment time and pectin concentration at 15 kV/cm and 40 kV/cm at pH 4 fitted 

to the Weibull model. Variation of the pectin concentration (from 0.1 to 0.6%) did 

not produce any significant effect in the S. typhimurium inactivation after PEF 

treatment (Table 8.2.21). However increasing the electric field an inactivation 

increase was produced (Table 8.2.22). Table 4.6.4 shows the tcw  value at 15 

kV/cm and 40 kV/cm and different pectin concentrations. There were no 

significant differences among the different pectin percentage samples (Table 

8.2.21). This indicates a non protective effect of pectin concentration on PEF 

inactivation of S. typhimurium. 

Table 4.6.4: Effect of pectin concentration and electric field strength on tcw  

value. 

0.10% 0.30% 0.60% E 

(kV/cm) tcw  (µs) tcw  (µs) tcw  (µs) 

15 402,67 ± 5.81 488,74 ± 16.69 516,93 ± 60.10 

40 37.37 ± 9.76 61.36 ± 4.45 45.50 ± 0.58 
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Figure 4.6.6-Survival curves of S. typhimurium in the juice-milk based 

beverage at 15 kV/cm at 0.1% (♦), 0.3% (■) and 0.4% (▲) adjusted to the 

Weibull model (―).The standard deviation was expressed by error bars. 
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Figure 4.6.7-Survival curves of S. typhimurium in the juice-milk based 

beverage at 40 kV/cm at 0.1% (♦), 0.3% (■) and 0.4% (▲) adjusted to the 

Weibull model (―).The standard deviation was expressed by error bars. 

 

The z% value obtained was 4.85 (R2=0.831) and 8.11 (R2=0.819) at 15 and 

40 kV/cm respectively (Figure 4.6.8).  

 



PEF inactivation kinetics of S. typhimurium  RESULTS 

  
147 

 

y = 0.2062x + 2.6004
R2 = 0.8315

y = 0.1233x + 1.6317
R2 = 0.819

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

%  pectin

Lo
g 

(tc
w

)

 
Figure 4.6.8: z% estimation at E = 15 kV/cm (♦) and E = 40 kV/cm (■).  

 

To conclude, Weibull model gives a good fitting and tcw  parameter can 

describe the lethality of treatment, it is therefore the model which best describes the 

inactivation curves of S. typhimurium in the product. The combination of pH and 

PEF produced an increase in the inactivation by a decreasing in tcwvalue. 

Variation in the pectin concentration did not produce any added effect. Compared 

with other substrates studied, the complexity of the product produces a decrease in 

final inactivation. In our opinion development of new PEF equipment and PEF 

processing combined with pH and other technologies (heat and antimicrobials) will 

conduct to an overall effectiveness improvement. 
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4.7.1 ABSTRACT 
The effect of thermal and pulsed electric field (PEF) processing, that produced similar PME 

inactivation, on shelf-life of an orange juice-milk beverage (OJMB) was studied. Physical 
properties (pH, ºBrix), microbial population, pectin methyl esterase (PME) activity, color 

measurement and volatile compounds concentration were investigated during the storage of 
the product at 8-10 ºC for 4 weeks. The pH was not affected by any treatment but decreased 

during the storage in the untreated sample. The Brix degrees were decreased by the two 
treatments. The thermal and PEF treatments initially inactivated the PME activity by 90%. 

During the storage the PME activity remained constant in the treated samples and decreased 
slightly in the untreated sample. The bacterial and mold and yeast counts reduction was similar 

after the two treatments (4.5 and 4.1 log CFU/mL -thermal- 4.5 and 5.0 log CFU/mL -PEF-). 
Based on the initial bacterial load of the control, it was estimated that the shelf-lives of the 

OJMB treated with thermal and PEF treatment stored at 8-10 °C were 2 and 2.5 weeks 
respectively. Differences were observed in the color parameters of the OJMB among the two 

treatments with a higher difference observed in the thermally processed sample respect to the 
control. The relative volatile compounds concentration was higher in the OJMB processed by 

PEF treatment than thermally processed sample. During storage the loss of volatile 
compounds was lower in the PEF sample while thermal and control samples had a similar rate 

of loss. For an OJMB, the combination of PEF and mild heat achieved the same degree of 
microbial and enzyme inactivation as thermal treatment, but preserving better the original 

product characteristics during the storage. 
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4.7.2 INTRODUCTION 

A high quantity of new minimally processed foods have appeared on the 

market in response to a growing demand for natural products that are perceived by 

consumers as healthier. Among them, are beverages based on a mixture of fruit 

juices and milk, fortified with vitamins, minerals, and fiber, which are the most 

widely consumed functional foods (Pszczola, 2005); however, there are little data 

related to quality and safety of these products.  

These products need a chilled chain for their storage and distribution. 

Many refrigerators in Europe are set at a temperature around 8ºC. This situation 

points to conducting the research on the shelf-life of these products at more 

realistic conditions using temperatures higher than 4ºC. Many studies on shelf-life 

that compare different technologies (PEF, thermal and HHP) apply different 

intensity treatments (Jia et al., 1999, Yeom et al., 2000, Rivas et al., 2006, Élez, et 

al., 2006, Aguilar et al., 2007) being the results not comparable. When fairly 

comparing different technologies it is very important to choose the right conditions 

in order to apply the same intensity to the product. This comparison can be done 

using a microbiological index (inactivation of a selected microorganism or 

microbial flora) or enzymatic index (inactivation of a selected enzyme). In our 

study the conditions to obtain the same degree of PME inactivation by thermal and 

PEF treatment were selected from a previous work (Sampedro et al., 2008). 

Pectin methyl esterase (PME) is an important enzyme in orange juice based 

products and thermal preservation treatments are based on the PME inactivation 

level of >90 % because its thermotolerance is higher than the majority of 

microorganisms found naturally in this type of product, causing the cloud loss or 

gelification of juice concentrates (Tribess et al., 2006). Severe conditions (90 ºC, 1 

min or 95 ºC, 30 s) are necessary to inactivate orange PME (Cameron et al., 1994, 

Do Amaral et al., 2005). Normally industry adopts these conditions to pasteurize 

orange juice 88-95 ºC, 15-30 s (Irwe and Olson, 1994). Unfortunately, these 

treatments can modify the original aroma, color and other attributes of the fresh 

orange juice (Farnworth, et al., 2001, Lee and Coates, 2003). 
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Several authors have studied the shelf-life of different foodstuff after PEF 

and thermal treatments such as blended orange and carrot juice (Rivas et al., 2006), 

apple juice and cider (Evrendilek, et al., 2000), cranberry juice and chocolate milk 

(Evrendilek et al., 2001), tomato juice (Min and Zhang, 2003, Min et al., 2003) and 

orange juice (Yeom et al., 2000, Ayhan et al., 2002, Min et al., 2003 a, Élez, et al., 

2006) but there are no studies on the effects of PEF and thermal treatment on the 

shelf-life of a mixture of orange juice and milk. 

The aim of this work was to perform a shelf-life study of an orange juice-

milk based beverage after thermal and PEF treatment. 

 

4.7.3 MATERIAL AND METHODS 

 

4.7.3.1 Beverage preparation 

Fresh Valencia var. oranges were purchased at a local supermarket. The 

oranges were squeezed with the aid of a juice extractor (Zumex 38, Zumex, S.A., 

Spain) and the juice was filtered with cheese cloth and stored at -40 ºC until use. 

The OJMB contained the following ingredients: fresh orange juice (500 mL/L), 

commercial UHT skimmed milk (200 mL/L), high methoxyl citrus pectin 

(Unipectine AYD 250, Cargill, USA) (3 g/L), sucrose (75 g/L), and deionized 

water (300 mL/L). Prior to mixing, solid ingredients were dissolved in water in the 

weight proportions indicated. The OJMB was prepared just before use. The OJMB 

physicochemical characteristics were reported in a previous article (Sampedro et 

al., 2007). 

 

4.7.3.2 Thermal treatment  

Thermal treatment conditions were chosen based on the results obtained in 

a previous work in order to obtain a 90% of PME inactivation (Sampedro et al., 

2008). The experiments were carried out in a plate and frame heat exchanger 

equipped with nominal 66 s hold time tube (FT74X/HTST/UHT, Armfield, Inc., 

UK). OJMB placed in a feeding tank was driven by a pump to the heat exchanger 



Shelf-life study RESULTS 

  
152

at 17 ml/s where it was rapidly heated to 85 ºC. Then the product reached the 

holding tube where the treatment conditions (85 ºC, 66 s) were maintained. After 

the treatment, the OJMB was immediately cooled with cold water in a cooler 

(FT61, Armfield, Inc., UK), and it was packaged and stored until needed for 

analysis. 

 

4.7.3.3 PEF treatment  

PEF treatment conditions were chosen based on the results obtained in a 

previous work in order to obtain a 90% of PME inactivation (Sampedro et al., 

2008). An OSU-4F bench-scale continuous unit (Ohio State University, USA) was 

used to treat the food sample (Sampedro et al., 2007). Six co-field chambers with a 

diameter of 0.23 cm and a gap distance of 0.29 cm between electrodes were 

connected in series. One cooling coil was connected before and after each pair of 

chambers and submerged in a circulating bath (model 1016S, Fisher Scientific, 

USA) to maintain the selected initial temperature (65ºC). The temperature was 

recorded by thermocouples (K type) at the entrance and exit of each pair of 

chambers. The entrance of the first treatment chamber can be considered as the 

initial temperature and the exit of the last treatment chamber as the final 

temperature. The values were recorded with a data logger (Sper Scientific, 

Taiwan). Pulse waveform, voltage and current in the treatment chambers were 

monitored with a digital oscilloscope (TDS 210, Tektronix, USA). The flow rate 

was set at 120 mL/min with a digital gear pump (Cole Parmer, USA). A bipolar 

square-wave of 2.5 µs was selected. Treatment time was set at 50 μs and the 

electric field at 30 kV/cm. The sample was immediately cooled in ice-water and it 

was packaged and stored until needed for analysis. 

 

4.7.3.4 Packaging and storage 

The treated product was packaged in clean, sterile twist-off jars inside a 

laminar flow hood. The closed jars were stored in a refrigerator at 8-10 ºC in 
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darkness. Quality analyses discussed in the following sections were carried out 

after 1, 2, 3 and 4 weeks. 

 

4.7.3.5 Analysis of headspace volatile compounds 

Volatile compounds were extracted with a modification of the method 

described by (Fan and Gates, 2001) using a solid-phase microextraction (SPME) 

method. A 2 mL aliquot sample was transferred into 6 mL serum vial. The vial, 

sealed by a teflon-lined septum and a screw cap, was pre-heated at 60 ºC for 2 min 

before a SPME fiber, coated with 100 µm of poly(dimethylsiloxane), was inserted 

into the headspace of the sample bottle. After 30 min incubation, the SPME fiber 

with adsorbed volatile compounds was inserted into the GC injection port at 250 ºC 

and held there for 5 min to desorb volatile compounds. Volatile compounds were 

separated by a Hewlett-Packard 6890N/5973 GC-MSD (Agilent Technologies, 

USA) equipped with a DB-Wax trace analysis column (30 m x 0.32 mm i.d., 0.5 

µm film thickness). The temperature of the GC was programmed from 60 to 96 ºC 

at 8 ºC·min-1, increased to 120 ºC at 12 ºC·min-1, then increased to 220 ºC at 10 

ºC·min-1 and held for 3 min at the final temperature. Helium was the carrier gas at a 

linear flow rate of 39 cm·sec-1. Compounds were identified by comparing spectra 

of the sample compounds with those contained in the National Institute of 

Standards and Technology library (NIST02). The relative amount of each 

compound was expressed as peak area.  

 

4.7.3.6 PME activity measurement 

PME activity was determined by measuring the release of acid over time at 

pH 7 and 22 ºC. The reaction mixture consisted of 1 mL of sample and 30 mL of 

0.35 % citrus pectin solution (Sigma, USA) containing 125 mM NaCl. During 

hydrolysis at 22ºC, pH was maintained at 7.0 by adding 10-4 N NaOH using an 

automatic pH-stat titrator (Titralab, Radiometer Analytical, SAS). After the first 1 

min the consumption of NaOH was recorded every 1 s for a 3 min reaction period. 

PME activity was expressed in units (U), defined as micromoles of acid produced 
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per minute at pH 7 and 22 ºC. The detection limit was established at 0.019 U/ml. 

Residual activity was expressed as the relation between the PME activity after the 

treatment (A) and the initial activity (A0) expressed in U/mL. 

 

4.7.3.7 Physical property measurements 

The physical properties such as pH, ºBrix and visual inspection (phases 

separation) were measured at room temperature. An pH meter (model 370, Fisher, 

USA) and hand refractometer (Fisher, USA) was used to determine the pH and 

ºBrix respectively.   

 

4.7.3.8 Color measurement 

Color was measured with a color meter (HunterLab MiniScan XE, Hunter 

Associates Laboratory, USA) using a 27 mm measuring aperture. The color meter 

was calibrated using the standard white and black plates. D65/0° was the 

illuminant/viewing geometry Triplicate measurements were recorded for each 

sample. 75 mL of product were placed into a 2.5 inch (diameter) glass sample cup. 

The cup was then placed onto 2-inch port for color measurement. A black cover 

over the sample cup was used. The parameter “L*” is a measure of 

brightness/whiteness that ranges from 0 to 100 (white if L*=100, black if L*=0). 

The parameter “a” is an indicator of redness that varies from –a* to +a* (-

a*=green, a*=red). The third parameter “b*” is a measure of yellowness that varies 

from –b* to +b* (-b*=blue, +b*=yellow). Also the total color difference between 

the control and treated sample was calculated by the equation proposed by 

Cserhalmi et al., (2006):  

 

ΔE= ( ) ( ) ( )222 baL Δ+Δ+Δ     Equation 4.7.1  
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Depending on the value of ΔE the color difference could be estimated such 

as not noticeable (0-0.5) slightly noticeable (0.5-1.5), noticeable (1.5-3.0), well 

visible (3.0-6.0) and great (6.0-12.0). 

 

4.7.3.9 Microbiological assay  

The microbial inactivation and growth were examined by diluting the 

samples in 0.1 % (w/v) sterile peptone water and plating in Tryptic Soy Agar 

(TSA) for bacteria counts and in acidified Potato Dextrose Agar (PDA) for mold 

and yeast counts every week for one month. Plates were incubated at 37 ºC for 48 h 

for bacteria and yeast counts and at 30 ºC for 5 days for mold counts. 

 

4.7.3.10 Statistical Analysis 

The statistical analysis was performed using the software Statgraphics® 

Centurion XV (Statistical Graphics Corp.) applying an univariant ANOVA test 

with a significance level of 95.0 % (p<0.05). The means of three replicates were 

differentiated by Tukey’s test.  

 

4.7.4 RESULTS AND DISCUSSION 

 

4.7.4.1 Effects of processing and storage on physical properties  

The effect of thermal and combined PEF and thermal processing on the 

OJMB physical properties are shown in Table 4.7.1. There were significant 

differences in the pH values after the different treatments (Table 8.2.23), however 

the differences were less than 0.3. Many authors have observed no variation in the 

pH value after different thermal and PEF treatments in different fruit and vegetable 

juices (Min, et al., 2003 a and b, Cserhalmi, et al., 2006, Rivas et al., 2006, Élez, et 

al., 2006, Aguilar et al., 2007). During the storage, pH value decreased 

significantly in the untreated sample during the first and fourth week due to the 

growth of microorganisms that could use the carbohydrates producing lactic acid 

(Table 8.2.24). The pH of the thermal and PEF processed samples decreased 
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significantly during the storage due to the increase in the microbial counts (Table 

8.2.24). Élez et al., (2007) found a decrease in pH in the unprocessed sample from 

28 to day 56 at 22ºC in an orange juice. Yeom et al., (2000) and Min et al., (2003 

a) found no differences in the pH value in the treated samples during the storage of 

an orange juice for 112 days at 4 and 22ºC. Rivas et al., (2006) found a decrease in 

the pH value in a PEF treated sample (25 kV/cm, 280 μs) at 12ºC after the 8.5th 

week owing to the beginning of microbiological spoilage of a blended orange-

carrot juice.  

The Brix degrees content decreased significantly after the PEF treatment 

with no differences between thermal and untreated sample (Table 8.2.25). However 

the differences between the mean values of the untreated and treated samples were 

less than 0.5 so practically were negligible. Cserhalmi et al., (2006) and Rivas et 

al., (2006) also observed a slight decrease in the Brix content after the PEF 

treatment in an orange and blended orange-carrot juice respectively. During the 

storage the Brix degrees decreased significantly in the untreated and thermal 

sample (Table 8.2.26). The growth of microorganisms could cause this 

phenomenon by fermentation of sugars. However there were no significant 

differences in the PEF treated samples (Table 8.2.26). Several authors also found 

no changes in Brix degrees during the storage of any treated samples at 2 and 12ºC 

for 10 weeks in a blended orange-carrot juice and orange juice for 112 days at 4 

and 22ºC (Yeom et al ., 2000, Rivas et al., 2006, Min et al., 2003 a).   

 

4.7.4.2 Effects of processing and storage on microbial flora  

The effect of thermal processing and combined PEF and thermal treatment 

on the total plate count and mold and yeast count in the OJMB are also shown in 

Table 4.7.1. Microbial loads of the untreated sample were 5.99 and 5.43 log for 

bacteria and yeast and mold counts, respectively. The bacteria and mold and yeast 

counts were reduced by 4.5 and 4.1 log cycles by thermal treatment and 4.6 and 5.0 

log cycles by the PEF treatment, respectively, with no significant differences in the 

microbial reduction among the two technologies (Table 8.2.27). Min et al., (2003 a 
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and b) reached 6 log cycles inactivation of endogenous bacteria in a tomato juice 

and orange juice after the thermal (90ºC, 90 s) and PEF treatment (40 kV/cm, 57 μs 

and 45ºC).  

 

Table 4.7.1: Effect of thermal and PEF processing on different parameters of 

an orange juice-milk beverage 

Parameters Untreated Thermal PEF+Thermal 

pH 4.31±0.021a 4.39±0.01b 4.36±0.01c 

Bacteria  

(log CFU/mL) 

5.99±0.02a 1.42±0.08b 0.92±0.25b 

Molds and Yeasts  

(log CFU/mL) 

5.43±0.03a 0.92±0.11b 0.43±0.09b 

ºBrix 15.07±0.06a 14.83±0.06a 14.65±0.07b 

PME  

(U/ml) 

0.262±0.03a 0.039±0.001b 0.035±0.002b 

L* 56.30±0.04a 55.68±0.01b 55.92±0.05c 

a* 1.85±0.05a -0.37±0.02b 0.81±0.06c 

b* 38.82±0.10a 22.08±0.02b 25.19±0.06c 
1: Numbers are means of three replicates followed by standard deviation. Means 

with the same letter are not significant different (p<0.05) 

 

During the storage there was an increase of 4-6 log CFU/mL in the bacteria 

and mold and yeast counts in the unprocessed sample (Figure 4.7.1). The increase 

in microbial flora was higher than previous shelf-life studies performed by several 

authors due to the selected storage temperature (8-10ºC). The increase in the PEF 

and thermal sample during the storage was about 6 log in the bacteria and mold and 

yeast counts (Figure 4.7.1). The shelf-life of the treated samples was established 

taking into account the initial microbial flora of the control sample in every 

treatment (X axis, point 0). On this basis, the microbial count of sample treated 
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with thermal processing exceed the initial count of control sample after 2 weeks 

while it took 2.5 weeks for the PEF treated sample. Therefore, the shelf-lives could 

be stated at 2 and 2.5 weeks at 8-10 ºC for the thermally and PEF processed 

samples, respectively. In this study PEF sample had a slightly higher shelf-life than 

thermal sample.  

Different authors have obtained quite long shelf-lives after different PEF 

treatment conditions ranging from 112 days at 4, 22 and 37ºC, 56 and 42 days at 4 

and 22ºC and 42 days at 4ºC in an orange juice and 120 days at 2ºC in a blended 

orange-carrot juice (Yeom et al., 2000, Élez et al., 2006, Jia et al., 1999, Rivas et 

al., 2006). Min et al., (2003 b) found an increase in the bacteria counts of 1.0x102 

and 1.0x104 CFU/mL in yeast and mold counts in a PEF treated sample after 112 

days at 4ºC. They argued that the increase of bacterial counts in the PEF treated 

sample could be due to the relatively low inactivation of ascospores.  
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Figure 4.7.1: Growth of microbial flora (A) and mold and yeast counts (B) 

during the storage (♦) control sample, (▲) thermal sample and (■) PEF 

sample. The standard deviation was expressed by error bars. 
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4.7.4.3 Effects of processing and storage on PME activity  

The effect of thermal and combined PEF and thermal processing on PME 

activity in the OJMB is shown in Table 4.7.1. PME activity was inactivated by 89.4 

and 90.1 % after the thermal and PEF treatments, respectively, with no significant 

differences between the two technologies (Table 8.2.28). Different authors have 

also obtained a high degree of PME inactivation after PEF treatment. Élez et al., 

(2006) achieved no PME activity and 81.6% inactivation after thermal (90 ºC, 1 

min) and PEF (35 kV/cm, 1000 μs) processing respectively. Rivas et al., (2006) 

found 75.6 and 81% after PEF treatment (25 kV/cm, 280 and 330 μs) and 98% 

inactivation after thermal treatment (98ºC, 21 s). Yeom et al., (2000) found an 

inactivation of 88% after 35 kV/cm, 59 μs and 98% after 94.6 ºC for 30 s and there 

was no activation after 112 days at 4 and 22ºC. The differences in the degree of 

PME inactivation achieved could be due to the orange variety, harvest season, 

treatment intensity or type of food used in the study. Despite of the differences, all 

of these studies apply different treatment intensity for thermal and PEF processing 

obtaining different PME inactivation degrees being the results among the two 

technologies not comparable. 

During the storage there was a significant decrease in the PME activity in 

all samples (Table 8.2.29) (Figure 4.7.2). Élez et al., (2006) also found a decrease 

in the initial PME activity of the untreated sample to around 40% of the initial 

activity. A phase separation was observed after two weeks in the unprocessed 

sample indicating the destabilization effects of the PME activity. In the treated 

samples there were no activation of the enzyme during the storage (p<0.05) and 

there was no phase separation. In the thermal sample a slight precipitation was 

observed at the bottom, maybe due to the casein precipitation. Several authors have 

also observed no PME activation during storage after PEF treatment (Élez et al., 

2006, Rivas et al., 2006). This fact demonstrates that PEF treatment can achieve a 

PME irreversible inactivation and a 90% PME reduction is enough to guarantee the 

stability of the product stored under refrigeration conditions. 
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Figure 4.7.2: Change of PME activity during the storage, (♦) control sample, 

(▲) thermal sample and (■) PEF sample. The standard deviation was 

expressed by error bars. 

 

4.7.4.4 Effects of processing and storage on color measurement  

Table 4.7.1 shows the effect of different treatments on L*, a* and b* 

parameters. There was a significant decrease in L*, a* and b* parameters after the 

different treatments (Table 8.2.30, Table 8.2.32, Table 8.2.34). The ΔE of samples 

was 2.70 after PEF treatment and 2.77 after thermal treatment with a noticeable 

color difference compared to controls (Eq. 1). Cserhalmi et al., 2006 found no 

differences between the untreated and PEF treated samples in the total color of 

orange juice (ΔE=0.47). L* parameter increased slightly during the first three 

weeks and decreased in the fourth week in the PEF and thermal treatment samples 

however the differences were negligible (Table 8.2.31) (Figure 4.7.3).  

There were no significant differences in the a* parameter during the first 

three weeks increasing in the fourth week in the untreated and PEF samples and no 

differences in the thermal sample (Table 8.2.33) (Figure 4.7.3). b* parameter 

decreased significantly during the storage in the unprocessed and PEF sample but 

increased after the thermal treatment (Table 8.2.35) (Figure 4.7.3). Rivas et al., 

(2006) found no differences in the luminosity and saturation after the thermal and 

PEF treatments in an orange-carrot juice but an increase in the hue angle was 

observed after each treatment. During the storage, the authors did not observe 

changes in the color parameters in the PEF treated sample but decreasing in the 
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thermal treatment. Min et al., (2003 a) found higher L* and hue angle values during 

the storage for 196 days at 4ºC of PEF treated samples than that for thermally 

treated samples. Ayhan et al, (2002) found higher L* and b* values after PEF 

treatment and lower a* values than fresh orange juice (brighter and more 

yellowish) and during the storage at 4ºC no effect on color parameters was 

observed and L* and a* values were reduced after 28 days at 22ºC.  
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Figure 4.7.3: Change of color parameters with storage time in the unprocessed 

sample (♦), thermal treated sample (▲) and PEF treated sample (■).The 

standard deviation was expressed by error bars. 
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4.7.4.5 Effect of processing and storage on volatile compounds content  

The effect of thermal and combined PEF and thermal processing on 

volatile compounds concentration in the OJMB is presented in Table 4.7.2. There 

were no differences in the nonanal, caryophyllene, valencene and dodecanal 

content after PEF and thermal treatment (Table 8.2.36). The average loss of 

volatile compounds content was -1.68 and 20.95% after the PEF and thermal 

treatment respectively. Several authors have also observed less volatile compounds 

loss after PEF treatment. Cserhalmi et al., (2006) found no loss of volatile 

compounds content in an orange juice after PEF treatment (28 kV/cm, 100 μs) 

whereas Jia et al., (1999) and Aguilar, et al., (2007) found less volatile compounds 

loss after PEF than thermal treatment in an orange and apple juice respectively. 

They contented that the different sensitivity of the volatile compounds to the PEF 

and thermal treatments may be due to the molecular weight and boiling point 

differences with the lower ones more easily lost during the treatments. However 

the PEF treatments studied achieved less microbial inactivation than did the 

thermal treatment so the results were not comparable. 

The compounds most sensitive to the thermal treatment were β-

phellandrene and α-phellandrene whereas limonene, 4-carene and ethyl octanoate 

were the least sensitive to heat. On the other hand, β-phellandrene and 

caryophyllene were most sensitive to the PEF treatment. The content of β-myrcene, 

limonene, 3-carene, 4-carene and ethyl octanoate was increased by the PEF 

treatment. Different theories could explain this phenomenon. Min et al., (2003 c) 

found that after PEF treatment some compounds increased in content claiming that 

the PEF sample had a lower particle size distribution and consequently an increase 

in the release of the volatile compounds. Ayhan et al., (2002) found an increase in 

the content of different volatile compounds (limonene, myrcene, valencene and α-

pinene) after PEF treatment (35 kV/cm, 59 μs) in an orange juice. They reasoned 

that these compounds are found in higher concentration in the pulp and could be 

released after the PEF treatment into the aqueous phase. 
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During the storage all compounds in the untreated sample decreased in 

content except limonene and caryophyllene (Figure 4.7.4-A). The average loss was 

34.24%. The compounds that were lost to a higher extent were decanal and β-

phellandrene. The content of volatile compounds in the thermal sample decreased 

during the storage except limonene, caryophyllene and α-phellandrene (Figure 

4.7.4-B). The average loss was 27.13%. β-phellandrene, nonanal, ethyl octanoate 

and decanal were lost most during the storage. Regarding to the PEF sample, the 

average loss was 3.72% (Figure 4.7.4-C). Compounds that increased their content 

during the storage were α-pinene, β-myrcene, α-phellandrene, 3-carene, 4-carene 

and caryophyllene whereas the content of decanal and β-phellandrene decreased. 

Different authors observed a slightly better preservation of volatile compounds in 

different fruit juices (orange and apple juice) after PEF treatment during the shelf-

life (Min et al., 2003 a; Min et al., 2003 c; Ayhan et al., 2002; Yeom et al., 2000). 

The storage temperature seemed to influence to a great extent the acceleration of 

the loss of volatile compounds content. 

During the shelf-life of the OJMB at 8ºC, the unprocessed sample spoiled 

after 1 week, whereas the PEF and thermally treated samples remained stable 

during the entire storage period (4 weeks). A decrease in the color parameters was 

observed after the different treatments. A slight decrease in pH, Brix and PME 

values were observed in the unprocessed sample and a slight increase in the PME 

and no variation in the pH and Brix values were observed in the PEF and thermally 

treated samples. Both technologies achieved the same enzyme and microbial 

inactivation. During storage, populations of bacteria, molds and yeasts increased by 

4-6 log cycles in the unprocessed sample. In the thermal and PEF treated samples 

the population increased by 6 log cycles. A decrease in the concentration of volatile 

compounds was also observed in all samples, although the decrease of the PEF 

treated sample was smaller. The results showed that with the same microbial and 

enzyme inactivation PEF processed sample has longer shelf-life with higher 

standard of quality than thermal processed sample. 
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Table 4.7.2: Effect of thermal and PEF processing on volatile compounds 

content of an orange juice-milk beverage. 

Loss (%) 
Compound 

PEF Thermal 

α-pinene 9.111±2.612a 36.30±0.28b 

β-pinene 4.66±1.98a 44.14±1.15b 

β-phellandrene 46.18±0.25a 79.32±9.02b 

β-myrcene -25.76±8.14a 31.74±7.74b 

Limonene -5.68±6.42a 8.26±4.60b 

α-phellandrene 3.86±5.50a 62.88±0.86b 

3-Carene -23.01±13.67a 40.91±4.94b 

4-Carene -108.94±2.20a 7.80±13.12b 

Nonanal 18.54±7.67a 31.11±5.80a 

Ethyl Octanoate -26.39±18.36a -161.97±22.85b 

Decanal 11.80±9.12a 28.99±2.01b 

Caryophyllene 35.93±1.54a 39.52±1.79a 

Dodecanal 14.42±1.85a 16.64±7.96a 

Valencene 21.77±1.23a 27.74±3.93b 

Average loss (%) -1.68 20.95 
1: Numbers are means of three replicates followed by standard deviation. Means with the 

same letter are not significant different (p<0.05). 
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Figure 4.7.4: Change of volatile compounds content during the storage (A) 

control sample, (B) thermal sample and (C) PEF sample. The standard 

deviation was expressed by error bars. 
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In recent years, a large quantity of new pasteurized liquid foods requiring 

chilled storage and distribution has appeared on the European market. Among 

these, fruit-juice mixes, vegetable soups and different sauces are predominant; they 

are produced from food ingredients of very different natures, leading to complex 

compositions. Within these products fruit juices and milk based beverages offer an 

innovating flavor providing essential nutritional components such as water-soluble 

vitamins and natural antioxidants from juice and calcium and vitamin-D from milk, 

among others.   

In order to apply a preservation technology (HHP, PEF or thermal) to a 

new product it is necessary to find the adequate formulation based on the consumer 

acceptability that allows developing inactivation kinetic studies. The new 

formulation must suppose a substantial nutritional and sensorial improvement 

respect to the products of such nature commercialized nowadays. Different product 

formulations based on the orange juice content were studied. A more suitable 

physicochemical characteristics, better consumer sensory evaluation and higher 

microbial inactivation degree was obtained in the 50% orange juice sample. This 

new formulation represents an increase in the vitamin-C and antioxidants supply.   

One of the most important aspects in fruit juice preservation is enzyme 

activity. Enzymes are responsible for juice quality losses and the structure and 

treatment resistance differs among them. In the orange juice, pectin methyl esterase 

(PME) is mainly responsible for its destabilization. Its resistance to thermal and 

HHP treatment is higher than the majority of the microorganisms found in the 

juice. This fact justifies the characterization of the PME kinetic behavior against 

the different new preservation technologies (PEF and HHP). PME inactivation 

study in the orange juice-milk based product corroborated the enzyme treatment 

resistance. Intense treatment conditions were necessary to inactivate it (90ºC, 1 min 

and 700 MPa at 55ºC for 2 min). The presence of two fractions (92% labile and 6-

8% stable) with different stability to the treatment was confirmed. A biphasic 

model was able to describe enzyme inactivation curves. Kinetic constants, 
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activation energy and activation volume values obtained for each fraction allowed 

to characterize its behavior against the combined HHP and thermal treatment. 

By comparing PME kinetic constants and activation energy values 

obtained in the beverage with other PME inactivation kinetic studies in orange 

juice, it was observed higher values in the orange juice-milk system so therefore, 

higher treatment resistance demonstrating a protective effect. This fact alerted over 

the need to study the substrate effect in the thermal and HHP PME inactivation. 

There were significant differences in PME inactivation in the different orange 

matrices (juice-milk beverage, orange juice and purified PME in buffer at basic 

pH). At same pH values lesser thermal and HHP PME inactivation was obtained in 

the beverage than in the orange juice matrix. In the purified enzyme differences 

were also observed being more pressure resistant and less thermostable than the 

rest of matrices. The inactivation mechanism of the different technologies, pH 

value or purifying level, are the possible main causes of the differences in the 

inactivation degree obtained.     

In the PME inactivation study by PEF treatment in the orange juice-milk 

system it was observed that at low treatment temperature (25 ºC) some enzyme 

activation effect was found as indicated by an increase in PME activity (between 

11-60%). Application of a mild PEF treatment could increase the permeability of 

the orange pulp by facilitating the release of the bounded PME. After PEF 

treatment, PME activity measured as “free” enzyme, increased. By increasing the 

temperature, the inactivation reached a maximum of 91% inactivation after 30 

kV/cm, 65 ºC (final temperature 80 ºC) and 50 µs demonstrating the synergetic 

effect between the temperature and PEF treatment.   

Other important food quality aspect is the aroma. The effect of different 

preservation technologies (PEF, HHP and thermal) on the volatile compounds 

concentration was studied. The different treatments were equivalent in the intensity 

applied (30 kV/cm, 50 μs and 65ºC -PEF-, 650 MPa and 50ºC-HHP- and 85ºC, 1 

min for thermal treatment) by obtaining a 90% of PME inactivation. In the thermal 

treatment between 16 and 43% of volatile compounds content was lost. After PEF 
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treatment, losses varied between -13 and 30% and an increase in the content of 

certain compounds was produced possibly due to their release from the pulp. In the 

HHP processing the same phenomenon was presented with an increase in the 

content of certain volatile compounds but treatment losses (between -14 and 42%) 

were similar to those of thermal treatment. In conclusion, PEF technology was the 

one which best preserved the original aroma of the fresh product so this technology 

was decided to be used in the microbial inactivation studies. 

One of the main problems related to the microbial spoilage effects in fruit 

juice based products is the development of acid-tolerant microorganisms. Within 

them Lactobacillus genus is one of the most important due to its capability to grow 

in these kind of products, being essential to know its behavior against PEF 

treatment. For that purpose, the effect of different PEF processing variables 

(electric field strength, treatment time, temperature and pulse width) on the 

inactivation of Lactobacillus plantarum was studied.    

An increase in electric field and treatment time generally produces higher 

inactivation degree. However, this behavior is not always demonstrated. Every 

microorganism has a critical electric field and increasing it membrane 

electroporation is produced leading to the death of the microorganism. The 

membrane electroporation depends on the cellular wall characteristics (Gram+ or 

Gram-) and cell size and shape (rod-shape and greater size cells are more 

susceptible to the treatment). The critical electric field could be transformed in 

critical energy applied that corresponds to a minimal energy level enough to 

produce electroporation. Within the present study it was observed that an 

increasing in the energy applied produced a rapid decreasing in the initial survivors 

number corresponding to the most susceptible group of cells. A higher energy 

applied did not produce any significant inactivation corresponding to a fraction of 

cells resistant to the treatment. It was necessary to overpass a higher energy level to 

obtain microorganism inactivation. Finally the most PEF resistant fraction 

remained unaffected. This circumstance makes that the survival curve do not 

present a linear behavior against energy applied. 
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An increase in the initial treatment temperature produced higher 

inactivation with lower energy consumption. This is produced by an increase in the 

membrane permeability making it more susceptible to the PEF treatment. Based on 

that, PEF and mild temperature combination could be a good strategy to improve 

treatment effectiveness and reduce the energy applied up to 60%. An increase in 

pulse width did not produce any significant inactivation effect. 

An optimization study based on the energy applied has the main objective 

of designing a treatment that obtains a higher inactivation degree with lesser energy 

consumption. The influence of different process variables on L. plantarum 

inactivation study showed that a treatment based on high electric fields (40 

kV/cm), short treatment times (100 μs), pulse width (~2 μs) and mild temperature 

(30-50ºC) produced the highest inactivation degree with the lowest energy 

consumption. Comparing the energy applied in this study with other studies in 

simpler substrates it could be observed that the energy applied was 10 times higher 

in the beverage substrate. By comparison with the HTST thermal treatment (High 

Temperature Short Time) the optimum PEF treatment could be HEFST (High 

Electric Field Intensity Short Time).    

Once it was observed that the electric field, treatment time and temperature 

were the three most influential variables on PEF inactivation of L. plantarum, it 

was decided to study PEF inactivation kinetics based on them. Weibull model was 

able to properly describe L. plantarum survival curves against PEF treatment and 

tcw  parameter was an index of the microorganism treatment resistance. On the 

other hand, simpler composition food provided lower tcwvalue indicating a 

protective effect in the L. plantarum treatment resistance. An increase in the initial 

temperature also favored PEF inactivation by a decrease in tcw  value. 

In orange juice processing raw material physicochemical characteristics 

vary greatly during the year. Among them, pH is probably the most influential 

factor in the product microbiological safety and enzyme activity on the product 

stability. Stabilization of an orange juice-milk product during the shelf-life requires 
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the use of an adequate stabilizer (pectin). On the other hand, within the latest years, 

several Salmonella outbreaks in fresh orange juice have appeared showing the 

acid-tolerance of certain Salmonella strains such as S. typhimurium. This fact 

alerted sanitary authorities over the duty to control certain new microorganisms to 

improve the microbiological safety of these kind of foods.  

Due to the lack of information about the effect of PEF treatment on 

microbiological safety of this product, it is important to study the influence of the 

physicochemical variables on pathogen inactivation. A pH reduction increased S. 

typhimurium PEF inactivation. Weibull model was useful to describe 

microorganism behavior through tcw  parameter and zpH parameter was also useful 

to estimate the tcw  sensitivity against pH. A variation in the stabilizer 

concentration (pectin) did not produce any significant effect on the inactivation 

degree, thus, such characteristic does not present a microbiological safety problem 

on these type of products. Through this study it was demonstrate the importance of 

physicochemical characteristics in a PEF treatment design. 

Once microbiological and quality aspects were established, the shelf-life of 

the product at refrigerated conditions (8-10ºC) after PEF and an equivalent thermal 

treatment (same PME inactivation) was studied. After the thermal treatment, Brix 

degrees, color and volatile compounds concentration significantly diminished 

being the overall loss lower in the PEF treatment. During the storage, pH and Brix 

degrees diminished in both treatments due to a logical microorganism growing 

within the temperature range (8-10ºC). PEF and thermal treatment obtained the 

same microbial flora reduction. However, the product shelf-life after PEF treatment 

was slightly higher (2.5 weeks) than the thermally treated sample. Enzyme activity 

did not increase during the storage showing an irreversible inactivation. Volatile 

compounds content diminished during the storage in a higher degree in the 

thermally treated sample. This fact showed that PEF processing could achieve the 

same degree of microbial and enzyme inactivation as thermal treatment, but 
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preserving better the original characteristics during the storage of an orange juice-

milk beverage. 
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1. The complex composition of the beverage offered a protective effect on 

microbial and enzyme inactivation.  

2. PME HHP and thermal inactivation appeared to be biphasic with the 

appearance of two fractions with different treatment stability. 

3. Substrate, purifying level or pH affected PME HHP and thermal resistance 

being more thermostable as endogenous form in the beverage and more 

pressure resistant as purified form in the buffer. 

4. PEF and HHP low intensity treatments produced PME activation (11-60%) 

and increase the volatile compounds concentration (14%). 

5. PEF processing was the one that best preserved the original volatile 

compounds concentration of the beverage.  

6. PEF treatment based on high electric field, short treatment time and mild 

temperature could achieve a high microbial inactivation degree with lower 

energy consumption (60% reduction). 

7. Weibull model was able to describe L. plantarum and S. typhimurium 

inactivation behavior and the effect of physicochemical characteristics (pH 

and pectin concentration) after PEF treatment.  

8. tcw  parameter could be considered an index of microorganism resistance 

to PEF treatment. 

9. A decrease in the pH value increased S. typhimurium PEF inactivation 

while pectin concentration did not have any significant effect.  

10. Shelf-life at 8-10ºC of PEF treated sample was 2.5 weeks with no enzyme 

reactivation, similar color and microbial inactivation and greater volatile 

compounds content than thermally treated sample.  

11. PEF technology could achieve the same degree of microbial and enzyme 

inactivation as thermal treatment, but preserving better the original 

characteristics during the storage of an orange juice-milk beverage. 
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8.1 COMMUNICATIONS BASED ON THESIS WORK  
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8.2 STATISTICAL ANALYSIS 

 

Table 8.2.1: Effect of juice content on PEF inactivation of E.coli at 40 kV/cm. 
 Log (S) by % juice

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
% juice        Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
15             4         -1.91             X 
25             4         -1.9              X 
50             4         -1.7225           X 
70             4         -1.195             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 25                                    -0.01                0.467063          
15 - 50                                    -0.1875              0.467063          
15 - 70                                   *-0.715               0.467063          
25 - 50                                    -0.1775              0.467063          
25 - 70                                   *-0.705               0.467063          
50 - 70                                   *-0.5275              0.467063          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.2: Effect of temperature on volatile compounds concentration after 

thermal treatment.  
Volatile compounds loss (%) by T

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
60             12        15.9806           X  
65             12        19.877            XX 
70             12        26.1924           XXX
75             12        27.9513           XXX
80             12        33.051             XX
85             12        39.325              X
90             12        41.0536             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
60 - 65                                    -3.89642             16.3351           
60 - 70                                    -10.2118             16.3351           
60 - 75                                    -11.9708             16.3351           
60 - 80                                   *-17.0704             16.3351           
60 - 85                                   *-23.3444             16.3351           
60 - 90                                   *-25.073              16.3351           
65 - 70                                    -6.31542             16.3351           
65 - 75                                    -8.07433             16.3351           
65 - 80                                    -13.174              16.3351           
65 - 85                                   *-19.448              16.3351           
65 - 90                                   *-21.1766             16.3351           
70 - 75                                    -1.75892             16.3351           
70 - 80                                    -6.85858             16.3351           
70 - 85                                    -13.1326             16.3351           
70 - 90                                    -14.8612             16.3351           
75 - 80                                    -5.09967             16.3351           
75 - 85                                    -11.3737             16.3351           
75 - 90                                    -13.1022             16.3351           
80 - 85                                    -6.274               16.3351           
80 - 90                                    -8.00258             16.3351           
85 - 90                                    -1.72858             16.3351           
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.3: Effect of electric field strength on volatile compounds 

concentration after PEF treatment at 25, 45 and 65ºC. 
 Volatile compounds loss by E at 25ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
15             12        -13.6592          X 
20             12        -0.378333         XX
25             12        4.67667           XX
30             12        8.26667            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 20                                    -13.2808             21.7504           
15 - 25                                    -18.3358             21.7504           
15 - 30                                   *-21.9258             21.7504           
20 - 25                                    -5.055               21.7504           
20 - 30                                    -8.645               21.7504           
25 - 30                                    -3.59                21.7504           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Volatile compounds loss by E at 45ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
15             12        5.7925            X
20             12        13.4225           X
25             12        17.2022           X
30             12        20.9108           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 20                                    -7.63                20.506            
15 - 25                                    -11.4097             20.506            
15 - 30                                    -15.1183             20.506            
20 - 25                                    -3.77967             20.506            
20 - 30                                    -7.48833             20.506            
25 - 30                                    -3.70867             20.506            
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 Volatile compounds loss by E at 65ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
15             12        11.5683           X 
20             12        18.5675           XX
25             12        26.3691            X
30             12        30.5125            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 20                                    -6.99917             14.6277           
15 - 25                                   *-14.8008             14.6277           
15 - 30                                   *-18.9442             14.6277           
20 - 25                                    -7.80165             14.6277           
20 - 30                                    -11.945              14.6277           
25 - 30                                    -4.14335             14.6277           
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.4: Effect of temperature on volatile compounds concentration after 

PEF treatment at 15, 20, 25 and 30 kV/cm. 
Volatile compounds loss by T at 15 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
25             12        -13.6592          X 
45             12        5.7925            XX
65             12        11.5683            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
25 - 45                                    -19.4517             21.2267           
25 - 65                                   *-25.2275             21.2267           
45 - 65                                    -5.77583             21.2267           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

Volatile compounds loss by T at 20 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
25             12        -0.378333         X 
45             12        13.4225           XX
65             12        18.5675            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
25 - 45                                    -13.8008             18.3794           
25 - 65                                   *-18.9458             18.3794           
45 - 65                                    -5.145               18.3794           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

Volatile compounds loss by T at 25 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
25             12        4.67667           X 
45             12        17.2022           XX
65             12        26.3691            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
25 - 45                                    -12.5255             15.3591           
25 - 65                                   *-21.6925             15.3591           
45 - 65                                    -9.16698             15.3591           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

Volatile compounds loss by T at 30 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
25             12        8.26667           X 
45             12        20.9108           XX
65             12        30.5125            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
25 - 45                                    -12.6442             14.9421           
25 - 65                                   *-22.2458             14.9421           
45 - 65                                    -9.60167             14.9421           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 



 ANNEXES 

  
201

Table 8.2.5: Effect of pressure level on volatile compounds concentration after 

HHP treatment at 30 and 50ºC. 
Volatile compounds loss by P at 30ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
P              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
500            12        -14.4427          X
450            12        -14.1837          X
550            12        -12.0736          X
600            12        -3.76867          X
650            12        7.47825           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
450 - 500                                  0.259                31.8213           
450 - 550                                  -2.11008             31.8213           
450 - 600                                  -10.415              31.8213           
450 - 650                                  -21.6619             31.8213           
500 - 550                                  -2.36908             31.8213           
500 - 600                                  -10.674              31.8213           
500 - 650                                  -21.9209             31.8213           
550 - 600                                  -8.30492             31.8213           
550 - 650                                  -19.5518             31.8213           
600 - 650                                  -11.2469             31.8213           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

Volatile compounds loss by P at 50ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
P              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
450            12        22.9283           X
500            12        30.3541           X
550            12        32.383            X
600            12        35.9505           X
650            12        42.3475           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
450 - 500                                  -7.42575             22.1508           
450 - 550                                  -9.45467             22.1508           
450 - 600                                  -13.0222             22.1508           
450 - 650                                  -19.4192             22.1508           
500 - 550                                  -2.02892             22.1508           
500 - 600                                  -5.59642             22.1508           
500 - 650                                  -11.9934             22.1508           
550 - 600                                  -3.5675              22.1508           
550 - 650                                  -9.9645              22.1508           
600 - 650                                  -6.397               22.1508           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.6: Effect of temperature on volatile compounds concentration after 

HHP treatment at 450, 500, 550, 600 and 650 MPa. 
Volatile compounds loss by T at 450 MPa

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
30             12        -14.1837          X 
50             12        22.9283            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
30 - 50                                   *-37.112              20.9987           
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Volatile compounds loss by T at 500 MPa

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
30             12        -14.4427          X 
50             12        30.3541            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
30 - 50                                   *-44.7968             19.6123           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

Volatile compounds loss by T at 550 MPa

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
30             12        -12.0736          X 
50             12        32.383             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
30 - 50                                   *-44.4566             21.1014           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

Volatile compounds loss by T at 600 MPa

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
30             12        -3.76867          X 
50             12        35.9505            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
30 - 50                                   *-39.7192             20.8567           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

  

Volatile compounds loss by T at 650 MPa

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
30             12        7.47825           X 
50             12        42.3475            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
30 - 50                                   *-34.8693             18.0579           
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.7: Effect of treatment time on survivors fraction of L. plantarum 

after PEF treatment at 35 and 40 kV/cm and 35ºC. 
 Log (S) by Treatment time at 40 kV/cm and 35ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment time Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
130            3         -2.12333          X  
110            3         -1.80333           X 
80             3         -1.71667           XX
90             3         -1.7               XX
60             3         -1.63667           XX
40             3         -1.53667            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
40 - 60                                    0.1                  0.209094          
40 - 80                                    0.18                 0.209094          
40 - 90                                    0.163333             0.209094          
40 - 110                                  *0.266667             0.209094          
40 - 130                                  *0.586667             0.209094          
60 - 80                                    0.08                 0.209094          
60 - 90                                    0.0633333            0.209094          
60 - 110                                   0.166667             0.209094          
60 - 130                                  *0.486667             0.209094          
80 - 90                                    -0.0166667           0.209094          
80 - 110                                   0.0866667            0.209094          
80 - 130                                  *0.406667             0.209094          
90 - 110                                   0.103333             0.209094          
90 - 130                                  *0.423333             0.209094          
110 - 130                                 *0.32                 0.209094          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 Log (S) by Treatment time at 35 kV/cm and 35ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment time Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
180            3         -1.9              X  
130            3         -1.70667           X 
100            3         -1.67              X 
80             3         -1.61333           XX
60             3         -1.58667           XX
40             3         -1.49333            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
40 - 60                                    0.0933333            0.133595          
40 - 80                                    0.12                 0.133595          
40 - 100                                  *0.176667             0.133595          
40 - 130                                  *0.213333             0.133595          
40 - 180                                  *0.406667             0.133595          
60 - 80                                    0.0266667            0.133595          
60 - 100                                   0.0833333            0.133595          
60 - 130                                   0.12                 0.133595          
60 - 180                                  *0.313333             0.133595          
80 - 100                                   0.0566667            0.133595          
80 - 130                                   0.0933333            0.133595          
80 - 180                                  *0.286667             0.133595          
100 - 130                                  0.0366667            0.133595          
100 - 180                                 *0.23                 0.133595          
130 - 180                                 *0.193333             0.133595          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.8: Effect of electric field strength on survivors fraction of L. 

plantarum after PEF treatment at 40, 60, 80 and 130 μs and 35ºC. 
 Log (S) by  E at 40 micros and 35ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             3         -1.53667          X
35             3         -1.49333          X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
35 - 40                                    0.0433333            0.0692569         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 Log (S) by E at 60 micros and 35ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             3         -1.63667          X
35             3         -1.58667          X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
35 - 40                                    0.05                 0.130883          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 Log (S) by E at 80 micros and 35ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             3         -1.71667          X 
35             3         -1.61333           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
35 - 40                                   *0.103333             0.0471906         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 Log (S) by E at 130 micros and 35ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             3         -2.12333          X 
35             3         -1.70667           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
35 - 40                                   *0.416667             0.147498          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.9: Effect of temperature on survivors fraction of L. plantarum after 

PEF treatment at 35 and 40 kV/cm. 
 Log (S) by T at 40 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
55             6         -2.055            X 
35             6         -1.75333           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
35 - 55                                   *0.301667             0.275271          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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 Log (S) by T at 35 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
55             18        -1.97278          X 
35             18        -1.66167           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
35 - 55                                   *0.311111             0.0820346         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.10: Effect of treatment time on survivors fraction of L. plantarum 

after PEF treatment at 35 and 40 kV/cm and 55ºC 
Log (S) by Treatment time at 40 kV/cm and 55ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment time Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
130            3         -2.45667          X  
110            3         -2.16333           X 
90             3         -2.01333           XX
80             3         -1.97              XX
60             3         -1.89667            X
40             3         -1.83333            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
40 - 60                                    0.0633333            0.20177           
40 - 80                                    0.136667             0.20177           
40 - 90                                    0.18                 0.20177           
40 - 110                                  *0.33                 0.20177           
40 - 130                                  *0.623333             0.20177           
60 - 80                                    0.0733333            0.20177           
60 - 90                                    0.116667             0.20177           
60 - 110                                  *0.266667             0.20177           
60 - 130                                  *0.56                 0.20177           
80 - 90                                    0.0433333            0.20177           
80 - 110                                   0.193333             0.20177           
80 - 130                                  *0.486667             0.20177           
90 - 110                                   0.15                 0.20177           
90 - 130                                  *0.443333             0.20177           
110 - 130                                 *0.293333             0.20177           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 Log (S) by Treatment time at 35 kV/cm and 55ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment time Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
180            3         -2.06667          X 
100            3         -2.06             X 
130            3         -1.99667          XX
80             3         -1.99333          XX
60             3         -1.88667          XX
40             3         -1.83333           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
40 - 60                                    0.0533333            0.180097          
40 - 80                                    0.16                 0.180097          
40 - 100                                  *0.226667             0.180097          
40 - 130                                   0.163333             0.180097          
40 - 180                                  *0.233333             0.180097          
60 - 80                                    0.106667             0.180097          
60 - 100                                   0.173333             0.180097          
60 - 130                                   0.11                 0.180097          
60 - 180                                   0.18                 0.180097          
80 - 100                                   0.0666667            0.180097          
80 - 130                                   0.00333333           0.180097          
80 - 180                                   0.0733333            0.180097          
100 - 130                                  -0.0633333           0.180097          
100 - 180                                  0.00666667           0.180097          
130 - 180                                  0.07                 0.180097          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.11: Effect of pulse width on survivors fraction of L. plantarum after 

PEF treatment at 40 and 35 kV/cm and 35ºC. 
 Log (S) by Pulse width at 40 kV/cm and 35ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Pulse width    Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
2.5            18        -1.75278          X
4              11        -1.69             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
2.5 - 4                                    -0.0627778           0.13804           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 Log (S) by Pulse width at 35 kV/cm and 35ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Pulse width    Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              12        -1.74583          X
2.5            18        -1.66167          X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
2.5 - 4                                    0.0841667            0.129114          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.12: Effect of pulse width on survivors fraction of L. plantarum after 

PEF treatment at 40 and 35 kV/cm and 55ºC. 
 Log (S) by Pulse width at 40 kV/cm and 55ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Pulse width    Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
2.5            18        -2.05556          X
4              12        -1.96             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
2.5 - 4                                    -0.0955556           0.161506          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Log (S) by Pulse width at 35 kV/cm and 55ºC

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Pulse width    Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              12        -2.04667          X
2.5            18        -1.97278          X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
2.5 - 4                                    0.0738889            0.133183          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.13: Effect of electric field strength on D value of Bigelow model for 

L. plantarum. 
 D value by E

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             2         51.165            X   
35             2         68.019             X  
25             2         130.205             X 
15             2         294.74               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 25                                   *164.535              16.171            
15 - 35                                   *226.721              16.171            
15 - 40                                   *243.575              16.171            
25 - 35                                   *62.186               16.171            
25 - 40                                   *79.04                16.171            
35 - 40                                   *16.854               16.171            
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 

Table 8.2.14: Effect of electric field strength on tcwvalue for L. plantarum. 
 tcw value by E

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             2         7.185             X  
35             2         9.45              X  
25             2         43.155             X 
15             2         61.01               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 25                                   *17.855               10.7613           
15 - 35                                   *51.56                10.7613           
15 - 40                                   *53.825               10.7613           
25 - 35                                   *33.705               10.7613           
25 - 40                                   *35.97                10.7613           
35 - 40                                    2.265                10.7613           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.15: Effect of temperature on tcw value for L. plantarum. 

 tcw value by T

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
T              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
55             3         4.11333           X 
35             3         7.33               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
35 - 55                                   *3.21667              0.918097          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.16: Effect of electric field strength on D value of Bigelow model for 

S. typhimurium. 
 D value by E

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             2         149.015           X   
35             2         234.81             X  
25             2         454.25              X 
15             2         1454.65              X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 25                                   *1000.4               65.6374           
15 - 35                                   *1219.84              65.6374           
15 - 40                                   *1305.63              65.6374           
25 - 35                                   *219.44               65.6374           
25 - 40                                   *305.235              65.6374           
35 - 40                                   *85.795               65.6374           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.17: Effect of electric field strength on tc value of Hülsheger model 

for S. typhimurium. 
 tc value by E

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             2         1.365             X  
35             2         4.6               X  
25             1         22.56              X 
15             1         54.87               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 25                                   *32.31                7.34749           
15 - 35                                   *50.27                6.36311           
15 - 40                                   *53.505               6.36311           
25 - 35                                   *17.96                6.36311           
25 - 40                                   *21.195               6.36311           
35 - 40                                    3.235                5.19546           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.18: Effect of electric field strength on tcw value for S. typhimurium. 

 tcw value by E

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             2         24.605            X  
35             2         38.375            X  
25             1         111.111            X 
15             1         484.51              X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 25                                   *373.399              60.1472           
15 - 35                                   *446.135              52.089            
15 - 40                                   *459.905              52.089            
25 - 35                                   *72.736               52.089            
25 - 40                                   *86.506               52.089            
35 - 40                                    13.77                42.5305           
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.19: Effect of type of microorganism on tcw value. 
 tcw value by Microorganism at 15 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Microorganism  Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
E. coli        2         5.1               X  
L. plantarum   2         61.01              X 
S. typhimurium 1         484.51              X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
E. coli - L. plantarum                    *-55.91               17.7562           
E. coli - S. typhimurium                  *-479.41              21.7468           
L. plantarum - S. typhimurium             *-423.5               21.7468           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 tcw value by Microorganism at 25 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Microorganism  Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
E. coli        2         2.83              X  
L. plantarum   2         43.155             X 
S. typhimurium 1         111.11              X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
E. coli - L. plantarum                    *-40.325              11.7816           
E. coli - S. typhimurium                  *-108.28              14.4295           
L. plantarum - S. typhimurium             *-67.955              14.4295           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 tcw value by Microorganism at 35 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Microorganism  Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
E. coli        2         2.19              X 
L. plantarum   2         9.45              X 
S. typhimurium 2         38.375             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
E. coli - L. plantarum                     -7.26                20.7949           
E. coli - S. typhimurium                  *-36.185              20.7949           
L. plantarum - S. typhimurium             *-28.925              20.7949           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 tcw value by Microorganism at 40 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Microorganism  Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
E. coli        2         1.11              X  
L. plantarum   2         7.185              X 
S. typhimurium 2         24.605              X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
E. coli - L. plantarum                    *-6.075               4.42459           
E. coli - S. typhimurium                  *-23.495              4.42459           
L. plantarum - S. typhimurium             *-17.42               4.42459           
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.20: Effect of pH on tcw value at 15 and 40 kV/cm. 
 tcw by pH at 40 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
pH             Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
3.5            2         16.66             X 
4              2         40.03             XX
4.5            2         61.365             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
3.5 - 4                                    -23.37               24.9119           
3.5 - 4.5                                 *-44.705              24.9119           
4 - 4.5                                    -21.335              24.9119           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 tcw by pH at 15 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
pH             Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
3.5            2         249.05            X 
4              2         371.4              X
4.5            2         488.74             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
3.5 - 4                                   *-122.35              120.964           
3.5 - 4.5                                 *-239.69              120.964           
4 - 4.5                                    -117.34              120.964           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.21: Effect of pectin concentration on tcw value at 15 and 40 kV/cm. 

 tcw by pectin concentration at 40 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
% pectina      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
0.1            2         37.37             X
0.6            2         45.5              X
0.3            2         61.365            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0.1 - 0.3                                  -23.995              25.8898         
0.1 - 0.6                                  -8.13                25.8898         
0.3 - 0.6                                  15.865               25.8898         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 tcw by pectin concentration at 15 kV/cm

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
% pectina      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
0.1            2         402.67            X
0.3            2         488.74            X
0.6            2         516.925           X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0.1 - 0.3                                  -86.07               151.009         
0.1 - 0.6                                  -114.255             151.009         
0.3 - 0.6                                  -28.185              151.009         
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.22: Effect of electric field strength on. tcw value at 0.1, 0.3 and 0.6% 
 tcw by E at 0.1%

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             2         37.37             X 
15             2         402.67             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 40                                   *365.3                34.556            
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 tcw by E at 0.3%

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             2         61.365            X 
15             2         488.74             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 40                                   *427.375              52.5437         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 tcw value by E at 0.6%

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
E              Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
40             2         45.5              X 
15             2         516.925            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
15 - 40                                   *471.425              182.85          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.23: pH value after PEF and thermal treatment. 

 pH value by Treatment

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
PEF            3         4.15667           X  
Blank          2         4.305              X 
Thermal        3         4.38                X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
Blank - PEF                               *0.148333             0.0443892         
Blank - Thermal                           *-0.075               0.0443892         
PEF - Thermal                             *-0.223333            0.0397029         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 

 



 ANNEXES 

  
212

Table 8.2.24: pH value during storage of PEF, thermal and untreated sample. 
 pH value by Week PEF sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              3         4.16333           X  
2              3         4.20333            X 
3              3         4.23333            X 
0              3         4.34667             X
1              3         4.35333             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      -0.00666667          0.0310313         
0 - 2                                     *0.143333             0.0310313         
0 - 3                                     *0.113333             0.0310313         
0 - 4                                     *0.183333             0.0310313         
1 - 2                                     *0.15                 0.0310313         
1 - 3                                     *0.12                 0.0310313         
1 - 4                                     *0.19                 0.0310313         
2 - 3                                      -0.03                0.0310313         
2 - 4                                     *0.04                 0.0310313         
3 - 4                                     *0.07                 0.0310313         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 pH value by Week thermal sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
2              3         4.11667           X  
4              3         4.13              X  
3              3         4.13667           X  
1              3         4.24333            X 
0              3         4.28                X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                     *0.0366667            0.0240368         
0 - 2                                     *0.163333             0.0240368         
0 - 3                                     *0.143333             0.0240368         
0 - 4                                     *0.15                 0.0240368         
1 - 2                                     *0.126667             0.0240368         
1 - 3                                     *0.106667             0.0240368         
1 - 4                                     *0.113333             0.0240368         
2 - 3                                      -0.02                0.0240368         
2 - 4                                      -0.0133333           0.0240368         
3 - 4                                      0.00666667           0.0240368         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 pH value by Week Untreated sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              3         4.01667           X  
3              3         4.15               X 
2              3         4.16               X 
1              3         4.18333            X 
0              2         4.305               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                     *0.121667             0.0477713         
0 - 2                                     *0.145                0.0477713         
0 - 3                                     *0.155                0.0477713         
0 - 4                                     *0.288333             0.0477713         
1 - 2                                      0.0233333            0.0427279         
1 - 3                                      0.0333333            0.0427279         
1 - 4                                     *0.166667             0.0427279         
2 - 3                                      0.01                 0.0427279         
2 - 4                                     *0.143333             0.0427279         
3 - 4                                     *0.133333             0.0427279         
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.25: Brix degrees after PEF and thermal treatment. 
 Brix degrees by Treatment

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
PEF            3         14.6667           X 
Blank          3         15.0667            X
Thermal        3         15.1               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
Blank - PEF                               *0.4                  0.186731          
Blank - Thermal                            -0.0333333           0.186731          
PEF - Thermal                             *-0.433333            0.186731          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.26: Brix degrees during the storage of PEF, thermal and untreated 

sample. 

 Brix degrees by Week PEF sample
--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
3              3         14.3667           X
2              3         14.6              X
1              3         14.6              X
4              3         14.6              X
0              2         14.65             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      0.05                 0.34164           
0 - 2                                      0.05                 0.34164           
0 - 3                                      0.283333             0.34164           
0 - 4                                      0.05                 0.34164           
1 - 2                                      0.0                  0.305572          
1 - 3                                      0.233333             0.305572          
1 - 4                                      0.0                  0.305572          
2 - 3                                      0.233333             0.305572          
2 - 4                                      0.0                  0.305572          
3 - 4                                      -0.233333            0.305572          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 Brix degrees by Week Thermal sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              3         13.9              X  
3              3         14.8               X 
2              3         14.9333            XX
1              3         14.9333            XX
0              3         15.0667             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      0.133333             0.208164          
0 - 2                                      0.133333             0.208164          
0 - 3                                     *0.266667             0.208164          
0 - 4                                     *1.16667              0.208164          
1 - 2                                      0.0                  0.208164          
1 - 3                                      0.133333             0.208164          
1 - 4                                     *1.03333              0.208164          
2 - 3                                      0.133333             0.208164          
2 - 4                                     *1.03333              0.208164          
3 - 4                                     *0.9                  0.208164          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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 Brix degrees by Week Untreated sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              3         13.9              X  
3              3         14.8               X 
2              3         14.9333            XX
1              3         14.9333            XX
0              3         15.0667             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      0.133333             0.208164          
0 - 2                                      0.133333             0.208164          
0 - 3                                     *0.266667             0.208164          
0 - 4                                     *1.16667              0.208164          
1 - 2                                      0.0                  0.208164          
1 - 3                                      0.133333             0.208164          
1 - 4                                     *1.03333              0.208164          
2 - 3                                      0.133333             0.208164          
2 - 4                                     *1.03333              0.208164          
3 - 4                                     *0.9                  0.208164          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.27: Microbial inactivation after PEF and thermal treatment. 

 Log S by Treatment for microbial counts

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
PEF            3         -4.59333          X
Thermal        4         -4.45414          X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
PEF - Thermal                              -0.139197            0.154954          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.28: PME activity after PEF and thermal treatment. 
 PME activity by Treatment

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
PEF            3         0.0356667         X 
Thermal        3         0.0393333         X 
Blank          4         0.2615             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
Blank - PEF                               *0.225833             0.0477405         
Blank - Thermal                           *0.222167             0.0477405         
PEF - Thermal                              -0.00366667          0.0510367         
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.29: PME activity during the storage of PEF, thermal and untreated 

sample. 

  PME activity by Week PEF sample-----------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
-----------------------------------------------------------------------------
3              3         0.027             X  
4              4         0.02825           X  
0              3         0.0356667         X  
1              2         0.0595             X 
2              2         0.0895              X
-----------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
-----------------------------------------------------------------------------
0 - 1                                     *-0.0238333           0.0237228    
0 - 2                                     *-0.0538333           0.0237228    
0 - 3                                      0.00866667           0.0212183    
0 - 4                                      0.00741667           0.0198479    
1 - 2                                     *-0.03                0.025987     
1 - 3                                     *0.0325               0.0237228    
1 - 4                                     *0.03125              0.0225054    
2 - 3                                     *0.0625               0.0237228    
2 - 4                                     *0.06125              0.0225054    
3 - 4                                      -0.00125             0.0198479    
-----------------------------------------------------------------------------
* indica una diferencia significativa.

 PME activity by Week Thermal sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              3         0.026             X 
0              3         0.0393333         XX
3              3         0.0476667         XX
1              4         0.05275            X
2              4         0.06               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      -0.0134167           0.0250277         
0 - 2                                      -0.0206667           0.0250277         
0 - 3                                      -0.00833333          0.0267558         
0 - 4                                      0.0133333            0.0267558         
1 - 2                                      -0.00725             0.0231712         
1 - 3                                      0.00508333           0.0250277         
1 - 4                                     *0.02675              0.0250277         
2 - 3                                      0.0123333            0.0250277         
2 - 4                                     *0.034                0.0250277         
3 - 4                                      0.0216667            0.0267558         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 PME activity by Week Untreated sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
3              3         0.179             X  
4              3         0.200667          XX 
2              4         0.22825            XX
1              4         0.25175             X
0              4         0.2615              X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      0.00975              0.0432263         
0 - 2                                      0.03325              0.0432263         
0 - 3                                     *0.0825               0.0466898         
0 - 4                                     *0.0608333            0.0466898         
1 - 2                                      0.0235               0.0432263         
1 - 3                                     *0.07275              0.0466898         
1 - 4                                     *0.0510833            0.0466898         
2 - 3                                     *0.04925              0.0466898         
2 - 4                                      0.0275833            0.0466898         
3 - 4                                      -0.0216667           0.0499135         
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.30: L* value after PEF and thermal treatment. 
 L value by Treatment

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
Thermal        3         55.6833           X  
PEF            3         55.9233            X 
Blank          3         56.3033             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
Blank - PEF                               *0.38                 0.0891627         
Blank - Thermal                           *0.62                 0.0891627         
PEF - Thermal                             *0.24                 0.0891627         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.31: L* value during the storage of PEF, thermal and untreated 

sample. 
 L value by Week PEF sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              3         55.4133           X    
0              3         55.61              X   
2              3         56.2067             X  
1              3         57.2667              X 
3              3         57.54                 X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                     *-1.65667             0.176224        
0 - 2                                     *-0.596667            0.176224        
0 - 3                                     *-1.93                0.176224        
0 - 4                                     *0.196667             0.176224        
1 - 2                                     *1.06                 0.176224        
1 - 3                                     *-0.273333            0.176224        
1 - 4                                     *1.85333              0.176224        
2 - 3                                     *-1.33333             0.176224        
2 - 4                                     *0.793333             0.176224        
3 - 4                                     *2.12667              0.176224        
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 L value by Week Thermal sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
4              3         56.5667           X    
2              3         57.16              X   
0              3         57.7                X  
3              3         58.0867              X 
1              3         58.6067               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                     *-0.906667            0.272476          
0 - 2                                     *0.54                 0.272476          
0 - 3                                     *-0.386667            0.272476          
0 - 4                                     *1.13333              0.272476          
1 - 2                                     *1.44667              0.272476          
1 - 3                                     *0.52                 0.272476          
1 - 4                                     *2.04                 0.272476          
2 - 3                                     *-0.926667            0.272476          
2 - 4                                     *0.593333             0.272476          
3 - 4                                     *1.52                 0.272476          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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 L value by Week Untreated sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
2              3         56.1167           X   
0              3         56.3033           XX  
4              3         56.4267            X  
1              3         56.7833             X 
3              3         58.08                X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                     *-0.48                0.199061          
0 - 2                                      0.186667             0.199061          
0 - 3                                     *-1.77667             0.199061          
0 - 4                                      -0.123333            0.199061          
1 - 2                                     *0.666667             0.199061          
1 - 3                                     *-1.29667             0.199061          
1 - 4                                     *0.356667             0.199061          
2 - 3                                     *-1.96333             0.199061          
2 - 4                                     *-0.31                0.199061          
3 - 4                                     *1.65333              0.199061          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.32: a* value after PEF and thermal treatment. 

 a value by Treatment

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
Thermal        3         -0.37             X  
PEF            3         0.806667           X 
Blank          3         1.85                X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
Blank - PEF                               *1.04333              0.10952           
Blank - Thermal                           *2.22                 0.10952           
PEF - Thermal                             *1.17667              0.10952           
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.33: a* value during the storage of PEF, thermal and untreated 

sample. 

 a value by Week PEF sample
--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
2              3         0.43              X  
1              3         0.47              XX 
0              3         0.586667           XX
3              3         0.62                X
4              3         0.696667            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      0.116667             0.127001          
0 - 2                                     *0.156667             0.127001          
0 - 3                                      -0.0333333           0.127001          
0 - 4                                      -0.11                0.127001          
1 - 2                                      0.04                 0.127001          
1 - 3                                     *-0.15                0.127001          
1 - 4                                     *-0.226667            0.127001          
2 - 3                                     *-0.19                0.127001          
2 - 4                                     *-0.266667            0.127001          
3 - 4                                      -0.0766667           0.127001          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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  a value by Week Thermal sample
--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
2              3         -0.333333         X
4              3         -0.33             X
3              3         -0.316667         X
1              3         -0.306667         X
0              3         -0.24             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      0.0666667            0.0991061         
0 - 2                                      0.0933333            0.0991061         
0 - 3                                      0.0766667            0.0991061         
0 - 4                                      0.09                 0.0991061         
1 - 2                                      0.0266667            0.0991061         
1 - 3                                      0.01                 0.0991061         
1 - 4                                      0.0233333            0.0991061         
2 - 3                                      -0.0166667           0.0991061         
2 - 4                                      -0.00333333          0.0991061         
3 - 4                                      0.0133333            0.0991061         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 a value by Week Untreated sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
1              3         1.74333           X  
3              3         1.77667           XX 
2              3         1.81              XX 
0              3         1.85               X 
4              3         2.04333             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                     *0.106667             0.0760109         
0 - 2                                      0.04                 0.0760109         
0 - 3                                      0.0733333            0.0760109         
0 - 4                                     *-0.193333            0.0760109         
1 - 2                                      -0.0666667           0.0760109         
1 - 3                                      -0.0333333           0.0760109         
1 - 4                                     *-0.3                 0.0760109         
2 - 3                                      0.0333333            0.0760109         
2 - 4                                     *-0.233333            0.0760109         
3 - 4                                     *-0.266667            0.0760109         
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
Table 8.2.34: b* value after PEF and thermal treatment. 

 b value by Treatment

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
Thermal        3         23.97             X  
PEF            3         27.8633            X 
Blank          3         38.8233             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
Blank - PEF                               *10.96                0.154885          
Blank - Thermal                           *14.8533              0.154885          
PEF - Thermal                             *3.89333              0.154885          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.35: b* value during the storage of PEF, thermal and untreated 

sample. 
 b value by Week PEF sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
3              3         25.8067           X    
1              3         26.4267            X   
4              3         26.8633             X  
2              3         27.4767              X 
0              3         27.8633               X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                     *1.43667              0.246206          
0 - 2                                     *0.386667             0.246206          
0 - 3                                     *2.05667              0.246206          
0 - 4                                     *1.0                  0.246206          
1 - 2                                     *-1.05                0.246206          
1 - 3                                     *0.62                 0.246206          
1 - 4                                     *-0.436667            0.246206          
2 - 3                                     *1.67                 0.246206          
2 - 4                                     *0.613333             0.246206          
3 - 4                                     *-1.05667             0.246206          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 b value by Week Thermal sample

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
3              3         23.2367           X   
0              3         23.96              X  
1              3         24.2               XX 
2              3         24.51               X 
4              3         26.4867              X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                      -0.24                0.332991          
0 - 2                                     *-0.55                0.332991          
0 - 3                                     *0.723333             0.332991          
0 - 4                                     *-2.52667             0.332991          
1 - 2                                      -0.31                0.332991          
1 - 3                                     *0.963333             0.332991          
1 - 4                                     *-2.28667             0.332991          
2 - 3                                     *1.27333              0.332991          
2 - 4                                     *-1.97667             0.332991          
3 - 4                                     *-3.25                0.332991          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
  b value by Week Untreated sample
--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Week           Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
3              3         35.5667           X   
4              3         37.8033            X  
1              3         37.9067            X  
0              3         38.8233             X 
2              3         39.28                X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
0 - 1                                     *0.916667             0.410975          
0 - 2                                     *-0.456667            0.410975          
0 - 3                                     *3.25667              0.410975          
0 - 4                                     *1.02                 0.410975          
1 - 2                                     *-1.37333             0.410975          
1 - 3                                     *2.34                 0.410975          
1 - 4                                      0.103333             0.410975          
2 - 3                                     *3.71333              0.410975          
2 - 4                                     *1.47667              0.410975          
3 - 4                                     *-2.23667             0.410975          
--------------------------------------------------------------------------------
* indica una diferencia significativa.
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Table 8.2.36: Nonanal, caryophyllene, valencene and dodecanal content loss 

after PEF, and thermal treatment. 
 Nonanal content loss by Treatment

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
PEF            3         18.5367           X
Thermal        3         31.106            X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
PEF - Thermal                              -12.5693             15.415            
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 Caryophillene content loss by Treatment

-------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
-------------------------------------------------------------------------------
PEF            3         35.927            X
Thermal        3         39.522            X
-------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
-------------------------------------------------------------------------------
PEF - Thermal                              -3.595               3.7893         
-------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 Dodecanal content loss by Treatment

-------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
-------------------------------------------------------------------------------
PEF            3         14.423            X
Thermal        3         16.6443           X
-------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
-------------------------------------------------------------------------------
PEF - Thermal                              -2.22133             13.0952        
-------------------------------------------------------------------------------
* indica una diferencia significativa.

 
 Valencene content loss by Treatment

--------------------------------------------------------------------------------
Método: 95.0 porcentaje HSD de Tukey
Treatment      Frec.     Media             Grupos homogéneos
--------------------------------------------------------------------------------
PEF            3         21.764            X
Thermal        3         27.74             X
--------------------------------------------------------------------------------
Contraste                                  Diferencias          +/-  Límites
--------------------------------------------------------------------------------
PEF - Thermal                              -5.976               6.60165          
--------------------------------------------------------------------------------
* indica una diferencia significativa.

 


