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We were taught to think big, but the bigger thing happened when we took care of the smaller
details.
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Abstract

The complex environmental situation and the legal requirements for decreasing pollutant
emissions and fuel consumption have increased the interest in reducing the empty weight
and drag of vehicles and developing renewable energy sources. Due to the former, the
aviation industry has proposed new designs integrating high strength-to-weight ratios, such
as composite materials and higher aspect ratio wings. These increases in aspect ratio have
also been applied to wind energy generation. The rotors of wind turbines are increasing
their diameters in recent years: a clear example is the massive off-shore facilities. Using
larger and lightweight structures increases the effects of the aerodynamic loads on structural
deformation. Structural dynamics are strongly connected to the air-structure interaction. This
phenomenon, called aeroelasticity, combines the effect of the external aerodynamic loads,
the inertial forces, and the internal elastic stress of the structure. The complex combination
of all the previous effects may damp the vibrations of the structure, or on the contrary, they
could increase their amplitude, resulting in an unstable phenomenon.

The simulation of the aeroelastic phenomena can be performed using different approaches.
The well-known finite element analysis is the most extended methodology for solving solid
elastic equations. Regarding fluid conservation equations, computational fluid dynamics is
the principal tool for resolving general aerodynamic problems. The aeroelastic simulations
can be calculated by combining the previous algorithms. Nevertheless, the computational
cost of these methodologies is excessive for a general engineering case. Therefore, new
methodologies are required.

This work focuses on developing aeroelastic reduced-order models that compute the cou-
pled phenomena without substantial accuracy losses. Initially, the complete three-dimensional
structure is reduced to an equivalent section that reproduces the structure. The equivalent
structural section is coupled with two aerodynamic models. The first one uses the forces
calculated with aeroelastic computational fluid dynamics. Then, a surrogate model based
on artificial neural networks is combined with the equivalent section. Both models show
accurate agreement compared to the complete three-dimensional simulations in predicting
unstable velocity. However, the three-dimensional aerodynamic effects, load distribution,
orthotropic materials, and structural couplings cannot be considered.
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In order to solve the previous limitations, a reduced-order model based on a beam element
solver is proposed. The algorithm is designed to consider a general orthotropic material and
different typologies of aeroelastic problems. Initially, the software is proven to simulate
accurately a squared cross-section composite material beam. The results are validated with
the complete three-dimensional simulations, demonstrating the capabilities of the tool for
predicting the instabilities and the effects of the fiber orientations. Then, the algorithm is
used for simulating a wind turbine blade, and the algorithm results are used to improve the
operation range of the blades without weight penalties. Finally, a resistant membrane wing is
simulated, obtaining high accuracy in the prediction of the flutter velocity compared with the
complete coupled simulation. In addition, the only limitation of the model is the prediction
of the membrane distortion.

The work presents a set of reduced-order models that allow for reducing the computational
cost of the aeroelastic simulations by orders of magnitude. In addition, a decision pattern is
provided for selecting the appropriate algorithm for the interest problem.



Resumen

El interés en reducir el peso y resistencia aerodinámica de vehículos y en desarrollar fuentes
de energía renovables se ha incrementado debido a la compleja situación ambiental y los
requerimientos legales para reducir las emisiones de contaminantes y el consumo de com-
bustibles. La industria aeronáutica ha propuesto nuevos diseños que integren conceptos
como alas de alto alargamiento y materiales con elevada resistencia específica, como los
materiales compuestos. Por su parte, conceptos similares se emplean en la generación de
energía eólica. El radio de las palas de las turbinas eólicas se incrementa paulatinamente,
siendo un ejemplo muy claro las grandes instalaciones off-shore. El uso de estructuras más
alargadas y ligeras provoca mayor deformación debida a las cargas aerodinámicas. Este
fenómeno se conoce como aeroelasticidad y combina los efectos de las cargas aerodinámicas,
los efectos inerciales y las tensiones internas de la estructura. La combinación de las cargas
anteriores provoca fenómenos de amortiguamiento de las vibraciones, o por el contrario,
inestabilidades aeroelásticas.

Diferentes metodologías pueden ser empleadas para simular los fenómenos aeroelásticos.
La metodología más extendida para la simulación de las ecuaciones elásticas del sólido es la
conocida como análisis de elementos finitos. Respecto a las ecuaciones de conservación del
fluido, la mecánica de fluidos computacional es la herramienta de resolución para un problema
arbitrario. La combinación de las metodologías anteriores puede ser empleada para el cálculo
de fenómenos aeroelásticos. Sin embargo, el coste computacional de estas simulaciones es
inasumible en la mayoría de casos de aplicación. Se requiere una metodología nueva capaz
de reducir el coste de cálculo.

Este trabajo se centra en el desarrollo de modelos de orden reducido que permitan re-
solver el problema acoplado sin pérdidas sustanciales de precisión. En primer lugar, la
estructura tridimensional se reduce a una sección equivalente que reproduzca la física del
sólido original. La sección equivalente se acopla con dos modelos aerodinámicos. El primero
emplea las fuerzas aerodinámicas obtenidas mediante simulaciones de mecánica de fluidos
computacional. Posteriormente se utiliza un modelo reducido basado en redes neuronales.
Ambos modelos presentan elevada precisión respecto a las simulaciones tridimensionales.
Sin embargo, algunos efectos como los efectos aerodinámicos tridimensionales, las distribu-
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ciones de carga aerodinámica, la presencia de materiales ortotrópicos y los acoplamientos
estructurales no pueden ser simulados.

Con el objetivo de resolver los limitantes del modelo anterior, se propone un segundo
modelo de orden reducido. En este caso se trata de un algoritmo basado en elementos de
viga. El algoritmo se diseña para ser capaz de incluir el cálculo de materiales ortotrópicos
y diferentes tipos de problemas aeroelásticos. Inicialmente, se emplea el software para
determinar su precisión en el cálculo de una viga de material compuesto y sección rectangular.
Estos resultados se validan con las simulaciones tridimensionales. De este modo se demuestra
la capacidad de la herramienta computacional para predecir las inestabilidades y los efectos
de acoplamiento estructural provocados por la orientación de las fibras. Posteriormente, el
algoritmo se emplea en la simulación de turbinas eólicas, mejorando los rangos de operación
de las palas sin que ello suponga una penalización desde el punto de vista del peso de la
misma. Finalmente, un ala basada en una estructura de membrana resistente es simulada. El
cálculo obtiene una gran precisión en la predicción de la velocidad de flameo respecto a la
simulación acoplada, siendo la única limitación del modelo la predicción de la distorsión de
la membrana.

El trabajo presente un conjunto de modelos de orden reducido que permiten disminuir el
coste computacional de las simulaciones aeroelásticas en órdenes de magnitud. También, se
proporcionan directrices para la selección del modelo reducido apropiado para los casos de
interés.



Resum

L’interès a reduir el pes i la resistència aerodinàmica dels vehicles i a desenvolupar fonts
d’energia renovables s’ha incrementat a causa de la complexa situació ambiental i els
requeriments legals per a reduir les emissions de contaminants i el consum de combustibles.
La indústria aeronàutica ha proposat nous dissenys que integren conceptes com ales d’alt
allargament i materials amb elevada resistència específica, com ara els materials compostos.
Per la seua banda, conceptes similars es fan servir en la generació d’energia eòlica. El radi
de les pales de les turbines eòliques s’incrementa progresivament, sent un exemple molt
clar les grans instal·lacions off-shore. L’ús d’estructures més allargades i lleugeres provoca
més deformació deguda a les càrregues aerodinàmiques. Aquest fenomen es coneix com a
aeroelasticitat i combina els efectes de les càrregues aerodinàmiques, els efectes inercials
i les tensions internes de l’estructura. La combinació de les càrregues anteriors provoca
fenòmens d’esmorteïment de les vibracions, o per contra, inestabilitats aeroelàstiques.

Diferents metodologies poden ser emprades per simular els fenòmens aeroelàstics. La
metodologia més estesa per a la simulació de les equacions elàstiques del sòlid és la coneguda
com a anàlisi d’elements finits. Pel que fa a les equacions de conservació del fluid, la mecànica
de fluids computacional és l’eina de resolució per a un problema arbitrari. La combinació
de les metodologies anteriors pot ser emprada per al càlcul de fenòmens aeroelàstics. Tot i
això, el cost computacional d’aquestes simulacions és inassumible en la majoria de casos
d’aplicació. Cal una metodologia nova capaç de reduir el cost de càlcul.

Aquest treball se centra en el desenvolupament de models d’ordre reduït que perme-
ten resoldre el problema acoblat sense pèrdues substancials de precisió. En primer lloc,
l’estructura tridimensional es reduix a una secció equivalent que reproduixca la física del
sòlid original. La secció equivalent s’acobla amb dos models aerodinàmics. El primer
empra les forces aerodinàmiques obtingudes mitjançant simulacions de mecànica de fluids
computacional. Posteriorment es fa servir un model reduït basat en xarxes neuronals. Tots
dos models presenten elevada precisió respecte a les simulacions tridimensionals. No obstant
això, alguns efectes com ara els efectes aerodinàmics tridimensionals, les distribucions de
càrrega aerodinàmica, la presència de materials ortotròpics i els acoblaments estructurals no
poden ser simulats.
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Amb l’objectiu de resoldre els limitants del model anterior, es proposa un segon model
dordre reduït. En aquest cas és un algorisme basat en elements de biga. L’algorisme es
dissenya per ser capaç d’incloure el càlcul de materials ortotròpics i diferents tipus de
problemes aeroelàstics. Inicialment, s’empra el programari per determinar-ne la precisió en
el càlcul d’una biga de material compost i secció rectangular. Aquests resultats es validen
amb les simulacions tridimensionals. D’aquesta manera, es demostra la capacitat de l’eina
computacional per predir les inestabilitats i els efectes d’acoblament estructural provocats
per l’orientació de les fibres. Posteriorment, l’algorisme s’empra en la simulació de turbines
eòliques, millorant els rangs d’operació de les pales sense que això suposi una penalització
des del punt de vista del pes. Finalment, una ala basada en una estructura de membrana
resistent és simulada. El càlcul obté una gran precisió en la predicció de la velocitat de
flameig respecte a la simulació acoblada, i l’única limitació del model és la predicció de la
distorsió de la membrana.

El treball presenta un conjunt de models reduïts que permeten disminuir el cost com-
putacional de les simulacions aeroelàstiques en ordres de magnitud. També es proporcionen
directrius per a la selecció del model reduït adequat per als casos d’interès.



List of publications

The following papers form the basis of this thesis:

• Gil, A. and Tiseira, A. and Quintero, P. and Cremades, A. Prediction of the non-linear
aeroelastic behavior of a cantilever flat plate and equivalent 2D model, Aerospace
Science and Technology, 113: 106685, 2021 [1].

• Torregrosa, A.J. and García-Cuevas, L.M. and Quintero, P. and Cremades, A. On the
application of artificial neural network for the development of a nonlinear aeroelastic
model, Aerospace Science and Technology, 115: 106845, 2021 [2].

• Torregrosa, A.J. and Gil, A. and Quintero, P. and Cremades, A. A reduced order model
based on artificial neural networks for nonlinear aeroelastic phenomena and application
to composite material beams, Composite Structures, 295: 115845, 2022 [3].

• Torregrosa, A.J. and Gil, A. and Quintero, P. and Cremades, A. On the effects of
orthotropic materials in flutter protection of wind turbine flexible blades, Journal of
Wind Engineering and Industrial Aerodynamics, 227: 105055, 2022 [4].

• Torregrosa, A.J. and Gil, A. and Quintero, P. and Cremades, A. Multifi

delity approach to the numerical aeroelastic simulation of flexible membrane wings,
preprint submitted to Aerospace Science and Technology [5].

Division of work between authors

The publications have been done in collaboration with other researchers, being the author sig-
natures of articles [1–5] in order of seniority. The respondent performed all the calculations,
developed the models and post-process the results presented in this document.

Side project publications

The following is a list of side project publications in which the author of this thesis has been
involved during the researches leading to the present work. Although not directly present
in this document, they have provided a deeper insight in artificial intelligence, deep neural
networks and fluid mechanics.



xiv References

• Cremades, Andres and Hoyas, Sergio and Quintero, Pedro and Lellep, Martin and
Linkmann, Moritz and Vinuesa, Ricardo. Explaining wall-bounded turbulence through
deep learning, arXiv preprint arXiv:2302.01250, 2023 [6].

Funding

This thesis have been funded by Spanish Ministry of Science, Innovation and University
through the University Faculty Training (FPU) program with reference FPU19/02201.

Code repository

Link to the code repository. Contact: a.cremades.phd@gmail.com

References
[1] A. Gil, A. Tiseira, P. Quintero, and A. Cremades. Prediction of the non-linear aeroelastic behavior of a

cantilever flat plate and equivalent 2d model. Aerospace Science and Technology, 113:106685, 2021.

[2] AJ Torregrosa, LM García-Cuevas, P Quintero, and A Cremades. On the application of artificial neural
network for the development of a nonlinear aeroelastic model. Aerospace Science and Technology, 115:
106845, 2021.

[3] AJ Torregrosa, A Gil, P Quintero, and A Cremades. A reduced order model based on artificial neural
networks for nonlinear aeroelastic phenomena and application to composite material beams. Composite
Structures, 295:115845, 2022.

[4] AJ Torregrosa, A Gil, P Quintero, and A Cremades. On the effects of orthotropic materials in flutter
protection of wind turbine flexible blades. Journal of Wind Engineering and Industrial Aerodynamics, 227:
105055, 2022.



References xv

[5] AJ Torregrosa, A Gil, P Quintero, and A Cremades. Multi
delity approach to the numerical aeroelastic simulation of flexible membrane wings. preprint submited to
Aerospace Science and Technology, 2023.

[6] Andres Cremades, Sergio Hoyas, Pedro Quintero, Martin Lellep, Moritz Linkmann, and Ricardo Vinuesa.
Explaining wall-bounded turbulence through deep learning. arXiv preprint arXiv:2302.01250, 2023.





Table of contents

References xiv

List of figures xix

List of tables xxv

Nomenclature xxvii

1 Introduction 1
1.1 Importance of aeroelasticity for an efficient world . . . . . . . . . . . . . . 1
1.2 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

References 7

2 Fundamentals of fluid-structure interaction 11
2.1 Introduction to the fluid-structure interaction . . . . . . . . . . . . . . . . . 11
2.2 Fundamentals of elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Fundamentals of fluid mechanics . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Introduction to the aeroelastic phenomena: instabilities . . . . . . . . . . . 16

2.4.1 Static instability: divergence . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Linear dynamic instability: flutter . . . . . . . . . . . . . . . . . . 20
2.4.3 Nonlinear dynamic instability: stall flutter . . . . . . . . . . . . . . 22

References 23

3 Computational simulation of aeroelastic phenomena 27
3.1 Introduction to the computational simulation . . . . . . . . . . . . . . . . . 27
3.2 Three-dimensional simulation of aeroelastic phenomena . . . . . . . . . . 30

3.2.1 Computational fluid dynamics: CFD . . . . . . . . . . . . . . . . . 30



xviii Table of contents

3.2.2 Finite elements analisys: FEA . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Fluid structure interaction: FSI . . . . . . . . . . . . . . . . . . . . 43

3.3 Reduced order models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Aerodynamic models . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Artificial Neural Networks for nonlinear flow predictions . . . . . . 55
3.3.3 Structural models . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.4 Reduced order model for generic aeroelastic phenomena . . . . . . 78

References 105

4 Results 111
4.1 Introduction to the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Dimensional reduction of a clamped squared-section beam to a mass-spring

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.2 Bi-dimensional simulated aerodynamics . . . . . . . . . . . . . . . 114
4.2.3 Bi-dimensional ANN surrogate aerodynamics . . . . . . . . . . . . 131

4.3 Application of beam theory to elastic structures . . . . . . . . . . . . . . . 146
4.3.1 Validation of the beam element solver . . . . . . . . . . . . . . . . 146
4.3.2 Orthotropic 1D squared cross-section beam clamped by one edge. . 148
4.3.3 Orthotropic wind turbine blade. . . . . . . . . . . . . . . . . . . . 160
4.3.4 Flexible membrane semi-monocoque wing. . . . . . . . . . . . . . 174

References 190

5 Conclusions and future work 195
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

References 199

References 201



List of figures

1.1 Weight reduction of the aircraft frame and schematic representation of the
H3.X concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Woldwide energy consumption by source. . . . . . . . . . . . . . . . . . . 3
1.3 Evolution of the rotor diameter with the generated power. . . . . . . . . . . 3
1.4 Aeroelastic structural coupling phenomena. . . . . . . . . . . . . . . . . . 4

2.1 Classification of fluid structure interaction phenomena. . . . . . . . . . . . 12
2.2 Collar’s diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Typical section of the static aeroelasticity. . . . . . . . . . . . . . . . . . . 19
2.4 Typical section for the dynamic aeroelasticity. . . . . . . . . . . . . . . . . 20
2.5 Flutter curves for a simple steady aerodynamics problem. . . . . . . . . . . 22

3.1 Algorithm of the segregated solvers. . . . . . . . . . . . . . . . . . . . . . 33
3.2 Refinement example based on bodies of influence of the CFD mesh. . . . . 36
3.3 Visualization of the generic hexahedral element. . . . . . . . . . . . . . . . 39
3.4 Transformation of the hexahedral element from the element reference frame

to the global reference frame. . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Examples of multielement FEM meshes. . . . . . . . . . . . . . . . . . . . 43
3.6 One-way workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Two-way workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Visualization of the vorticity on a wing. . . . . . . . . . . . . . . . . . . . 47
3.9 Horseshoe distribution of the finite wing. . . . . . . . . . . . . . . . . . . . 47
3.10 Workflow of the nonlinear LLT. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.11 Visualization of the vorticity of the DA4022 propeller. . . . . . . . . . . . . 50
3.12 Schematic section of the blade. . . . . . . . . . . . . . . . . . . . . . . . . 51
3.13 Visualization of the velocity field evolution of a pitching plunging airfoil. . 53
3.14 Generic typical ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.15 Artificial feed forward network. . . . . . . . . . . . . . . . . . . . . . . . 56



xx List of figures

3.16 Activation functions of the neural networks. . . . . . . . . . . . . . . . . . 57
3.17 Recurrent neural cell generic structure. . . . . . . . . . . . . . . . . . . . . 59
3.18 LSTM cell generic structure. . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.19 Schematic architecture of the aerodynamic ANN. . . . . . . . . . . . . . . 61
3.20 Modal shape functions of the beam. . . . . . . . . . . . . . . . . . . . . . 62
3.21 Aerodynamic influence matrices. . . . . . . . . . . . . . . . . . . . . . . . 65
3.22 Displacements and rotations on a generic beam element. . . . . . . . . . . 67
3.23 Visualization of the cross-section coordinates. . . . . . . . . . . . . . . . . 68
3.24 Angular deformation diagrams. . . . . . . . . . . . . . . . . . . . . . . . . 69
3.25 Main algorithm of the solver. . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.26 Main file information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.27 Mesh file information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.28 Cross-section file information. . . . . . . . . . . . . . . . . . . . . . . . . 81
3.29 Material file information. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.30 Additional material file information. . . . . . . . . . . . . . . . . . . . . . 83
3.31 Geometrical parameters of a single element. . . . . . . . . . . . . . . . . . 84
3.32 Diagram of a multi-cell cross-section. . . . . . . . . . . . . . . . . . . . . 87
3.33 Algorithm for calculating the open section warping function. . . . . . . . . 87
3.34 Warping function for open cross-section beams. . . . . . . . . . . . . . . . 88
3.35 Algorithm for calculating the closed section warping function. . . . . . . . 89
3.36 Warping function for closed cross-section beams. . . . . . . . . . . . . . . 89
3.37 Beam element diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.38 Algorithm for the calculation of the aerodynamic loads. . . . . . . . . . . . 97
3.39 Algorithm for calculating the lifting line theory. . . . . . . . . . . . . . . . 98
3.40 Algorithm for calculating the blade element momentum theory. . . . . . . . 99
3.41 Algorithm of the Theodorsen transient aerodynamic forces. . . . . . . . . . 99
3.42 Algorithm of the surrogated model based on artificial neural networks for

calculating transient aerodynamic forces. . . . . . . . . . . . . . . . . . . . 100
3.43 Algorithm of the steady aeroelastic solver. . . . . . . . . . . . . . . . . . . 102
3.44 Algorithm of the transient solver. . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Sketch of the flat plate structure and computational domain. . . . . . . . . . 113
4.2 Block diagram of the procedure followed during the research . . . . . . . . 114
4.3 Flat plate beam mesh of the 3D simulation. . . . . . . . . . . . . . . . . . 116
4.4 CFL distribution of the three-dimensional case. . . . . . . . . . . . . . . . 116
4.5 Modal forms of the flat plate structure. . . . . . . . . . . . . . . . . . . . . 117
4.6 Tranformation of the dimensional reduction. . . . . . . . . . . . . . . . . . 119



List of figures xxi

4.7 Mesh of the bi-dimensional simulation. . . . . . . . . . . . . . . . . . . . 119
4.8 Computation of aerodynamic lift and moment coefficient for different meshes.120
4.9 Velocity contour of the 2D flat plate for different angles of attack. . . . . . 121
4.10 Wall distance and pressure on the bi-dimensional cross-section. . . . . . . . 121
4.11 CFL distribution of the bi-dimensional case . . . . . . . . . . . . . . . . . 122
4.12 Distribution of aerodynamic loads along the span of the structures. . . . . . 123
4.13 Pressure coefficient and shear structures on the beam. . . . . . . . . . . . . 124
4.14 Three-dimensional effects on the beam aerodynamics. . . . . . . . . . . . . 124
4.15 Lift coefficient comparison for the flat plate. . . . . . . . . . . . . . . . . . 125
4.16 Moment coefficient comparison for the flat plate. . . . . . . . . . . . . . . 126
4.17 Modal contribution in the deformation shapes. . . . . . . . . . . . . . . . . 127
4.18 Mean deformation of the structure and temporal evolution of the main opera-

tion points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.19 Aerodynamic hysteresis loop of the aeroelastic 2D simulation. . . . . . . . 129
4.20 Scheme of the workflow of the aeroelastic ROM based on surrogate models. 132
4.21 Training simulation data set matrix. . . . . . . . . . . . . . . . . . . . . . 132
4.22 Stationary aerodynamic coefficients of a flat plate. . . . . . . . . . . . . . . 133
4.23 Aerodynamic cycles for low angle of attack. . . . . . . . . . . . . . . . . . 134
4.24 Aerodynamic cycles for low angle of attack. . . . . . . . . . . . . . . . . . 134
4.25 Power coefficient comparison between the ANNs and the CFD simulations

for two representative numbers of neurons on the hidden layer. . . . . . . . 136
4.26 Distribution of the energy error for the different number of neurons. . . . . 137
4.27 Evolution of the MSE as a function of the epoch of training. . . . . . . . . 137
4.28 Squared error distribution for the input variables. . . . . . . . . . . . . . . 138
4.29 Lift coefficient of the training and validation of the FNN neural network. . . 138
4.30 Moment coefficient of the training and validation of the FNN neural network. 139
4.31 Lift coefficient of the training and validation of the LSTM neural network. . 139
4.32 Moment coefficient of the training and validation of the LSTM neural network.140
4.33 Regression plots for the moment coefficient. . . . . . . . . . . . . . . . . . 140
4.34 Prediction of the aerodynamic coefficients by the surrogate model for a

prescribed motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.35 Comparison of the mean deformation of the ROM and CFD simulation for

the different aerodynamic models. . . . . . . . . . . . . . . . . . . . . . . 141
4.36 Comparison of the amplitude of the motion of the ROM and CFD simulation

using different aerodynamic models. . . . . . . . . . . . . . . . . . . . . . 142
4.37 Time cycles for a nondimesional stiffness of k∗ = 8.5 . . . . . . . . . . . . 143



xxii List of figures

4.38 Time cycles for a nondimesional stiffness of k∗ = 6.5 . . . . . . . . . . . . 143
4.39 Comparison of the frequency of the motion of the ROM and CFD simulation

for the different aerodynamic models. . . . . . . . . . . . . . . . . . . . . 144
4.40 Chandra test bench for the structural model. . . . . . . . . . . . . . . . . . 147
4.41 Structural validation of the Chandra 30 deg oriented fiber beam. . . . . . . 147
4.42 Structural validation of the Chandra 15 deg oriented fiber beam. . . . . . . 147
4.43 Cross-section of the beam. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.44 Modes of vibration of the reference flat plate beam. . . . . . . . . . . . . . 150
4.45 Three-dimensional aerodynamic effects of the structure. . . . . . . . . . . . 151
4.46 Aerodynamic load distribution along the span. . . . . . . . . . . . . . . . . 152
4.47 Deviation of the ROM solution with respect to CFD/CSD simulations. . . . 153
4.48 Plunge evolution of CFD and ROM calculations for different fiber orientations.154
4.49 Twist evolution of CFD and ROM calculations for different fiber orientations. 155
4.50 Mean deformation of the tip section as a function of the velocity and fiber

orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.51 Torsional evolution of the system for different conditions. . . . . . . . . . . 157
4.52 Aerodynamic coefficients of the beam for different flow and structural condi-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.53 Modal contribution in the simulations. . . . . . . . . . . . . . . . . . . . . 159
4.54 Transition of the unitary chord cross-section of the blade. . . . . . . . . . . 161
4.55 Geometry of the NREL Phase VI blade. . . . . . . . . . . . . . . . . . . . 163
4.56 Blade reference system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.57 Mesh of the blade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.58 CFD mesh of the blade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.59 Deformation of the blade under static loads. . . . . . . . . . . . . . . . . . 165
4.60 Rotation of the shell elements of the blade. . . . . . . . . . . . . . . . . . . 166
4.61 Vibration modes obtained from the 1D reduced order model. . . . . . . . . 167
4.62 Modal Assurance Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.63 Aerodynamic validation of the BEM. . . . . . . . . . . . . . . . . . . . . . 169
4.64 Aerodynamic validation of Theodorsen model. . . . . . . . . . . . . . . . . 169
4.65 Torsion evolution for structure 1 under different operation points. . . . . . . 170
4.66 Limitations of the structure for nondimensional variables. . . . . . . . . . . 171
4.67 Mean value of the power coefficient of the structures for the different opera-

tion conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.68 Operation curves of the wind turbine. . . . . . . . . . . . . . . . . . . . . 173
4.69 Membrane resistant structure. . . . . . . . . . . . . . . . . . . . . . . . . . 175



List of figures xxiii

4.70 Mesh of the membrane resistant wing simulation. . . . . . . . . . . . . . . 177
4.71 Bi-dimensional polar of the triangular cross-section. . . . . . . . . . . . . . 178
4.72 Comparison of ROM and FSI simulations for the resistant membrane wing. 179
4.73 Load distribution on the wing. . . . . . . . . . . . . . . . . . . . . . . . . 180
4.74 Aeroelastic eigenvalues of the ROM for the membrane resistant wing. . . . 181
4.75 Modal shape of the modes after instability. . . . . . . . . . . . . . . . . . . 181
4.76 ROM deformation evolution of the wing. . . . . . . . . . . . . . . . . . . . 182
4.77 FSI deformation evolution of the wing. . . . . . . . . . . . . . . . . . . . . 183
4.78 FSI displacement of the wing. . . . . . . . . . . . . . . . . . . . . . . . . 183
4.79 Detail of the flow around the deformed structure. . . . . . . . . . . . . . . 183
4.80 Vertical displacement of the external membrane. . . . . . . . . . . . . . . . 184
4.81 Visualization of the three-dimensional aerodynamic effects of the flexible

membrane wing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.82 Residual displacement of the pre-stress. . . . . . . . . . . . . . . . . . . . 186
4.83 Evolution of plunge-twits with time for the prestressed membrane. . . . . . 186
4.84 Transient evolution of the lift coefficient for the prestressed membrane. . . . 187
4.85 Mean values of bending and twist of the prestressed membrane wing. . . . 188
4.86 Amplitude of bending and twist of the prestressed membrane wing. . . . . . 188





List of tables

3.1 Stiffness coefficients relating forces and strains. . . . . . . . . . . . . . . . 73
3.2 Elements of the cross-section stiffness matrix. . . . . . . . . . . . . . . . . 76
3.3 Elements of the cross-section mass matrix. . . . . . . . . . . . . . . . . . . 78
3.4 Example of aerodynamic polar file. . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Elements of the cross-section stiffness matrix. . . . . . . . . . . . . . . . . 85
3.6 Coefficients of the beam element stiffness matrix. . . . . . . . . . . . . . . 92
3.7 Coefficients of the beam element mass matrix. . . . . . . . . . . . . . . . . 94

4.1 Mesh independence analysis of the three-dimensional beam. . . . . . . . . 115
4.2 Mesh independence of the structure of the flat plate. . . . . . . . . . . . . . 118
4.3 Mesh independence analysis of the two-dimensional beam. . . . . . . . . . 120
4.4 Validation of the vibration modes. . . . . . . . . . . . . . . . . . . . . . . 148
4.5 Material properties of CFRP and foam. . . . . . . . . . . . . . . . . . . . . 149
4.6 Validation of the structural model. . . . . . . . . . . . . . . . . . . . . . . 151
4.7 Geometrical distribution of the NREL Phase VI rotor blade. . . . . . . . . . 162
4.8 Composite material properties for the wind turbine blade. . . . . . . . . . . 162
4.9 Natural frequencies validation for the wind turbine blade . . . . . . . . . . 167
4.10 Material properties of the membrane wing structure. . . . . . . . . . . . . . 176
4.11 Aerodynamic coefficients of the different models. . . . . . . . . . . . . . . 180





Nomenclature

α Angle of attack

αthex Expansion coefficient of the material

αg Geometric angle of attack

αi Induced angle of attack

αlim Gradient limiter

αe f f Effective angle of attack

αL=0 Zero lift angle of attack
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Chapter 1

Introduction

1.1 Importance of aeroelasticity for an efficient world

The current climate emergency is increasing efforts to reduce greenhouse gas emissions. Re-
ducing the structural weight and aerodynamic drag of vehicles is directly related to lowering
energy spending. The International Energy Agency quantified that the total energy consump-
tion related to transport is responsible for 30% of the global, being in 2021 responsible for
37% of the global CO2 emissions from end-use sectors [1]. In this sense, according to the
work of Graham et al. [2], the future concepts of low-emission aircraft are related to the
increase in the wings aspect ratio to reduce the induced drag generated by the wing-tip vortex
and the all-composite structure to decrease the empty weight of the aircraft.

Indeed, concerning the former, Hicken and Zingg [3] and Abbas et al. [4] stated that
the induced aerodynamic drag supposes to be around 40% of the total drag of an airplane
during a cruise flight. This fact explains the interest in designing wings with a high aspect
ratio. Nevertheless, the aerodynamic benefit of increasing the aspect ratio produces inherent
structural design issues due to the higher flexibility and stress on the root of the wing [5].

Regarding weight reduction, the inclusion of composite materials is expected to produce,
in elements in which all the metal materials could be replaced, such as the wings, a reduction
of 35% by 2030. However, the decrease in the frame weight of the whole aircraft is lower.
According to Greitzer et al. [6], the weight alleviation of the complete structure is estimated
at 30%. Figure 1.1 shows the midterm estimation of the aircraft weight reduction. In addition,
the H3.X structural concept developed by NASA for cleaner aviation is also illustrated.

The previous design trends, which push towards lighter and more efficient structures,
produce, as a consequence, the interaction between fields of study that were considered
isolated in the past [7]. This fact is, for instance, increasing the interest in combining the
aeroelastic phenomena with the flight dynamics of the aircraft.



2 Introduction

Fig. 1.1 Weight reduction of the aircraft frame and schematic representation of the
H3.X concept. (Left) weight reduction estimation and (right) structure concept of the aircraft
and detail of the fuselage cross-section. Data and image taken from [6].

In combination with lighter transport, the environmental challenge requires increasing
clean energy production [8]. The evolution of renewable energy has been rising over the
years [9]. This trend can be observed in the IEA data analysis [1]. Figure 1.2 (left) illustrates
the global energy supply by source. Two main conclusions may be extracted from this figure:
global energy consumption has been rising over the years, and the presence of renewable
sources is progressively growing. Indeed, wind and solar energy production are the sources
with a higher expected increase in the following years. In fact, in Figure 1.2 (right), it can be
observed that in the Net Zero Scenario, the wind energy is expected to grow approximately
300% of its current supply energy. Photovoltaic energy is also expected to increase production
by 600% 2021 levels by 2030.

In order to achieve the expected increase in wind energy production, a new generation
of offshore wind farms will be required [10]. These facilities are increasing the diameter of
the wind turbine blades to increase energy production. According to Yao et al. [11], in the
last 40 years, the radius of the wind turbines has increased from 8 m to 111 m. Figure 1.3
shows the evolution of blade diameter as the power generation has increased. As occurred
with the aircraft wings, increasing the radius of the blades generates higher deflections [12].
As a consequence, wind-induced vibrations, which are related to the interaction between the
structure and the surrounding flow [13], might rise with time under strong winds, leading to
destructive effects such as stall-induced vibrations [14] or flutter [15]. Due to this reason,
aeroelastic effects are becoming crucial in their structural design.



1.1 Importance of aeroelasticity for an efficient world 3

Fig. 1.2 Woldwide energy consumption by source. (Left) worldwide evolution of the
energy supply by source and (right) renewable energy evolution and expectation in the Net
Zero Scenario. Data extracted from the International Energy Agency [1].

Fig. 1.3 Evolution of the rotor diameter with the generated power. Image taken from [11].

Regarding the solar panel facilities, similar effects are observed. Therefore, engineers are
challenged to efficiently design the supports of the photovoltaic cells. Typically, the loads
have been applied as an equivalent static [16]. This methodology is generally conservative
and practical for the solar panel industry. Nevertheless, dynamic effects such as damping
or resonance are avoided. Therefore, to perform an efficient design, many authors have
developed models for the complex aerodynamic loads acting on the solar arrays [17–19].

Improving the aeroelastic capabilities of the structures requires higher stiffness. Nonethe-
less, this increase in stiffness is usually related to a thicker cross-section wall, which results
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in a rise in weight. Another solution is substituting traditional materials with advanced
composite materials [20–22]. These materials present a high stiffness-to-weight ratio, which
results in lighter structures [23]. This property, combined with their specific resistance, has
spread the use of composite laminates in applications in which the diversity and severity of
the loads require high-performance materials, such as aerospace [24], automotive [25], naval
[26], energy [27, 28] or civil [29, 30] industries.

Additionally, composite materials allow novel designs which improve the whole behavior
of the structure [31–33]. Composites are orthotropic, and thus their mechanical properties
depend on the orientation of the plies [34]. A specific configuration of the layup may present
bending-twisting couplings, which could damp or amplify the vibrations [35]. An optimum
layup configuration might take profit from the mechanical coupling using it for improving
the structural performance while maintaining the original weight [36]. From the aeroelastic
point of view, these effects are of interest as they can be used as a passive control or actuator
for the elastic structure. Stanford et al. [37] studied two opposed effects. The first coupling
is called wash-in or positive coupling. The aerodynamic forces lift the structure while the
surface increases its angle of attack. This phenomenon generates the augmentation of flight
loads. The opposite effect is the wash-out, known as negative coupling. The angle of attack
is reduced when the aerodynamic surface is lifting. Both phenomena are desired to improve
the aeroelastic limits of the structure. Wash-in helps in flutter alleviation while wash-out
protects against divergence [38]. Both effects are illustrated in Figure 1.4.

Fig. 1.4 Aeroelastic structural coupling phenomena. (Left) Wash-in effect and (right)
wash-out effect.
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1.2 Motivation and objectives

As introduced in the previous section, understanding and predicting aeroelastic phenomena
are critical points in designing future efficient structures required to overcome the complex
environmental situation of humanity. The technological development and the aerodynamic
optimization of the aerodynamic surfaces require higher aspect ratios, thus, more flexible
structures. These structures exhibit larger deformation, and their aeroelastic analysis becomes
critical for their integrity.

The previous ideas evidence the necessity of an accurate fluid-structure interaction analy-
sis. The analysis requires experimental or numerical methodologies. The former is based on
manufacturing a model of the structure to be tested and presents scaling complexities, mainly
from the structural point of view. In fact, Ricciardi et al. [39] stated that scaling the compo-
nents cannot achieve structural similitude. In other words, the materials used for the scaling
might have different properties, and the manufacturing techniques might change. Therefore,
the experimental analysis of the structures typically requires modifying and optimizing the
internal components. Numerical simulations can overcome the previous limitations as the
real structure can be simulated under operation conditions. However, regarding these numeri-
cal methodologies, the computational cost associated with the simulation of the complete
three-dimensional problem is prohibitive in the initial stages of the design process of many
projects [40]. For these reasons, the necessity of developing lower computational cost tools is
becoming of paramount importance. In the last decades, many authors have proposed various
aeroelastic models. The simpler ones are based on equivalent airfoils. These models have
been widely used for theoretical explanations of the phenomena [41], but the procedures to
convert a real structure into an equivalent section still need to be clarified. In addition to these
simpler structures, the beam model methodology has been widely used in the literature [42].
Nevertheless, an aeroelastic reduced order model for the calculation of the nonlinear problem
is required for many engineering applications [43, 44], and the existing solvers are mainly
based on potential aerodynamics [45].

This work focuses on developing a set of reduced-order models (ROMs) for the aeroelastic
simulation of a general problem, including nonlinear operation points. Their complexity and
level of simplification classify the models. In addition to this primary objective, the following
points are achieved during the work:

• Showing a methodology for calculating fluid-structure interaction simulations joining
the finite element analysis capabilities and the computational fluid dynamics. The
capabilities of the proprietary software Star CCM+ for the aeroelastic simulation were
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demonstrated even for complex cases of application involving orthotropic materials,
multi-body structures and nonlinear prestressed flexible membranes.

• Developing a methodology for reducing a general three-dimensional structure into
an equivalent section with a rigid motion. This motion is dominated by mass and
stiffness properties derived from the initial structure characteristics. Although the
equivalent sections have been traditionally used for theoretical cases, this work pro-
poses modifying the theory to represent general structures no matter their boundary
conditions.

• Use artificial neural networks to calculate complex aerodynamic loads under transient
effects. The methodology for training the network and comparing different structures
is shown. The neural networks are trained to calculate a novel aerodynamic surrogate
model.

• Developing a beam element solver for general orthotropic materials. The solver can
reproduce the stiffness and mass of the structure, including the higher-order model and
the structural couplings. The structural model for orthotropic thin-walled cross-section
beams presented in the work of Librescu and Song [46] is joined in an in-home solver
with a set of existing aerodynamic models such as Prandtl Lifting Line Theory, Blade
Element Momentum theory and Theodorsen transient coefficients and the previous
solvers based on artificial neural networks.

• Application of the previous beam element solver to a general aeroelastic solver. The
solver is coupled with aerodynamic models, which can describe different problems:
wings, rotating blades, and transient situations. Moreover, the solver may be applied to
resolve complex frames as semi-monocoque structures.

1.3 Structure of the work

This document presents the information that covers the previous items. In order to introduce
it, the first chapter, Chapter 2, is dedicated to describing the fundamentals of fluid-structure
interaction. The equations underlying the solid and fluid behavior are presented, and then the
aeroelastic problem is introduced.

In the following chapter, Chapter 3, the methodology of the work is described. Firstly,
the well-known numerical methods used to resolve the partial differential equations of the
solid and the fluid are presented, showing the strategies for coupling both solvers. Then the
reduced order models are derived. The different aerodynamic theories are explained, the
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solvers based on neural networks presented, and the structural models derived. Finally, the
beam element solver for a general aeroelastic problem is developed. In this section, all the
algorithms and the configuration of the simulations are shown.

In Chapter 4, the results of the work are presented. The reduced order models are
applied to a set of fundamental and engineering problems in order to validate their accuracy.
The chapter starts by studying an isotropic flat plate under aerodynamic loads. Firstly, the
structure is reduced to a mass-spring system, and the aerodynamic loads are calculated
using a computational fluid dynamics solver. Then, the aerodynamic solver is substituted
by a surrogate model based on artificial neural networks. These results are followed by
using a beam element solver, previously validated against the literature, for calculating the
previous geometry, but in this case, using a laminated layup. Finally, the solver is used in two
engineering problems. The first is a wind turbine blade, improving its structure y rotating
the fibers. The second one is a semi-monocoque membrane-resistant wing. In this case, the
deviations of the results due to the shell behavior of the skin are evaluated, as well as the
effect of prestressing the membrane.

Finally, Chapter 5 presents the global discussion of the previous results. In addition, the
future steps for completing this work are enumerated.
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Chapter 2

Fundamentals of fluid-structure
interaction

2.1 Introduction to the fluid-structure interaction

A flow passing around a solid surface generates a velocity field, which produces pressure and
shear stress distributions, resulting in loads on the surface. These loads exert stress and strain
on the solid, which as a consequence, is deformed [1].

Depending on the flow conditions, the material properties, and the solid geometry, two
different scenarios are presented: rigid and elastic structures. On the one hand, the solid
could be assumed as a rigid body in the case of small deformations of the structure. In this
case, only the structural integrity of the components (internal stress and strain) is analyzed.
Some examples are the wall of a combustion chamber [2–4], the propeller of a centrifugal
compressor [5–7], super-tall buildings [8, 9] or valves [10]. On the other hand, when the
structure is flexible enough, the former deformation is noticeable, modifying the flow field
and leading to a coupled phenomenon (fluid-structure interaction). Analyzing the interaction
between the solid and the fluid is required for predicting the flying capabilities of aircraft
[11–13], the structural integrity of wind turbine blades [14–16] or the evolution of blood
flows inside veins and hearts [17–19].

Fluid-structure interaction (FSI) analysis is a multidisciplinary field that addresses a wide
range of problems of different natures. Current research has been developed in the FSI area
for reducing the structural weight and improving endurance and efficiency of aircraft [20],
increasing the diameter of future offshore wind farms [21], or protecting solar panels from
damaging wing [22]. Depending on the nature and the purpose of the system under study,
the fluid-structure interaction may be classified into four main groups, see Figure 2.1.
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• Vortex-induced vibration (VIV): a vibration of a solid as a response to the vortex
shedding that the flow is generating. This vibration has a characteristic frequency
similar to the vortex frequency. This phenomenon has a direct application in energy
generation, for example, the design of bladeless wind turbines [23].

• Flow-induced vibration (FIV): a fully turbulent flow around the solid produces an
unsteady load in a wide range of frequencies. Consequently, the structure exhibits
a vibration in a wide frequency range with an essential contribution of its natural
frequencies. This phenomenon is related to flow-induced noise generation. For
instance, FIV is a significant problem in the thermocouple well in the fast-breeder
reactor at Monju in Japan, which presents a drag direction vibration [24].

• Aeroelasticity: this field focuses on the interaction between the airflow and the struc-
tural response. Aeroelasticity mainly deals with the destructive unstable phenomena
that may appear in the structural system [25]. The aeroelastic analysis might focus
on static problems such as divergence [26] or control reversal [27], or on dynamic
problems: flutter [28], stall flutter [29] and buffeting [30] as an example.

• Other important FSI phenomena: for instance, the flow inside flexible pipes. The
sudden closing of a valve could lead to a water hammer and, thus, to the destruction of
the pipe.

Fig. 2.1 Classification of fluid structure interaction phenomena. The dark line highlights
the phenomena studied in the present work.
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Fluid-structure interaction phenomena can be analyzed from an experimental or a compu-
tational point of view. This work focuses on the numerical approach to fluid conservation
and the solid elastic equations applied to aeroelastic problems. This methodology shows how
to calculate a three-dimensional solution to the problem and also presents low computational
cost theories and algorithms for simulating the phenomena. In the following sections, a
first approach to the solid and the fluid equations is provided. In addition, the aeroelastic
phenomena and their instabilities are presented.

2.2 Fundamentals of elasticity

The theory of elasticity deals with the relationship between the loads applied to a structure
and its resulting deformation [31–34]. The elastic analysis of a solid provides information
about the internal stress and strain of the material, and thus, it allows the prediction of
possible failures of the components.

Assuming a solid under a loading state, normal and tangential stress distributions appear
in the material. Stress is defined as the force applied per unit area. The stress tensor, S, in an
infinitesimal portion of the solid is defined in Equation (2.1). The normal stress is denoted
by σi j, the tangential by τi j, and the orthogonal directions of the generic reference frame by
1, 2, and 3.

S =

 σ11 τ12 τ13

τ12 σ22 τ23

τ13 τ23 σ33

 (2.1)

Applying Newton’s second law to an infinitesimal portion of the solid determines the
mechanics of the static system, Equation (2.2). In the equation, vector b denotes the
volumetric forces, u the displacement vector, and ρs the solid density.

∂σ11
∂x1

+ ∂τ12
∂x2

+ ∂τ13
∂x3

+b1 = ρsü1
∂τ12
∂x1

+ ∂σ22
∂x2

+ ∂τ23
∂x3

+b2 = ρsü2
∂τ13
∂x1

+ ∂τ23
∂x2

+ ∂σ33
∂x3

+b3 = ρsü3

→ ∆S+b = ρsü (2.2)

As the solid is elastic, the stress also produces deformations. If the strains are small
enough, the physical behavior of the material can be approximated by a linear or Hookean
relationship [35]. This relationship is called the constitutive equation, and the matrix C is the
constitutive matrix. Equation (2.3) shows the Hookean relationship between stress and strain
(D) tensors and the general definition of the constitutive matrix.
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Si j = Ci jklDkl → C =



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

Sym. C1313 C1312

C1212


(2.3)

The strain tensor is defined similarly as the stress tensor, Equation (2.4). The normal
strain is defined by εii and the tangential as γi j.

D =

 ε11 γ12 γ13

γ12 ε22 γ23

γ13 γ23 ε33

 being,

{
εii =

∂ui
∂xi

γi j =
∂ui
∂x j

+
∂u j
∂xi

(2.4)

Depending on the type of material, the constitutive matrix adopts a different shape. For
instance, when the material presents three planes of symmetry (orthotropic material), the
terms C1123 = C1113 = C1112 = C2223 = C2213 = C2212 = C3323 = C3313 = C3312 = C2313 =

C2312 =C1312 = 0. This property is expected in the case of unidirectional fiber reinforced
plastics, for example, carbon fiber reinforced polymer (CFRP). The constitutive matrix of the
orthotropic material is presented in Equation (2.5).

Si j = Ci jklDkl → C =



C1111 C1122 C1133 0 0 0
C2222 C2233 0 0 0

C3333 0 0 0
C2323 0 0

Sym. C1313 0
C1212


(2.5)

Therefore, orthotropic material requires nine independent elastic parameters to be defined.
Other materials, for instance, metallic materials, present symmetry in every direction. They
are called isotropic materials. For these materials, the following conditions are meet: C1111 =

C2222 =C3333, C1122 =C1133 =C2233 and C1212 =C3131 =C2323 = (C1111 −C1122)/2. Their
constitutive matrix could be expressed as in Equation (2.6).
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Si j = Ci jklDkl → C =



C1111 C1122 C1122 0 0 0
C1111 C1122 0 0 0

C1111 0 0 0
C1111−C1122

2 0 0
Sym. C1111−C1122

2 0
C1111−C1122

2


(2.6)

Two independent variables are sufficient to define the constitutive relationships regarding
the isotropic material.

2.3 Fundamentals of fluid mechanics

Fluid mechanics studies the behavior of liquids and gases in motion [36–38]. This motion
can be described for a single phase compressible flow employing the conservation equations:
mass, Equation (2.7); momentum, Equation (2.8) and energy, Equation (2.9).

∂ρ f

∂ t
+∇

(
ρ f v
)

(2.7)

∂ρ f v
∂ t

+v∇
(
ρ f v
)
=−∇p+∇τv +ρ f b (2.8)

∂ρ f
(
e+ 1

2vT v
)

∂ t
+∇

(
ρ f

(
e+

1
2

vT v
)

v
)
=−∇

(
vp+ τvv+ k f ∇T

)
)+ρ f bT v+Qs (2.9)

In the equations, the fluid velocity vector is denoted by v, the fluid density ρ f , and its
pressure by p. The viscous effects are included in the equations using the stress tensor, τv,
whose terms are defined in Equation (2.10) for a Newtonian fluid. The variable b expresses
the volumetric forces on the flow. Relative to the energetic terms, the temperature is expressed
by T , the internal energy by a function of the temperature and the pressure e = e(T, p), the
conductivity by k f , and the energy sources by Q. The previous variables depend on the time
t and space x.

τvi j = µ

(
∂vi

∂x j
+

∂v j

∂xi

)
+

(
µv −

2
3

µ

)
∂vk

∂xk
δi j (2.10)
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Here, µ is the dynamic viscosity, µv is the volumetric viscosity or secondary viscosity
and δi j is the Kronecker delta.

However, although the conservation equations have been known since the nineteenth
century, their analytic solution can only be obtained for elementary flows, as pointed out by
Osborn Reynolds 140 years ago [39]. The turbulent behavior of the fluid is associated with
the well-known Reynolds number, Re = vreflrefρ f

µ
, being vref the reference velocity and lref the

reference length. The Reynolds number determines the ratio between the inertial and viscous
forces acting on the fluid. When the viscous effects are dominant, the flow presents a low
Reynolds number (laminar flow), and the turbulent effects are negligible. Laminar flows are
essential for applications such as lubrication. However, for almost all the flows of practical
interest, the inertial effects are principal, and the Reynolds number is high, requiring the
resolution of the turbulent conservation equations. Turbulence is a multi-scale phenomenon
in time and space. The energy is transferred from the largest to the smallest scales, where it
is dissipated in a process called energy cascade [40].

This multi-scale energy transfer supposes the main challenge for the numerical solution of
the conservation equations. Calculating all the scales requires an extremely fine discretization
of the domain, which is still computationally unaffordable for practical applications. The
complete simulation of the conservation equations is called direct numerical simulation
(DNS). With the development of computational power and more efficient numerical algo-
rithms, many authors have been able to simulate fundamental examples of wall-bounded
flows [41].

In order to reduce the computational power required for the DNS, many authors have
studied turbulent flows and developed mathematical models. These models are a standard
tool in computational fluid dynamics (CFD) for industrial applications and may model totally
or partially the turbulent scales. The former are called Reynolds-averaged Navier-Stokes
(RANS) [42]. For the latter, large eddy simulation (LES), only the smallest scales are
modeled [43].

2.4 Introduction to the aeroelastic phenomena: instabilities

Aeroelasticity is the discipline that analyzes the interaction between the inertial effects on
the solid, the elastic behavior of the structure, and the aerodynamic loads acting on the solid
surface. The relationship between the previous forces was pointed by Collar [44] in the
so-called Collar’s triangle, Figure 2.2. This diagram relates inertial, elastic, and aerodynamic
effects indicating the disciplines resulting from their combination:
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• Rigid-body aerodynamics (flight dynamics and control). This field results in the
interaction of inertial and aerodynamic forces.

• Structural vibrations (structural response to dynamic loads). It depends on the inertial
and elastic forces.

• Static aeroelasticity (elastic and aerodynamic forces). The implications of aeroelastic
phenomena are related to structural design and aerodynamic optimization.

• Dynamic aeroelasticity (elastic, inertial, and aerodynamic forces). Protection of the
structure against flow-induced vibrations.

Fig. 2.2 Collar’s diagram. Relationship between inertial, elastic and aerodynamic forces
and the fields of study resulting from their combination.

Note that, although in the previous classification, the aeroelastic problem and the control
problem have been dissociated, the advances in materials, the weight reduction in the aircraft
structure, and the advances in control techniques have required the combination of both fields
in a discipline called aeroservoelasticity [45–47].

The aeroelastic formulation is derived from the general dynamic equation of the un-
damped solid (spring-mass system). This equation is obtained from the Lagrange equation:
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d
dt

(
∂T

∂ q̇

)
+

∂U

∂q
= Fnc (2.11)

where T is the kinetic energy of the system, U is the elastic energy, q is a vector containing
the degrees of freedom of the system and Fnc is the non-conservative forces vector. The
general dynamic equation of the system is described below:

Mq̈+Kq = Fnc, (2.12)

being M the mass matrix and K the stiffness matrix of the system. In the general case of the
aeroelastic problem, the mass and stiffness matrix and the non-conservative force present a
nonlinear term and must be updated at every time step. Nevertheless, the structure might be
considered linear for simplicity and cost efficiency, and the aerodynamic model might be
simplified for many applications.

Concerning the aeroelastic phenomena, the aerodynamic non-conservative forces depend
on the deformation state of the structure, the frequency of the motion, and the aerodynamic
performance of the cross-section. These nonlinear loads are complicated to model. Complex
phenomena such as boundary layer detachment, vortex shedding, and transient effects
must be considered for correctly modeling the loads. In addition, the aerodynamic forces
are coupled with the motion. As a consequence, the aerodynamic effects might damp or
amplify the vibrations. There is a particular interest in determining the amplifying events or
unstable conditions. The following sections describe, for simplified case studies, the primary
instabilities studied in the present work: divergence, flutter, and stall flutter.

2.4.1 Static instability: divergence

Divergence is related to an abrupt twist increase due to an elevated free stream velocity. A
typical section of the structure is defined for analyzing this static instability. This simplified
section is a flat plate airfoil immersed in a flow field with velocity V∞. The cross-section
twist θ is restricted by a torsional stiffness Kθ .



2.4 Introduction to the aeroelastic phenomena: instabilities 19

Fig. 2.3 Typical section of the static aeroelasticity. The scheme shows a typical airfoil
under a free stream condition V∞. The twist of the airfoil, θ is limited by a torsional stiffness,
Kθ .

The dynamic system, Equation (2.12), is simplified for describing only a torsional degree
of freedom under steady conditions. This equation is written as follows:

− 1
2

ρ∞V 2
∞c2cm = Kθ θ , (2.13)

where c is the chord of the airfoil, and cm is the aerodynamic pitching moment. The pitching
moment is defined, for a simplified linear aerodynamic model, as a function of the angle of
attack:

cm = cm0 + cmα
α +ad

(
cl0 + clα α

)
, (2.14)

being α the instantaneous angle of attack, and ad the nondimensional distance from the
aerodynamic reference point to the location of the torsional stiffness. In addition, cm0 and cl0

are the initial pitching moment and lift coefficient, and cmα
and clα are their derivatives with

respect to the angle of attack. The instantaneous angle of attack is defined in the counter-wise
direction of the instantaneous twist, θ :

α =−θ . (2.15)

Substituting the aerodynamic coefficient in Equation 2.13, the value of the twist angle is
obtained as follows:

θ =
cm0 +adcl0

cmα
+adclα −

Kθ
1
2 ρ∞V 2

∞c2

. (2.16)

The value of the twist angle tends to infinity when the divergence velocity VD is reached:
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cmα
+adclα −

Kθ

1
2ρ∞V 2

∞c2
= 0 →VD =

√
2Kθ

ρ∞c2 (cmα
+adclα )

(2.17)

Notice that in the aerodynamic center, the slope of the pitching moment is null, cmα
=

0. Therefore, the divergence velocity is only feasible when the aerodynamic center is
located ahead of the elastic axis of the airfoil. In addition, the previous solution has been
obtained assuming a linear aerodynamic model. However, for a real airfoil, the aerodynamic
behavior is nonlinear. Thus, the twisting angle cannot increase infinitely. Nevertheless,
under divergence conditions, the structure presents abrupt deformations, which can lead to
structural failure.

2.4.2 Linear dynamic instability: flutter

Flutter is another catastrophic aeroelastic effect that can lead to structural failure. This
phenomenon is created by positive feedback between the structure deformation and the
aerodynamic loads acting on the aerodynamic surface. Therefore, an amplified oscillatory
motion is established in the structure. In order to illustrate the phenomenon, the simplest
case of flutter, two degrees of freedom model, is defined in Figure 2.4.

Fig. 2.4 Typical section for the dynamic aeroelasticity. The scheme shows a typical airfoil
under a free stream condition V∞. The twist of the airfoil, θ , is limited by a torsional stiffness,
Kθ , and its deflection v is restricted by a linear stiffness Kh.
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In this case, Equation 2.12 is modified to describe a plunging-pitching airfoil. The
dynamic behavior of the two degrees of freedom section is defined in Equation 2.18.[

Iθ Sθ

Sθ m

]{
θ

v

}
=

{
−1

2ρ∞V 2
∞c2cm

1
2ρ∞V 2

∞ccl

}
(2.18)

Here, the section inertia is defined with Iθ , its mass with m, the mass unbalance with
Sθ , the vertical displacement of the airfoil with v, and the lift coefficient with cl . The mass
constants are defined as follows:

Iθ =
∫

ρsx2
cdxc, Sθ =−

∫
ρsxcdxc, m =

∫
ρsdxc, (2.19)

where xc is the chord-wise coordinate of the cross-section. Assuming a linear steady aerody-
namic model, a solution with an exponential shape is obtained:

θ = θep f t , v = vep f t , (2.20)

where the amplitude of the twist and deflection of the section are θ and v, respectively.
Equation 2.18 can be expressed as follows for a linear steady aerodynamic model:

[
Iθ p2

f +Kθ − 1
2ρ∞V 2

∞c2 (cmα
+adclα ) Sθ p2

f

Sθ p2
f +

1
2ρ∞V 2

∞cclα mp2
f +Kh

]{
θ̄

v̄

}
ep f t

=

{
−1

2ρ∞V 2
∞c2 (cm0 +adcl0

)
1
2ρ∞V 2

∞c2cl0

} (2.21)

The homogeneous solution of the previous equation is calculated, and the exponent factor
p f is obtained. The characteristics of this complex number determine the behavior of the
system. The system is stable if the exponent p f has a negative real part. Unstable conditions
are reached when the real part of p f becomes positive. In addition, the exponent imaginary
part determines the oscillatory nature of the phenomenon. The real and imaginary parts of
exponent p f are expressed for the different free stream reduced velocities in the diagrams
Re(p f )−V∞/ωθ c and Im(p f )−V∞/ωθ c, being ωθ the natural torsion vibration angular
frequency.

Figure 2.5 presents an example of these diagrams. The diagram shows a simple case
where flutter and divergence conditions are reached. The system presents a stable behavior
for low free stream velocity, and neutral damped oscillations, Re(p f ) = 0. Flutter conditions
are reached for a free stream velocity of VF = 2.96ωθ c. Note that the real part of some curves
becomes positive while they still have a non-zero imaginary part (square marker). For higher
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velocities, VD = 4.05ωθ c, their imaginary part gets a null value, producing a non-oscillatory
behavior known as divergence (triangle marker).

Fig. 2.5 Flutter curves for a simple steady aerodynamics problem. The curves indicate the
real and the imaginary terms of the variable p f . The squares indicate the flutter conditions,
while the triangles show the divergence.

2.4.3 Nonlinear dynamic instability: stall flutter

The previous sections described linear aeroelastic instabilities, divergence, and flutter. Nev-
ertheless, when the incidence of the cross-section of the structure is high enough, the flow
around the suction side presents a partial or total separation from the surface which occurs
periodically during the oscillation. During the oscillation, the low-velocity vortex is shed
periodically from the separation point. This non-linearity in the aerodynamic forces may
increase the amplitude of the vibrations producing the so-called stall flutter. This mechanism
contrasts with the classical flutter in which the relationship and delay between aerodynamic
and elastic forces dominate the phenomenon.

Stall flutter is of primary importance in the analysis of bluff bodies in which the separation
of the boundary layer occurs for low-incidence angles. For instance, this phenomenon has
been studied for a vast number of applications such as bridge decks [48], cables [49], and
wings [50].

Different mechanisms are related to the stall flutter. When stall flutter occurs, two
different behaviors can be obtained due to their aerodynamic behavior. Some systems present
an amplitude that smoothly grows with time. This process is the so-called soft flutter. Soft
flutter progressively increases the amplitude with time, leading to large oscillations or an
equilibrium value.
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In contrast to the previous mechanism, flutter may appear as a self-sustaining oscillation
for some conditions where the amplitude immediately reaches large finite values. The
structure is expected to grow beyond a critical vibratory amplitude. This phenomenon is
called hard flutter.

References
[1] Pedro Manuel Quintero Igeño. Characterization of Fluid Structure Interaction Mechanisms and its

application to the vibroacoustic phenomena. PhD thesis, June 2019.

[2] Olga V. Korotkaya. Substructure method for thermal-stress analysis of liquid-propellant rocket engine
combustion chamber. International Journal of Aerospace and Mechanical Engineering, 8(4):739–742,
2014.

[3] Vladislav M Anisimov, Ivan A Zubrilin, and Mikhail Y Orlov. Investigation of thermal and stress states of
the annular combustion chamber flame tube walls. In Turbo Expo: Power for Land, Sea, and Air, volume
49767, page V04BT04A021. American Society of Mechanical Engineers, 2016.

[4] Chaobin Hu and Xiaobing Zhang. A fluid-structure coupling method to obtain parameter distributions in
a combustion chamber with moving boundaries. Applied Thermal Engineering, 141:1048–1054, 2018.
ISSN 1359-4311.

[5] J. Pei, F.-K. Benra, and H. Dohmen. Application of different strategies of partitioned fluid-structure
interaction simulation for a single-blade pump impeller. Proceedings of the Institution of Mechanical
Engineers, Part E: Journal of Precess Mechanical Engineering, 226(4):297–308, 2012.

[6] Hyun-Su Kang and Youn-Jea Kim. Optimal design of impeller for centrifugal compressor under the
influence of one-way flid-structure interaction. Journal of Mechanical Science and Technology, 30(9):
3953–3959, 2016.

[7] S. Huo, H. Huang, D. Huang, Z. Liu, and H. Chen. Modal characteristics and fluid-structure interaction
vibration response of submerged impeller. Journal of Vibration and Control, 28(15-16):2020–2031, 2022.

[8] K. Wijesooriya, D. Mohotti, A. Amin, and K. Chauhan. An uncouple fluid structures interaction method
in the assessment of structureal responses of tall buildings. Structures, 25:448–462, 2020.

[9] K. Wijesooriya, D. Mohotti, A. Amin, and K. Chauhan. Comparison between an uncoupled one-way and
two-way fluid structure interaction simulation on a super-tall slender structure. Engineering Structures,
229:111636, 2021.

[10] H. Mazaheri, A.H. Nambdar, and A. Amiri. Behavior of a smart one-way micro-valve considering
fluid-structure interaction. Journal of Intelligent material Systems and Structures, 29(20):3960–3971,
2018.



24 References

[11] M.J. de C. Henshaw, K.J. Badcock, G.A. Vio, C.B. Allen, J. Chamberlain, I. Kaynes, G. Dimitriadis, J.E.
cooper, M.A. Woodgate, A.M. Rampurawala, D. Jones, C. Fenwick, A.L. Gaitonde, N.V. Taylor, D.S.
Amor, T.A. Eccles, and C. J. Denley. Non-linear aeroelastic prediction for aircraft applications. Progress
in Aeroespace Sciences, 43:65–137, 2007.

[12] Joseba Murua, Rafael Palacios, J. Michael, and R. Graham. Applications of the unsteady vortex-lattice
method in aircraft aeroelasticity and flight dynamics. Progress in Aeroespace Sciences, 55:46–72, 2012.

[13] Rafic M. Ajaj, Muhammed S. Parancheerivilakkathil, Mohammadreza Amoozgar, Michael I. Friswell,
and Wesley J. Cantwell. Recent developments in the aeroelasticity of morphing aircraft. Progress in
Aeroespace Sciences, 120:100682, 2021.

[14] Martin Otto Laver Hansen, Jens Nørkær Sørensen, S Voutsinas, Niels Sørensen, and H Aa Madsen. State
of the art in wind turbine aerodynamics and aeroelasticity. Progress in aerospace sciences, 42(4):285–330,
2006.

[15] Pinting Zhang and Shuhong Huang. Review of aeroelasticity for wind turbine: Current status, research
forcus and future perspectives. Frontiers in Energy, 5:419–434, 2011.

[16] Lin Wang, Xiongwei Liu, and Athanasios Kolios. State of the art in the aeroelasticity of wind turbine
blades: Aeroelastic modelling. Renewable and Sustainable Energy Reviews, 64:195–210, 2016.

[17] Luca Formaggia, Alexandra Moura, and Fabio Nobile. On the stability of the coupling of 3d and 1d
fluid-structure interaction models for blood flow simulations. ESAIM: Mathematical Modelling and
Numerical Analysis, 41(4):743–769, 2007.

[18] Boyang Su, Liang Zhong, Xi-Kun Wang, Jun-Mei Zhang, Ru San Tan, John Carson Allen, Soon Keat
Tan, Sangho Kim, and Hwa Liang Leo. Numerical simulation of pationent-specific left ventricular model
with both mitral and aortic valves by fsi approach. Computer Methods and Programs in Biomedicine,
113:474–482, 2014.

[19] Marco Fedele, Elena Faggiano, Luca Dedè, and Alfio Quarteroni. A patient-specific aortic valve model
based on moving resistive immersed implicit surfaces. Biomech Model Mechanobiol, 16:1779–1803,
2017.

[20] Nhan T. Nguyen, Kevin Reynlds, Ting Eric, and Natalia Nguyen. Distributed Propulsion Aircraft with
Aeroelastic Wing Shaping Control for Improved Aerodynamic Efficiency. Journal of Aircraft, pages
1–19, 2018.

[21] S. Yao, M. Chetan, D. T. Griffith, A. S. Escalera Mendoza, M. S. Selig, D. Martin, Sepideh Kianbakh,
Kathryn Johnson, and E. Loth. Aero-structural design and optimization of 50 MW wind turbine with over
250-m blades. Wind Engineering, 46:273–295, 2021.

[22] Xu-Hui He, Hao Ding, Hai-Quan Jing, Fang Zhang, Xiao-Ping Wu, and Xiao-Jun Weng. Wind-induced
vibration and its suppression of photovoltaic modules supported by suspension cables. Journal of Wind
Engineering & Industrial aerodynamics, page 104275, 2020.



References 25

[23] A Chizfahm, E Azadi Yazdi, and M Eghtesad. Dynamic modeling of vortex induced vibration wind
turbines. Renewable Energy, 121:632–643, 2018.

[24] Chapter 1 - introduction. In Shigehiko Kaneko, Tomomichi Nakamura, Fumio Inada, Minoru Kato,
Kunihiko Ishihara, Takashi Nishihara, and Mikael A. Langthjem, editors, Flow-induced Vibrations
(Second Edition), pages 1–28. Academic Press, Oxford, second edition edition, 2014. ISBN 978-0-08-
098347-9. doi: https://doi.org/10.1016/B978-0-08-098347-9.00001-1.

[25] Earl H Dowell, RH Scanlan, F Sisto, HC Curtiss Jr, and H Saunders. A modern course in aeroelasticity.
1981.

[26] Masaki Kameyama and Hisao Fukunaga. Optimum design of composite plate wings for aeroelastic
characteristics using lamination parameters. Computers & structures, 85(3-4):213–224, 2007.

[27] George Platanitis and Thomas W Strganac. Suppression of control reversal using leading-and trailing-edge
control surfaces. Journal of guidance, control, and dynamics, 28(3):452–460, 2005.

[28] Steven J Hollowell and John Dugundji. Aeroelastic flutter and divergence of stiffness coupled,
graphite/epoxy cantilevered plates. Journal of Aircraft, 21(1):69–76, 1984.

[29] Peter Dunn and John Dugundji. Nonlinear stall flutter and divergence analysis of cantilevered
graphite/epoxy wings. AIAA journal, 30(1):153–162, 1992.

[30] Xinzhong Chen, Masaru Matsumoto, and Ahsan Kareem. Time domain flutter and buffeting response
analysis of bridges. Journal of Engineering Mechanics, 126(1):7–16, 2000.

[31] S. Timoshenko and J.N. Goodier. Theory of Elasticity. Engineering Societies Monographs, 1982.

[32] E.J. HEARN. Mechanics of materials 1 (third edition). Butterworth-Heinemann, Oxford, third edition
edition, 1997. ISBN 978-0-7506-3265-2. doi: https://doi.org/10.1016/B978-075063265-2/50000-1.

[33] Jean P. Mercier, Gérald Zambelli, and Wilfried Kurz. Chapter 6 - Elastic behaviour of solids. Elsevier,
Oxford, 2002. ISBN 978-2-84299-286-6. doi: https://doi.org/10.1016/B978-2-84299-286-6.50012-3.

[34] James R Barber. Elasticity. Springer, 2002.

[35] Gerald Wempner. Mechanics of solids with applications to thin bodies, volume 2. Springer Science &
Business Media, 1982.

[36] Antonio Crespo Martínez. Mecánica de fluidos. S.A. Ediciones Paraninfo, 2006.

[37] John F Douglas, Janusz M Gasiorek, John A Swaffield, and Lynne B Jack. Fluid mechanics. Pearson
education, 2005.

[38] Bruce Roy Munson, Theodore Hisao Okiishi, Wade W Huebsch, and Alric P Rothmayer. Fluid mechanics.
Wiley Singapore, 2013.

[39] Osborne Reynolds. An experimental investigation of the circumstances which determine whether the
motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical
Transactions of the Royal society of London, 174:935–982, 1883.



26 References

[40] A. N. Kolmogorov. Local structure of turbulence in an incompressible fluid at very high Reynolds
numbers. Dokl. Akad. Nauk., SSSR (30):9–13, 1941.

[41] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channels flows at low Reynolds
numbers. Journal of Fluid Mechanics, 177:133–166, 1987.

[42] Osborne Reynolds. Iv. on the dynamical theory of incompressible viscous fluids and the determination of
the criterion. Philosophical transactions of the royal society of london.(a.), (186):123–164, 1895.

[43] Joseph Smagorinsky. General circulation experiments with the primitive equations: I. the basic experiment.
Monthly weather review, 91(3):99–164, 1963.

[44] A Ro Collar. The expanding domain of aeroelasticity. The Aeronautical Journal, 50(428):613–636, 1946.

[45] Weiwei Zhang and Zhengyin Ye. Control law design for transonic aeroservoelasticity. Aerospace Science
and Technology, 11(2-3):136–145, 2007.

[46] RM Botez. Morphing wing, uav and aircraft multidisciplinary studies at the laboratory of applied research
in active controls, avionics and aeroservoelasticity larcase. Aerospace Lab, (14):1–11, 2018.

[47] Rauno Cavallaro and Rocco Bombardieri. Studies on lateral-directional coupled flight dynamics and
aeroelasticity of a prandtlplane. In AIAA Scitech 2019 Forum, page 1118, 2019.

[48] YJ Ge, ZX Lin, FC Cao, JB Pang, and HF Xiang. Investigation and prevention of deck galloping
oscillation with computational and experimental techniques. Journal of Wind Engineering and Industrial
Aerodynamics, 90(12-15):2087–2098, 2002.

[49] John HG Macdonald and Guy L Larose. Two-degree-of-freedom inclined cable galloping—part 1:
General formulation and solution for perfectly tuned system. Journal of Wind Engineering and Industrial
Aerodynamics, 96(3):291–307, 2008.

[50] Norizham Abdul Razak, Thomas Andrianne, and Grigorios Dimitriadis. Flutter and stall flutter of a
rectangular wing in a wind tunnel. AIAA journal, 49(10):2258–2271, 2011.



Chapter 3

Computational simulation of aeroelastic
phenomena

3.1 Introduction to the computational simulation

In Chapter 2, the physics and the main equations of the fluid-solid interaction phenomena
were presented. As previously explained, aeroelasticity is a complex physical problem that
combines the aerodynamic effects of the flow with the inertial and elastic forces acting on
the structure. The complexity of the phenomena requires the use of experimental tests or
numerical simulations for its characterization.

From the numerical perspective, different tools and methodologies have been proposed
to model the fluid-structure coupled problem. FSI simulations require the calculation of
structural and fluid dynamic equations. Concerning the former, finite element analysis (FEA)
has been widely used to obtain the internal stress and strain of the structure of any given
geometry [1]. For instance, Kumari and Sinha [2] analyzed the carbon fiber reinforced
fiber T-shape joint between the spar and the lower skin of a wing, and Kesel et al. [3]
studied the mechanical aspects of insect wings using FEA. For the resolution of the fluid
conservation equations, the most extended tool for generic aerodynamic analysis is the so-
called computational fluid dynamics (CFD). The flow fields (velocity, pressure, temperature)
are calculated using numerical algorithms in any possible laminar or turbulent flow geometry.
In fact, Li et al. [4] demonstrated that different fidelity levels of CFD simulations could
predict the experimental results regarding force and power in a wind turbine rotor. Other
works, such as those performed by Palacios et al. [5], use the results of the CFD simulations
for correcting the aerodynamic linear models. Both solvers have been coupled in order to
resolve the FSI problem.



28 Computational simulation of aeroelastic phenomena

Two different methodologies could be used to couple the equations: classical and in-
tegrated [6, 7]. The classical methodology is based on combining the solid and the fluid
equations in an uncoupled way. However, the integrated methodology solves both equa-
tions simultaneously. In order to account for the energy transfer required for simulating the
aeroelastic physics, an integrated or partially-integrated solver is required [8, 9]. Partially-
integrated algorithms have been applied to the aeroelastic problem for a wide range of
applications. For example, Kaviani and Nejat [10], Dai et al. [11] calculated the aeroelastic
behavior of horizontal axis wind turbines, and Nakata and Liu [12] simulated flexible insect
wings. The coupled solution of the aeroelastic system is associated with an out-of-order
computational cost. Thus, as previously mentioned, the fully coupled three-dimensional
simulation of an elastic solid and a viscous flow is not affordable at the initial stages of the
design process [13].

In order to reduce the complexity of the problem and, consequently, its computational
cost, many authors have proposed simplifications on the fundamental equations of the solid
and the fluid. From the structural perspective, the most common simplification is dimensional
reduction. Thin-walled structures are simplified to a shell or membrane in many applications
to reduce the computational cost associated with the simulation [14, 15]. Another common
approach for slender structures is the use of beam models. Beam elements have been
applied to isotropic and orthotropic materials. In fact, Carrera et al. [16] applied a unified
formulation to obtain the vibrational state of a rotating blade, and Farsadi et al. [17] applied
the Librescu composite thin-walled beam (TWB) theory [18] to the optimization of the
aeroelastic response of a wing. Finally, some simple structures, such as the typical section
presented in Figures 2.3 and 2.4, reduce the three-dimensional solid to a two-dimensional
typical section restricted by a set of springs [19, 20]. These models have been traditionally
used for solving aeroelastic phenomena (see the classical reference of Dowell et al. [21]).
However, it requires that a single bending and torsion mode dominates the vibration of the
structure. Thus, the typical section is unsuitable for simulating secondary vibration modes or
structural coupling.

As presented in Chapter 2, the partial differential equations describing fluid motion
present a high complexity for providing a numerical solution. The simulation of all the
turbulent scales requires an unacceptable computational cost, and their use is restricted
to simple cases [22, 23]. In addition, these simulations generate a large amount of data,
becoming more common in the simulations running in the petabyte scale [24]. The practical
limitations of the DNS have motivated the simplification of the turbulent equations. The
advances in computation and algorithms are allowing for the use of high-fidelity methods
(LES) in industry [25]. These methods are standard in predicting sound production as the
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model can provide enough spatial and temporal accuracy [26]. However, although some
works have applied the LES to the FSI simulations [27, 28], this high-fidelity resolution is
still unaffordable for an industrial calculation. In order to reduce the computational cost, all
the turbulence scales can be modeled (RANS models). Using RANS and unsteady RANS
(URANS) CFD is a common practice for many applications [29, 30].

Although RANS models present an acceptable cost for the aerodynamic calculation
resolution and can predict three-dimensional and nonlinear effects of the flow, many authors
have used or implemented simplified methods. A common approach is the use of inviscid
flows. For instance, Peng and Jinglong [31] and Banks et al. [32] solved the Euler and
deformable body equations for simulating the FSI problem. To decrease the computational
cost of the three-dimensional algorithms, surface methodologies such as the vortex-lattice
method (VLM) or Prandtl lifting line theory (LLT) can be employed [33]. Jeon et al. [34]
applied the VLM to wind turbines, while Murua et al. [35] joined the solver with a nonlinear
beam model to solve the aeroelastic behavior of a flexible aircraft. Other authors, such as
Spall et al. [36], utilized the LLT for calculating aerodynamic forces on sails. Aerodynamic
reduced order models are also applied to obtain rotating blade loads, being the blade element
momentum (BEM) theory widely applied to the calculation of propellers [37, 38] and wind
turbines [39, 40].

In addition to the previous models, in the 1930s Theodorsen [41] derived the expres-
sions of the unsteady aerodynamic coefficients of an oscillating airfoil. These effects were
obtained for a potential flow, applying a Kutta condition [42] and Bessel functions [43].
Theodorsen theory provides a solution in the frequency domain, which has been employed
for the aeroelastic calculation of rotor blades [44], bridge decks [45] or wing [46] flutter.
Nevertheless, although this model works accurately for the linear aerodynamic range near
stall, the results could be improvable. Therefore, Leishman and Beddoes [47] proposed the
so-called Leishman-Beddoes (L-B) method for calculating the aerodynamics of the unsteady
nonlinear airfoil. The L-B model is based on the thin airfoil theory. However, this theory
includes semiempirical corrections to include inviscid stall effects. Its main use is related to
rotating aerodynamics. For instance, Gupta and Leishman [48] calculated the effects of the
dynamic stall in a rotating airfoil, and Hansen et al. [49] used a similar formulation for wind
turbine aeroelasticity.

Despite the previous models, many authors have developed different Reduced Order
Models (ROMs) to simplify the CFD simulations or to include complex nonlinear effects
[50]. A significant amount of them is based on proper orthogonal decomposition (POD).
These methods have been proven accurate in a wide range of problems: optimization of
a compressor [51] or aeroelastic calculation of a wing [52]. Nevertheless, POD “ROMs
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are only suitable for a frozen aeroelastic model configuration” [50]. This fact is due to
the associated frequencies of the ROM, which are dependent upon the mass and stiffness
distribution. Therefore, any change in the structure will lead to a different motion and
eigenvalues of the flow field and, thus, to a different POD.

Artificial intelligence (AI) and artificial neural networks (ANN) have been demonstrated
to predict a wide range of physical phenomena in recent years. A clear example is the work of
Vinuesa and Brunton [53], where machine learning (ML) algorithms were used to accelerate
DNS simulations. Moreover, some authors have applied ANN to solve aerodynamic [54] and
aeroelastic problems. For instance, Wu and Kareem [55] modeled the hysteretic nonlinear
behavior of bridge decks under aerodynamic loads. This work calculates the nonlinearities in
the turbulent flow around the solid by splitting the aerodynamic coefficients into a static and
a dynamic term. A problem with using ANNs is the need to train the model. Some authors,
as Chen et al. [56], have calculated the aeroelastic behavior of the system using an ANN
fed with experimental data. In other papers, as the work published by Abbas et al. [57] and
Li et al. [58], the ANN is fitted using CFD results. In addition, the previous authors have
presented models based on different architectures. Abbas et al. [57] used a feed forward
network (FFN), while Li et al. [58] applied a long-short term memory (LSTM) network.
Nevertheless, most of the studies do not compare the FFN, which only uses the information
of the current time step, with the LSTM, which maintains the information of the previous
time steps. Their applicability is determined by evaluating the convenience, precision, and
limitations of each typology.

This chapter shows the main computational tools for simulating aeroelastic problems.
First, the computational tools for simulating three-dimensional problems are presented. The
work focuses on the coupled simulations between the FEA and the CFD. The mathemat-
ical formulation of both theories is presented, focusing on the models used for practical
applications. Then, the ROMs developed along the work are described and derived. The
structural and aerodynamic simplifications are presented, the AI framework is described, and
the algorithms are detailed in the following sections.

3.2 Three-dimensional simulation of aeroelastic phenom-
ena

3.2.1 Computational fluid dynamics: CFD

The complexity of the fluid conservation equations forbids the use of analytical solutions
for the resolution of a general problem. This section describes the numerical tools and
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algorithms used to resolve the CFD simulations. The total resolution of the conservation
equations, Equations (2.7), (2.8) and (2.9), requires excessive computational resources. In
order to simplify the equations, the turbulence transportation can be partially (LES) or totally
modeled (RANS and URANS). This section focuses on describing the Reynolds averaged
Navier–Stokes models.

In order to simplify the turbulent equations, the Reynolds decomposition is applied to the
velocity vector. The velocity is divided into an average velocity vector ⟨v⟩ and a fluctuating
velocity vector v′:

v = ⟨v⟩+v′ (3.1)

The simplification is presented for an incompressible flow for the sake of brevity and
because, along the work, the compressible effects of the air will not be analyzed. The velocity
vector is substituted into the mass and momentum equations, Equations (2.7) and (2.8).
The calculation of the mean of the mass equation for an incompressible flow results in the
following expressions as the mean fluctuating flow field is null:

∇⟨v⟩= 0 ∇v′ = 0. (3.2)

The same operation is applied to the momentum equation:

∂ρ f ⟨v⟩
∂ t

+ ⟨v⟩∇
(
ρ f ⟨v⟩

)
=−∇⟨p⟩+∇⟨τ⟩+RT +ρ f b, (3.3)

where ⟨p⟩ is the mean pressure of the flow, ⟨τ⟩ is the mean shear stress tensor and RT the
Reynolds stress tensor. In the equation the temporal variation is calculated by ∂ρ f ⟨v⟩

∂ t , the
advection term ⟨v⟩∇

(
ρ f ⟨v⟩

)
, the diffusive term ∇⟨τ⟩, the source term −∇⟨p⟩+ρ f b and

the turbulent term RT . The mean shear stress tensor of the diffusive term is calculated as
follows:

〈
τi j
〉
= µ

(
∂ ⟨vi⟩
∂x j

+
∂
〈
v j
〉

∂xi

)
(3.4)

and the Reynolds stress tensor is defined as:

RTi j =−
∂

〈
v′iv

′
j

〉
∂x j

. (3.5)

The Reynolds stress tensor is directly related to the generation of drag [59], and the regions of
the flow with a higher Reynolds stress have been demonstrated to be crucial for understanding
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turbulent transport [60]. Including the Reynolds stress in the equations adds extra degrees of
freedom. Therefore, additional equations are required to solve the system. These equations
are called turbulence models. Some of the most popular are Spallar-Allmaras, k− ε , and
k−ω . These are eddy viscosity models and are based on the analogy between the molecular
gradient-diffusion process and the turbulent motion:

RT = 2µT
1
2

(
∇⟨v⟩+∇⟨v⟩T

)
− 2

3
(µT ∇⟨v⟩)I, (3.6)

where, µT is the turbulent eddy viscosity and I is the identity matrix. For the different
turbulent models, the value of µT is derived from transport equations. Note that Equation
(3.6) does not include the anisotropy of the model. For these reasons, some models include
nonlinear constitutive relations.

The k−ω model with shear stress transport (SST) has been used in this work. This model
comprises two equations that solve the turbulent kinetic energy k and the specific dissipation
rate per unit of turbulent kinetic energy ω to determine the turbulent eddy viscosity [61]. The
main advantages of the k−ω are the performance under adverse pressure gradients and the
possibility of applying it to viscous-dominated regions. Nevertheless, the computations are
sensitive to the values of ω in the free stream (values of the inlet of internal flow). Adding a
non-conservative cross-diffusion term, Menter [62] addressed the sensitivity on the ω values,
formulating the so-called shear stress transport (SST) model. The equations defining this
model are presented below:

∂k
∂ t

+v∇k = G1 −G2kω +∇((ν +G3νT )∇k) (3.7)

∂ω

∂ t
+v∇ω = G4 −G5ω

2 +∇((ν +G6νT )∇ω)+G7
1
ω

∇k∇ω, (3.8)

where the variables G1, G2, G3, G4, G5, G6 and G7 are closure parameters and auxiliary
relations of the model and νT , is the kinematic eddy viscosity, which is a function of k and
ω [62].

The PDE system must be converted into an algebraic equation system for the numerical
simulation of the previous equations. In order to convert the system, the domain is discretized
to a finite number of elements (mesh). The equations might be resolved using different
mathematical schemes and algorithms. The methodology followed for generating the mesh
and evaluating its adequacy will be presented in Section 3.2.1.
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Segregated and coupled resolution of the equations

Throughout the work, two different approaches were used for calculating the conservation
equations: segregated and coupled solvers. The segregated solver calculates the mass and
momentum conservation equations sequentially. The solution of the equations is obtained
iteratively for the velocity and the pressure. The most common segregated algorithms are
SIMPLE and PISO. Figure 3.5 presents the workflow for both methods. Both algorithms
share many steps. However, they present some differences. The PISO is faster in the short
time-steps and becomes unstable in the long. The accuracy of the SIMPLE is reduced for long
time steps, although it produces steady results. Therefore, in the present document, SIMPLE
is used for the steady solution, while PISO is used for the transient solutions with greater
temporal accuracy. The coupled solver calculates the conservation equations simultaneously
as a vector of equations. The system of equations can be solved using explicit or implicit
integration.

Fig. 3.1 Algorithm of the segregated solvers. SIMPLE algorithm (left) and PISO algorithm
(right).

Numerical integration schemes of the advection term

Relative to the numerical simulation of the terms of the equation, the advection terms are
integrated using a second-order upwind scheme. The convective flux is computed as:
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(
ṁ f ζ

)
f =

{
ṁ f ζ f ,0 for ṁ f ≥ 0
ṁ f ζ f ,1 for ṁ f < 0

, (3.9)

where ζ represents the transport of any property, ṁ f the mass flow, and the face values ζ f ,0

and ζ f ,1 are interpolated from the cell center values on the side faces:

ζ f ,0 = ζ0 + s0 (∇ζ )r,0 , ζ f ,1 = ζ1 + s1 (∇ζ )r,1 (3.10)

being s0 and s1 the spatial discretization:

s0 = x f − x0, s1 = x f − x1. (3.11)

The values of the reconstruction gradients ((∇ζ )r,0 and (∇ζ )r,1 are limited, so they do not
exceed the maximum and minimum of the neighboring cell centroid values. A scale factor
αlim is defined. The Venkatakrishnan limiter has been used for the simulations of this work
[63].

(∇ζ )r,0 = αlim∇ζ (3.12)

Numerical integration schemes of the diffusive term

Relative to the numerical integration of the diffusive terms, the diffusive flow through an
internal cell face of any flow variable is discretized as follows:

D f = (d∇ζ a) f , (3.13)

being d the face diffusivity, ∇ζ the gradient of the fluid property ζ and a the area vector. A
second-order expression for an interior face gradient is used:

∇ζ f = (ζ1 −ζ0)
a

ads
+∇ζ −

(
∇ζ ds

) a
ads

, (3.14)

where:

ds = x1 −x0, ∇ζ =
∇ζ0 +∇ζ1

2
(3.15)

This formulation assumes that the centroids 0 and 1 lie on the opposite sides of the inner
faces, and the area vector points out of cell 0. The angle between the vectors a and ds is
smaller than 90 degrees to avoid nonphysical solutions.
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Numerical integration of the transient term

The resolution of the transient term requires the use of an additional discretization. The
solution is divided into time steps, depending on the previous ones. The transient simulations
calculated in this work use a second-order Euler implicit integration. This scheme uses the
solution at the current n+1 and in the previous two n and n−1 time steps in a backward
differentiation formula:

d
dt

(ζVi) =

(
3
2
(ζVi)n+1 −2(ζVi)n +

1
2
(ζVi)n−1

)
1
∆t

(3.16)

where Vi is the volume of the element.

Computation of gradients

In the CFD simulation, a hybrid Gauss-least squares method is used. In this methodology,
the gradient is computed as follows:

∇ζ = ∑
f
(ζn −ζ0)w0

f (3.17)

where w0
f is a weighted average of the Gauss and the least squares methods:

w0
f = β f wlsq

f +
(
1−β f

)
wG

f (3.18)

The variable β f is the gradient factor of the cell. The value of the factor wlsq
f computed by

the least squares method is calculated as:

wlsq
f =

(
∑

f

ds ⊗ds

ds
2

)−1
ds

ds
2 , (3.19)

being ds the distance between the centroids of the cell 0 and the neighboring cell n through
the face f . The value of the factor is also calculated using the Gauss method wG

f :

wG
f =

A f

V0 +Vn
, (3.20)

where A f is the face area and V0 and Vn the volumes of elements 0 and n respectively.

Methodology of the CFD simulation

Once the PDE system underlying the CFD software is explained, the fluid dynamics analysis
methodology will be described. This procedure comprises the preprocessing of the cases. The
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methodology for meshing the domain is described, the calculation error must be delimited,
and the model requirements must be addressed.

The preprocessing of the CFD simulation requires the discretization of the domain. The
meshes of the present work use polygonal elements [64] for the bi-dimensional simulations
and polyhedral elements [65] for the three-dimensional cases. Generating these meshes
requires a similar cost compared with the wide-used tetrahedral meshes. However, the
number of elements may be five times fewer, leading to a lower computational cost of the
calculation.

The meshes are refined near the zones of interest using a set of bodies of influence. Figure
3.2 shows an example of the polygonal mesh used to calculate airfoil aerodynamics. Similar
procedures are followed for the three-dimensional analysis.

Fig. 3.2 Refinement example based on bodies of influence of the CFD mesh. Note that
the green areas mark the bodies of influence of the mesh and its zoom on the interest section.

In addition, the numerical error of the simulation must be limited to a maximum value of
the interest variables. This procedure, known as mesh independence analysis, is required to
verify the validity of the numerical results. The mesh independence analysis is performed by
duplicating the number of grid cells and checking the error to the finest mesh. In order to
obtain the error concerning the real value, Richardson’s extrapolation (RE) is applied [66].
The solution error is defined as the difference between the numerical and the exact solution:

Error = f (hg)− fExact = H1hp
g c +H.O.T., (3.21)
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where H1 is a constant, hg the grid spacing and pc the order of convergence. In the case of
the CFD solver, the order of convergence is normally lower than the expected theoretical
value. The previous equations can be expressed as follows:

log(Error) = logH1 + pc loghg. (3.22)

The order of convergence pc can be calculated from the simulation data. However, for a more
straightforward definition, a constant grid refinement ratio rg can be assumed:

pc = ln
(

f3 − f2

f2 − f1

)
/ lnrg, (3.23)

where the values of fi are the solutions of the different meshes, being the number 1 the finest
and 3 the coarsest. Then the RE is applied:

f = fhg=0 +g1hg +g2h2
g +g3h3

g + ..., (3.24)

where gi is a function independent of the grid spacing and fhg=0 is the continuum value at
zero grid spacing. The value of fhg=0 is estimated as follows:

fhg=0 ≈ f1 +
f1 − f2

r2 −1
. (3.25)

The grid refinement ratio is calculated, assuming a finer grid spacing hg1 and hg2, as:

r =
hg2

hg1
(3.26)

Then a grid convergence index (GCI) is obtained. For calculating the GCI, three levels of
refinement are required. The GCI of the finer mesh is defined as:

GCIfine =
FsErrorr

rp
g c −1

(3.27)

being Errorr =
fi+1− fi

fi
the relative error. The value of the safety factor Fs is recommended to

be Fs = 3 for comparing two grids and Fs = 1.25 for comparing three or more grids. For a
coarser grid, the GCI is defined as follows:

GCIcoarse =
FsErrorrr

p
g c

rp
g c −1

(3.28)

Then, the results must be checked to be in the asymptotic range of convergence. This
condition is satisfied when:
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GCI23 = GCI12rp
g c (3.29)

If this condition is satisfied, the value of the interest variable is determined to be f1 with
an error band of GCI12.

In addition to spatial discretization is temporal discretization. The time-step definition is
related to the Courant-Friedrich-Lewy number. This number is defined as a function of the
time-step ∆t, the cell velocity v and the cell size ∆x:

CFL =
∆tv
∆x

(3.30)

This time step must be low enough to simulate the flow field accurately. To check the
adequacy of the time step, simulations with different values should be calculated, ensuring
that the value of ∆t is not affecting the results.

In addition, to meet the wall treatment of the turbulence model, an appropriate boundary
layer discretization is required in CFD calculation. The correct application of the SST model
requires a nondimensional wall distance of the first cell in the viscous sublayer (y+ < 5) or
in the logarithmic layer (y+ > 30) using wall-treatment functions. The nondimensional wall
distance is defined as y+ = yuτ

ν
, being uτ =

√
τw

ρ f
the friction velocity and τw the shear stress.

3.2.2 Finite elements analisys: FEA

The finite element analysis is a common tool in resolving the elasticity equations presented
in Chapter 2. The finite element method (FEM) is a robust algorithm for calculating the
approximate solution of partial differential equations in continuous problems.

The method is based, similarly to the CFD solvers, on the discretization of the domain.
The equations are solved for the values on the grid points. In order to solve the PDE, a set of
shape functions is used for interpolating the result inside the elements. Then, the functions are
integrated along the elements, reducing the order of the derivatives with integration by parts.
These shape functions allow FEM to present a continuous solution. The PDE used in the
structural analysis includes derivatives up to the second order. Therefore, the integral form
presents first-order derivatives. For this reason, the shape functions must ensure continuity
on the space coordinates. The shape functions are defined in the element normal coordinates.
Along the work, hexahedral elements were used, Figure 3.3. The shape functions for a linear
hexahedral element are defined below:

HM (ξi) =
1
8
(1+ξiMξi) , where M = 1, ...,8 (3.31)
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where the proportional constant corresponding to node M is denoted by HM, the local
coordinate of the element frame by ξi, and the coordinate of the node M by ξiM. Nevertheless,
the linear elements cannot provide enough mode shapes to approximate shear and bending
in solid mechanics. For this reason, to overcome this effect known as locking, and to avoid
stiffening effects, these elements add three additional vectors uoi to the nodal displacement
uM:

u(ξi) = HM (ξi)uM +uoi
(
1−ξ

2
i
)

, where i = 1,2,3 and M = 1, ...,8. (3.32)

In order to improve the accuracy of the numerical solver, quadratic elements could be used.
In addition, for thin-walled structures, shell elements can be used. These elements allow a
dimensional reduction and, thus, a decrease in the computational cost of the simulation. The
mathematical simplification of the shell elements will be discussed later.

Fig. 3.3 Visualization of the generic hexahedral element. The variables ξ1, ξ2 and ξ3 are
the inner coordinates of the elements.

The shape functions are defined in the cell frame. Therefore, the shape functions must be
transformed into the global frame to compute the solution in the global coordinates. Figure
3.4 shows the transformation from the element reference frame to the global reference frame.
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Fig. 3.4 Transformation of the hexahedral element from the element reference frame to
the global reference frame. Note that the elements are defined in a local reference frame
and assembled in a global reference frame.

The Green-Lagrange strain is then calculated from the displacement on the nodes:

δDM = BMδuM, (3.33)

where DM is the strain tensor, uM the displacement vector and BM the matrix that relates
the strain and the displacement. This matrix is approximated as follows for infinitesimal
displacements:

BM =



∂HM
∂x1

0 0

0 ∂HM
∂x2

0

0 0 ∂HM
∂x3

∂HM
∂x2

∂HM
∂x1

0

0 ∂HM
∂x3

∂HM
∂x2

∂HM
∂x3

0 ∂HM
∂x1


, (3.34)

where the derivatives of the shape function are calculated using the chain rule.

∂HM

∂x
= J−1 ∂HM

∂ξ
, being J the jacobian: J =


∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3

 (3.35)
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The solution of the FEA is calculated to minimize the virtual work, δW , of the system.
The virtual work of an element is defined in Equation (3.36). This virtual work is produced
by the internal loads, fint

M , the inertial terms, M and the external forces applied at a node M,
fext
M .

δW = δuT
M

[∫
V0

BT
MSMdV +

∫
V0

HMIρsHT
MüMdV −

∫
V0

HMbdV

−
∫

S0

HMtdS−
∫

l0
HMq f dl − fM

]
= 0.

(3.36)

The solution of the dynamic system follows Equation (2.12). The stiffness matrix is obtained
from the internal forces.

K =
∂ fint

M
∂uM

, defining the internal force fint
M as: fint

M =
∫

V0

BT
MSMdV (3.37)

Note that the the element stress tensor SM as stated in Chapter 2 may be related to the discrete
strain tensor DM by the constitutive matrix CM. In order to obtain the characteristics of the
dynamic system, the stiffness matrix can be calculated using the constitutive relationships,
and the mass matrix is obtained from the inertial term:

K =
∫

V0

BT
MCMBMdV , M =

∫
V0

HMIρsHT
MdV (3.38)

In addition, the external loads acting in the discrete system are a result of the volumetric
forces b, surface tractions t, line loads q and point forces fM:

fext
M =

∫
V0

HMbdV +
∫

S0

HMtdS+
∫

l0
HMq f + fM (3.39)

Notice that loads of the previous equations and the restrictions of the problem are applied
through Dirichlet and Neumann boundary conditions.

Shell finite element method

The normal stress in the wall-normal direction can be assumed to be negligible for thin-walled
structures. For this reason and to reduce the computational cost of the simulations, the shell
FEM might be applied. Additionally, this theory assumes that the faces normal to the shell
surface will remain undeformed. The kinematic relationships are modified in order to follow
the previous assumptions:
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u1 (x1,x2,x3) = um1 (x1,x2)− x3
∂um3 (x1,x2)

∂x1
(3.40)

u2 (x1,x2,x3) = um2 (x1,x2)− x3
∂um3 (x1,x2)

∂x2
(3.41)

u3 (x1,x2,x3) = um3 (x1,x2) (3.42)

Note that um1 , um2 , um3 are the displacements of the midplane, um. Then, the deformations
of the system are calculated similarly to Equation (3.33). Evaluating the terms of the strain
tensor independently, the following expressions are obtained for the normal strains:

εx1 =
∂u1

∂x1
=

∂um1

∂x1
− x3

∂ 2um3

∂x2
1

= εmx1
− x3

∂ 2um3

∂x2
1

(3.43)

εx2 =
∂u2

∂x2
=

∂um2

∂x2
− x3

∂ 2um3

∂x2
2

= εmx2
− x3

∂ 2um3

∂x2
2

(3.44)

εx3 =
∂u3

∂x3
= 0 (3.45)

and relative to the tangential strains:

γx1x2 =
∂u1

∂x2
+

∂u2

∂x1
=

∂um1

∂x2
+

∂um2

∂x1
−2x3

∂ 2um3

∂x1∂x2
= γmx1x2

−2x3
∂ 2um3

∂x1∂x2
(3.46)

γx2x3 =
∂u2

∂x3
+

∂u3

∂x2
=−∂u3

∂x2
+

∂u3

∂x2
= 0 (3.47)

γx1x3 =
∂u1

∂x3
+

∂u3

∂x1
=−∂u3

∂x1
+

∂u3

∂x1
= 0 (3.48)

In the previous equations, two different terms are obtained: the membrane, which depends
on u1 and u2, and the bending, which depends on u3. Therefore, the solution can be analyzed
as two uncoupled problems, the membrane problem, a bi-dimensional elastic problem, and
the bending problem.

Methodology of the FEA

As with the CFD methodology, the FEA requires converting the PDE system into an algebraic
problem. Therefore, the domain must be discretized into a set of grid elements. The
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solution of the system is calculated for the values of the displacement on the nodes and then
interpolated with the shape functions inside the elements.

Along this work, most of the structures present thin walls. Therefore, the use of a
shell FEM is preferred. Nevertheless, as the coupled FSI problem has been calculated in
proprietary software which does not admit shell elements, both meshes have been used along
the document.

Fig. 3.5 Examples of multielement FEM meshes. (left) Shell element mesh of a wind
turbine blade, (right) internal 3D mesh of the internal elements of the sail-type structure. Note
that the different elements present a separated mesh which joints the neighboring element by
a bonded contact.

When the finite element simulations are analyzed, their accuracy must be ensured. The
accuracy of the FEM calculation is related to the order of the elements and the number of
elements. In other words, a second-order element will improve the solution of the first-order
element and substantially increase the number of elements. A mesh convergence analysis is
performed before the calculation of the problem. In this procedure, the magnitude of interest,
in the case of the aeroelastic analysis, the displacement, is analyzed through finer meshes
until the number of elements is not affecting the results, in a similar process as explained for
the CFD.

In addition, for multi-layer composite materials or multi-component problems, the ele-
ments are assembled using bonded contacts. The bonded contact restricts the movement of
the bodies so they cannot separate, slide or rotate. In other words, the components act like a
single solid. The contact is generated surface-to-surface in the case of the three-dimensional
simulation and edge-to-surface in the case of the shell structure.

3.2.3 Fluid structure interaction: FSI

In order to couple the solid and the fluid solution, two different approaches can be followed:
monolithic and segregated [67]. The former calculates the solid and the fluid equations
using the same solver. This approach is coupled (integrated) and stable. It allows the use
of higher-time steps. However, its main drawback is the necessity of dedicated software,
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which requires high computational resources. The second approach uses different software
for solving fluid and solid equations. Along the work, separated solvers are used to solve
the equations. The segregated approach is also subdivided depending on the direction of the
coupling.

On the one hand, the classical methodology (one-way coupling) calculates the solution
of the fluid. Then it applies the pressure and friction loads to the structure without modifying
the geometry. For example, using the steady pressure field around a wing to calculate the
stress of the material. This method is the most straightforward way of coupling. Nevertheless,
its interest in aeroelastic phenomena is limited to specific applications in which the motion
of the solid is not affecting the fluid around it. The workflow of the one-way-coupling is
presented in Figure 3.6.

Fig. 3.6 One-way workflow. The solution of the fluid is solved and then the solid is calculated
based on this solution without mesh deformation.

Fig. 3.7 Two-way workflow. A loop of convergence between the solid and the fluid is solved
in each iteration. The fluid flow is calculated. Then the solid is deformed using the loads
recalculated after the deformation. The reevaluations of the loop determine if the solver is
implicit or explicit.

On the other hand, the partially-integrated methodology (two-way-coupling) uses the
solution of the flow field to deform the structure. The geometry is modified, and the mesh is
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updated to the displaced solid. Then, the flow field is recalculated for the next time step. If
the coupling between the solid and the fluid only is updated in one inner iteration, they are
explicitly coupled. However, if they are coupled in every internal iteration, they are implicitly
coupled. Along the work, a partially-integrated algorithm of the CFD solver based on the
finite volume method and the FEA for the structure was used. The forces are divided into a
pressure and a shear component and mapped on the solid surface.

3.3 Reduced order models

The reduction of computational cost associated with the aeroelastic problem is obtained by
simplifying the physical models of the solvers. The different aerodynamic and structural
models used in the reduced-order models are presented in this section. Regarding the
aerodynamic models, wing, and blade aerodynamics are explained. Their equations are
derived from the first principles, and the final expressions are presented. Concerning the
structure, two models are exposed. The first one reduces the complete three-dimensional
solid to an equivalent section with rigid solid motion retained by a set of springs. The second
one simplifies the structure into a beam model. Finally, the complete algorithm of the ROM
is shown, describing the different functions and algorithms.

3.3.1 Aerodynamic models

The three-dimensional calculation of the aerodynamic loads acting on a structure requires a
discretization in the order of 10M of elements. The computational cost of the CFD simulation
is increased by the internal simulations resulting in coupling the physics. Therefore, the
aeroelastic simulations are related to a high computational cost. When an airfoil is submerged
in a flow field, a pressure imbalance is generated between its surfaces. As a result, an
aerodynamic force is generated as a reaction to the flow deflection. A bi-dimensional
airfoil simulation may be conducted to calculate this force. This simulation requires a low
computational cost compared with a complete three-dimensional simulation. However, the
prediction of loads of a single bi-dimensional airfoil does not match the real value of the
aerodynamic forces. The pressure imbalance on the wing tip produces a flow in the spanwise
direction, generating the so-called tip vortex. As a result, the effective local incidence of the
cross-sections is reduced, and their aerodynamic efficiency is decreased. The induced drag is
generated as a consequence of the generation of lift.

A three-dimensional characterization of this phenomenon requires the resolution of the
three-dimensional flow around the structure. In this case, the complete conservation equation
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system must be solved using CFD software. In order to simplify these calculations, the use of
inviscid equations might be explored. Nevertheless, neglecting viscosity, and thus, turbulent
flows, is only suitable for certain cases of study where the flow is slightly detached, and
the aerodynamic lift is proportional to the angle of attack. Therefore, two steady models
are proposed to consider these nonlinear effects. These models take the CFD-simulated
bi-dimensional aerodynamic coefficients and correct their values by accounting for the three-
dimensional effects. The finite wings aerodynamics is corrected using the Prandlt lifting line
theory (LLT) [68], while the rotating aerodynamics is calculated using the beam element
momentum theory (BEM) [69, 70].

In addition, a flexible structure imparts pitching and plunging motion on the cross-
section of the beams. As a consequence of the motion of an airfoil, its wake and, thus,
its aerodynamic forces are modified. The classical theory proposed by Theodorsen [41]
calculates these transient effects by developing the potential theory.

The previous theories are combined in the document in order to simulate the steady
and transient effects of the aerodynamic sections. This section presents the theoretical
background of the aerodynamic submodels of the ROMs. Then, the models are used in
practical applications for obtaining the results of the aeroelastic simulations of the structures.

Modeling of finite wings

The wing-tip effects were previously mentioned: in the case of a finite wing flying inside a
free stream, the pressure difference between the pressure and the suction surfaces produces
a vortex that extends downstream from the wing-tip. This vortex produces an additional
velocity component that moves counter wise the lift force. This phenomenon, known as
downwash, reduces the effective angle of attack of the sections at the same time as it
induces drag. In other words, lift generation is directly related to drag production. The
three-dimensional aerodynamic effects of a finite wing can be observed in Figure 3.8.

In order to simulate the three-dimensional effects of a wing, the tip vortex is included
in the model by using the Prandtl finite wing lifting line theory (LLT). The methodology of
the LLT method is based on the potential aerodynamics theory, which assumes an inviscid
irrotational flow. This theory is based on the Kutta-Joukowski theorem, which assumes that
the aerodynamic lift force FL is proportional to the strength of the vortex that generates it, Γv.

FL = ρ∞V∞Γv, (3.49)

where ρ∞ is the free stream density and V∞ the free stream velocity. The theory substitutes
the finite wing with bound vortices from tip to tip. The vortex filaments are assumed to
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continue downstream. Due to Helmholtz’s theorem, the vortex filament cannot end inside the
fluid. Therefore, the vortex continues as two free vortices extending downstream (horseshoe
vortex). Figure 3.9 presents the horseshoe definition of the wing. As can be observed in the
figure, the tip effects of the wing produce that the intensity of the vortices near the tip is
smaller than in the symmetry plane. This fact is related to the downwash velocity and the
lower lift production in the tips.

Fig. 3.8 Visualization of the vorticity on a wing. The figure shows the vorticity field around
a squared cross-section airfoil wing. The vorticity has been calculated through a RANS
simulation.

Fig. 3.9 Horseshoe distribution of the finite wing. Note that the horseshoe vortices extend
downstream from the wing. The intensity of the vortex near the tip is smaller than in the
symmetry plane. The vortex intensity line density of the vortex in the i horseshoe is expressed
with Γi.
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For any position in the spanwise direction, z0, of the wing, the trailing vortices dz induce
a velocity vi whose magnitude is defined by the Biot-Savart law:

dvi =−
dΓv
dz dz

4π (z0 − z)
, (3.50)

where dΓv
dz is the variation of the vortex intensity along the spanwise direction, z0 is the

position in which the downwash velocity is calculated, and z the spanwise coordinate of the
affecting vortex. Then, the induced velocity and angle of attack, αi, at point z0 are calculated
by integrating the previous equation along the total wing span L.

vi(z0) =− 1
4π

∫ Lw

−Lw

dΓv
dz

z0 − z
dz, αi(z0) = tan−1

(
vi(z0)

V∞

)
≈ vi(z0)

V∞

. (3.51)

The aerodynamic lift coefficient is calculated equating the lift slope, clα , and the effective
angle of attack, αe f f , with the Kutta-Jukowski principle for the horseshoe distribution:

cl(z0) = clα(αe f f (z0)−αL=0), cl(z0) =
2Γv(z0)

V∞c(z0)
, (3.52)

where the parameter αL=0 expresses the zero lift angle of attack and c is the chord of the
airfoil. The effective angle of attack is calculated from the following equation:

αe f f (z0) = αg (z0)−αi. (3.53)

The effective angle of attack is the superposition of the geometric angle of attack αg and the
induced angle of attack. Combining the expressions in Equations (3.51), (3.52) and (3.53),
the value of the geometric angle of attack is calculated below:

αg(z0) =
2Γv(z0)

clαV∞c(z0)
+αL=0(z0)+

1
2clαV∞

∫ L

−L

dΓv
dz

z0 − z
dz (3.54)

In a general lift distribution, the spanwise coordinate must be transformed, relating the
spanwise coordinate with the angle ϕ:

z =−Lcosϕ, (3.55)

then, the intensity of the vortices is expressed as a sum of sins:

Γv(θ) = 4LV∞

N

∑
n=1

An sin(nϕ) (3.56)
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The lifting line problem is solved by calculating the An terms of Equation (3.56). Substituting
the value of the vortex intensity in Equation (3.54), the system of equations can be solved for
the N span points ϕ0, Equation (3.57).

αg(ϕ0) =
8L

clαc(ϕ0)

N

∑
n=1

An sin(nϕ0)+αL=0(ϕ0)+
2π

clα

N

∑
n=1

nAn
sin(nϕ0)

sin(ϕ0)
(3.57)

Fig. 3.10 Workflow of the nonlinear LLT. The nonlinear LLT is an iterative method that
takes the aerodynamic information from the airfoil curves.

The previous equations have been derived for a potential flow. Thus, it is only suitable for
linear aerodynamics and cannot simulate the nonlinear effects of the flow. A nonlinear LLT
algorithm is applied to obtain the aerodynamic forces in the present work. This procedure
takes the nonlinear aerodynamic coefficients from a bi-dimensional simulation. This iterative
procedure is presented in Figure 3.10. The first stage of the method requires dividing the wing
into a set of N sections in which the coefficients An are calculated. Then, the induced angle
of attack is initialized. The iterative process starts by calculating the lift slope at the operating
point of each stage. This step includes the nonlinear information in the calculations. Then,
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the An terms and, thus, the vortex intensity are calculated. From this point, the corresponding
downwash velocity and the induced angle of attack are trivial. If the error in the induced angle
of attack does not match the required accuracy, the lift slope is reevaluated, and the process
is repeated. Once the convergence of the method is ensured, the aerodynamic coefficients are
calculated.

Modeling of rotating blades

The three-dimensional aerodynamic effects of the rotating blades are calculated using the
blade element momentum theory (BEM). The BEM theory assumes that the blade can be
considered as a finite number of independent stream tubes. The solver can account for the
nonlinear aerodynamics of the airfoil and the induced velocity produced by the rotation and
includes a model to simulate the stall delay of the rotating blade. A visualization of the
complex aerodynamics of a rotating propeller is presented in Figure 3.11.

Fig. 3.11 Visualization of the vorticity of the DA4022 propeller. The blade is rotated im-
mersed in a rotor plane-normal free stream. The flow is calculated using a RANS simulation.

The BEM theory assumes that the spanwise flow is negligible and the flow is axisym-
metric. It is based on combining the blade element theory and the momentum conservation
equation for obtaining the induced velocity. In other words, the total axial force obtained
by integrating the airfoil loads equals the global axial force estimated by the momentum
equation. The induced velocity is calculated from the previous relationship. BEM theory
calculates the aerodynamic coefficients of the blade along its radial coordinate. Therefore,
this methodology allows us to calculate the thrust produced and the power generated or
consumed by the blades and can account for the effects of the rotation velocity. BEM analysis
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requires determining the aerodynamic conditions in every single section of the blade. Figure
3.12 shows the schematic representation of the airfoil and the velocity components.

Fig. 3.12 Schematic section of the blade. The figure shows the velocity decomposition of a
single-blade section. The parameter α is the angle of attack, V∞ the free stream velocity, Ω

the rotation velocity, r the radial position, a the disk-normal induced velocity ratio, and a′

the tangential induced velocity ratio.

From the beam element perspective, the axial force FN and the torque Q generated by an
infinitesimal blade portion are obtained from their aerodynamic coefficients:

dFN =
Nb

2
ρ∞V 2

rel (cl cos(ϕi)+ cd sin(ϕi))cdr (3.58)

dQ =
Nb

2
ρ∞V 2

rel (cl sin(ϕi)− cd cos(ϕi))crdr, (3.59)

where Nb is the number of blades, Vrel the airfoil relative velocity, r the radial position of the
airfoil, cd and cl are the drag and lift coefficients respectively and ϕi is the induced angle.
Equation (3.60) presents relative velocity and induced angle definitions.

Vrel =

√
(V∞ − (ΩRa))2 +(Ωr (1+a′))2, tan(ϕi) =

V∞

ΩR
1−a
1+a′

, (3.60)

being a and a′ the induced velocity factors in the disk normal and tangential directions. For
wind turbines the induced velocity factors are defined as a = vi

ΩR and a′ = vit
ΩR . The normal

and tangential induced velocities are denoted by vi and vit . For propellers, the factors are
a = − vi

ΩR and a′ ≈ 0. The induced velocities are calculated using the momentum theory.
The value of the induced velocities in the normal disk direction is obtained by combining
Equation (3.58) with the momentum theory, Equation (3.61). In contrast, the value in the disk
tangential direction is calculated by combining Equations (3.59) and (3.62). The expressions
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of the momentum theory force and torque are modified to include the induction factor on the
plane of the rotor where the thrust coefficient is dependent [71].

dFN =

{
ρ∞V 2

∞2aw(1−a)πrFdr a < 1
3

ρ∞V 2
∞2awπr

(
1− a

2(5−3a)
)

Fdr a ≥ 1
3

(3.61)

dQ = 4a′(1−a)ρV∞πr3
Ωdr. (3.62)

Here, the parameter aw is the induced velocity in the wake. This parameter is related to the
induced velocity in the rotor plane by Equation 3.63:

a =
aw

2

1− a2
w (1−a)

4
(

RΩ

V∞

)2
(aw −a)

 (3.63)

In equation 3.61, the tip-loss effects are included using the function F . This correction
depends on the number of blades, the relative wind angle, and the position of the blade:

F =

(
2
π

)
cos−1

[
exp
(
−
{

Nb (1− r/R)
2(1− r/R)sin(ϕi)

})]
(3.64)

In addition, the three-dimensional behavior of the blade generates extra lift and reduces
drag compared to the two-dimensional airfoil. These effects have been corrected using
equation (3.65) from Chaviaropoulos and Hansen [72].

cx,3D = cx,2D +2.2(c/r)cos4(θ)∆cx (3.65)

Here, X = l,d,m references the lift, drag, and moment coefficients. The parameter ∆cx is
calculated with Equation (3.66).

∆cl = cl,inviscid − cl,2D; ∆cd = cd,2D − cd,2D−min; ∆cm = cm,inviscid − cm,2D (3.66)

Modeling of pitching and plunging airfoils

The aerodynamic forces acting on an airfoil are divided into quasi-steady and dynamic
forces. The former is a consequence of the relative position of the airfoil in the flow. On the
other side, the dynamic forces depend on the effects of the wake. When an airfoil moves
perpendicular to the free flow, the fluid field is altered, modifying the aerodynamic loads
and, according to the Kutta-Jokowski theorem, the circulation around the airfoil. For this
reason, a vortex is generated in the trailing edge counter wise the airfoil vortex to maintain
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the circulation constant, creating a circulation distribution in the wake. This evolution can be
observed in Figure 3.13.

Fig. 3.13 Visualization of the velocity field evolution of a pitching plunging airfoil. The
fields are calculated for an S809 airfoil with a pitching movement centered in 8 deg of
incidence, an amplitude of 2.5 deg, and a plunging movement with an amplitude 0.1c. The
period of the pitching motion is 40% of the plunging oscillation. The temporal distance
between the images is 20% of the pitching period. Results were obtained using a 2D URANS
simulation.

Modeling the aerodynamic forces of pitching and plunging airfoils requires accounting
for the quasi-steady effects and, for rapid maneuvers, the added-mass terms, which are
included in the Theodorsen [41] model. For the former, the aerodynamic loads are multiplied
by a frequency domain function called Theodorsen’s transfer function. The expression of the
aerodynamic lift is provided in Equation (3.67).

F̂L = F̂La + F̂Lc, F̂La = πρ∞

(c
2

)2 [
−ω

2
f v̂+ iω fVrelα̂ +

c
2

ξeaω
2
f α̂

]
,

F̂Lc = clα ρ∞Vrel
c
2

C(κ)

[
iω f v̂+Vrelα̂ +

c
2

(
1
2
−ξea

)
iω f α̂

]
,

(3.67)

where F̂La is the added-mass term of the lift and F̂Lc the circulatory lift. The angular frequency
of the aerodynamic force is denoted by ω f and the nondimensional distance from the half
chord to the elastic axis by ξea. The symbol ˆ on the force, vertical displacement v, and
angle of attack α denote that the frequency domain defines the magnitudes. Concerning



54 Computational simulation of aeroelastic phenomena

the pitching moment, a similar expression is used. The pitch moment, Mp is divided into a
circulatory moment Mpc and an added mass moment Mpa:

M̂p = M̂pa + M̂pc,

M̂pa = πρ∞

(c
2

)2
[
−ω

2
ξea

c
2

ĥ− iωVrel

(
1
2
−ξea

)
α̂ +

(c
2

)2
(

1
8
+ξ

2
ea

)
ω

2
α̂

]
,

M̂pc = clα ρ∞Vrel

(c
2

)2
(

1
2
+ξea

)
C(κ)

[
iω ĥ+Vrelα̂ +

c
2

(
1
2
−ξea

)
iωα̂

]
,

(3.68)

The circulatory terms of both loads are dependent on Theodorsen’s transfer function,
C(κ). This function is defined using a combination of Bessel functions as follows:

C(κ) =
J1(κ)− iY1(κ)

(J1(κ)− iY1(κ))+ i(J0(κ)− iY0(κ))
(3.69)

being Jv the Bessel function of the first kind of real order v and complex argument and Yv the
Bessel function of the second kind of real order v and complex argument. These functions
are defined as follows:

Jv(κ) =
∞

∑
m=0

(−1)m

m!(m+ v)!

(x
2

)2m+v
and J−v(κ) = (−1)vJv(κ) (3.70)

Yv(κ) =
Jv(κ)cos(vπ)− J−v(κ)

sin(vπ)
(3.71)

The previous equations have been provided in the frequency domain. However, the
solution to the transient problem requires integration over time. In order to convert from
frequency to time, an inverse Fourier transformation is required. The computational cost of
this transformation becomes high as it requires storing all the previous time steps and the
information in both domains. Due to this reason, the Duhamel transformation is performed
to calculate the dynamic load as a superposition of impulses, Equation (3.72). The complex
function C(k) is simplified using Wagner’s function φ(s).

L(t) = πρ∞

(c
2

)2
(
−d2v

dt2 −V∞

dθ

dt
+

c
2

ξea
d2θ

dt2

)
−2πρ∞V∞

c
2

(
wa(0)φ(st)+

∫ st

0

dwa

dσ
(σ)φ(st −σ)dσ

) (3.72)
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The vertical velocity in the aerodynamic center, wa, the nondimensional time, st , and Wag-
ner’s function, φ(st), are defined by equation 3.73.

wa =
dv
dt

+V∞θ +
c
2

(
1
2
−a
)

dθ

dt
; st =

2tV∞

c
; φ(st) = 1−0.165e−0.0455st −0.355e−0.3st

(3.73)

3.3.2 Artificial Neural Networks for nonlinear flow predictions

Artificial neural networks (ANN) are computational models constituted by a set of unitary
entities, which are interconnected, called neurons. The neurons take a set of inputs to
generate the output. The output of a neuron can be used as input in the following layer of the
network. These multilayer structures are known as deep neural networks (DNNs). Due to
their complexity and the difficulty of understanding the physical meaning of each internal
parameter of the network, the ANN may be used as a black box to fit the model to a specific
physical phenomenon, constructing a surrogate model which works as a nonlinear regression.

The coefficients of the ANN can be fitted against (the network can learn from, in ANN
parlance) training data. Inside a neuron, the normalized input parameters are multiplied by a
set of weights, the fitting parameters of the ANN. The weights are fitted by a training process
in which the error, usually called loss of the system, is reduced. The structure of a typical
generic ANN may be observed in Figure 3.14. This structure comprises an input layer, which
includes the physical magnitudes, a hidden layer, and an output layer that gives the ANN
results. Each layer is connected by a set of neurons, which can be classified depending on its
internal structure. In the current work, two typologies are presented and tested to simulate
dynamic nonlinear aerodynamics: feed-forward (FNN) and long short-term memory (LSTM)
networks.

A training process is required to fit the internal parameters of the neural network. This
procedure takes the following steps:

1. A batch of time steps (input variables and results) is taken from the data set.

2. A backpropagation algorithm calculates partial derivatives over weights and biases.

3. A single step of an optimization algorithm is used to compute a new set of weights,
advancing to a new epoch.
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Fig. 3.14 Generic typical ANN. The architecture of the network presents an input (ii), a
hidden (hi) and an output (oi) layer.

Feed forward

Feed-forward neural networks calculate the results of the neuron taking only into account the
input variables of a specific time step. The basic unit of a feed-forward network is presented
in Figure 3.15.

Fig. 3.15 Artificial feed-forward network. The internal architecture of the neuron show the
input parameters y j, the weights w j, the bias θk, the activation function F and the output yk.

Inside the artificial neuron, the input variables are multiplied by a set of weights w j,k and
an additional bias θk is added, as follows:

sk = ∑
j

w j,ky j +θk (3.74)

After variable sk is calculated, it must be evaluated in an activation function. The activation
function is a non-decreasing function with a threshold value. The most commonly used
activation functions include step, rectified linear unit (ReLU), and sigmoid. These functions
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are represented in Figure 3.16. Equation (3.75) presents the formulation of the whole neuron
after multiplying the results by the activation function. The choice of activation function
depends on the specific requirements of the model and the problem being solved. For example,
the use of step functions is of high utility in classification problems where the neuron must
be activated or deactivated. The ReLU function is the most used activation function, mainly
used for CNNs. These functions are widely used due to the low computational cost and the
reduction of the vanishing gradients problem. The sigmoid is used for continuous outputs
between 0 and 1.

yk = F (sk) = F

(
∑

j
w j,ky j +θk

)
(3.75)

Fig. 3.16 Activation functions of the neural networks. (Left) step function, (center)
rectified linear unit function (ReLU), (right) sigmoid function.

After the neural network is built, the values of the weights are set through a supervised
training process in which an objective function, loss function, must be optimized [73]. The
mean squared error is selected as the loss function, L :

L = MSE =
1
n

n

∑
i=1

(ytrue − yk)
2 (3.76)

where n is the number of data, ytrue is the output real value and yk the output predicted value.
The loss function can be expressed as a function of the weights and biases:

L = L (w1,w2, ...,wn,θ1,θ2, ...,θn) (3.77)

As the activation functions are continuous in the whole domain, the derivatives of the
loss function concerning the weights and biases may be calculated using the backpropagation
method as follows for the whole domain of the problem:

∂L

∂wn
=

∂L

∂yk

∂yk

∂wn
= wn f ′ (w1y1 +w2y2 + ...+wn,θ1,θ2, ...,θn) (3.78)
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∂L

∂θn
=

∂L

∂yk

∂yk

∂θn
= θn f ′ (w1y1 +w2y2 + ...+wn,θ1,θ2, ...,θn) (3.79)

The derivative is applied to the complete artificial neural network. Assuming the nomen-
clature of Figure 3.14, the derivative of the output variable, o1, for the input variable weight
of the first layer of neurons, wi,n, can be expressed as:

∂L

∂wi,n
=

∂L

∂o1

∂o1

∂hn

∂hn

∂wi,n
(3.80)

where hn is the hidden layer value. The same procedure can be applied to the second layer
of neurons. Then, the derivative concerning the input weight of the second layer, wh,n, is
calculated as:

∂L

∂wh,n
=

∂L

∂o1

∂o1

∂wh,n
(3.81)

Different optimization algorithms may be used to obtain the value of the weights: Stochas-
tic Gradient Descent (SGD), Adam, Root Mean Square Propagation (RMSProp)... In the
current work, the RMSProp algorithm was applied. This formulation automatically fits
the learning ratio of the artificial neural network in order to reduce the computing time.
RMSProp is a gradient-based algorithm that uses Equations 3.82, 3.83 and 3.84.

υt = ξRMSPropυt−1 +(1−ξRMSProp)Gr2
t (3.82)

∆w j
t =− η

√
υt + εRMSprop

Grt (3.83)

w j
t+1 = w j

t +∆wt (3.84)

where η is the initial learning ratio, using a default value of 0.001 [74], υt is the exponential
average of squares of gradients, and Grt is the gradient at a time t along the direction w j.
The hyperparameter ξRMSProp has a recommended value of 0.9, and εRMSprop is a smoothing
term to avoid the division by zero, usually in the order of 10−8.

Long-short term memory: LSTM

Another type of network is the recursive neural network (RNN). The cells of this structure
contain internal loops, which can store information, making the data persistent inside the
network. These schemes are of high interest in predictions based on the evolution of past
information. A clear example of use is natural language.
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Fig. 3.17 Recurrent neural cell generic structure. (Left) simplified cell, (right) extended
cell structure.

One of the main types of recursive neural networks is long short-term memory (LSTM).
Its structure was proposed by Hochreiter and Schmidhuber [75] to overcome the problems
of vanishing gradients and gradient explosion, which appeared in RNN. The LSTM comes
from an improved method of back-propagating the error: constant error backpropagation.
The LSTM network keeps the error at a more constant level, allowing to increase in the
number of epochs of the training process [76]. LSTM networks can learn from long-term
and short-term information. Thus, they can consider the effect of the aerodynamic cycle.

Fig. 3.18 LSTM cell generic structure. The schematic representation shows the input gate,
the forget gate, the output gate, and the internal state of the neuron.

The internal structure of an LSTM network is presented in Figure 3.18. The following
equations govern the LSTM neuron:

Ct = ft ×Ct−1 + it ×C̃t (3.85)

ft = σ f
(
Wf · [ht−1,xt ]+b f

)
(3.86)

C̃t = tanh(Wc · [ht−1,xt ]+bc) (3.87)

it = σ f (Wi · [ht−1,xt ]+bi) (3.88)
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ht = ot × tanh(Ct) (3.89)

ot = σ f (Wo · [ht−1,xt ]+bo) (3.90)

where Ct is the cell state in the time t, ft is the result of the forget gate, it and Ct add
information to the cell state (input gate), and ot is the result of the output gate and ht is the
internal state of the cell. The weights of the LSTM neuron must be adjusted using a training
process with an optimization algorithm.

Finally, it is essential to consider that the batch of data used in an LSTM network must be
continuous and ordered in time. However, in FFN networks, the order of the dataset might
be random without affecting the solution.

Application of the artificial neural network to model transient nonlinear aerodynamic
coefficients

The aerodynamic lift and pitching moment coefficients depend on the flow conditions and
the airfoil position relative to the stream. Therefore, the coefficients are a function of the
angle of attack and its derivatives, which, at the same time, depend on the structure vibration.

In the work of Wu and Kareem [55], the aerodynamic coefficients were expressed as the
sum of a steady and a transient term. Following this idea, the aerodynamic coefficients are
modeled as steady coefficients cst

m and cst
l , which are a function of the angle of attack α of

the structure and its position x, in case it is interacting with other bodies, and the dynamic
coefficients, cdyn

m and cdyn
l , which depend on the mean angle of attack ⟨α⟩, its amplitude ∆α ,

its velocity α̇ and its acceleration α̈ . Equations (3.91) and (3.92) show the definition of the
aerodynamic coefficients.

cm = cst
m(α,x)+ cdyn

m (⟨α⟩ ,∆α, α̇, α̈) (3.91)

cl = cst
l (α,x)+ cdyn

l (⟨α⟩ ,∆α, α̇, α̈) (3.92)

On the one hand, the steady coefficients are straightforward to calculate. They can
be obtained experimentally from a bi-dimensional rigid body test or numerically using
computational fluid mechanics or potential aerodynamics. Along this work, these coefficients
were calculated from bi-dimensional RANS simulations. On the other hand, the dynamic
coefficients are predicted using a neural network. These ANNs are trained using a batch of
bi-dimensional RANS simulations of a pitching airfoil. The simplified architecture of the
aerodynamic neural network is presented in Figure 3.19. The amplitude and frequency of the
oscillations are chosen in order to contain the working conditions of interest.
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Fig. 3.19 Schematic architecture of the aerodynamic ANN. The inputs and outputs and
hidden layers of the neural network are presented.

3.3.3 Structural models

The reduction of the computational cost in the aeroelastic phenomena also requires the
simplification of the structural calculations. This section describes the models used in the
dissertation for decreasing the computational cost associated. Two different approaches are
described in the document. Both simplifications are related to dimensional reduction and
simplify the three-dimensional structure into a rigid solid motion and a one-dimensional
problem.

The first model is a 0D structure. An equivalent set of masses and springs is proposed.
This methodology has been widely used since the traditional references [21]. This section
presents a methodology for including the effects of boundary conditions on the solution, and
the mathematical background is derived.

However, the previous approach can only include one mode of vibration of the solution.
Therefore, the aeroelastic effects of secondary twisting or plunging modes should be ad-
dressed. In addition, the methodology could be more straightforward in those structures
in which there is a coupling between the torsion and the bending movements. In order
to overcome the previous problems, a beam model for the general orthotropic material is
presented. This methodology calculates the cross-section characteristic using the theory
derived by Librescu and Song [77] and then applies a beam element integration to solve the
structure.

Equivalent mass-spring system

This section derives the methodology for reducing an arbitrary three-dimensional beam to an
equivalent bi-dimensional section. Due to the aerodynamic and mechanical characteristics
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of the thin airfoil cross-section, only two degrees of freedom are selected, the torsion angle
and the vertical displacement. In addition, the out-of-plane motions of the cross-section are
assumed negligible and are not included in the problem.

The Lagrange equation, Equation (2.11) governs the system. For slender structures, a
beam-type behavior is expected. The structure can be reduced to an equivalent section whose
motion is dominated by bending and torsion deformations. Therefore, as this equivalent
section system presents two degrees of freedom, the reader is referred to Figure 2.4 for a
visual representation of the section.

In order to describe the beam motion, the displacement of the section may be expressed
as a summation of the vibration modes weighted by their influence on the problem. The
degrees of freedom are expressed as follows:

θ(z, t) = Θ(t)f(z) =
∞

∑
n=1

(Θi(t) · fi(z)) v(z, t) = V(t)g(z) =
∞

∑
n=1

(Vi(t) ·gi(z)) (3.93)

where z is the beam-wise direction, t is the time, v(z, t) is the vertical displacement of the
cross-section, θ(z, t) its twist, fi(z) and gi(z) are the associated eigenfunctions for torsion
and bending, respectively [78] and Θi(t) and Vi(t) are the amplitudes associated with each
of them. Both functions must comply with the boundary conditions of the structure, which,
for the case of a clamped-free plate, are θ(0, t) = θ ′(0, t) = 0; v(0, t) = v′(0, t) = 0 and
v′′(L, t) = 0. In Equation (3.93), the modal shapes contain all the spatial information, while
the temporal dependency is contained in their weighting terms. Figure 3.20 shows these
functions for the flexural and torsional motion of a beam structure with one end fixed and the
other end free.

Fig. 3.20 Modal shape functions of the beam. Four first vibration modes normalized with
the value in the free end of the beam. Bending modes (left) and torsion modes (right).
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The motion of the plate is supposed to be a combination of torsional and flexural modes.
Assuming a thin airfoil, the vertical displacement and velocity of any point located over the
cross-section (vp) can be calculated as a function of the chordwise coordinate x as follows,
assuming small deformations and linearizing the equations:

vp =−x
∞

∑
0

Θi(t) · fi(z)+
∞

∑
0

Vi(t) ·gi(z) v̇p =−x
∞

∑
0

Θ̇(t) · fi(z)+
∞

∑
0

V̇ (t) ·gi(z) (3.94)

With these assumptions, kinetic, T , and potential, U , energies of the plate could be expressed
following Equation 3.95:

T =
1
2

∫∫∫
ρsv̇2

pdV U =
1
2

∫
GJ
(

d θ

dz

)2

dz+
1
2

∫
EIx

(
d2 v
dz2

)2

dz (3.95)

where E is the elastic modulus, G is the shear modulus of the material, J is the torsion
constant of the section, and Ix is the second moment of area of the section. Therefore, the
left-hand term of the Lagrange equations can be written when a bounded number of N
eigenfunctions are considered and separating the contribution of the flexural and torsional
motion, as in Equation (3.96):

d
dt

∂T

∂ Θ̇
= IsLMθ Θ̈

d
dt

∂T

∂Ẇ
= msLMvV̈

∂U

∂Θ
=

GJ
L

Kθ Θ
∂U

∂V
=

EI
L3 KvV (3.96)

where Mθ and Mv are the mass matrices for the torsional and flexural motions, respectively, Is

the cross-section inertia, ms the cross-section mass and Kθ and Kv are the stiffness matrices
for the torsional and flexural motions. Their components can be calculated as stated in
Equations 3.97 and 3.98. Note that if eigenfunctions are taken forming an orthogonal base,
the off-diagonal terms will be zero:

Mi j
θ
=
∫ 1

0
fi

( z
L

)
f j

( z
L

)
d
( z

L

)
Mi j

v =
∫ 1

0
gi

( z
L

)
g j

( z
L

)
d
( z

L

)
(3.97)

Ki j
θ
=
∫ 1

0
f ′i
( z

L

)
f ′j
( z

L

)
d
( z

L

)
Ki j

v =
∫ 1

0
g′′i
( z

L

)
g′′j
( z

L

)
d
( z

L

)
(3.98)

Finally, it is necessary to obtain the generalized forces. The virtual work, δW , generated
at an arbitrary section will combine the virtual displacement produced by the vertical force



64 Computational simulation of aeroelastic phenomena

(lift) and the virtual torsion produced by the aerodynamic moment. In consequence, Equation
3.99 can be stated:

d(δW )

dz
=

1
2

ρ∞V 2
∞ccl ·δv+

1
2

ρ∞V 2
∞c2cm ·δθ

=
1
2

ρ∞V 2
∞ccl ·

∞

∑
1
(δVigi)+

1
2

ρ∞V 2
∞c2cm ·

∞

∑
1
(δΘi fi)

(3.99)

where cl and cm are the aerodynamic coefficients for lift and moment, respectively. Next, two
different assumptions will be made to obtain an equivalent 2D model by integrating Equation
(3.99).

• The aerodynamic coefficients, cl and cm, are a function only of the local angle of attack
and its derivatives of each one of the sections, i.e., the effects of three-dimensionality
of the aerodynamics can be neglected as a first approach.

• The aerodynamic force coefficients can be linearized around the rigid angle of attack.
The linear term of the series will be supposed to be constant for the whole span of the
plate. This assumption is only valid when the difference between the pitching angle in
the tip and the root is low.

With the previous assumptions, the aerodynamic coefficients of Equation (3.99) can be
written in a general way as:

cl = cl(v0,θ0)+ clθ θ +
clv
c

v+
c · cl θ̇

V∞

θ̇ +
cl v̇

V∞

v̇+
N

∑
n=2

cn · clθ (n)

V n
∞

θ
(n)+

N

∑
n=2

cn−1 · clv(n)

V n
∞

v(n),

(3.100)
being θ (n) = ∂ nθ

∂ tn and v(n) = ∂ nv
∂ tn . As a consequence, it will be possible to establish the value

of the generalized forces as follows:

Q fΘ = Q fΘ,0 +
1
2

ρ∞V 2
∞c2LAθ ,v

∞

∑
0

c
m(n)

v
cn−1

V n
∞

V(n)+
1
2

ρ∞V 2
∞c2LAθ ,θ

∞

∑
0

c
m(n)

θ

cn

V n
∞

Θ
(n) (3.101)

Q fV = Q fV,0 +
1
2

ρ∞V 2
∞cLAv,v

∞

∑
0

c
l(n)v

cn−1

V n
∞

V(n)+
1
2

ρ∞V 2
∞cLAv,θ

∞

∑
0

c
l(n)
θ

cn

V n
∞

Θ
(n) (3.102)
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where Aθ ,θ , Aw,θ , Aθ ,w and Aw,w are the aerodynamic influence matrices, whose components
are given by:

Ai j
θ ,v =

∫ 1

0
fi

( z
L

)
·g j

( z
L

)
d
( z

L

)
Ai j

θ ,θ =
∫ 1

0
fi

( z
L

)
· f j

( z
L

)
d
( z

L

)
Ai j

v,v =
∫ 1

0
gi

( z
L

)
·g j

( z
L

)
d
( z

L

) (3.103)

Note how, as torsion and flexion eigenfunctions are not necessarily orthogonal between
them, matrices Aθ ,v and Av,θ could contain non-zero values in the diagonal. However, when

i ̸= j,
Ai j

θ ,v

Aii
θ ,v

< 1, indicating that cross terms contribute to a lesser extent to the resulting motion.

Figure 3.21 presents the value of the Ai j matrices for a squared cross-section clamped beam.
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Fig. 3.21 Aerodynamic influence matrices. The color of the squares represents the value of
each element for a 4×4 matrix. Results for a squared cross-section clamped beam.

Additionally, for values of the velocity below or around the divergence, as the series need
to be convergent, it should be possible to assume that Vi

Vi+1
> 1, allowing, then, to neglect the

terms with a crossed contribution between low and high order modes. Therefore, it will be
possible to establish a set of equations as follows:

IsLMii
θ Θ̈i +

GJ
L

Kii
θ Θi =

1
2

ρ∞V 2
∞c2L

(
Aii

θ ,v

∞

∑
n=0

c
m(n)

v
V n

∞

cn−1 Vi
(n)+Aii

θ ,θ

∞

∑
n=0

c
m(n)

v
V n

∞

cn Θi
(n)

) (3.104)

msLMii
v V̈i +

EI
L3 Kii

v Vi =

1
2

ρ∞V 2
∞cL

(
Aii

v,v

∞

∑
n=0

c
l(n)v

V n
∞

cn−1 Vi
(n)+Aii

v,θ

∞

∑
n=0

c
l(n)v

V n
∞

cn Θi
(n)

) (3.105)
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On the other hand, the equations governing the motion of an aeroelastic characteristic
section can be expressed by assuming a single relevant bending and torsion mode as:

IsΘ̈1 + kθ Θ1 =
1
2

ρ∞V 2
∞c2L

(
Aii

θ ,v

∞

∑
n=0

c
m(n)

v
V n

∞

cn−1 V1
(n)+Aii

θ ,θ

∞

∑
n=0

c
m(n)

v
V n

∞

cn Θ1
(n)

)
(3.106)

msV̈1 + kvV1 =
1
2

ρ∞V 2
∞cL

(
Aii

v,v

∞

∑
n=0

c
l(n)v

V n
∞

cn−1 V1
(n)+Aii

v,θ

∞

∑
n=0

c
l(n)v

V n
∞

cn Θ1
(n)

)
(3.107)

In consequence, an inspection of the equations would lead to the next deduction: a 2D
CFD rigid body airfoil is capable of accurately representing the first mode of the 3D plate
motion when the 2D properties of the airfoil are taken to be:

I2D = Is
Mθ

11

Aθ
11

kθ =
GJ
L2

Kθ
11

Aθ
11

m2D = ms
Mv

11

Aθ ,v
11

kv =
EI
L4

Kv
11

Aθ ,v
11

(3.108)

Therefore, dimensionally, it can be deduced that, for a given geometry, the aeroelastic
response can be considered to be a function of the following non-dimensional parameters:

F2D

(
Re,Ma,

I2D
1
2ρ∞c4

,
kθ

1
2ρ∞V 2

∞c2
,

m2D
1
2ρ∞c2

,
kv

1
2ρ∞V 2

∞

,
tV∞

c
,
v1

c
,θ1

)
= 0 (3.109)

With this selection of parameters, it will be possible to reduce the complex 3D model to
an equivalent 2D. The characteristic parameter of the analysis is the non-dimensional torsion
stiffness k∗ = kθ

1
2 ρ∞V 2

∞c2 .

Orthotropic material thin-wall cross-section beam model

The development of reduced order models implies the simplification of the structure. In the
previous section, a mass-spring system was explained. Nevertheless, this equivalent section
cannot include the effects of second-order modes, the use of orthotropic materials, and the
application of distributed loads. In addition, the coupling between torsion and bending is not
straightforward for an equivalent section. In order to overcome these problems, this section
describes a beam model based on Librescu and Song [77] theory, which can account for the
previous effects.

In the first place, the characteristics of the cross-section are calculated. In order to
calculate the internal elastic energy, a nonshearable linear model based on 5 degrees of
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freedom is used. The model describes the behavior of thin-walled orthotropic materials
structures. The displacements and rotation on a beam element are presented in Figure 3.22.

Fig. 3.22 Displacements and rotations on a generic beam element. The displacements are
defined by the vector u = [u,v,w] and the rotations by θ = [φ ,ψ,θ ].

In order to derive the section stiffness and mass properties, the following assumptions
must be applied:

• The longitudinal displacement of the section w is much smaller than the transverse
displacements u and v.

• The normal stress in the thickness direction is negligible σnn ≈ 0.

• The section is rigid εxx = εyy = εxy = 0.

• Warping of the section is included in the calculations.

• Shear strains are uniform in the section.

Thus, the displacement of a generic point of the section is defined in Equations 3.110, 3.111
and 3.112.

u = u0 −
(

y−n
dx
ds

)
sin(θ)−

(
x+n

dy
ds

)
(1− cos(θ)) (3.110)

v = v0 +

(
x+n

dy
ds

)
sin(θ)−

(
y−n

dx
ds

)
(1− cos(θ)) (3.111)

w = w0 −
(

x+n
dy
ds

)
ψ +

(
y−n

dx
ds

)
φ − (Fw(s)+nrt(s))

∂θ

∂ z
(3.112)
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In the previous equations, subscript 0 indicates the reference point of the section, Fw(s)
and nrt(s) are the first and second warping functions, being rt the tangential distance to an
arbitrary point of the mean fiber of the wall. The cross-section coordinates are visualized in
Figure 3.23. The wall reference frame comprises the wall-tangential coordinate s, the beam
span-wise coordinate z, and the wall-normal coordinate n.

Fig. 3.23 Visualization of the cross-section coordinates. The global reference frame is the
x− y− z while the wall reference frame is s− z−n. The distance from the reference point 0
to a point in the wall is called r.

The warping function describes the movement of the cross-section out of its plane as an
effect of the rotation. These functions are defined in Equation (3.113).

Fw(s) =
∫ s

0
(rn(s)−Ψ)ds; Ψ =

∮ rn(s)ds
h(s)
ds

h(s)

→ ifh(s) = cte → Ψ =
2ΩA

β
(3.113)

being h(s) the thickness of the wall, ΩA the closed area of the section (null in the case of
open cross-section), β its perimeter, and rn(s) the normal distance to an arbitrary point of the
mean fiber of the wall. The normal and the tangential distance to a point in the cross-section
wall are defined as follows:

rt(s) = x
dx
ds

+ y
dy
ds

(3.114)

rn(s) = y
dx
ds

− x
dy
ds

(3.115)

A displacement field is generated when the loads are applied to the structure walls. This
displacement field is the cause of the strain along the structure. These strains are calculated
through the Green-Lagrange tensor, Equations (3.116), (3.117), and (3.118).
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εzz =
∂w
∂ z

+
1
2

[(
∂u
∂ z

)2

+

(
∂v
∂ z

)2
]
, (3.116)

γsz = γxz
dx
ds

+ γyz
dy
ds

+Ψ
∂φ

∂ z
+2n

∂φ

∂ z
, (3.117)

γnz = γxz
dy
ds

− γyz
dx
ds

. (3.118)

In the previous equations, the tangential deformations γxz and γyz are defined as a function
of the rotation of the section. The relationship between the displacement derivatives, the
rotation, and the tangential deformation is provided in Figure 3.24.

γxz =−ψ +
∂u0

∂ z
cos(θ)+

∂v0

∂ z
sin(θ) (3.119)

γyz = φ +
∂v0

∂ z
cos(θ)− ∂u0

∂ z
sin(θ) (3.120)

Fig. 3.24 Angular deformation diagrams. (Left) tangential deformation in the z-x plane
and (right) in the y-z plane.

Equations (3.110), (3.111), (3.112),(3.119) and (3.120) are substituted into Equations
(3.116), (3.117) and (3.118). An expression of the strains as a function of the n coordinate is
obtained, Equations (3.121).

εzz = ε
0
zz +nε

1
zz +n2

ε
2
zz, γsz = γ

0
sz + γ

(t)
sz = γ

0
sz +(Ψ+2n)WM, γnz = γ

0
nz (3.121)

where WM is the warping of the section, and its value is equivalent to ∂θ

∂ z .
Previously, in Section 2.2, the constitutive equations of a generic orthotropic material

were presented. Particularizing Equation (2.5) for thin-walled cross-section beams, the stress
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in the lamina normal direction may be assumed negligible to the other directions. Thus,
σ33 = 0, leading to a reduced constitutive matrix, Q, Equation 3.122, where T is the rotation
matrix between the systems and R converts from engineering strain to tensor strain.

Q =


Q1111 Q1122 0 0 0

Q2222 0 0 0
Q2323 0 0

Sym. Q1313 0
Q1212

 (3.122)

The values of the indexes of the Equation (3.122) are defined in Equations (3.123) and
(3.124).

Q1111 =
E1

1−ν12ν21
; Q1122 =

E1ν21

1−ν12ν21
=

E2ν12

1−ν12ν21
; Q2222 =

E2

1−ν12ν21
(3.123)

Q1212 = G12 ; Q2323 = G23 ; Q1313 = G13 (3.124)

The previous constitutive matrix has been presented in the material coordinate system.
Nevertheless, the material might be rotated with respect to the local coordinate system of the
shell. The matrix must be rotated in these cases as indicated in Equation (3.125).

Q̄ = T−1QRTR−1 =


Q̄1111 Q̄1122 0 0 Q̄1112

Q̄2222 0 0 Q̄2212

Q̄2323 Q̄2313 0
Sym. Q̄1313 0

Q̄1212

 (3.125)

A bi-dimensional constitutive equation is derived by focusing on the constitutive relation-
ships of the shell or lamina. Section 3.2.2 introduced this idea of separating the membrane
problem from the bending problem in the shell-type structures. A similar idea is presented
for the 1D beam. The membrane forces are calculated as follows for a lamina of M plies:

Nss =
M

∑
k=1

∫ hk

hk−1

σssdn, Nzz =
M

∑
k=1

∫ hk

hk−1

σzzdn, Nsz =
M

∑
k=1

∫ hk

hk−1

σszdn. (3.126)

In addition, the transverse shear stresses are also defined:
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Nzn =
M

∑
k=1

∫ hk

hk−1

σzndn, Nsn =
M

∑
k=1

∫ hk

hk−1

σsndn (3.127)

The stress couples or the bending loads are multiplied by the normal distance to the mean
fiber:

Lss =
M

∑
k=1

∫ hk

hk−1

σssndn, Lzz =
M

∑
k=1

∫ hk

hk−1

σzzndn, Lsz =
M

∑
k=1

∫ hk

hk−1

σszndn (3.128)

Finally, the high-order stresses are defined:

Γzz =
M

∑
k=1

∫ hk

hk−1

σzzn2dn (3.129)

Substituting the constitutive relationships on the laminate equations, the membrane stress,
transverse shear stress, coupled stress and high order stress are expressed as follows in
Equations (3.130), (3.131), (3.132) and (3.133).

Nss

Nzz

Nsz

=
M

∑
k=1

∫ nk

nk−1


Q̄1111εss + Q̄1122εzz + Q̄1112γsz

Q̄1122εss + Q̄2222εzz + Q̄2212γsz

Q̄1211εss + Q̄1222εzz + Q̄1212γsz


k

dn (3.130)

{
Nzn

Nsn

}
=

M

∑
k=1

∫ nk

nk−1

{
Q̄2323γzn + Q̄2313γsn

Q̄2313γzn + Q̄1313γsn

}
k

dn (3.131)

{
Lzz

Lsz

}
=

M

∑
k=1

∫ nk

nk−1

{
Q̄1122εss + Q̄2222εzz + Q̄2212γsz

Q̄1211εss + Q̄1222εzz + Q̄1212γsz

}
k

ndn (3.132)

Γzz =
M

∑
k=1

∫ hk

hk−1

(
Q̄1122εss + Q̄2222εzz + Q̄2212γsz

)
n2dn (3.133)

Then, the stiffness coefficients are defined. Stretching, bending-stretching, and higher
order coefficients are expressed as:

(Ai j,Bi j,Di j,Fi j,Hi j) =
M

∑
k=1

∫ hk

hk−1

Q̄(k)
i j (1,n,n

2,n3,n4)dn (3.134)

The forces and moments acting on the mean fiber of the walls can be calculated as a
function of the strains by applying the previous stiffness coefficients. Equations 3.135 to
3.138, are obtained assuming εss = ε0

ss and γsn = γ0
sn and using the constitutive relationships.
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

Nzz

Lzz

Γzz

Nsz

Lsz


=


A22 B22 D22 A26 B26

B22 D22 F22 B26 D26

D22 F22 H22 D26 F26

A26 B26 D26 A66 B66

B26 D26 F26 B66 D66





ε0
zz

ε1
zz

ε2
zz

γ0
sz +ΨWM

2WM


+


A12

B12

D12

A16

B16


{

ε0
ss

}

(3.135)
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ε1
zz

ε2
zz

γ0
sz +ΨWM

2WM


+P2

{
ε0

ss

}
(3.136)

{
Nss

Lss

}
= PT

2



ε0
zz

ε1
zz

ε2
zz

γ0
sz +Ψ

2WM


+
[

A11

]{
ε0

ss

}
= PT

2



ε0
zz

ε1
zz

ε2
zz

γ0
sz +ΨWM

2WM


+P3

{
ε0

ss

}

(3.137)

Nzn = A44γ
0
zn +A45γ

0
sn, Nsn = A45γ

0
zn +A55γ

0
sn (3.138)

The previous system of equations is simplified by considering a beam model. In other
words, the membrane and coupling stresses in the tangential direction Nss and Lss are
considered negligible. Then the value of ε0

ss can be calculated:

{
ε0

ss

}
=−P−1

3 PT
2



ε0
zz

ε1
zz

ε2
zz

γ0
sz +ΨWM

2WM


, (3.139)

and substituting Equation (3.139) in Equation (3.135), the final stiffness matrix relating the
loads with the strains is obtained:
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

Nzz

Lzz

Γzz

Nsz

Lsz


= Ks∗



ε0
zz

ε1
zz

ε2
zz

γ0
sz +ΨWM

2WM


→ Ks∗ = P1 −P2P−1

3 PT
2 (3.140)

The system is simplified, collapsing the terms of the warping:

Nzz

Lzz

Γzz

Nsz

Lsz


= Ks



ε0
zz

ε1
zz

ε2
zz

γ0
sz

WM


(3.141)

Nnz =

(
A44 −

A2
45

A55

)
γ

0
zn (3.142)

The terms of the matrix Ks are calculated as a function of the stiffness quantities Ai j, Bi j,
and Di j. Their expressions are provided in Table 3.1.

Table 3.1 Stiffness coefficients relating forces and strains. The coefficients are calculated
from the layup stiffness quantities.

Ks11 = A22 −
A2

12
A11

Ks12 = Ks21 = B22 − A12B12
A11

Ks13 = Ks31 = D22 − A12D12
A11

Ks14 = Ks41 = A26 − A12A16
A11

Ks15 = Ks51 =
(

A26 − A12A16
A11

)
Ψ+2

(
B26 − A12B16

A11

)
Ks22 = D22 −

B2
12

A11

Ks23 = Ks32 = F22 − B12D12
A11

Ks24 = Ks42 = B26 − A16B12
A11

Ks25 = Ks52 =
(

B26 − B12A16
A11

)
Ψ+2

(
D26 − B12B16

A11

)
Ks33 = H22 −

D2
12

A11

Ks35 = Ks53 =
(

D26 − D12A16
A11

)
Ψ+2

(
F26 − B16D12

A11

)
Ks34 = Ks43 = D26 − A16D12

A11

Ks45 = Ks54 =
(

A66 −
A2

16
A11

)
Ψ+2

(
B66 − A16B16

A11

)
Ks44 = A66 −

A2
16

A11

Ks55 =
(

B66 − A16B16
A11

)
Ψ+2

(
D66 −

B2
16

A11

)
In order to solve the system, the potential energy, U , of the deformation must be

calculated. This energy is the product of the stress and the strain integrated along the volume
of the solid:
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U =
1
2

∫ L

0

∮
c

M

∑
k=1

∫
h(k)

[σzzεzz + τszγsz +σnzγnz]k dndsdz

=
1
2

∫ L

0

∮
c

M

∑
k=1

∫
h(k)

[
σzz
(
ε

0
zz +nε

1
zz +n2

ε
2
zz
)
+ τsz

(
γ

0
sz +Ψ+2nWM

)
+σnz

(
γ

0
nz
)]

k dndsdz

(3.143)

The loads are integrated along the wall-normal direction. Equation 3.143 can be expressed as
follows:

U =
1
2

∫ L

0

∮
c

[
Nzzε

0
zz +Lzzε

1
zz +Γzzε

2
zz +Nsz

(
γ

0
sz +Ψ

)
+Lsz2WM +Nznγ

0
nz
]

dsdz (3.144)

The system must be expressed regarding the beam model loads and displacements. The
beam model loads are defined as a function of the membrane, coupled, and high-order
stresses. The forces Fx and Fy are the transversal forces, Fz is the axial force, Mx, My are the
bending moments, Mz the Saint-Venant twisting moment, Bω is the bi-moment and Γz is the
moment due to high order effects.

Fx(z, t) =
∫

C

(
Nsz

dx
ds

+Nzn
dy
ds

)
ds, Fy(z, t) =

∫
C

(
Nsz

dy
ds

−Nzn
dy
ds

)
ds (3.145)

Fz(z, t) =
∫

C
Nzzds, Mz(z, t) =

∫
C
(NszΨ+2Lsz)ds (3.146)

My(z, t) =
∫

C

(
−xNzz −Lzz

dy
ds

)
ds, Mx(z, t) =

∫
C

(
yNzz +Lzz

dx
ds

)
ds, (3.147)

Bω(z, t) =
∫

C
(Fw(s)Nzz − rt(s)Lzz)ds (3.148)

Γz(z, t) =
∫

C

(
Nzz

(
(x− xP)

2 +(y− yP)
2
)
+2Lzzrn +Γzz

)
ds, (3.149)

The terms ε0, ε1, and ε2 of the strain may be expressed as a function of the beam
displacements. For the sake of brevity, the intermediate steps are omitted. The resulting
expression for the potential energy is:
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U =
1
2

∫ L

0

[
Tz

(
∂w0

∂ z
+

1
2

(
∂u0

∂ z

)2

+
1
2

(
∂v0

∂ z

)2
)
+Qy

(
φ +

∂v0

∂ z
cosθ − ∂u0

∂ z
sinθ

)
+Qx

(
−ψ +

∂u0

∂ z
cosθ +

∂v0

∂ z
sinθ

)
+My

(
−∂ψ

∂ z
− ∂u0

∂ z
∂θ

∂ z
sinθ +

∂v0

∂ z
∂θ

∂ z
cosθ

)
+Mx

(
∂φ

∂ z
− ∂u0

∂ z
∂θ

∂ z
cosθ − ∂v0

∂ z
∂θ

∂ z
sinθ

)
+Mz

∂θ

∂ z
−Bw

∂ 2θ

∂ z2 +
1
2

Λz

(
∂θ

∂ z

)2
]

dz

(3.150)

Then, the system is linearized. Small displacements of the structure are assumed. There-
fore, the deformation energy is simplified to:

U =
1
2

∫ L

0

[
Tz

∂w0

∂ z
+Qy

(
φ +

∂v0

∂ z

)
+Qx

(
−ψ +

∂u0

∂ z

)
+My

(
−∂ψ

∂ z

)
+Mx

∂φ

∂ z
+Mz

∂θ

∂ z
−Bw

∂ 2θ

∂ z2

]
dz

(3.151)

The previous integral can be expressed in a matrix form:

U =
1
2

∫ L

0
qT Q f dz =

1
2

∫ L

0
qT Aqdz. (3.152)

In Equation 3.152, the energy is calculated as the product of the generalized load vector Q f

and the generalized displacement vector q. The displacement vector is defined as:

q =
[

∂w0
∂ z , φ + ∂v0

∂ z , −ψ + ∂u0
∂ z , −∂ψ

∂ z ,
∂φ

∂ z ,
∂θ

∂ z ,
∂ 2θ

∂ z2

]T
(3.153)

The previous vector is simplified for a nonshearable beam. In this particular application, the
bending moments are related to the displacement derivatives: φ =−∂v0

∂ z and ψ = ∂u0
∂ z .

q =
[

∂w0
∂ z , −∂ 2u0

∂ z2 , −∂ 2v0
∂ z2 ,

∂θ

∂ z ,
∂ 2θ

∂ z2

]T
(3.154)

The relationship between the generalized forces and displacements is the cross-section
stiffness matrix A:



76 Computational simulation of aeroelastic phenomena

Q f = Aq =


a11 a12 a13 a14 a15

a22 a23 a24 a25

a33 a34 a35

sym. a44 a45

a55

q (3.155)

The coefficients of this matrix are calculated as a function of the geometrical properties
of the section. Table 3.2 shows the values of the matrix elements.

Table 3.2 Elements of the cross-section stiffness matrix. The stiffness properties of the
cross-section are reduced to a matrix accounting for the elastic and geometrical characteris-
tics.

a11 =
∫

K11ds a12 = a21 =
∫ (

K11x+K12
dy
ds

)
ds

a13 = a31 =
∫ (

K11y−K12
dx
ds

)
ds a14 = a41 =

∫
(K11Fw −K12rt)ds

a15 = a51 =
∫

K15ds a22 =
∫ (

K11x2 +2xK12
dy
ds +K22

(
dy
ds

)2
)

ds

a23 = a32 =
∫ (

K11xy− xK12
dx
ds + yK12

dy
ds −K22

dx
ds

dy
ds

)
ds

a24 =
∫ (

K11xFw −K12xrt +FwK12
dy
ds −K22rt

dy
ds

)
ds

a25 = a52 =
∫ (

K15x+K25
dy
ds

)
ds a33 =

∫ (
K11y2 −2yK12

dx
ds +K22

(dx
ds

)2
)

ds

a34 = a43 =
∫ (

K11yFw −K12yrt −FwK12
dx
ds +K22rt

dx
ds

)
ds

a35 = a53 =
∫ (

yK15 −K25
dx
ds

)
ds a44 =

∫ (
K11F2

w −2K12Fwrt +K22r2
t
)

ds
a45 = a54 =

∫
(K15Fw −K25rt)ds a55 =

∫
(ΨK45)ds+2

∫
K55ds

Obtaining the stiffness matrix stated in Equation (2.12), the potential energy must be
derived concerning the degrees of freedom of the problem Lagrange equation (2.11). The
potential energy of Equation (3.152) depends on the displacements of vector q. However,
these degrees of freedom are continuous in space. Therefore, in order to calculate the entire
beam, a 1D finite element method is applied. The solution on the element nodes, qe

N , is
obtained assuming a shape function vector χe.

U =
1
2
(qe

N)
T
∫ L

0
χ

eA(χe)T dzqe
N =

1
2
(qe

N)
T Keqe

N (3.156)

Equation (3.156) shows the definition of the local stiffness matrix of the beam element,
Ke. This matrix is calculated below for the local coordinate system and then is rotated to the
global reference frame. The model assumes polynomial shape functions. The order of the
function is related to the displacement that it describes.
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Describing the aeroelastic behavior of the whole system requires the accurate modeling
of the inertial forces and the kinetic energy. The kinetic energy T is calculated as:

T =
1
2

∫ L

0
q̇T Msq̇dz. (3.157)

being the matrix Ms the section mass matrix. In order to calculate the values of the matrix,
the kinetic energy is expressed as a function of the density of the material and the velocity of
each point of the section:

T =
1
2

∫ L

0

∮
c

M

∑
k=1

∫
h(k)

[
(ρs)k

(
u̇2 + v̇2 + ẇ2)]dndsdz. (3.158)

Applying Hamilton’s functional to the previous equation and integrating through the beam
wall thickness and the mid-line of the cross-section, the mass matrix is obtained. Note that
for the kinetic energy, seven degrees of freedom vector is used:

q̇ =
[

u̇0, v̇0, ẇ0, φ̇ , ψ̇, θ̇
∂ θ̇

∂ z

]T
(3.159)

The cross-section mass matrix is defined for the seven degrees of freedom vector. The
matrix definition is:

Ms =



m11 0 0 0 0 m16 0
m22 0 0 0 m26 0

m33 m34 m35 0 m37

m44 m45 0 m47

sym. m55 0 m57

m66 0
m77


, (3.160)

where the elements of the matrix are provided in Table 3.3.
The mass terms m0, m1, and m2 in the previous integrals are the results of integrating the

density along the normal coordinates of the different layup plies of the structure:

m0 =
M

∑
k=1

∫
h(k)

(
ρ
(k)
s

)
dn, m1 =

M

∑
k=1

∫
h(k)

(
ρ
(k)
s

)
ndn, m2 =

M

∑
k=1

∫
h(k)

(
ρ
(k)
s

)
n2dn

(3.161)
Then, the nonshearable conditions are imposed, and the solution of the displacements

is calculated from the solutions of the nodes using the same polynomial shape functions
presented before. In this case, Me is the mass matrix of the beam element.
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T =
1
2
(q̇e

N)
T
∫ L

0
χ

eMe
s (χ

e)T dzq̇e
N =

1
2
(q̇e

N)
T Meq̇e

N (3.162)

Table 3.3 Elements of the cross-section mass matrix. The mass matrix is obtained as a
function of the cross-section geometry and the density of the materials.

m11 =
∮

c m0ds m22 =
∮

c m0ds
m33 =

∮
c m0ds m16 =−

∮
c m0yds+

∮
c m1

dx
ds ds

m34 =
∮

c m0yds−
∮

c m1
dx
ds ds m26 =

∮
c m0xds+

∮
c m1

dy
ds ds

m35 =−
∮

c m0xds−
∮

c m1
dy
ds ds m77 =

∮
c m0F2

wds+
∮

c m2r2
t ds−2

∮
c m1Fwrtds

m44 =
∮

c m0y2ds+
∮

c m2
(dx

ds

)2
ds−2

∮
c m1ydx

ds ds

m55 =
∮

c m0x2ds+
∮

c m2

(
dy
ds

)2
ds+2

∮
c m1xdy

ds ds

m66 =
∮

c m0
(
y2 + x2)ds+

∮
c m2

((dx
ds

)2
+
(

dy
ds

)2
)

ds+2
∮

c m1

(
xdy

ds − ydx
ds

)
ds

m37 =−
∮

c m0Fwds+
∮

m1rtds m45 =−
∮

c m0xyds+
∮

c m2
dx
ds

dy
ds ds+

∮
m1

(
ydy

ds − xdx
ds

)
ds

m57 =−
∮

c m0xFwds+
∮

c m2rt
dy
ds ds−

∮
c m1

(
Fw

dy
ds − xrt

)
ds

m47 =−
∮

c m0yFwds−
∮

c m2rt
dx
ds ds+

∮
c m1

(
Fw

dx
ds + yrt

)
ds

3.3.4 Reduced order model for generic aeroelastic phenomena

In the previous sections, different aerodynamic and structural problems were presented.
However, a complete aeroelastic model for general beam structures is still required. This
section explains the aeroelastic algorithm developed for simulating the coupled phenomena.
The code is based on the finite beam element method introduced in Section 3.3.3. The
cross-section characteristics are calculated and integrated into the local reference frame along
the beam element. Then, the matrices are rotated and assembled using the mesh connectivity
in the global reference frame. Once the structural system has been obtained, the boundary
conditions are applied to the nodes: connections between nodes, fixed displacements on the
nodes, or external loads, among others. In the case of aeroelastic coupling, the aerodynamic
loads are calculated for each time step using the sub-models presented in Section 3.3.1.

A diagram of the main solver is presented in Figure 3.25. The algorithm is divided into
different sub-blocks. In the initialization sub-block, the problem is defined. The mesh of
the geometry is provided for the beam, and the different cross-sections, material properties,
and boundary conditions are defined. The mass, Equation (3.160), and stiffness, Equation
(3.155), matrices of the cross-section are obtained from its geometry and the material. Then,
the finite beam element method is applied to the elements of the mesh in order to calculate
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the local and global mass and stiffness matrices. Then, if the solver requires the application
or calculation of external forces and moments, the load generation functions are included in
the problem. For the problems with aeroelastic coupling, this module is called at every time
step to recalculate the aerodynamic loads. After the boundary conditions are applied, the
solver is selected for the specific problem. A different solver is used depending on the nature
of the problem: steady, transient, or modal. Finally, the results are post-processed in order to
export or plot them.

Fig. 3.25 Main algorithm of the solver. The solver is divided into a set of blocks. Initial-
ization, the problem is defined, and the mass and stiffness matrices are calculated. Load
calculation where the external forces and moments are applied. Solver, which applies the
numerical schemes to obtain the displacements of the structure. Post-process to plot, store
and export the results.

Initialization block: case configuration

In order to define the domain of the problem, a set of text files are provided to the code. The
main text file contains the information on the case. The data contained in this file is presented
in Figure 3.26.

When the calculation is initialized, the first step is deciding the type of problem. Each
one is associated with a different solver. The mathematical definition of the numerical
schemes will be presented later in the solver section. Then the mesh must be defined with an
auxiliary file. This file provides the connectivity matrix, the grid points associated with the
cross-sections, and the node sets that define the boundary conditions.
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Fig. 3.26 Main file information. The configuration main file provides the information about
the solver used, the mesh, the boundary conditions and the post-processing options.

Fig. 3.27 Mesh file information. The connectivity matrix and the grid points are provided.
Each grid point is associated with a cross-section file which is modified by a scale factor, a
rotation angle, and an offset for its coordinates. In addition, sets of nodes are provided.

The elements are defined in the connectivity matrix. The number of elements, index,
nodes, and orientation are provided. Moreover, the code allows the inclusion of extra
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distributed mass and stiffness. The information relative to the cross-section is also provided.
Each cross-section grid point is followed by the file defining its geometry, a scaling factor to
increase or decrease its size, a rotation angle for creating a geometrical twist, and an offset in
the cross-section origin of coordinates. Additional concentrated mass can be added to the
cross-section. The diagram showing the information of the mesh file is provided in Figure
3.27.

Then, the information on the cross-section is provided in a similar file. As was defined in
the beam mesh, a connectivity matrix is again provided, as well as the positions of the grid
points of the cross-section.

The elements defined in the connectivity matrix also include all the information about the
section walls associated with them. For a simple isotropic wall, its thickness and material are
provided. However, the solver also allows the use of layups. The layup defines the material,
orientation, and thickness of each ply.

Fig. 3.28 Cross-section file information. The connectivity matrix, the grid points, and
the cell matrix are provided. The elements of the section are related to the physical wall.
They contain information about the thickness and the layup (orientation, thickness, and
material) of the plies. In addition, the leading and trailing edge nodes are highlighted, and
the aerodynamic center of the aerodynamic polar is provided.

In the beam theory, a different set of equations is used in the torsion of open-walled and
closed-walled structures. Due to this reason, the typology of the cross-section is selected. The
open-walled sections do not require additional information. Nevertheless, in the case of the
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closed sections, an extra matrix must be provided. This matrix defines the cells composing
the section. Each element is related to a closed cell or, in some structures, to a branch coming
out of the cell. This information is also provided in the section file.

In order to calculate the aerodynamic coefficients of the cross-sections, the aerodynamic
center of the polar is also defined, as well as the trailing and leading edges of the airfoil. The
information regarding the section file is provided in Figure 3.28.

The constitutive matrix is calculated for a generic orthotropic material. Nevertheless, the
algorithm allows the definition of orthotropic and isotropic materials. The material is defined
in a separate file that accounts for the type of material. Then, the elastic modulus E, the shear
modulus G, and the density ρs must be provided for the isotropic case. For the orthotropic
material, the elastic modulus in the principal directions E11, E22 and E33, the shear modulus
between the directions G12 and G23, their Poisson coefficients ν12 and ν23 and the density ρs

are defined. Note that 1 is the fiber direction, 2 is the shell-tangential fiber-normal direction,
and 3 is the shell-normal direction. The schematic diagram of the material file is provided in
Figure 3.29.

Fig. 3.29 Material file information. The code supports isotropic and orthotropic materials.

In addition, in Figure 3.27, additional mass and stiffness were included in the element
definition, and additional mass could be provided to the grid points. The corresponding
information is also provided through extra files. In the case of the distributed material,
information about the material properties must be provided, including its cross-section area,
inertia, crossed inertia, torsion constant, and the position of its center. For the concentrated
mass, the total mass of the body and its inertia concerning the reference point of the cross-
section are provided. The schematic diagram is provided in Figure 3.30.



3.3 Reduced order models 83

Fig. 3.30 Additional material file information. File for distributed or concentrated material.

Table 3.4 Example of aerodynamic polar file. The independent variables are defined with
IV while cl , cd and cm are the aerodynamic coefficients.

IV 1 IV 2 cl cd cm

IV 1
1 IV 2

1 cl11 cd11 cm11

IV 1
1 IV 2

2 cl12 cd12 cm12

...
...

...
...

...
IV 1

1 IV 2
N cl1N cd1N cm1N

IV 1
2 IV 2

1 cl21 cd21 cm21

IV 1
2 IV 2

2 cl22 cd22 cm22

...
...

...
...

...
IV 1

2 IV 2
N cl2N cd2N cm2N

...
...

...
...

...
IV 1

M IV 2
1 clM1 cdM1 cmM1

IV 1
M IV 2

2 clM2 cdM2 cmM2

...
...

...
...

...
IV 1

M IV 2
N clMN cdMN cmMN

Finally, the remaining information files are associated with the aerodynamic loads. If
the bi-dimensional polar-based aerodynamic model has been selected, the lift, drag, and
pitching moment coefficients must be provided to the code by a table. The table contains
the independent and dependent variables of aerodynamics. For the independent variables,
different parameters may be used. The typical variables are the angle of attack and Reynolds
number. However, in some cases where the airfoil is close to a wall, the distance to the wall
could be used as an independent parameter. The dependent parameters are the aerodynamic
forces and moment. Table 3.4 provides an example of aerodynamic polar. In addition, for
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those cases in which the 2D polar ANN model is activated, the ANN is provided with a file
containing the coefficients of the neural network after training.

Initialization block: structural model, 2D mass and stiffness matrices

The structural model is calculated after the configuration files are loaded into the algorithm.
The calculation starts by obtaining the A and Ms matrices. Their values are computed by
numerically integrating coefficients of Tables 3.2 and 3.3 for each cross-section element of
the beam. Table 3.5 provides the numerical value of these coefficients. The geometrical
values of the section element position xe and ye are calculated from its center of gravity. In
addition, the orientations of the panel

(dx
ds

)
e and

(dx
ds

)
e are calculated from its end points.

These parameters can be visualized in Figure 3.31.

Fig. 3.31 Geometrical parameters of a single element. The position xe and ye of the
element are referred to its center of gravity. The angles that the element is forming with the
global axis are quantified by

(dx
ds

)
e and

(
dy
ds

)
e
.

The stiffness, Ki j, and mass terms, mi, are calculated by numerically integrating the
material properties along the wall-normal coordinate. The stiffness terms are a function of
the stiffness coefficients in the element:

(Ai j,Bi j,Di j,Fi j,Hi j)e =
M

∑
k=1

(
Q̄(k)

i j

)
e

(
∆n,

n2
k −n2

k−1

2
,
n3

k −n3
k−1

3
,
n4

k −n4
k−1

4
,
n5

k −n5
k−1

5

)
,

(3.163)
being

(
Q̄(k)

i j

)
e

the constitutive relationship of the material with the corresponding orientation
in the cross-section wall, nk the initial and nk−1 the final wall-normal position of the ply. For
the mass term:

(m0,m1,m2) =
M

∑
k=1

(
ρ
(k)
s

)
e

(
∆n,

n2
k −n2

k−1

2
,
n3

k −n3
k−1

3

)
, (3.164)
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where
(

ρ
(k)
s

)
e

is the density of each ply. Calculating the warping function Fw and the cell
area term Ψ in the case of close-section beams is not straightforward, and its explanation is
provided below.

Table 3.5 Elements of the cross-section stiffness matrix. Numerical integration of the
elements.

a11 = ∑e(K11)e∆se a12 = ∑e

(
(K11)exe +(K12)e

(
dy
ds

)
e

)
∆se

a13 = ∑e
(
(K11)eye − (K12)e

(dx
ds

)
e

)
∆se a14 = ∑e ((K11)e(Fw)e − (K12)e(rt)e)∆se

a15 = ∑e(K15)e∆se a25 = ∑e(
(

K15)exe +(K25)e

(
dy
ds

)
e

)
∆se

a22 = ∑e

(
(K11)ex2

e +2xe(K12)e

(
dy
ds

)
e
+(K22)e

(
dy
ds

)2

e

)
∆se

a23 = ∑e

(
(K11)exeye − xe(K12)e

(dx
ds

)
e + ye(K12)e

(
dy
ds

)
e
− (K22)e

(dx
ds

)
e

(
dy
ds

)
e

)
∆se

a24 = ∑e

(
(K11)exe(Fw)e − (K12)exe(rt)e +(Fw)e(K12)e

(
dy
ds

)
e
− (K22)e(rt)e

(
dy
ds

)
e

)
∆se

a33 = ∑e

(
(K11)ey2

e −2ye(K12)e
(dx

ds

)
e +(K22)e

(dx
ds

)2
e

)
∆se

a34 = ∑e
(
(K11)eye(Fw)e − (K12)eye(rt)e − (Fw)e(K12)e

(dx
ds

)
e +(K22)e(rt)e

(dx
ds

)
e

)
∆se

a35 = ∑e
(
ye(K15)e − (K25)e

(dx
ds

)
e

)
∆se a45 = ∑e ((K15)e(Fw)e − (K25)e(rt)e)∆se

a44 = ∆se
(
(K11)e(Fw)

2
e −2(K12)e(Fw)e(rt)e +(K22)e(rt)

2
e
)

∆se

a55 = ∑e (Ψe(K45)e)∆se +2∑e(K55)e∆se

m11 = ∑e(m0)e∆se m22 = ∑e(m0)e∆se

m33 = ∑e(m0)e∆se m16 =−∑e(m0)eye∆se +∑e(m1)e
(dx

ds

)
e ∆se

m34 = ∑e(m0)eye∆se −∑e(m1)e
(dx

ds

)
e ∆se m26 = ∑e(m0)exe∆se +∑e(m1)e

(
dy
ds

)
∆se

m35 =−∑e(m0)exeds−∑e(m1)e

(
dy
ds

)
e
∆se m37 =−∑e(m0)e(Fw)e∆se +∑e(m1)e(rt)e∆se

m77 = ∑e(m0)e(Fw)
2
e∆se +∑e(m2)e(rt)

2
e∆se −2∑e(m1)e(Fw)e(rt)e∆se

m44 = ∑e(m0)ey2
e∆se +∑e(m2)e

(dx
ds

)2
e ∆se −2∑e(m1)eye

(dx
ds

)
e ∆se

m55 = ∑e(m0)ex2
e∆se +∑e(m2)e

(
dy
ds

)2

e
∆se +2∑e(m1)exe

(
dy
ds

)
e
∆se

m66 = ∑e(m0)e
(
y2

e + x2
e
)

∆se +∑e(m2)e

((dx
ds

)2
e +
(

dy
ds

)2

e

)
∆se

+2∑e(m1)e

(
xe

(
dy
ds

)
e
− ye

(dx
ds

)
e

)
∆se

m45 =−∑e(m0)exeye∆se +∑e(m2)e
(dx

ds

)
e

(
dy
ds

)
e
∆se +∑e(m1)e

(
ye

(
dy
ds

)
e
− xe

(dx
ds

)
e

)
∆se

m57 =−∑e m0xFwds+
∮

c m2rt
dy
ds ds−

∮
c m1

(
Fw

dy
ds − xrt

)
ds

m47 =−∑e(m0)eye(Fw)e∆se −∑e(m2)e(rt)e
(dx

ds

)
e ∆se +∑e(m1)e

(
(Fw)e

(dx
ds

)
e + ye(rt)e

)
∆se
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Initialization block: structural model, warping function

For calculating the warping function Fw and the area term Ψ, the definitions of Equation
(3.113) are used. For the generic case of a multicell cross-section, the calculation of the area
term is slightly more complex. Indeed, a different value is calculated for each one of the
walls of the cell. Assuming a generic multicell section, Figure 3.32, the relationship between
the tangential deformation and the derivative of the twist angle is defined as:

γsz = Ψ
∂θ

∂ z
, being



...
γR−1

sz

γ
R−1,R
sz

γR
sz

γ
R,R+1
sz

γR+1
sz
...


=



...
ψR−1

ψR−1,R

ψR

ψR+1,R

ψR+1

...



∂θ

∂ z
(3.165)

The values of the area term vector are defined as follows:

ψ
R =

HR

hGsz
, ψ

R−1,R =
HR−1,R

hGsz
, ψ

R,R+1 =
HR,R+1

hGsz
. (3.166)

The values of the matrix H are calculated in equation 3.167.

H = S−1
A I (3.167)

The elements of the matrix SA are calculated using the following expressions:

SR
A =

δR

2ΩRGsz
, SR−1,R

A =
δR−1,R

2ΩRGsz
, SR,R+1

A =
δR,R+1

2ΩRGsz
, (3.168)

being the δ vector defined as:

δR =
∮

R

ds
h

≈ ∑
e∈R

∆se

he
(3.169)

for the walls that only belong to one cell, and:

δR−1,R =
∮

R−1,R

ds
h

≈ ∑
e∈{R−1,R}

∆se

he
, δR,R+1 =

∮
R,R+1

ds
h

≈ ∑
e∈{R,R+1}

∆se

he
(3.170)

for the walls shared with the adjacent cells.



3.3 Reduced order models 87

Fig. 3.32 Diagram of a multi-cell cross-section. The cell R and the adjacent cells are
presented.

Concerning the warping, the cross-sections are allowed to deform out of the plane due to
the twisting loads. The warping function integration algorithm is complex and depends on
the typology of the section. Different functions are required for calculating the open and the
closed cross-sections. For the open cross-section, the algorithm for calculating the warping
function of a thin-walled open section is summarized in Figure 3.33.

Fig. 3.33 Algorithm for calculating the open section warping function. The warping
value along the section is accumulated to the free ends. Therefore, the algorithm requires to
account for the elements inside each branch.

This algorithm starts by identifying the connections between the nodes and the elements.
The number of elements connected to each node is used for sorting the nodes, starting the
calculation from the free-end nodes. A branch (blue shading of the cross-section of Figure
3.33) is used for adding the values of the increase in the warping function backward. In other
words, the free-end points are required to start the calculation, but the value in these nodes
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depends on the following value. Using the branches, the information is transported. Then,
for the internal points of the branch, the loop is repeated, adding more nodes in each iteration.
Finally, in some cases, the branches may collapse into a single grid point, called connecting
node. This node provides the information to the previous branches. Two examples of warping
function in open cross-section are provided in Figure 3.34. The example shows warping in
an I-shape and C-shape cross-sections. Note that the higher warping function is presented
in the free ends of the section. In the figure, the warping function is provided with a color
scale. The lighter colors mean positive movement out of its plane, and the darker ones mean
negative movement out of the plane.

Fig. 3.34 Warping function for open cross-section beams. (Left) I-shape cross-section,
(right) C-shape cross-section.

A slightly different code is used for the general multicell closed section. In this case,
the algorithm starts associating the elements with the corresponding cells and calculating
their connectivity. Some elements may belong to a single cell, while others to a pair of cells.
A positive rotation direction is defined for each cell, defining if the rotation is in the same
direction as the element or counter-wise. Then, terms of the integrand of Equation (3.113)
are calculated for the cross-section elements. The first term, (rn)i∆s, is directly calculated,
whereas the procedure presented previously, Equation (3.165), is followed for the calculation
of the vector Ψ for every cell. Finally, the integration is started from the initial point, storing
the increase of the warping in the initial point of the next element. Multiple inputs or outputs
might appear in multicell structures. The schematic algorithm is presented in Figure 3.35.
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Fig. 3.35 Algorithm for calculating the closed section warping function. The warping
value along the section is accumulated from the initial element of the first cell. Then a
constant term is added to make the integral null. The reference point of the section is the
black circle.

The algorithm is tested, and the results on two box-shape closed section beams are
calculated. These results are obtained for a single-cell section and a multicell section. The
warping functions are presented in Figure 3.36. Note that the corners of the box are the zones
where the warping is higher, while their center presents the lower influence. As previously
stated, the light colors are related to positive warping, while the darker ones are negative
out-of-the-plane displacements.

Fig. 3.36 Warping function for closed cross-section beams. (Left) Box-shape cross-section,
(right) multicell box-shape cross-section. The reference point of the section is the black
circle.
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Note that the warping function is highly dependent on the reference point of the calcula-
tion. In Figures 3.34 and 3.36, the reference point was indicated by a black dot.

Initialization block: structural model, integration of the beam elements

Once the cross-section properties are obtained, they must be integrated along the beam
elements. This integration is used to calculate the local stiffness and mass matrices in the
local coordinate frame of the element, Equations (3.156) and (3.162). Figure 3.37 presents
an example of a beam element.

Fig. 3.37 Beam element diagram. Note that the beam element solver calculates the displace-
ments on the nodes 0 and 1.
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In order to calculate these matrices, the shape functions of the independent variables must
be defined. Figure 3.37 shows an example of these shape functions. For the nonshearable
beam, four independent variables are taken into account in the solution:

• Axial displacement of the beam. This displacement is assumed to be linear along the
beam element.

w(z) =
z
L

w1 +
(

1− z
L

)
w0 (3.171)

• Transverse displacement in the x direction. A cubic function is used for defining the
displacement inside the element.

u(z) =
(

3z2

L2 − 2z3

L3

)
u1 +

(
1− 3z2

L2 +
2z3

L3

)
u0

+

(
z− 2z2

L
+

z3

L2

)
ψ0 +

(
−z2

L
+

z3

L2

)
ψ1

(3.172)

• Transverse displacement in the y direction. A cubic function is assumed inside the
element.

v(z) =
(

3z2

L2 − 2z3

L3

)
v1 +

(
1− 3z2

L2 +
2z3

L3

)
v0

+

(
−z+

2z2

L
− z3

L2

)
φ0 +

(
z2

L
− z3

L2

)
φ1

(3.173)

• Twist in the beam element. A cubic function is used:

θ(z) =
(

3z2

L2 − 2z3

L3

)
θ1 +

(
1− 3z2

L2 +
2z3

L3

)
θ0

+

(
z− 2z2

L
+

z3

L2

)
∂θ0

∂ z
+

(
−z2

L
+

z3

L2

)
∂θ1

∂ z

(3.174)

Once the deformation energy is calculated for the whole beam element, the stiffness
matrix is obtained by deriving the matrix with respect to the node displacements and rotations.
The vector of the node parameters is presented in the following expression:
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qe
N =

[
u0,v0,w0,φ0,ψ0,θ0,

∂φ0

∂ z
,
∂ψ0

∂ z
,
∂θ0

∂ z
,u1,v1,w1,φ1,ψ1,θ1,

∂φ1

∂ z
,
∂ψ1

∂ z
,
∂θ1

∂ z

]T

(3.175)
Therefore, the deformation energy is calculated from Equation (3.156) and then derived with
respect to the qe

N vector to calculate the element stiffness matrix Ke.

(Ke)i j =
∂ 2U

∂
(
qe

N
)

i ∂
(
qe

N
)

j

(3.176)

The elements of the matrix are presented in Table 3.6. These parameters are the results of
Equation (3.176) after integrating the cross-section stiffness along the length of the element.

Table 3.6 Coefficients of the beam element stiffness matrix. The coefficients are calculated
in their local reference frame.

Ke
1,1 =

12a22
L3 Ke

1,2 = Ke
2,1 =

12a23
L3 Ke

1,3 = Ke
3,1 = 0

Ke
1,4 = Ke

4,1 =−6a23
L2 Ke

1,5 = Ke
5,1 =

6a22
L2 Ke

1,6 = Ke
6,1 =

12a24
L3

Ke
1,7 = Ke

7,1 = 0 Ke
1,8 = Ke

8,1 = 0 Ke
1,9 = Ke

9,1 =
6a24+a25L

L2

Ke
1,10 = Ke

10,1 =−12a22
L3 Ke

1,11 = Ke
11,1 =−12a23

L3 Ke
1,12 = Ke

12,1 = 0
Ke

1,13 = Ke
13,1 =−6a23

L2 Ke
1,14 = Ke

14,1 =
6a22
L2 Ke

1,15 = Ke
15,1 =−12a24

L3

Ke
1,16 = Ke

16,1 = 0 Ke
1,17 = Ke

17,1 = 0 Ke
1,18 = Ke

18,1 =
6a24−a25L

L2

Ke
2,2 =

12a33
L3 Ke

2,3 = Ke
3,2 = 0 Ke

2,4 = Ke
4,2 =−6a33

L2

Ke
2,5 = Ke

5,2 =
6a23
L2 Ke

2,6 = Ke
6,2 =

12a34
L3 Ke

2,7 = Ke
7,2 = 0

Ke
2,8 = Ke

8,2 = 0 Ke
2,9 = Ke

9,2 =
6a34+a35L

L2 Ke
2,10 = Ke

10,2 =−12a23
L3

Ke
2,11 = Ke

11,2 =−12a33
L3 Ke

2,12 = Ke
12,2 = 0 Ke

2,13 = Ke
13,2 =−6a33

L3

Ke
2,14 = Ke

14,2 =
6a23
L2 Ke

2,15 = Ke
15,2 =−12a34

L3 Ke
2,16 = Ke

16,2 = 0

Ke
2,17 = Ke

17,2 = 0 Ke
2,18 = Ke

18,2 =
6a34−a35L

L2 Ke
3,3 =

a11
L

Ke
3,4 = Ke

4,3 =
a13
L Ke

3,5 = Ke
5,3 =−a12

L Ke
3,6 = Ke

6,3 =
a15
L

Ke
3,7 = Ke

7,3 = 0 Ke
3,8 = Ke

8,3 = 0 Ke
3,9 = Ke

9,3 =−a14
L

Ke
3,10 = Ke

10,3 = 0 Ke
3,11 = Ke

11,3 = 0 Ke
3,12 = Ke

12,3 =−a11
L

Ke
3,13 = Ke

13,3 =−a13
L Ke

3,14 = Ke
14,3 =

a12
L Ke

3,15 = Ke
15,3 =−a15

L

Ke
3,16 = Ke

16,3 = 0 Ke
3,17 = Ke

17,3 = 0 Ke
3,18 = Ke

18,3 =
a14
L

Ke
4,4 =

4a33
L Ke

4,5 = Ke
5,4 =−4a23

L Ke
4,6 = Ke

6,4 =−−6a34+a35L
L2

Ke
4,7 = Ke

7,4 = 0 Ke
4,8 = Ke

8,4 = 0 Ke
4,9 = Ke

9,4 =−a35
2 − 4a34

L

Ke
4,10 = Ke

10,4 =
6a23
L2 Ke

4,11 = Ke
11,4 =

6a33
L2 Ke

4,12 = Ke
12,4 =−a13

L

Ke
4,13 = Ke

13,4 =
2a33

L Ke
4,14 = Ke

14,4 =−2a23
L Ke

4,15 = Ke
15,4 =

6a34−a35L
L2
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Ke
4,16 = Ke

16,4 = 0 Ke
4,17 = Ke

17,4 = 0 Ke
4,18 = Ke

18,4 =
a35
2 − 2a34

L

Ke
5,5 =

4a22
L Ke

5,6 = Ke
6,5 =

6a24−a25L
L2 Ke

5,7 = Ke
7,5 = 0

Ke
5,8 = Ke

8,5 = 0 Ke
5,9 = Ke

9,5 =
a25
2 − 4a24

L Ke
5,10 = Ke

10,5 =−6a22
L2

Ke
5,11 = Ke

11,5 =−6a23
L2 Ke

5,12 = Ke
12,5 =

a12
L Ke

5,13 = Ke
13,5 =

−2a23
L

Ke
5,14 = Ke

14,5 =
2a22

L Ke
5,15 = Ke

15,5 =
−6a24+a25L

L2 Ke
5,16 = Ke

16,5 = 0

Ke
5,17 = Ke

17,5 = 0 Ke
5,18 = Ke

18,5 =−a25
2 + 2a24

L Ke
6,6 =

6(10a44+a55L2)
5L3

Ke
6,7 = Ke

7,6 = 0 Ke
6,8 = Ke

8,6 = 0 Ke
6,9 = Ke

9,6 =
a77
10 + 6a66

L2

Ke
6,10 = Ke

10,6 =−12a24
L3 Ke

6,11 = Ke
11,6 =−12a34

L3 Ke
6,12 = Ke

12,6 =−a17
L

Ke
6,13 = Ke

13,6 =−6a34+a35L
L2 Ke

6,14 = Ke
14,6 =−6a24+a25L

L2 Ke
6,15 = Ke

15,6 =−12a44
L3 − 6a55

5L

Ke
6,16 = Ke

16,6 = 0 Ke
6,17 = Ke

17,6 = 0 Ke
6,18 = Ke

18,6 =
a55
10 + 6a44

L2

Ke
7,7 = 0 Ke

7,8 = Ke
8,7 = 0 Ke

7,9 = Ke
9,7 = 0

Ke
7,10 = Ke

10,7 = 0 Ke
7,11 = Ke

11,7 = 0 Ke
7,12 = Ke

12,7 = 0
Ke

7,13 = Ke
13,7 = 0 Ke

7,14 = Ke
14,7 = 0 Ke

7,15 = Ke
15,7 = 0

Ke
7,16 = Ke

16,7 = 0 Ke
7,17 = Ke

17,7 = 0 Ke
7,18 = Ke

18,7 = 0

Ke
8,8 = 0 Ke

8,9 = Ke
9,8 = 0 Ke

8,10 = Ke
10,8 = 0

Ke
8,11 = Ke

11,8 = 0 Ke
8,12 = Ke

12,8 = 0 Ke
8,13 = Ke

13,8 = 0
Ke

8,14 = Ke
14,8 = 0 Ke

8,15 = Ke
15,8 = 0 Ke

8,16 = Ke
16,8 = 0

Ke
8,17 = Ke

17,8 = 0 Ke
8,18 = Ke

18,8 = 0 Ke
9,9 == a45 +

4a44
L + 2a55L

15

Ke
9,10 = Ke

10,9 =−6a24+a25L
L2 Ke

9,11 = Ke
11,9 =−6a34+a35L

L2 Ke
9,12 = Ke

12,9 =
a14
L

Ke
9,13 = Ke

13,9 =−a35
2 − 2a34

L Ke
9,14 = Ke

14,9 =
a25
2 + 2a26

L Ke
9,15 = Ke

15,9 =−a55
10 − 6a44

L2

Ke
9,16 = Ke

16,9 = 0 Ke
9,17 = Ke

17,9 = 0 Ke
9,18 = Ke

18,9 =
2a44

L − a55L
30

Ke
10,10 =

12a22
L3 Ke

10,11 = Ke
11,10 =

12a23
L3 Ke

10,12 = Ke
12,10 = 0

Ke
10,13 = Ke

13,10 =
6a23
L2 Ke

10,14 = Ke
14,10 =−6a23

L2 Ke
10,15 = Ke

15,10 =
12a24

L3

Ke
10,16 = Ke

16,10 = 0 Ke
10,17 = Ke

17,10 = 0 Ke
10,18 = Ke

18,10 =
−6a24+a25L

L2

Ke
11,11 =

12a33
L3 Ke

11,12 = Ke
12,11 = 0 Ke

11,13 = Ke
13,11 =

6a33
L2

Ke
11,14 = Ke

14,11 =−6a23
L2 Ke

11,15 = Ke
15,11 =

12a36
L3 Ke

11,16 = Ke
16,11 = 0

Ke
11,17 = Ke

17,11 = 0 Ke
11,18 = Ke

18,11 =
−6a36+a37L

L2 Ke
12,12 =

a11
L

Ke
12,13 = Ke

13,12 =
a13
L Ke

12,14 = Ke
14,12 =−a12

L Ke
12,15 = Ke

15,12 =
a15
L

Ke
12,16 = Ke

16,12 = 0 Ke
12,17 = Ke

17,12 = 0 Ke
12,18 = Ke

18,12 =−a14
L

Ke
13,13 =

4a33
L Ke

13,14 = Ke
14,13 =−4a23

L Ke
13,15 = Ke

15,13 =
6a34+a35L

L2

Ke
13,16 = Ke

16,13 = 0 Ke
13,17 = Ke

17,13 = 0 Ke
13,18 = Ke

18,13 =
a35
2 − 4a34

L

Ke
14,14 =

4a22
L Ke

14,15 = Ke
15,14 =−6a24+a25L

L2 Ke
14,16 = Ke

16,14 = 0

Ke
14,17 = Ke

17,14 = 0 Ke
14,18 = Ke

18,14 =−a25
2 + 4a24

L Ke
15,15 =

12a44
L3 + 6a55

5L

Ke
15,16 = Ke

16,15 = 0 Ke
15,17 = Ke

17,15 = 0 Ke
15,18 = Ke

18,15 =−a55
10 − 6a44

L2
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Ke
16,16 = 0 Ke

16,17 = Ke
17,16 = 0 Ke

16,18 = Ke
18,16 = 0

Ke
17,17 = 0 Ke

17,18 = Ke
18,17 = 0 Ke

18,18 =−a45 +
4a44

L + 2a55L
15

A similar procedure is followed to calculate the beam element mass matrix. In this case,
the kinetic energy, Equation (3.162), is used. Then, the mass matrix is obtained by deriving
the energy concerning the elements of D̈e

N vector, Equation (3.177). The coefficients of the
matrix are presented in Table 3.7.

(Me)i j =
∂ 2T

∂
(
q̈e

N
)

i ∂
(
q̈e

N
)

j

(3.177)

Once the beam element stiffness and mass matrices are calculated in the local reference
frame, they must be rotated to the global reference frame. After the rotation, the resulting
element matrices must be assembled in the global stiffness, KG, and mass, MG, matrices.
The global system integrates the degrees of freedom of all the nodes. The vector containing
all the displacements is called uG. The loads used during the calculation are concentrated on
the nodes. The vector FG contains all the loads on the structure.

Table 3.7 Coefficients of the beam element mass matrix. The coefficients are calculated in
their local reference frame.

Me
1,1 =

13Lm11
35 + 6m55

5L Me
1,2 = Me

2,1 =
6m45
5L

Me
1,3 = Me

3,1 =
m35

2 Me
1,4 = Me

4,1 =−m45
10

Me
1,5 = Ke

5,1 =
11L2m11

210 + m55
10 Me

1,6 = Me
6,1 =

13Lm16
35 − 6m57

5L

Me
1,7 = Me

7,1 = 0 Me
1,8 = Me

8,1 = 0

Me
1,9 = Me

9,1 =
11L2m16

210 − m57
10 Me

1,10 = Me
10,1 =

9Lm11
70 − 6m55

5L

Me
1,11 = Me

11,1 =−6m45
5L Me

1,12 = Me
12,1 =

m35
2

Me
1,13 = Me

13,1 =−m45
10 Me

1,14 = Me
14,1 =−13L2m11

420 + m55
10

Me
1,15 = Me

15,1 =
9Lm16

70 + 6m57
5L Me

1,16 = Me
16,1 = 0

Me
1,17 = Me

17,1 = 0 Me
1,18 = Me

18,1 =−13L2m16
420 − m57

10

Me
2,2 =

13Lm11
35 + 6m55

5L Me
2,3 = Me

3,2 =
m34

2

Me
2,4 = Me

4,2 =−11L2m22
210 − m44

10 Me
2,5 = Me

5,2 =
m45
10

Me
2,6 = Me

6,2 =
13Lm26

35 − 6m47
5L Me

2,7 = Me
7,2 = 0

Me
2,8 = Me

8,2 = 0 Me
2,9 = Me

9,2 =
11Lm26

210 − m47
10

Me
2,10 = Me

10,2 =−6m45
5L Me

2,11 = Me
11,2 =

9Lm22
70 − 6m44

5L
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Me
2,12 = Me

12,2 =
m34

2 Me
2,13 = Me

13,2 =
13L2m22

420 − m44
420

Me
2,14 = Me

14,2 =
m45
10 Me

2,15 = Me
15,2 =

9Lm26
70 + 6m47

5L

Me
2,16 = Me

16,2 = 0 Me
2,17 = Me

17,2 = 0

Me
2,18 = Me

18,2 =−13L2m26
420 − m47

10 Me
3,3 =

m33L
3

Me
3,4 = Me

4,3 =
m34L

12 Me
3,5 = Me

5,3 =−m35L
12

Me
3,6 = Me

6,3 =
−m37

2 Me
3,7 = Me

7,3 = 0

Me
3,8 = Me

8,3 = 0 Me
3,9 = Me

9,3 =−m37L
12

Me
3,10 = Me

10,3 =−m35
2 Me

3,11 = Me
11,3 =−m34

2

Me
3,12 = Me

12,3 =−m33L
6 Me

3,13 = Me
13,3 =−m34L

12

Me
3,14 = Me

14,3 =
m35L

12 Me
3,15 = Me

15,3 =−m37
2

Me
3,16 = Me

16,3 = 0 Me
3,17 = Me

17,3 = 0

Me
3,18 = Me

18,3 =−m37L
12 Me

4,4 =
m22L3

105 + 2Lm44
15

Me
4,5 = Me

5,4 =−2Lm45
15 Me

4,6 = Me
6,4 =−11L2m26

210 + m47
10

Me
4,7 = Me

7,4 = 0 Me
4,8 = Me

8,4 = 0

Me
4,9 = Me

9,4 =−L3m26
105 + 2Lm47

15 Me
4,10 = Me

10,4 =
m45
10

Me
4,11 = Me

11,4 =−13L2m22
420 + m44

10 Me
4,12 = Me

12,4 =−m34L
12

Me
4,13 = Me

13,4 =−L3m22
140 + m44

30 Me
4,14 = Me

14,4 =
m45L

30

Me
4,15 = Me

15,4 =−13L2m26
420 − m47

10 Me
4,16 = Me

16,4 = 0

Me
4,17 = Me

17,4 = 0 Me
4,18 = Me

18,4 =
L3m26

140 − m47L
30

Me
5,5 =

L3m11
105 + Lm55

15 Me
5,6 = Me

6,5 =
11L2m16

210 − m57
10

Me
5,7 = Me

7,5 = 0 Me
5,8 = Me

8,5 = 0

Me
5,9 = Me

9,5 =
L3m16

105 − Lm57
15 Me

5,10 = Me
10,5 =

13L2m11
420 − m55

10

Me
5,11 = Me

11,5 =−m45
10 Me

5,12 = Me
12,5 =

m35L
12

Me
5,13 = Me

13,5 =
m45L

30 Me
5,14 = Me

14,5 =−L3m11
140 − m55

30

Me
5,15 = Me

15,5 =−13L2m26
420 + m57

10 Me
5,16 = Me

16,5 = 0

Me
5,17 = Me

17,5 = 0 Me
5,18 = Me

18,5 =−L3m16
140 + m57L

30

Me
6,6 =

13Lm66
35 + 6m77

5L Me
6,7 = Me

7,6 = 0

Me
6,8 = Me

8,6 = 0 Me
6,9 = Me

9,6 =
11L2m66

210 + m77
10

Me
6,10 = Me

10,6 =
9Lm16

70 + 6m57
5L Me

6,11 = Me
11,6 =

9Lm26
70 + 6m47

5L

Me
6,12 = Me

12,6 =−m37
2 Me

6,13 = Me
13,6 =

13L2m26
420 + m47

10

Me
6,14 = Me

14,6 =−13L2m16
420 − m57

10 Me
6,15 = Me

15,6 =−9Lm66
70 − 6m77

5L

Me
6,16 = Me

16,6 = 0 Me
6,17 = Me

17,6 = 0

Me
6,18 = Me

18,6 =−13L2m66
420 + m77

10 Me
7,7 = 0
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Me
7,8 = Me

8,7 = 0 Me
7,9 = Me

9,7 = 0
Me

7,10 = Me
10,7 = 0 Me

7,11 = Me
11,7 = 0

Me
7,12 = Me

12,7 = 0 Me
7,13 = Me

13,7 = 0
Me

7,14 = Me
14,7 = 0 Me

7,15 = Me
15,7 = 0

Me
7,16 = Me

16,7 = 0 Me
7,17 = Me

17,7 = 0

Me
7,18 = Me

18,7 = 0 Me
8,8 = 0

Me
8,9 = Me

9,8 = 0 Me
8,10 = Me

10,8 = 0
Me

8,11 = Me
11,8 = 0 Me

8,12 = Me
12,8 = 0

Me
8,13 = Me

13,8 = 0 Me
8,14 = Me

14,8 = 0
Me

8,15 = Me
15,8 = 0 Me

8,16 = Me
16,8 = 0

Me
8,17 = Me

17,8 = 0 Me
8,18 = Me

18,8 = 0

Me
9,9 == L3m66

105 + 2m77L
15 Me

9,10 = Me
10,9 =

13L2m16
420 + m57

10

Me
9,11 = Me

11,9 =
13L2m26

420 + m47
10 Me

9,12 = Me
12,9 =−Lm37

12

Me
9,13 = Me

13,9 =
L3m26

140 − Lm47
30 Me

9,14 = Me
14,9 =−L3m16

140 + Lm57
30

Me
9,15 = Me

15,9 =−13L2m66
420 − m77

10 Me
9,16 = Me

16,9 = 0

Me
9,17 = Me

17,9 = 0 Me
9,18 = Me

18,9 =−L3m66
140 − m77L

30

Me
10,10 =

13Lm11
35 + 6m55

5L Me
10,11 = Me

11,10 =
6m45
5L

Me
10,12 = Me

12,10 =−m35
2 Me

10,13 = Me
13,10 =

m45
10

Me
10,14 = Me

14,10 =−11L2m11
210 − m55

10 Me
10,15 = Me

15,10 =
13Lm16

35 − 6m57
5L

Me
10,16 = Me

16,10 = 0 Me
10,17 = Me

17,10 = 0

Me
10,18 = Me

18,10 =−11L2m16
210 + m57

10 Me
11,11 =

13Lm22
35 + 6m44

5L

Me
11,12 = Me

12,11 =−m34
2 Me

11,13 = Me
13,11 =

11L2m22
210 + m44

10

Me
11,14 = Me

14,11 =−m45
10 Me

11,15 = Me
15,11 =

13Lm26
35 − 6m47

5L

Me
11,16 = Me

16,11 = 0 Me
11,17 = Me

17,11 = 0

Me
11,18 = Me

18,11 =−11L2m26
210 + a47

10 Me
12,12 =

Lm33
3

Me
12,13 = Me

13,12 =
Lm34

12 Me
12,14 = Me

14,12 =−Lm35
12

Me
12,15 = Me

15,12 =
m37

2 Me
12,16 = Me

16,12 = 0

Me
12,17 = Me

17,12 = 0 Me
12,18 = Me

18,12 =
Lm37

12

Me
13,13 =

L3m22
105 + 2Lm44

15 Me
13,14 = Me

14,13 =−2Lm45
15

Me
13,15 = Me

15,13 =
11L2m26

210 − m47
30 Me

13,16 = Me
16,13 = 0

Me
13,17 = Me

17,13 = 0 Me
13,18 = Me

18,13 =−L3m26
105 + 2Lm47

15

Me
14,14 =

L3m11
105 + 2Lm55

15 Me
14,15 = Me

15,14 =−11L2m16
210 + m57

10

Me
14,16 = Me

16,14 = 0 Me
14,17 = Me

17,14 = 0
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Me
14,18 = Me

18,14 =−L3m16
105 − 2Lm57

15 Me
15,15 =

13Lm66
35 + 6m77

5L

Me
15,16 = Me

16,15 = 0 Me
15,17 = Me

17,15 = 0

Me
15,18 = Me

18,15 =−11L2m66
210 − m77

10 Me
16,16 = 0

Me
16,17 = Me

17,16 = 0 Me
16,18 = Me

18,16 = 0

Me
17,17 = 0 Me

17,18 = Me
18,17 = 0

Me
18,18 =

L3m66
105 + 2Lm77

15

Load calculation

The solver is allowed to include structural, aerodynamic, and centrifugal loads. The input of
the loads depends on their typology. The structural loads are included in the calculation as a
vector of forces, moments, and bi-moments on the beam nodes. Concerning the aerodynamic
loads, different models are allowed. Figure 3.38 shows the decision diagram in the load
algorithm.

Fig. 3.38 Algorithm for the calculation of the aerodynamic loads. The decision algorithm
chooses between blade or wing models and includes if required, transient effects.

Different aerodynamic models are allowed for the solver. The models can be classified
depending on the physical problem.

• Infinite wing: the aerodynamic surface is considered infinite. Thus, the tip vortex
effects are neglected. This model is useful for problems in which the surface is
constrained into walls.

• Finite wing: the surface presents a free end. Therefore, a tip vortex is generated, and
the induced velocity distribution must be considered. The solver is based on the Prandtl
lifting line theory (LLT). The derivation of the model and its equations were presented
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in Section 3.3.1. The algorithm for calculating the finite wing-induced velocity and
the aerodynamic coefficients are presented in Figure 3.39. The calculation starts by
defining a set of control nodes in the beam. These nodes are used for calculating the
An terms of Equation (3.57). Then, the induced velocity is calculated from the An

coefficients as previously presented in Equation (3.51). As the nonlinear LLT algorithm
is calculated in the code, the workflow of Figure 3.39 presents similar steps compared
with Figure 3.10.

• Rotating blade: the surface is rotating in a free stream. The rotation effects generate
an induced velocity distribution calculated by the blade element momentum theory
(BEM). This model was previously explained in Section 3.3.1. In addition, the tip
losses are considered by a correction function. The centrifugal force acting on the
blade is also added to the problem. Figure 3.40 presents the diagram showing the BEM
algorithm. The control nodes are defined. The initial induced velocity is set for these
points, and the aerodynamic coefficients are calculated. The blade element and the
momentum theory thrust are calculated. If the results do not match, the normal-induced
velocity is iterated, and the thrust is recalculated. The same procedure is used for
the tangential-induced velocity and the power. Finally, the results are interpolated or
extrapolated to the rest of the blade.

Fig. 3.39 Algorithm for calculating the lifting line theory. The induced velocity is iterated
on the control points to calculate the aerodynamic coefficients.
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Fig. 3.40 Algorithm for calculating the blade element momentum theory. The normal and
tangential-induced velocities are iterated on the control points to calculate the aerodynamic
coefficients.

Fig. 3.41 Algorithm of the Theodorsen transient aerodynamic forces. Note that the code
generates a temporal solution from the frequency-domain loads.
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Fig. 3.42 Algorithm of the surrogated model based on artificial neural networks for
calculating transient aerodynamic forces. This algorithm shows the steps to calculate the
dynamic aerodynamic loads once the ANN is trained.

In addition, depending on the transient effects included in the problem, the models can
be classified into the following classes:

• Steady or quasi-steady loads: the transient effects are neglected.

• Transient loads based on potential aerodynamics: the transient effects are included
based on the effects of the potential wake generated by a moving airfoil. This model,
based on Theodorsen coefficients, was presented in Section 3.3.1. Figure 3.41 shows
the stages of the algorithm. The calculation starts calculating the nondimensional time
of the time step and the historical evolution of the plunge, twist, and vertical velocity
of the aerodynamic center. Then, the Duhamel transformation is obtained, Equation
(3.72). Finally, the aerodynamic loads are calculated, and the resulting displacement is
stored.

• Transient loads based on artificial neural networks: the transient loads acting on
the airfoil are predicted using a pre-trained surrogate model. This model takes the
variation on the angle of attack and its derivatives to calculate the dynamic effects of
the aerodynamic loads, as previously presented in Section 3.3.2. The procedure is
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presented in Figure 3.42. The code starts calculating the input variables of the network:
mean angle of attack and its deviation, velocity, and acceleration. Then, the input
variables are normalized between 0 and 1. The normalized aerodynamic coefficients
are predicted using the ANN. Finally, the coefficients are denormalized, and the forces
are calculated.

Finally, the three-dimensional physical problems previously described require using
the cross-section (airfoil) aerodynamic coefficients. The calculation of these coefficients is
allowed via two models:

• Theoretic lift slope: the aerodynamic coefficient is calculated as:

cl = clαα , being clα = 2π (3.178)

The lift slope of the airfoil, locating the lift force in the theoretical aerodynamic center,
a quarter of the chord backward from the leading edge. This aerodynamic model
cannot include the stall effects and aerodynamic nonlinearities. It is helpful for initial
calculations when the airfoil data is unknown or in case of low incidence.

• Aerodynamic coefficients interpolated from a polar file. This model allows including
the stall and nonlinear effects in the calculation. It requires an external calculation
or experimental test to determine the value of the aerodynamic coefficients. The file
containing these coefficients was previously explained in Table 3.4.

Solver: steady

The solution of the aeroelastic system is obtained for different problems. Some of them
are stationary, while others are transient or modal. The steady problems do not require the
integration of the solution in time. The dynamic system of the steady numerical problem is
defined by the following:

KGqG = FG (3.179)

A direct resolution of the system of equations obtains the solution. The system matrix
is decomposed using LU. The stiffness matrix is factored using partial pivoting and row
interchanges:

KG = KG
p LLU ULU , (3.180)
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where KG
p is the permutation matrix, LLU is the unit lower triangular and ULU is the upper

triangular matrix.
In the case of the steady aeroelastic solution, in addition to the previous solver, the

results must be converged until the displacement stops oscillating. An initial displacement
is calculated. Then the force is reevaluated, and the process continues until convergence,
Figure 3.43.

Fig. 3.43 Algorithm of the steady aeroelastic solver. The solution of the steady problem is
iterated until convergence.

Solver: modal

The modal analysis is required for problems in which the frequency response is the interest
solution. This analysis is based on the eigensystem solution. In order to obtain this solution,
the dynamic equation is normalized to the mass to obtain the modal functions of the beam.
For the most simple case, the natural vibration problem, the dynamic system is expressed as:

Iÿ+M−1/2KM−1/2y = 0, where the vector y is defined as: q = M−1/2y (3.181)

Then, the vibration frequencies are obtained by calculating the eigenvalues of the problem
(λ ), whereas the modal shapes are obtained from the eigenvectors (yeig). Thus, Equation
3.181 may be written as: (

Iλ −M−1/2KM−1/2
)

yeig = 0 (3.182)

The vibration frequency vector is calculated from the previous expression as:

fmod =

√
λ

2π
(3.183)
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Note that the eigenvectors must be converted to the global coordinate system using the
relations of Equation (3.181):

qeig = M−1/2yeig (3.184)

A similar approach is used when the aeroelastic modal response is required. In this case,
the aerodynamic forces are defined using the Theodorsen theory, Equations (3.67) and (3.68).
Aerodynamic loads are expressed in a matrix system:

F = Aaeroq+Baeroq̇+Daeroq̈ (3.185)

The forces are substituted in the dynamic global system, and Equation (2.12) is expressed
as:

(M−Daero) q̈−Baeroq̇+(K−Aaero)q = 0 → Maeroq̈+Caeroq̇+Kaeroq = 0 (3.186)

As in the natural vibration problem, in this case, the equation must be normalized by the
mass function:

Iÿ+M−1/2
aero CaeroM−1/2

aero ẏ+M−1/2
aero KaeroM−1/2

aero y = 0 (3.187)

Finally, as the eigenvalue problem requires a first-order ODE system, the dynamic
equations must be transformed:

[
ẏ
ÿ

]
=

[
0 I

−M−1/2
aero KaeroM−1/2

aero −M−1/2
aero CaeroM−1/2

aero

][
y
ẏ

]
→ ż = Asysz (3.188)

Therefore, the solution of the aeroelastic modal system is solved as in Equation (3.182). The
solution is obtained as follows:

(
Iλ −Asys

)
zeig = 0, (3.189)

the results providing the vibration frequency and the system eigenvector. In order to calculate
the modal shape functions, the eigenvector must be converted to the global coordinates:

fmod =
λ

2π
,

[
qeig

q̇eig

]
= M−1/2

aero zeig (3.190)
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Solver: transient

The solution to the transient problem requires the integration of the solution in time. For this
reason, a mathematical scheme is required. In this problem, the solution is integrated using
an adaptive 4th order Runge-Kutta algorithm. The second-order ordinary derivative equation
is reduced to the first-order. The procedure followed is similar to that used for the modal
solution. First of all, the equation is expressed in modal coordinates:

qT
eigMqeigÿ+qT

eigKqeigy = qeigF → Meigÿ+Keigy = Feig, where q = qeigy, (3.191)

and the equation is transformed into a first-order ODE:

[
ẏ
ÿ

]
=

[
0 I

−M−1K 0

][
y
ẏ

]
+

[
0

M−1F

]
→ ż = Asysz+Fsys (3.192)

Vector z is integrated over time. The current value of the displacement is denoted by
subscript t while the next step, ∆t, is t + 1. The displacements in the next time-step are
obtained following Equations (3.193) and (3.194).

f1 = Asyszt +Fsys f2 = Asys
(
zt +

1
2 f1∆t

)
+Fsys

f3 = Asys
(
zt +

1
2 f2∆t

)
+Fsys f4 = Asys (zt + f3∆t)+Fsys

(3.193)

zt+1 = xt +
1
6
(f1 +2f2 +2f3 + f4)∆t (3.194)

The value of ∆t is iterated for each time step to ensure the convergence of the problem,
as explicit solvers may diverge if its value exceeds the stability limit. These iterations reduce
the value of the time step if the final results of the displacements are modified when taking
half its value. In the internal iterations, the aerodynamic forces are calculated only for the
initial instant and updated through the Taylor series, Equation (3.195).

di,0 = fi; di,1 =
fi − fi−1

∆t
; di,2 =

di,1 −di−1,1

∆t

di,3 =
di,2 −di−1,2

∆t
; di,4 =

di,3 −di−1,3

∆t
; fi+1 =

4

∑
j=0

di, j (∆t) j

j!

(3.195)

The system results are calculated in the modal domain y. Therefore, the displacements
must be returned to the original coordinates, Equation (3.191). Note that the original system
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of equations was presented in the previous equations. However, to reduce the computational
cost, the eigenvectors matrix could be truncated to reduce the number of modes considered
for the problem, reducing the cost and speeding up the calculation without relevant accuracy
penalties. Figure 3.44 presents the transient solver procedure diagram.

Fig. 3.44 Algorithm of the transient solver. The system is calculated in modal coordinates
and then transformed to displacements.
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Chapter 4

Results

4.1 Introduction to the results

The previous chapter presented the different methodologies for calculating the aeroelastic
problems. This chapter focuses on showing the results of the reduced-order models previously
introduced.

The chapter is divided into two main sections. The first focuses on the dimensional
reduction of the structure into a mass-spring system. In this section, a clamped beam
with a squared cross-section is analyzed. The equivalent structure aeroelastic behavior is
initially calculated by simulating the aerodynamics with a CFD solver. The deformation
of the structure is included in the calculation using a rigid body motion [1]. The solutions
of the dimensional reduction are compared to the complete three-dimensional simulation,
ensuring their validity. Then, a surrogated model based on artificial neural networks is
introduced. This model presents a lower computational cost and allows fast calculations
without losing accuracy compared with the CFD simulations [2]. The objective of this section
is the validation of the equivalent section models, showing their capabilities for calculating
three-dimensional structures. The solution is applied for an isotropic material beam with a
simple structure, so the model does not limit the calculation of the mechanical characteristics.

The second section centers on using a beam element solver for general orthotropic
materials. This solver allows considering the effects of the fiber orientations and the higher-
order vibration modes. Therefore, it has been used for calculating orthotropic material beams
and structures where the higher-order modes are critical for the problem. The section is
structured as follows. Firstly, the aerodynamic and structural models are validated. Then the
application cases are presented. The first application problem is a flat foam plate reinforced
with a carbon fiber ply [3]. The solution is compared with the three-dimensional FSI
simulation of the problem. Then, the ROM is used in order to evaluate the optimal orientation
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of the fibers. The second case of application is the use of the ROM to calculate the aeroelastic
coupling of a wind turbine blade. Two structures, one isotropic and the other with oblique
fibers, are studied [4]. The third case uses the ROM for calculating the aeroelastic response
of a membrane wing.

4.2 Dimensional reduction of a clamped squared-section
beam to a mass-spring system

The initial simulations are performed on a simple structural problem, a squared cross-section
beam. The mechanical properties of the section are well-known. In addition, the sharp edges
of the beam generate nonlinear aerodynamic effects, which require complex models or CFD
calculations for a correct analysis.

This geometry is a simplification of common interest problems. For instance, the flat
plate cross-section geometry is a simplification of the aerodynamics of many engineering
problems: solar panel arrays [5], bridge decks [6], and low Reynolds number flapping
wings [7]. Moreover, although an aircraft flights most of its operational life in cruise
conditions, the wing may present nonlinear effects when exigent maneuvers are required.
Therefore, the flat plate cross-section beam is a valuable benchmark for reproducing complex
aerodynamic effects presented in various engineering applications.

4.2.1 Problem description

The simulations of this section are performed on a cantilevered flexible flat plate immersed
in a wind tunnel. The beam is fixed on one of its ends and free at the other. The fluid domain
dimensions were selected in order to represent the CMT-Motores Térmicos (at Universitat
Politècnica de València) low Reynolds 400x400mm wind tunnel.

Figure 4.1 presents the principal dimensions defining the domain. This figure provides a
schematic representation of the three-dimensional and equivalent bi-dimensional problem.
The main dimensions are the chord of the plate (c = 100mm), its length (L = 3.7 c) and its
thickness (h = 0.04 c). The plate has an aspect ratio AR = 2L/c = 7.4. The wind channel
cross-section is a square of side H = 4 c. In addition, the channel has a length of Lu = 5 c
upstream and Ld = 15 c downstream. Both distances are taken so that the boundary conditions
do not affect the computed fluid flow ([8]). Finally, the plate is located at the center of the
cross-section of the tunnel with an incidence of θ0 = 2.5 deg.

Note that if the walls of the tunnel are supposed to be far enough, their boundary layer
does not affect the aerodynamics of the plate. A similar distance to the used in Torregrosa et al.
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[9] was chosen. In their work, the authors proposed using a slipping boundary condition on
the walls. This assumption allows us to reduce the computational cost without jeopardizing
the accuracy of the results. A similar strategy is followed in the current work. Although
the closeness of the horizontal walls to the beam could produce blockage effects, the three-
dimensional and bi-dimensional domains represent the same geometry. Therefore, these
effects are similar in both cases.

Fig. 4.1 Sketch of the flat plate structure and computational domain. (Left) 3D plate
simulation and (right) 2D simplification of the problem. The domain is not scaled.

In this problem, the free stream is perpendicular to the inlet section, with a constant
velocity of V∞ = 20 ms−1, which is maintained for all the simulations, being the torsional
stiffness of the parameter that is modified. The fluid is air with inlet conditions of density
ρ∞ = 1.18 kg m−3, viscosity µ∞ = 1.86 ·10−5 Pa s and sound speed a∞ = 340 m s−1. For
the structure, the material is polymethyl methacrylate, whose mechanical properties are
given by its Young Modulus, E = 3300 MPa; a Poisson coefficient of ν = 0.35 and a density
of ρs = 1180 kgm−3. With these parameters, the flow conditions are given by a Reynolds
number of Re = ρ∞V∞c/µ∞ ≈ 1.5 ·105 and a Mach number of Ma =V∞/a∞ ≈ 0.06. Thus,
the flow can be assumed to be incompressible.

It is essential to point out that the previous values reference the problem. As it will
later show, the stiffness parameter which governs the problem is proportional to E/(ρ∞V 2

∞).
Therefore, to analyze the influence of this parameter while maintaining the value of Re and
Ma, Young’s modulus will be varied during the different simulations. The characteristic
parameters of the problem are thus:

k∗ =
kθ

1
2ρ∞v2

∞c2
k∗w =

k f
1
2ρ∞v2

∞c
(4.1)

I∗ =
I2D

1
2ρ∞c4

m∗ =
m2D

1
2ρ∞c2

(4.2)



114 Results

4.2.2 Bi-dimensional simulated aerodynamics

As a first approach to the problem, the equivalent mass-spring model of Section 3.3.3 is
applied to the structure presented in Figure 4.1. Then the methodology of Figure 4.2 is
applied to the problem. This methodology allows us to reduce the computational cost of the
complete three-dimensional FSI simulation using standard CFD software.

Fig. 4.2 Block diagram of the procedure followed during the research. The figure shows
the methodology for calculating the equivalent section, validated against the 3D simulation.

The stages of Figure 4.2 are followed along the section. First of all, the three-dimensional
structure is defined. From this structure, on the first hand, the complete FSI simulation is cal-
culated. On the other hand, the mass-stiffness structure is calculated by using the information
on the vibration modes. In addition, to improve the accuracy of the bi-dimensional model, the
aerodynamic coefficients of the complete 3D simulation and the 2D calculation are compared.
This reduced order model is used for calculating a bi-dimensional FSI simulation which will
be validated against the three-dimensional FSI calculation.

Numerical resolution of the three-dimensional FSI problem

The three-dimensional simulation is calculated using a CFD solver based on the finite volume
method for solving the URANS equations [10], using commercial software Simcenter STAR-
CCM+®. This methodology previously presented in Section 3.2.1 is used for solving the
aerodynamics around the structure. In order to calculate flow separation under adverse
pressure gradients ([11], [12]) k−ω with shear stress transport (SST) turbulence model [13]
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is chosen. The solid is calculated using the finite element method derived in Section 3.2.2.
An overset region is set in the fluid around its structure to simulate the motion of the solid.
The overset methodology [14] ensures the overall quality of the mesh is maintained, even
under large displacements [15–19]. The structure is modeled as a linear elastic body and
deformed due to the aerodynamic pressure. The overset interface can be freely deformed
following the plate motion, and the rest of the cells of the region are interpolated using radial
basis functions (RBF) from the solid boundary displacement [20].

A polyhedral mesh is used to discretize the simulation domain. The advection term is
computed using a coupled solver with second order upwind ROE FDS scheme [21, 22]. The
gradients are calculated with a hybrid Gauss-Least Squares Method with Venkatakrishnan
limiter [23]. For transient simulations, second-order time discretization is assumed.

The cell size is chosen based on a mesh independence analysis. In this sense, it was
chosen to perform a spatial grid independence study based on calculating the stationary fluid
field around the 3D plate. The error of the coefficients for the different meshes is shown in
Table 4.1. Observe how the discrepancies between the different simulations are minimal,
ensuring grid independence of the fluid solution. The force and moment coefficients around
the center of the clamped plate section are calculated under Equation 4.3:

cD =
FD

1
2ρ∞V 2

∞Sw
cL =

FL
1
2ρ∞V 2

∞Sw
cM =

M
1
2ρ∞V 2

∞Swc
(4.3)

Here, Sw = L c is the reference surface of the plate and FD, FL, and M the aerodynamic
drag, lift, and moment, respectively, exerted over the plate.

Table 4.1 Mesh independence analysis of the three-dimensional beam. Comparison
of the 3D force coefficients at different values of the angle of attack for three different
discretizations. Errors measured with respect to the mesh with N = 15 ·106 elements.

Mesh N = 4.7 ·106 Mesh N = 7.0 ·106 Mesh N = 15 ·106

α(deg) cd (%) cl (%) cm (%) cd (%) cl (%) cm (%) cd (%) cl (%) cm (%)
0.0 7.99 0.00 0.00 2.74 0.0000 0.0000 - - -
2.5 2.59 2.26 2.82 2.40 2.26 2.82 - - -
5.0 1.63 2.47 15.35 1.05 0.73 2.01 - - -
10 1.04 0.76 4.25 0.98 0.72 2.73 - - -

The cell size at the walls of the plate was set to ∆xwall
c ≈ 0.010. This size grows to a

value of ∆xoverset
c ≈ 0.020 at the overset. The cell size at the wake was set to ∆xwake

c ≈ 0.040,
and the maximum value at the furthest surfaces was ∆xdomain

c ≈ 0.400 . The mesh comprises
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N ≈ 5 ·106 elements with this configuration. Figure 4.3 provides a representation of the final
mesh.

Fig. 4.3 Flat plate beam mesh of the 3D simulation. Solid mesh (left) and fluid mesh
(right) of the 3D simulation. Detail on the plate and the boundary layer

Fig. 4.4 CFL distribution of the three-dimensional case. The figure evidences a low CFL
for all the domain.

For the time discretization a temporal step of ∆t · c/V∞ = 5.00 ·10−7 s is used. The time
step is to ensure not to critically affect the solution. Additionally, the time step follows the
criteria for the Courant-Lewis-Federich (CFL) number

(
CFL = ∆tV

∆x

)
(Figure 4.4) which is

lower than 1 for a 92% of the volume.
Concerning the structure, although the vibration modes of a clamped flat plate can be

obtained theoretically [24], the Finite Element Method is used to generalize the procedures to
any possible geometry and boundary conditions. The fluid is eliminated from the analysis, and
the plate is discretized with elements of uniform size ∆xplate

c ≈ 0.035 at the surface and a total
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of 4 elements through the thickness. With these values, the eigenfrequencies and eigenvectors
of the plate are calculated. When the location value of the first 8 eigenfrequencies is not
substantially modified, the discretization is assumed to be independent of the element size.
Note that if the resonance frequency, fi, was expressed in terms of the Strouhal number,
Sti =

fic
V∞

, the ith Strouhal resonance frequency could always be expressed as a function of the
nondimensional stiffness (k∗) and mass (I∗ = I2D

1
2 ρ∞c4 ), following Equation 4.4:

Sti =Ci
L
h

√
k∗

I∗
(4.4)

If the constant Ci is known, the vacuum resonance frequency can be calculated at any
working condition. Table 4.2 shows the value of each of these constants for different solid
mesh discretizations. It can be observed how the result of the eigenfrequency is not noticeably
affected by the number of elements chosen in each case. Consequently, the spatial resolution
of the structure for N = 8.5 ·103 elements can be considered accurate enough from this point
of view.

Fig. 4.5 Modal forms of the flat plate structure. Representation of the first six eigenmodes.
(Top-left) 1st mode, vertical bending; (top-center) 2nd mode, vertical bending; (right-center)
3rd mode, twisting; (bottom-left) 4th mode, vertical bending; (bottom-center) 5th mode,
horizontal bending and (bottom-right) 6th mode, twisting.

Additionally, Figure 4.5 shows the modal form corresponding with each one of these
eigenfrequencies. It can be observed how 1st , 2nd and 4th modes correspond to the bending
modes, while 3rd and 6th represent the first and second torsion modes, respectively. Finally,
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the 5th represents a horizontal bending mode which is not expected to be observed at any
usual working condition. Although the equivalent section is only including the first bending
and first torsion modes, the complete three-dimensional simulation includes all the modes,
which are also used for the modal contribution analysis.

Table 4.2 Mesh independence of the structure of the flat plate. Comparison of the vacuum
resonance frequency for two different discretizations.

N C1 C2 C3 C4 C5 C6

8.5 ·103 2.33 ·10−4 1.45 ·10−3 1.69 ·10−3 4.08 ·10−3 5.24 ·10−3 5.41 ·10−3

5.0 ·104 2.31 ·10−4 1.44 ·10−3 1.68 ·10−3 4.06 ·10−3 5.22 ·10−3 5.40 ·10−3

Numerical resolution of the bi-dimensional FSI problem

As was previously explained, a three-dimensional flat plate can be calculated as a 2D
equivalent section whose structural motion is governed by a torsional and a linear spring
with stiffness kθ and kw, respectively, inertia, I2D, and mass, m2D. Figure 4.6 illustrates this
transformation. The left image represents the original three-dimensional model, while the
right shows its 2D simplification.

Equations 3.106 and 3.107 have been solved using the finite volume method and the
unsteady Reynolds averaged Navier–Stokes (URANS) equations for the fluid, and the rigid
solid motion for the plate. The configuration of the solvers is similar to the three-dimensional
simulation.

In order to check the spatial discretization, a grid independence study was performed
using different cell resolutions. The mesh independence analysis is based on Richardson’s
extrapolation (RE) [25]. In this study, the aerodynamic forces and moments are studied as a
function of the steady angle of attack, as shown in Figure 4.8 where lift (left) and moment
(right) coefficients are measured at the center of the plate, are shown as a function of the angle
of attack for different levels of grid resolution. In addition, the error of the discretizations
with respect to the finest mesh is presented for different angles of attack in Table 4.3. A fair
agreement between all meshes for these parameters can be observed, even at angles near to
stall. Similar trends are observed at the drag coefficient, but it is not shown as this parameter
should not be dominant on the plate motion. The 2D aerodynamic coefficients are defined
from the 2D drag, FD, lift, FL, and moment, M, measured at the center of the section, as
stated by Equation (4.5):
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cd =
FD

1
2ρ∞V 2

∞c
cl =

FL
1
2ρ∞V 2

∞c
cm =

M
1
2ρ∞V 2

∞c2
(4.5)

Fig. 4.6 Tranformation of the dimensional reduction. Scheme of the three-dimensional
lifting flat plate (left) and its equivalent two-dimensional model (right).

Fig. 4.7 Mesh of the bi-dimensional simulation. The figure shows the different zones of
refinement.

The previous figures are in agreement with the geometrical features of the case. As the
boundary layer tends to become highly turbulent at the edge of the plate, the prediction of a
laminar-turbulent transition is not essential. Furthermore, the fluid flow is entirely detached
at the suction side, even for very low values of the angle of attack, as can be observed in
Figure 4.9, where the contours of velocity are sketched over the plate for different values of
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the angle of attack. The previous fact reinforces the almost independence from the Reynolds
number, as stated by Pfahl and Uhlemann [26].

Fig. 4.8 Computation of aerodynamic lift and moment coefficient for different meshes.
Comparison with RE. N is the number of elements of the mesh.

Table 4.3 Mesh independence analysis of the two-dimensional beam. Comparison of the
errors of the 2D force coefficients at different values of the angle of attack for three different
discretizations. Errors measured with respect to the mesh with N = 1.2 ·105 elements.

Mesh N = 2.5 ·104 Mesh N = 5.1 ·104 Mesh N = 1.2 ·105

α(deg) cd (%) cl (%) cm (%) cd (%) cl (%) cm (%) cd (%) cl (%) cm (%)
0.0 1.58 0.00 0.00 0.44 0.0000 0.0000 - - -
2 0.71 0.11 0.45 0.29 0.94 0.71 - - -

5.0 2.67 2.42 4.24 1.15 0.04 1.88 - - -
10 4.41 6.17 2.12 0.46 0.59 1.27 - - -

In order to properly apply the turbulence model, a minimum resolution of the boundary
layer is required. In order to do this, it is necessary to ensure that the wall y+ is kept in
the viscous sublayer (y+ < 5) for the significant part of the wall. The left image of Figure
4.10 shows the evolution of the wall-distance parameter at the suction and pressure side
for different angles of attack values. Note how y+ < 1 for the whole plate. Moreover, this
parameter allows us to recognize how, even for the low angle of θ = 1 deg, the recirculation
bubble appears at the suction side, extending for almost 50 % of the length. For θ = 5 deg, the
recirculation is found for the whole length. These trends are confirmed by Figure 4.10 (right),
where the distribution of the pressure coefficient (cp = p−p∞

1
2 ρ∞V 2

∞

) is presented for different
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values of the angle of attack. Note how the effects of the recirculation bubble can be inferred
from observing the almost flat values of the curves at the suction side of the plate.

Fig. 4.9 Velocity contour of the 2D flat plate for different angles of attack. Results
corresponding to the mesh of N = 5.1 ·104 elements and an incidence of 0 deg (left-top), 2
deg (right-top), 5 deg (left-bottom) and 10 deg (right-bottom).

Pressure Side
Suction Side

Pressure Side
Suction Side

Fig. 4.10 Wall distance and pressure on the bi-dimensional cross-section. Distribution
of wall y+ (left) and pressure coefficient, cp (right) over the plate at different angles of the
angle of attack.

In order to correctly model unsteady effects, the CFL number should be maintained as low
as possible for most of the computational domain. For the current mesh with N = 3.5 ·104 a
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time step of ∆t ·c/V∞ = 1.25 ·10−6 was chosen. Figure 4.11 shows the distribution of CFL at
an arbitrary instant, for a rigid angle of attack of θ0 = 2.5 deg at conditions of kθ

1
2 ρ∞V 2

∞c2 = 6.44

and Re ≈ 105. For the mentioned conditions, most cells present a CFL lower than 2, and
90% of the volume has a CFL lower than 1.5.

Fig. 4.11 .CFL distribution of the bi-dimensional case. The CFL number is kept in low
values for all the domain.

For each value of stiffness or velocity, the case is first initialized with a steady-rigid flow
field. This steady field is used as the initial condition for the unsteady flexible simulations,
which are iterated until steady or statistically steady conditions are reached. The initialization
from this rigid solid state excites the structure producing the instability in case the conditions
are unstable and the stabilization for the stable conditions.

Aerodynamic correction of the three-dimensional effect

The aerodynamic coefficients of the structure are affected by three-dimensional effects such
as the vortex generated in the wing tip. A critical drawback of the reduction of dimensions
is that, for three-dimensional geometry, the aerodynamic loads are expected to vary as a
function of the position in the span direction. These steady effects affect the aerodynamics
even for the low angle of attack values due to the wing-tip vortex. Distribution of loads is
generated span-wise, producing a difference between the three-dimensional aerodynamic
coefficients and the bi-dimensional values. Moreover, the center of pressure is moved, and
the aerodynamic moment is modified. To visualize these effects, in Figure 4.12, the evolution
of the force coefficients of the 3D plate with the depth coordinate is presented for two low
and one moderate angle of attack. Note how integration about the z axis would allow us
to obtain the global aerodynamic coefficient of the plate. The left image of Figure 4.12
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shows the distribution of the lift coefficient. Observe how near the clamping (z/L = 0), the
lift coefficient can be considered to be approximately constant and decreases near the tip
(z/L ≈ 1). For moderate-high incidence, θ , the three-dimensional effects of the plate and the
influence of the channel’s walls produce an increase in lift close to the tip. Similar effects
can be observed for the pitching moment, shown in the right image of Figure 4.12.

Fig. 4.12 Distribution of aerodynamic loads along the span of the structures. Distribution
of lift force (left) and pitching (right) moment along the span measured at the center of the
chord for a steady simulation.

Three-dimensional effects can also be illustrated using Figure 4.13, which shows the
streamlines of the wall shear stress over the plate, colored by the pressure coefficient value,
for different incidence angles. These lines indicate the direction of the air over the plate and
can be easily used for identifying different flow patterns. Note the existence of a recirculation
bubble beginning at the leading edge of the suction side, even for very low incidence. For
the case of θ = 2deg, this bubble is shorter at the tip, and its size tends to increase when
reaching the z/L = 0 position, where it occupies approximately the 25% of the chord. The
recirculation bubble grows when increasing the angle of attack (for instance, at θ = 4deg, it
occupies almost 80 % of the chord) until its length corresponds to the whole chord for high
angles of attack.

Figure 4.14 might also be helpful for visualization of these effects. Here, streamlines
passing near the tip of the plate are shown in the perfectly rigid configuration (left) and at
an arbitrary time step of the statistically stationary fully coupled solution, corresponding to
a nondimensional stiffness parameter of k∗ = 6.44. As expected, similar fluid patterns can
be inferred from the streamlines of both figures. Additionally, turbulence kinetic energy, k,
is visualized and non-dimensionalized with the free stream velocity. Streamlines show the
vortex produced at the tip of the plate. A high turbulence kinetic energy zone starts after
the sharp edge of the plate and continues downwards. The turbulent kinetic energy is higher
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in the areas with high vorticity: the recirculation bubble of the suction side near the shear
layer. Then, the kinetic energy is diffused downwards, and its value is decreased until it is
dissipated. In addition, these high turbulent kinetic energy regions are related to the presence
of stall cells along the wingspan.

Fig. 4.13 Pressure coefficient and shear structures on the beam. Representation of the
pressure side (left) and suction side (right) for different values of angle of attack 2 deg (top),
4 deg (middle) and 8 deg bottom for the steady simulation.

Fig. 4.14 Three-dimensional effects on the beam aerodynamics. Flow pattern of a flat
plate with θ0 = 2.5 deg. The figure shows the solution for a rigid plate of k∗ → ∞ (left) and
for an arbitrary time step corresponding with the simulations of a flexible plate of k∗ = 6.44
(right)
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The previous results evidence the importance of the three-dimensional aerodynamic
effects. A correction is proposed to include this three-dimensional behavior. This correction
is based on the ratio between 3D and 2D coefficients.

The steady CFD analysis is performed both for the 2D and 3D problems. Then, a
corrective factor multiplies the section aerodynamic coefficients. However, the inspection of
Equation 4.6, which shows the equation governing the torsion of the corrected 2D system,
leads to the conclusion that multiplying the aerodynamic coefficients by the corrective factor
is entirely analogous to dividing both the 2D masses and stiffness by the same factor.

I2Dcorr θ̈2D + kθcorrθ2D =
1
2

ρ∞V 2
∞c2

(
cm0 +

∞

∑
n=0

c
m(n)

w
V n

∞

cn−1 w2D
(n)+

∞

∑
n=0

c
m(n)

w
V n

∞

cn θ2D
(n)

)
(4.6)

In this equation, I2Dcorr , kθcorr are the corrected inertia and stiffness respectively. A similar
analysis can be applied to the flexural degree of freedom to obtain the corrected mass and
inertia as a function of the angle of attack.

I2Dcorr =
cm(θ)

cM(θ)
I2D m2Dcorr =

cl(θ)

cL(θ)
m2D kθcorr =

cm(θ)

cM(θ)
kθ kwcorr =

cl(θ)

cL(θ)
kw

(4.7)
Here, cl and cm are the 2D lift and pitching moment coefficients of the equivalent section,

and cL and cM are the lift and moment coefficients of the 3D plate.

Fig. 4.15 Lift coefficient comparison for the flat plate. Lift coefficient for the 2D section
and tip section of the 3D plate (left) and scaling coefficient for the lift force (right).

Figure 4.15 illustrates the variation of the lift coefficient. Values of the coefficient
calculated at the root (z/L = 0;3Droot) and the tip (z/L = 0.98;3Dtip) sections are provided.
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The global lift coefficient (3Dglobal) is also shown. Note how, as expected, the aerodynamic
force coefficient near the root is similar to the two-dimensional calculation, although slightly
minored. However, the value near the tip differs greatly from the 2D case. The correction
uses the global value of the 3D simulation to correct 2D results. Similar effects are observed
for the pitching moment, shown in Figure 4.16.

In Figures 4.15 and 4.16, it is possible to appreciate how for low θ , the lift and moment
in the 2D problem are higher than in the 3D simulation. For moderate to high values of the
angle of attack, the two-dimensional plate stalls while the value of cM continues increasing.
Therefore, the correction applied to the 2D problem must decrease the value of the coefficients
in the first zone, and after a stall angle of attack, the coefficient must be amplified.

Fig. 4.16 Moment coefficient comparison for the flat plate. moment coefficient for the
2D section and tip section of the 3D plate (left) and scaling coefficient for the pitch moment
(right).

Structural deformation of the system

In order to derive the mass-spring system theory, the displacement of the structure must be
dominated by the first modes of torsion and bending. The shape of the deformed structure is
compared with the modal deformation shapes, similarly as performed at [9], to examine the
accuracy of neglecting the high-order modes. Figure 4.17 shows the modal contribution for
bending (left) and torsion (right) for the four first modes. From this figure, it can be inferred
that the first mode is dominant in bending and torsion, with a modal factor contribution of at
least two orders of magnitude greater than the participation of higher-order modes. Slight
differences are observed between the first mode and the actual deformed shape. Consequently,
for practical purposes, and given the substantial simplification in terms of computational cost,
the hypothesis of neglecting high-order modes can be considered accurate enough.
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Fig. 4.17 Modal contribution in the deformation shapes. Bending modes (left) and the
torsion modes (right) for a reference plate with k∗ = 21

The structural equivalence between the 2D and the 3D models can be applied to the
problem as the contribution of the high-order modes has been analyzed, resulting from being
negligible. Next, the capabilities of both models will be analyzed. Figure 4.18 show the time
average torsion and bending, respectively, predicted by the 3D and 2D (with aerodynamic
corrections) models when a statistically stationary state is reached. Some points of this curve
are highlighted, as their time history will be discussed later. The operation points in which
the slope of the curves becomes significantly high are marked inside the gray zone. This zone,
then, indicates the limits of the aeroelastic instabilities. Note the high capability of the 2D
model for predicting similar results compared with the 3D simulation for the average torsion,
even when not considering any three-dimensional effect corrections for the 2D aerodynamic
evaluation (red lines). However, this non-corrected model tends to overestimate the value of
the average bending, which is in accordance with the already mentioned overestimation of
the force coefficient of the 2D model.

The accuracy of the bi-dimensional models can be improved by applying a three-
dimensional aerodynamic correction. This corrective factor is used and proved to increase
the accuracy of the simulations. Note that the corrected simulations (black lines) better agree
with the three-dimensional results. While the non-corrected model maintains the error lower
than the 3% of the initial angle of attack of the plate for the stable operations, the corrected
model reduces the error to a lower value than 0.7%.

Finally, note how the beginning of an aeroelastic instability could be identified by
observing a zone of the curves at which the average torsion and bending slope is abruptly
increased, approximately for the same value of k∗ ≈ 5.5. The instabilities are characterized by
an oscillatory motion that amplifies the twist with time. This instability can be attributed to the
stall flutter phenomenon. This phenomenon should not be confused with the classical linear
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flutter, as their mechanisms are entirely different. The classical linear flutter is the coupling
between torsional and bending modes, which can be predicted by ignoring aerodynamic
nonlinearities. Moreover, flutter is not expected to occur when the center of gravity and the
elastic axis coincide, being in these cases, the divergence is the expected instability.

Fig. 4.18 Mean deformation of the structure and temporal evolution of the main op-
eration points. Average deformation for the nondimensional stiffness: twist (top-left) and
plunge (top-right). The shaded area shows the uncertainty limit of the 2D-derived section.

Temporal evolution of the pitch respect a non-dimensional time
(

t∗ = tv∞

c

√
k∗
I∗

)
for 2D

simulation cases A, B and C [ ] and 3D simulations D, E and F [ ] (bottom). Note that
t∗ = 0 corresponds to the transition from the rigid and steady to the elastic and transient
simulations.

The analysis of the time evolution of 2D and 3D models is also presented and discussed
next, using the unsteady responses shown in Figure 4.18. In order to compare the time evolu-
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tion of the different operating phenomena, the time is nondimensionalized:
(

t∗ = tv∞

c

√
k∗
I∗

)
.

In the figure, the cases C and F correspond to the evolution of the bi-dimensional and three-
dimensional computations for low free stream velocities and high values of k∗. In these cases,
the aerodynamic damping is high enough to decrease the amplitude of the oscillations until a
steady state.

When the nondimensional stiffness is decreased, the aerodynamic damping is also re-
duced. Therefore, the oscillations of the structure are not suppressed so quickly. In fact, the
stability limits are represented by Case B for the bi-dimensional section. This simulation
observes a stable limit cycle oscillation (LCO). For this value of k∗, LCO is not already
reached for the 3D simulation, case E.

Fig. 4.19 Aerodynamic hysteresis loop of the aeroelastic 2D simulation. (Top) lift
coefficient as a function of the incidence, (bottom) velocity of the twist as a function of the
twist. (left) Flutter conditions and (right) LCO.

In the case of the unstable simulations, Cases A and D, similar trends are observed. In
these cases, the aerodynamic damping is reduced, becoming zero or negative, resulting in
an unstable oscillation. The bi-dimensional simulations also present an abrupt response
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compared with the three-dimensional case. The unstable oscillations of both methodologies
present a similar evolution as a stall flutter phenomenon generates them.

The Limit Cycle Oscillation can be further discussed in Figure 4.19. Here, the curves of
cl vs. θ and the phase diagram are shown for the 2D calculation for a case just after (Case A)
and just before (Case B) the instability region. The stable cycle (right image) can be identified
in the figure for high-time values. However, the amplitude is monotonically increasing for
the unstable cycle (left image). In the figure, the nonlinearities of the calculations can also
be observed. The shape of the loops is significantly different from the results of traditional
flutter in the linear aerodynamic regime [27, 28].

Discussion

Along the section, the methodology of Section 3.3.3 has been presented for obtaining
an equivalent cross-section for an arbitrary three-dimensional structure. The mechanical
properties of the cross-section have been integrated along the beam span using the modal
shapes. This integration might be more complicated for structures with variable cross-
sections and materials and might reach, depending on the case, the limitations of the model.
In addition, the structural bending-twisting coupling is not straightforward, and more complex
models are required.

The procedure models the main aeroelastic features of the three-dimensional system,
being able to account for the aerodynamic nonlinearities at arbitrary sections. The equivalent
airfoil is shown not to be of straightforward derivation, as presented in the literature. The
main advantage of the equivalent structure is the computational cost reduction with a similar
accuracy level compared to the three-dimensional simulations.

The equivalent section methodology has been applied to a cantilever cross-section beam
inside a wind tunnel. The simplified methodology is compared with the complete three-
dimensional simulation. Low differences are obtained between the bi-dimensional and
the three-dimensional cases. The equivalent section is demonstrated to represent a three-
dimensional structure for a significant part of the operation range. The procedure allows the
simulation of arbitrary beam sections accounting for nonlinear aerodynamic effects.

Regarding the flow perspective, the wind loads calculated in the bi-dimensional sim-
ulations do not consider three-dimensional effects, such as the tip-vortex. In addition, a
corrective factor for these three-dimensional effects is proposed in the work, improving the
mean values of deformation obtained in the simulations. The corrective factor requires a
three-dimensional simulation and might be opposite to the computational cost reduction. As
previously presented, this factor reduces the error in the prediction of the mean deformation
of the beam. Nevertheless, the instability and the structure dynamics were correctly predicted
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by the non-corrected model, evidencing that the corrective factor might be avoided. In the
case of requiring the improvement produced by the corrective factor, the computational cost
of the model is still lower than the FSI complete analysis, as only steady three-dimensional
calculations are required.

The results have evidenced that the non-corrected simulations have provided accurate
results for calculating the pitching angle and the vertical displacement. However, the
bending displacement shows a slight overprediction compared with the complete simulation.
Moreover, introducing a three-dimensional correction has improved the prediction accuracy
of the mean deformations.

The main essential advantages of this simplified methodology can be listed next:

• Although important simplifications have been assumed during the derivation of the
equivalent model, it allows us to obtain accurate deformation results, implying a reduc-
tion in the computational cost by orders of magnitude concerning the 3D simulation.

• The aerodynamics of the reduced bi-dimensional model can be considered fully non-
linear, given that the hypothesis listed during its derivation could be assumed to be
valid.

• Therefore, the model should be useful for relatively quick estimations of aeroelastic
linear instabilities, such as flutter or divergence. Also, it could be used to estimate
nonlinear instabilities/phenomena such as stall flutter.

The equivalent 2D derivation lies in the hypothesis of neglecting the high-order modes of
the structures. This hypothesis has been discussed, showing its applicability. The equivalent
section has provided similar results to the complete simulations. Therefore, the capabilities
of the methodology for simulating general aeroelastic problems are demonstrated, allowing
the computational cost reduction of the simulations.

4.2.3 Bi-dimensional ANN surrogate aerodynamics

The methodology previously presented requires the discretization of the domain, the motion
of a rigid solid inside the grid mesh, and the deformation of the mesh to adapt to the new
conditions. The bi-dimensional simulations may require too many computational resources
for the initial design of a structure. In order to reduce the computational cost of the simulation,
the equivalent cross-section is combined with an aerodynamic surrogate model. In other
words, the equivalent flat plate of the previous section is joined with the aerodynamic model
of Section 3.3.2.
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The workflow of the surrogate model is shown in Figure 4.20. First, the database of
the simulations is generated by calculating the aerodynamics of oscillating cross-sections.
This data is used to train the surrogate model and validate the training results. Finally, the
aerodynamic model is coupled to the equivalent section.

Fig. 4.20 Scheme of the workflow of the aeroelastic ROM based on surrogate models.
The procedure includes training, validation, and application of the ANN.

Data base construction from CFD simulations

The database is generated with a matrix of 324 CFD bi-dimensional simulations of forced
oscillations. The conditions of the simulations are selected to represent a wide range of
operating points, Figure 4.21. The database is limited to the range of conditions in which the
initial angle of attack and the amplitude of the movement produce negligible vortex shedding.
These conditions are similar to many engineering problems, such as solar panels in stow
position [29]. The cases with intense vortex shedding produce significant random oscillations
of the aerodynamic coefficients. These cases reduce the accuracy of the network under the
interest conditions. Finally, the aeroelastic simulations are calculated through a strongly
coupled algorithm [30].

Fig. 4.21 Training simulation data set matrix. The data set requires enough information
on the angle of attack and frequency of the motion.
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The training simulations represent a forced oscillatory pitching motion with the formula-
tion of equation 4.8:

θ = θ0 +Θsin(2π f t) (4.8)

being θ0 the initial pitch angle, Θ the amplitude of the motion and f the frequency of the
motion. The matrix of simulations contains the training cases shown in Figure 4.21. The
forced oscillations only take into account the twisting of the airfoil. The angle of attack is
extracted from the database, and after training the network, a quasi-steady angle of attack is
used for feeding the surrogate model.

In these simulations, the oscillating motion of the plate produces cycles that modify
the value of the linear aerodynamic derivatives (Equation 4.9). Note that the aerodynamic
coefficients might be expressed as the sum of the stationary and the dynamic terms.

cl = cl0 + clαα + clα̇
cα̇

V∞

+ clα̈
c2α̈

V 2
∞

+ ... (4.9)

As the aerodynamics of the section are nonlinear, the CFD has been used to calculate
the aerodynamic coefficients. The stationary coefficients interpolation curves and the forced
oscillations results are shown.

In Figure 4.22, the static coefficients are shown as a function of the angle of attack and
the plunge. The coefficients exhibit a nonlinear behavior for higher angles of attack than 4
deg. In addition, the moment is significantly affected by the vertical position of the plate.

Fig. 4.22 Stationary aerodynamic coefficients of a flat plate. The coefficients are presented
as a function of the angle of attack and the plate plunge.
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f (Hz) 25 45 65
cl0 0.40 0.40 0.40
clα 4.84 3.00 1.75
clα̇ −2.47 0.27 1.77
clα̈ −0.49 0.05 0.35

f (Hz) 25 45 65
cl0 0.38 0.34 0.31
clα 5.05 3.75 3.72
clα̇ −1.70 0.83 1.64
clα̈ −0.34 0.17 0.33

Fig. 4.23 Aerodynamic cycles for low angle of attack. (Left) Θ = 0.3 deg & θ0 = 2.5 deg
and (right) Θ = 5 deg & θ0 = 2.5 deg.

f (Hz) 25 45 65
cl0 0.58 0.59 0.60
clα 12.56 4.35 −0.22
clα̇ −3.54 −3.46 −1.42
clα̈ −0.71 −0.69 −0.28

f (Hz) 25 45 65
cl0 0.70 0.68 0.57
clα 6.36 3.13 3.88
clα̇ −3.71 0.10 1.51
clα̈ −0.74 0.02 0.30

Fig. 4.24 Aerodynamic cycles for low angle of attack. (Left) Θ = 0.3 deg & θ0 = 5 deg
and (right) Θ = 5 deg & θ0 = 5 deg.
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Figures 4.23 and 4.24 show the cyclic behavior of the aerodynamic coefficients due
to the forced oscillation motion. In the figure, the initial angle of attack of the plate, the
amplitude, and the frequency of the movement condition the aerodynamic loops. In the case
of the airfoils operating in the linear aerodynamic range, Figure 4.23, the coefficient clα

decreases with the frequency. Moreover, the second derivative of the lift coefficient increases,
producing a higher curvature in the loop.

For post-stall conditions, Figure 4.24, the section presents a nonlinear behavior. In these
operation points, the effects of the nonlinearities increase with the frequency.

The aerodynamic coefficients present an oscillating cycle with the vortex shedding
frequency. Therefore, for the post-stall simulations, an increase in the lift slope is noticed as
an effect of the nonlinearities. In these cases, the coefficient clα grows for the highest angles
of attack, becoming higher than the potential lift slope of 2π , as shown in Figure 4.24.

Note that the aerodynamic coefficients present oscillations in the curves. These oscil-
lations are a consequence of the cross-section geometry. The squared airfoil produces a
detached flow from the leading edge, even for low angles of attack. Consequently, the effects
of the wake produce the variation in the aerodynamic coefficient during the hysteresis cycle.

Surrogate model based on artificial neural networks

This section presents the procedure to fit the artificial neural network with the nonlinear
phenomena of the aerodynamic forced oscillations. The sensitivity analysis of the number of
neurons is performed, and the energetic global error of the cycle prediction is determined. The
number of epochs of the training process is adjusted to minimize the training and validation
errors of the ANN. The networks are trained using the RMSprop algorithm. Moreover, the
database is segmented arbitrarily, using 90% of the simulations for the training and the
remaining 10% for the validation.

The aerodynamic coefficient is divided into a steady and a dynamic term. The former
provides a quasi-steady model, while the second is calculated by applying a neural network.
The quasi-steady aerodynamic model is interpolated linearly from the coefficients of the
CFD results. These coefficients are provided in Figure 4.22 as a function of the angle of
attack and the vertical position inside the wind tunnel. Four different models are shown in the
section. The first is the CFD, the equivalent section structure coupled with bi-dimensional
CFD simulations. The methodology of this method was presented in the previous section.
The quasi-steady model combines the equivalent section structures with interpolating the
steady CFD coefficients. The last models combine the sum of the quasi-steady terms with
calculating the dynamic terms based on neural networks. These models employ feed-forward
(FFN) and long short-term memory (LSTM) networks.
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The number of neurons in the network defines the total number of weights and variables
required to adjust the ANN. Determining the appropriate number of neurons is conditioning
the accuracy and computational cost of the training process [31]. However, an excessive
number of neurons can also produce overfitting, the capacity of the network to adapt to
an out-of-training situation is reduced by an excessive number of parameters or epochs
in training. This analysis is applied to the different configurations: FFN and LSTM. The
different ANN present a similar architecture. An input layer, a hidden layer with N1 neurons,
and an output layer with N2 = 2 neurons, as presented in the work methodology.

The energetic error of the aerodynamic cycle, εEcm , is calculated as the difference of the
power coefficient (cw = cm

θ̇c
V∞

) integrated in time for CFD and ANN, as stated by Equation
(4.10), to perform the neuron independence analysis.

εEcm =

∫ t+T
t (cwANN )dt −

∫ t+T
t (cwCFD)dt∫ t+T

t (cwCFD)dt
(4.10)

Figure 4.25 presents the power coefficient comparison between CFD and ANN for a
network of 2 and 50 neurons. In the figure, an improvement in accuracy compared with the
steady solution is observed.

Fig. 4.25 Power coefficient comparison between the ANNs and the CFD simulations for
two representative numbers of neurons on the hidden layer. (Left) 2 neurons in the hidden
layer and (right) 50 neurons in the hidden layer. The cycle is shown for an initial incidence
of 2.5 deg, an amplitude of 5 deg, and a nondimensional frequency of f c

V∞
= 0.1250.

The cycle energetic error density function is shown for the FNN and the LSTM in
Figure 4.26 for different numbers of neurons of the first layer. The energetic error becomes
approximately constant from N1 = 50, making this number of neurons the optimal choice
regarding the accuracy and computational cost.
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Fig. 4.26 Distribution of the energy error for the different number of neurons. (Left)
results for the FNN network and (right) results for the LSTM network.

Fig. 4.27 Evolution of the MSE as a function of the epoch of training. The results are
presented for FNN (left) and LSTM networks (right).

In addition, the network accuracy is also dependent on the number of epochs of the
training [32]. This number is selected to ensure that the logarithmic validation error has
either reached an asymptotic limit or started to increase (overfitting). The validation mean
squared error (MSE) is shown to flatten for a number of 5 · 103 and 5 · 104 epochs for the
FNN and LSTM networks, respectively. In addition, a k-fold cross-validation analysis [33] is
performed. A mean prediction error of 5.34 ·10−4 for 10-folds using the FNN model.
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Fig. 4.28 Squared error distribution for the input variables. The plots on the diagonal
show the distribution of the training variables, while the subfigures out of the diagonal show
the squared error distribution for each pair of input variables.

Fig. 4.29 Lift coefficient of the training and validation of the FNN neural network. (Left)
training and (right) validation.
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Fig. 4.30 Moment coefficient of the training and validation of the FNN neural network.
(Left) training and (right) validation.

Figure 4.28 shows the error distribution in the whole data set. The figure shows the
distribution of values of the input variables where the neural networks were evaluated. Note
that the squared error is demonstrated to be low for the analysis domain, locating the higher
errors near the stall point of the plate: incidence of 4.5 deg and null increment of the angle of
attack.

Figures 4.29, 4.30, 4.31 and 4.32 show the performance of the ANN for the training and
validation data. An accurate behavior is presented for both typologies of networks in the
simulation of nonlinear aerodynamics compared with the quasi-steady approach. The CFD
and the predicted values overlap in the significant part of the cycles. Similar behavior is
evidenced in training and testing, although the large amount of data in the figure complicates
the visualization of the training curves.

Fig. 4.31 Lift coefficient of the training and validation of the LSTM neural network.
(Left) training and (right) validation.
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Fig. 4.32 Moment coefficient of the training and validation of the LSTM neural network.
(Left) training and (right) validation.

Fig. 4.33 Regression plots for the moment coefficient. (Left) FNN and (Rigth) LSTM.

Figure 4.33 clarify the results of Figures 4.30 and 4.32 by showing the linear regression
between the real and the predicted value of the coefficient, comparing it with the ideal
non-error solution. In the figure, a fair agreement can be observed between ANN and CFD.

In addition, for showing a temporal evolution of the aerodynamic coefficients, a pre-
scribed aeroelastic motion is imposed on the neural network, comparing the results of the
aerodynamic coefficients. The results of the surrogate models are presented in Figure 4.34.
The figures show the high accuracy of the aerodynamic coefficients with respect to the CFD
simulations.
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Fig. 4.34 Prediction of the aerodynamic coefficients by the surrogate model for a pre-
scribed motion. (Left) lift coefficient and (right) pitching moment coefficient.

Aeroelastic surrogate model

The ROM is then tested on the equivalent rigid cross-section of Figure 4.6. Different working
conditions are calculated, varying the nondimensional stiffness k∗ along the stability range,
the LCO, and the post-flutter.

Fig. 4.35 Comparison of the mean deformation of the ROM and CFD simulation for the
different aerodynamic models. (Left) mean twist and (right) mean plunge.

As observed in Figure 4.35, the ROM accurately reproduces the aeroelastic deformation
of the plate. The error remains lower than 5% until the instability where the model is not
reliable. The ANN improves the prediction of the nonlinear oscillatory aerodynamics with
respect to the steady coefficients. This model captures the dynamic effect on the flow and
can damp the oscillations or prevent the aerodynamic stall.
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The instability zone may be identified as the value of nonlinear stiffness in which there is
an abrupt change in slope, as can be observed in Figure 4.35. A shaded area represents this
instability zone. The deformation of the structure inside the unstable area is amplified with
time. The use of an artificial neural network predicts the LCO accurately. The amplitude and
the frequency of the predicted motion are analyzed to evaluate the LCO prediction and the
limitations of the ROM transient results.

The motion amplitude is presented in Figure 4.36. A fair similitude is presented between
the FNN and the LSTM with respect to the CFD simulation. Nevertheless, quasi-steady
aerodynamics tend to overpredict the deformation value for higher values of the nondimen-
sional stiffness. The identification of the stall flutter corresponds to the point at which the
amplitude of the motion abruptly increases. These unstable conditions are reached when the
nondimensional stiffness is decreased below the flutter value k∗f or when the velocity rises
above the flutter value Vf .

Fig. 4.36 Comparison of the amplitude of the motion of the ROM and CFD simulation
using different aerodynamic models. (Left) twist amplitude and (right) plunge amplitude.

However, although both typologies of neural networks show similar behaviors, slightly
different results might be observed in the amplitude of the motion. FNN is more sensitive
to changes in stiffness. Therefore, the amplitude starts to increase before the stall flutter.
Note also that the LSTM raises the aerodynamic damping. The motion is damped to a steady
value and only grows when after the stall flutter condition. The CFD aeroelastic simulation
presents an intermediate situation. The motion increases amplitude in the same conditions as
the FNN. Nevertheless, for low values, near the damped aerodynamics, the CFD is closer to
the LSTM (Figure 4.37). In addition, the amplitude of the ANNs increases the amplitude
slower than the CFD when the stall flutter is reached, Figure 4.38.
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Fig. 4.37 Time cycles for a nondimesional stiffness of k∗ = 8.5. (Left) torsion and (right)
plunge.

Fig. 4.38 Time cycles for a nondimesional stiffness of k∗ = 6.5. (Left) torsion and (right)
plunge.

The time evolution of the previous models is presented in Figures 4.37 and 4.38 for two
different working conditions. Small differences may be observed in the oscillation frequency,
which accumulated during the evolution of the motion results in a phase error. The motion
frequency is also analyzed in Figure 4.39. The error in the twist frequency was found to be
lower than 5%. The differences in frequency are slightly more noticeable, 10%, when the
plunge nondimensional frequency is analyzed far from the aeroelastic instability. However,
the influence of this frequency is of second order when estimating nonlinear aeroelastic
instabilities, as observed in Figures 4.35 and 4.36.
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Fig. 4.39 Comparison of the frequency of the motion of the ROM and CFD simulation
for the different aerodynamic models. (Left) twist and (right) plunge.

An essential point of the analysis is comparing the computational cost of the different
models. Both simulations, CFD and ANN surrogated model, were performed on an Intel®

Xeon® CPU ES-2630 v2. The simulations were run using five parallel processes. In the
case of the CFD calculations, an average computational time of ten hours per simulation
was required. The computational cost of the surrogated models was much lower, requiring
between three and five minutes for the FNN and the LSTM architectures, respectively.

Discussion

This section compares a reduced order model (ROM), which combines the equivalent aeroe-
lastic cross-section with artificial neural networks (ANN), with the aeroelastic bi-dimensional
simulations calculated using CFD. The main objective of the section is to test the accuracy of
the surrogated model in predicting aeroelastic instabilities. Nonlinear effects such as stall
flutter and aerodynamic stall were successfully predicted, obtaining accurate results in the
aeroelastic calculations.

The simulations have been performed in a flat plate cross-section. This geometry presents
many benefits, as the mechanical properties of the structure are well-known, and its aerody-
namic behavior is highly nonlinear, requiring nonlinear models. The aerodynamic coefficients
are demonstrated to depend on the initial angle of attack, the amplitude of the motion, and
its frequency. In order to reproduce the different aerodynamic conditions of the test bench,
a set of CFD simulations have been calculated for generating the database for training the
ANN. Nevertheless, the data required for training the network might be obtained from a
different source, for instance, experimental tests. The ANN is trained in order to reduce
the error. The network accuracy and training and validation data are evaluated, ensuring its
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correct performance in a general case. The procedure is applied to two different architectures,
feed-forward neural networks (FFN) and long short-term memory (LSTM) neural networks.
Both typologies of ANN are tested and compared with higher-order models. Note the impact
that the training process has on the predictions of the neural network. The database must
represent the whole operation range to ensure the accurate performance of the neural network.
In addition, training the network presents an associated computational cost which might
be excessive if the number of simulations in which the surrogate model is used does not
compensate for it. Therefore, the applicability of the procedure is totally conditioned by the
expected use of the trained model.

Different conditions have been tested. The networks show high accuracy in reproducing
the aerodynamic coefficients of the flat plate cross-section and use its motion as input. These
models suppose a gain of accuracy compared with the quasi-steady models calculated by
interpolating the nonlinear steady polar. However, some of the aerodynamic effects, such
as the variations of the aerodynamic coefficients due to the wake fluctuations, are lost. The
ANNs tend to reproduce a sinusoidal oscillation of the aerodynamic coefficients. Other
effects, like vortex shedding, limit the range of application of the surrogate model. Therefore,
the methodology works for the nonlinear aerodynamics of the flat plate in a specific range
of applications where the oscillations due to turbulence are small or negligible. The models
can be applied to an oscillating plate for low angles of attack (between -6 and 6 deg),
low amplitudes of the oscillation (between 0 and 5 deg), and low or moderate frequencies
(approximately a maximum of f c

V∞
= 0.3). Higher frequencies present strong vortex-shedding

effects, which can reduce in a significant way the accuracy of the network.
No significant difference was obtained for the different architectures (FFN and LSTM) in

the validation of the networks. This fact, added to the more straightforward definition of the
FFN models, makes this architecture more efficient in obtaining the transient aerodynamic
coefficients of the plate for the working conditions.

The aerodynamic ANN surrogated model was coupled with a simplified structural solver.
The results show an accurate prediction in determining the mean plunge and twist of the
motion. The model can accurately predict the instabilities. An abrupt slope on the mean
deformation curve is detected around the instability. Different behaviors were also obtained
by comparing the aerodynamic models. The quasi-steady aerodynamics present a lack of
accuracy when predicting the dynamic phenomenon. The different ANN architectures show
similar results. Nevertheless, the LSTM solutions damp the oscillations faster than the CFD,
while the FNN increases the amplitude and predicts the instabilities for slightly lower free
stream velocities.

In a summary, the previous facts lead to the following main conclusions:
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• The mean angle of attack, the amplitude, and the frequency of the oscillation strongly
condition the aerodynamic loads in a dynamic problem. Thus, the stationary polar
cannot be used to obtain accurate solutions.

• The utilization of artificial neural networks (ANN) may reduce both the time of
simulation (compared with CFD simulations) and the error (compared with linear or
steady models) in aeroelastic nonlinear problems.

• Different typologies of the neural networks obtained similar results. However, recursive
structures such as LSTM networks damp the oscillations faster for similar training
conditions. FNNs are faster and reduce the calculation cost, but they may be too
conservative in predicting aeroelastic instabilities.

Finally, this section shows the applicability of the ANN to the aeroelastic problem.
Different types of ANN are compared, coupling the aerodynamics with the structure of
the section. This procedure has been demonstrated to reduce in a significant way the
computational cost and to preserve the accuracy of the solution for arbitrary sections and
nonlinear aerodynamics.

4.3 Application of beam theory to elastic structures

The following section provides the results of the previously presented beam element solver.
Firstly, the model is validated against the literature results. Then the algorithm is applied to
the interest cases. The reduced order model is, thus, applied to a set of complex problems
involving advanced orthotropic materials and shell-resistant structures.

4.3.1 Validation of the beam element solver

The structural solver must be validated before applying the ROM to any engineering problem.
This validation compares the structural deformation with the experimental and numerical
results of the literature. The beam of Chadra et al. [34] is used as a validation test bench.
The schematic representation of this beam can be observed in Figure 4.40. This structure is a
six-carbon fiber ply laminated box cross-section beam.

The structure is studied for different layup configurations. The initial configuration is an
oblique laminate with six plies. The main direction of the fibers is deviated 30 deg from the
longitudinal axis of the beam, forcing a bending-twisting coupling. The deformation of the
beam is due to a load of 4.45 N applied on the free end.
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Fig. 4.40 Chandra test bench for the structural model. The test bench is a carbon fiber
laminated box section clamped on one end.

Fig. 4.41 Structural validation of the Chandra 30 deg oriented fiber beam. (Left) bending
angle of the structure and (right) twist angle of the structure.

Similar results are obtained when the fibers are rotated 15 deg from the longitudinal axis
of the beam, Figure 4.42.

Fig. 4.42 Structural validation of the Chandra 15 deg oriented fiber beam. (Left) bending
angle of the structure and (right) twist angle of the structure.
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The previous figures show the accuracy between the present beam element model and
Chandra’s model. Nevertheless, the beam models cannot accurately simulate the bending-
torsion couplings, as could be inferred from Chandra’s work. In addition, the structural
model is tested to validate the vibration modes of the structure using the work of Chandra
and Chopra [35]. Table 4.9 show the results of the modal analysis.

Table 4.4 Validation of the vibration modes. The table provides the first three vibration
frequencies of the reference structure.

Mode Frequency ROM(Hz) Frequency Chandra et al.(Hz) Error (%) Movement

1 22.50 21.03 6.99 Flap 1
2 35.69 36.92 3.33 Lag 1
3 140.87 128.36 9.75 Flap 2

Concerning the dynamic behavior of the beam element solver, the results show a reduced
error in the first vibration modes. Observing the results of Table 4.9, these modes have been
shown to properly reproduce the stiffness and mass properties that determine the dynamical
motion of the structure. Therefore, observing the previous results, although the structural
model is demonstrated to predict the characteristics of the orthotropic beam structures
accurately, the algorithm is restrained to modeling limitations in the beam deformation
prediction. For this reason, the structure itself must be checked to be correctly modeled for a
particular application.

4.3.2 Orthotropic 1D squared cross-section beam clamped by one edge.

Case of study

Along this section, a carbon fiber laminated foam squared-section beam is used. The external
geometry of these structures was used in the previous sections. This fact allows us to use the
ANN-based surrogate model presented in the previous sections. However, in this section, the
material is modified using a layup of a carbon fiber shell and a foam core. Table 4.5 presents
the properties of the laminate materials.

The dimensions of the beam are presented in Figure 4.1. In addition, the fluid flow is
constrained inside the same wind channel as the previous sections. The laminate material
presents a

[
θ f /−

]
configuration where θ f is the orientation of the fiber, which is varied from

−90 to 90 deg. The thickness of the carbon-fiber-reinforced polymer (CFRP) ply is 0.13
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mm, and the foam ply completes the total thickness of 4 mm. The cross-section geometry is
illustrated in Figure 4.43.

Table 4.5 Material properties of CFRP and foam. These properties are based on the works
of Qin and Librescu [36] and Koohi et al. [37] respectively. El and Et are the longitudinal and
transverse elastic modulus respectively, Glt and Gtt the longitudinal-transverse and transverse-
transverse shear modulus, νlt and νtt the longitudinal-transverse and transverse-transverse
Poisson ratios, hply is the ply thickness and ρs is the material density.

AS4/3501-6 Foam AS4/3501-6 Foam

El (MPa) 141960 15 νlt (-) 0.42 0.28
Et (MPa) 9780 15 νtt (-) 0.50 0.28
Glt (MPa) 6000 8 hply (mm) 0.13 3.87
Gtt (MPa) 4830 8 ρs (kg/m3) 1445 35

Fig. 4.43 Cross-section of the beam. The dimensions of the cross-section are not-scaled.

Note that the aeroelastic three-dimensional simulations were performed using the same
methodology as explained in Section 4.2.2 with the corresponding modifications on the
structure.

Validation of the structure

The correct structure simulation must be ensured before calculating the aeroelastic behavior
of the different layups configuration. Firstly, the models (structural, aerodynamic, and
aeroelastic) are validated. The computational cost of the ROM is compared against the full
CSD/CFD simulation to measure the computational savings, demonstrating the capabilities
of the reduced order model in the structural optimization process. Therefore, after validating
the mathematical and physical background, the influence of fiber orientation is analyzed for
different working conditions.

The initial validation of the structure was performed by comparing the results of the flat
plate cross-section against the literature. The natural frequencies of a carbon fiber laminated
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beam taken from Minguet [38] were compared with the results of the ROM for the same
structure. Table 4.6 presents the previous comparison, showing an accurate agreement for
the 1D models of the literature. However, the experimental data obtained a tip deflection
of 137 mm due to the nonlinear structural effects that appeared in the structure. This fact
explains the differences in mode 4. Figure 4.44 shows the structure’s mode shapes. Structural
coupling is evidenced in all the mode shapes, as the beam twists and bends in the same
vibration mode. For instance, the first mode presents an increase in the twist and plunge with
the longitudinal coordinate. This mode is dominant in the aeroelastic motion. The second
and third modes present zeros in the torsion when the plunge amplitude derivative is null.
In the fourth mode, torsion increases along the longitudinal coordinate while the vertical
displacement has two relative maxima and two relative minima. The aeroelastic dynamic
motion of the beam is expected to reproduce the first mode with small vibrations of the
higher-order modes.

Fig. 4.44 Modes of vibration of the reference flat plate beam. Mode shapes (not-scaled)
of the beam structure based on Minguet [38].
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Table 4.6 Validation of the structural model. Natural frequency comparison with the
literature.

Mode Shaat [39] Banerjee [40] Minguet [41] Current
Analytical Experimental

1 1.278 Hz 1.280 Hz 1.280 Hz 1.400 Hz 1.285 Hz
2 8.012 Hz 8.020 Hz 8.010 Hz 8.000 Hz 8.053 Hz
3 22.433 Hz 22.441 Hz 22.500 Hz 20.000 Hz 22.544 Hz
4 43.960 Hz 43.927 Hz 44.400 Hz 68.000 Hz 44.045 Hz
5 - 48.431 Hz 48.700 Hz - 47.748 Hz

Aerodynamic model results and limitations

Fig. 4.45 Three-dimensional aerodynamic effects of the structure. Tip vortex effects,
pressure distribution and pressure center position over the structure surface.

A finite wing immersed in a wind flow generates a pattern of three-dimensional vortexes.
These patterns can be calculated and observed in the CFD three-dimensional simulations.
The recirculation of the flow couples with the tip vortex effects near the free tip of the beam
producing a flow pattern that displaces the pressure center of the sections near the tip. Thus,
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the previous effects modify the moment coefficient with respect to the value estimated with
the Lifting Line Theory. In fact, Figure 4.45 presents the aerodynamic effects of the tip
vortex. The figure shows the distribution of the pressure coefficient along the span of the
beam, evidencing that the nonlinearities of the aerodynamic loads are induced in the first
term by a recirculation area near the leading edge. Near the tip, the recirculation area is
diminished due to the homogenized pressure resulting from the vortex. In the figure, the
wing span is marked with five color rectangles indicating the measured cross-sections. In
these sections, the pressure coefficient has been measured and presented at the bottom of
the figure using the same color code. In addition, the wall shear loads acting on the wall are
included in the image. These lines show the limit of the recirculation area and its reduction
in the suction side near the tip. Finally, the center of pressure is evidenced to move near the
tip vortex, indicating with the color points the reference cross-sections used for visualizing
the pressure coefficient.

Although the Lifting Line Theory fails when estimating three-dimensional effects near
the tip (due to the movement of the center of pressure), as shown in Figure 4.46, the error
remains below 4%, being acceptable for the aeroelastic simulations.

Fig. 4.46 Aerodynamic load distribution along the span. Steady aerodynamic load distribu-
tion along the span for 3D CFD simulations and 3D ROM analysis.

Aeroelastic validation against CSD/CFD

In order to determine the accuracy of the procedure, the solution of the complete CSD/CFD
simulation was compared with the results of the ROM. Firstly, the deviation between the
mean deformation of the ROM and the aeroelastic CFD/CSD simulations was evaluated, and
the results are presented in Figure 4.47. The continuous line represents a perfect agreement
between both methodologies. The points located below this line indicate an underestimation
of the plunge motion, Figure 4.47 (left), and a higher twist in absolute value, Figure 4.47
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(right). Therefore, according to the results presented in the figure, the ROM is able to obtain
similar mean deformation results to those of the high-cost solution but in a computationally
speaking more efficient way. However, the error of the ROM simulation increases as the
deformations grow.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0
-0.4

-0.3

-0.2

-0.1

0

Fig. 4.47 Deviation of the ROM solution with respect to CFD/CSD simulations. (Left)
plunge and (right) twist comparison.

A comparison of the evolution of the mean deformation values is also provided in Figure
4.48. This evolution is shown as a function of the nondimensional carbon fiber stiffness,
E∗ =

Ec
l

1
2 ρ∞v2

∞

(h
c

)3
for four layup configurations. In this figure, the effects of fiber orientation

are evidenced. Those fibers oriented longitudinally present a lower displacement in the
bending direction. This effect is a consequence of the orthotropy of the material, which
presents a higher elastic modulus in the normal stress direction, where the bending loads act.
In addition, asymptotic behavior can be appreciated in the system. The coupling between
the air and the structure reduces the global nondimensional stiffness. Therefore, as the flow
velocity increases, the asymptotic limit appears for lower nondimensional stiffness.

Figure 4.49 shows the mean twist of the structures for four different configurations.
Both models agree on the longitudinal and oblique orientation of the fibers. In fact, similar
effects to the plunge can be observed. As the elastic axis of the structure, leaving apart
bending-torsion couplings coincides with its center of gravity, no dynamic instabilities are
expected. Therefore, nonoscillatory infinite displacements are expected near the instability
limitations, called divergence velocity. However, when the structure reaches these limits,
the angle of attack will increase dramatically, and the structure will stall and oscillate (stall
flutter).
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Fig. 4.48 Plunge evolution of CFD and ROM calculations for different fiber orientations.
Note that the velocity measurements correspond to a structure of the properties listed in
Table 4.5. (Top-left) θ f = 90 deg, (top-right) θ f = 45 deg, (bottom-left) θ f = 0 deg and
(bottom-right) θ f =−45 deg.

According to the previous figures, plunge and twist are demonstrated to be accurately
captured by the reduced order model. Therefore, the methodology can predict the influence
of fiber orientation, allowing more efficient structural designs. The predictions of the ROM
are evidenced to be more accurate for highly enhanced nondimensional stiffness. However, a
progressive increase in the error near the instability conditions was detected. Moreover, the
asymptotic values of the CFD/CSD solution are shifted; see Figure 4.47.
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Nevertheless, the accuracy remains sufficiently high to predict aeroelastic phenomena
such as flutter, divergence, or limit cycle oscillations (LCO). In addition, the ROM supposes
a reduction of orders of magnitude in the computational cost of the calculations. Note that the
aerodynamic model provides the nonlinearities leading to the LCO, as the structure remains
linear in the present work.
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Fig. 4.49 Twist evolution of CFD and ROM calculations for different fiber orientations.
Note that the velocity measurements correspond to a structure of the properties listed in
Table 4.5. (Top-left) θ f = 90 deg, (top-right) θ f = 45 deg, (bottom-left) θ f = 0 deg and
(bottom-right) θ f =−45 deg.

The computational cost of the different computing tools was measured to determine the
benefits of the ROM. The CSD/CFD simulations were performed on a 15 Intel® Xeon® Gold
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6154 CPUs multiuser cluster, whereas ROM simulations were run on an Intel® Xeon® CPU
ES-2630 v2. The CSD/CFD simulations required a CPU computing time for a time step
slightly above 2 ·104 s, and the complete simulation required 430 h. For the ROM, the CPU
time per time step is around 2.2 s, being the simulation 3 h long. This fact implies a decrease
of more than two orders of magnitude and four orders of magnitude in the total simulation
and CPU computational cost, respectively.

Influence of fiber orientation

The fiber orientation strongly conditions the aeroelastic behavior of the beam. Therefore, the
ROM was applied to a range of orientations from −90 to 90 deg to find an effective layup
configuration. The variations of the mean deformation are presented in Figure 4.50 as a
function of the nondimensional stiffness and the fiber orientation. A reduction in the mean
twist is observed for negative orientations of the fiber. The structure reduces the angle of
attack as it bends. This fact matches the results found in the literature [42]. The wash-out
effect is applied to the beam, resulting in an alleviation of the aerodynamic loads. A passive
aeroelastic control has been generated, as the plunge of the beam generates a reduction in the
angle of attack. Moreover, the reduction of the twist has also decreased the aerodynamic force
resulting in a lower plunge. Inverse effects are obtained for positive orientations, generating
higher deformations and, consequently, reducing the unstable free stream velocity.

Fig. 4.50 Mean deformation of the tip section as a function of the velocity and fiber
orientation. (Left) mean plunge of the tip section and (right) mean twist of the tip section.
The solid line limits the stable region.
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Additionally to the structural couplings described in the literature, the current methodol-
ogy includes the simulation of non-linear aerodynamic effects, improving the results near the
instability with respect to the linear potential aerodynamic model [43].

The damping of the solution signal estimated the stability limit of the system, and it is
presented by the solid line in Figures 4.50 and 4.51. Figure 4.51(left) illustrates the torsion
damping of the system. The aerodynamic damping increases with the velocity in the stable
region for the negative values of the orientation. This effect was previously noted by the
works of Chadra et al. [34] and Chandra and Chopra [35]. As previously stated, the negative
orientation of the fiber (fiber rotated to the leading edge) produces wash-out: the twist of the
tip is reduced when its plunge increases.
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Fig. 4.51 Torsional evolution of the system for different conditions. (Left) torsional
damping and (right) evolution of the torsion of the system for different flow and structural
conditions. The damping map shows the time evolution for the highlighted color squares.
The solid line limits the stable region, and t∗ = tv∞

c is the value of the nondimensional time.

Due to the structural couplings, the mean torsion is lower than for positive and longitudi-
nal orientations. Therefore, the configuration of the material is preventing against stall. For a
squared-section beam, stall initializes flutter, creating a phenomenon known as stall flutter.
This oscillatory instability is dominated by torsion and produced by aerodynamic nonlineari-
ties. The time evolution of the system is presented in Figure 4.51 (right) for the indicated
design points. The figure shows that the most efficient fiber orientation for protecting against
instability is the −45 deg orientation. This configuration remains stable while the rest are
under stall flutter. Therefore, according to Figure 4.51 (left), for an optimum design, the fiber
should be in the range [−44,−68] deg for maximizing the stall flutter velocity and protect
the structure.
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Fig. 4.52 Aerodynamic coefficients of the beam for different flow and structural condi-
tions. (Top-left) lift coefficient, (top-right) right coefficient, (bottom-left) moment coefficient
and (bottom-right) aerodynamic efficiency. The solid lines limit the stable regions.

The aerodynamic coefficients show similar results. Figure 4.52 illustrates the Lift and
moment coefficients. The aerodynamic coefficients are directly related to the angle of attack,
in other words, the twist of the beam. Thus, the increase in the mean twist generates higher
lift and moment coefficients. It produces an augmentation on the aerodynamic loads.

Moreover, when the aerodynamic coefficients rise approximately 20% off the rigid beam
value, instability appears. The aerodynamic coefficient growth is equivalent to an increment
of 1 deg of the mean twist in the tip section. Similar effects are noticed in the drag coefficient.
These effects generate a constant aerodynamic efficiency for the stability domain. When
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the instability begins, the coefficients increase, raising the aerodynamic efficiency until the
cross-section stalls.

Finally, the modal contribution on the deformed shape is presented in Figure 4.53 for the
highlighted operational points of Figure 4.51. A similar contribution is observed for all the
fiber orientations. The displacement of the nodes is mainly affected by the first mode. This
means that the phenomenon could be simulated by using an equivalent section. However,
as the velocity of the nodes is affected by the first three modes, in the case of studying the
aeroelastic behavior of the equivalent section, the contribution of the velocity of vibration
would be omitted.

Fig. 4.53 Modal contribution in the simulations. Squared mean modal contribution of the
last 0.2 s of simulation for the position (left) and velocity (right) for E∗ = 0.4 ·106.

Discussion

A Reduced Order Model enhanced by Artificial Neural Networks has been used for the
aeroelastic calculations of a carbon fiber laminated beam. Adding the surrogate aerodynamic
model based on Neural Network to the existing Lisbrescu’s thin-walled beam model has
allowed the reproduction of nonlinear aerodynamic effects. Thus, nonlinear oscillatory
phenomena have been simulated. The resolution of the carbon fiber-reinforced foam squared-
section beam has been validated against the literature, and the results have been compared
with three-dimensional CSD/CFD simulations. Finally, the behavior of the beam has been
analyzed for different fiber orientations, showing the influence of the fiber direction on the
solution and the applicability of ROMs in the structural design process.

Concerning the methodology, ROMs have been demonstrated to be an efficient low-
fidelity tool for calculating the aeroelastic behavior of the structure. Compared with the
complete three-dimensional calculations, a reduction of four orders of magnitude of CPU
cost has been noticed in the ROM. In addition, the error in the mean deformation remains
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under 2% far from the instability and increases near the asymptote up to 15% when compared
with complex CSD/CFD simulations. However, the increase in the error is not a limitation
of using the methodology. The nondimensional curves have been demonstrated to fit both
methodologies. The increase in the error is due to a slight deviation of approximately 5% on
the asymptote.

In addition, in order to test the structural optimization capabilities of the model, a batch
of operational points has been simulated, forcing different bending-torsion coupling effects.
The wash-out effects presented in the literature have been evidenced to prevent stall flutter.
Rotating the fibers, upwash reduces the angle of attack when the plunge is increased. For
the geometry studied, a range of [−44,−68] deg has been obtained as the more effective
structure protection.

Regarding the modal contribution, the first mode dominates the displacement. Plunge and
twist are contained in the same mode in contraposition to the isotropic material simulations.
In addition, the second and third modes contribute to the velocity of the sections and, thus, to
the aerodynamic damping. Therefore, only the first bending and the first torsion mode are
required if the problem is reduced to an equivalent section. In the case of oblique fibers, both
modes (plunge and twist) are contained in the first vibration mode, being only this mode
necessary for reproducing the aeroelastic behavior of the beam. However, the effects of the
velocity (secondary modes) would be canceled.

Summarizing, the benefits and limitations of the ANN-enhanced beam element ROM
have been analyzed while solving the flat plate beam test bench. The methodology has proved
to be a powerful tool in the predesign process. It allows us to determine an optimum structure
and reduce the high-fidelity simulations required in the optimization process. Therefore,
using the ROM helps decrease computational costs and speed up the design by orders of
magnitude.

4.3.3 Orthotropic wind turbine blade.

The reduced order models have been tested for simple cases regarding squared beam structure
deformation presented in Section 4.2.1. Nevertheless, the algorithm must be tested in a real
engineering problem with complex geometry and structural properties. Due to the increasing
importance of wind energy production and the large size and aspect ratio of the novel blade
designs of wind turbines, a wind turbine geometry is selected to evaluate the solver.

This section focuses on presenting the aeroelastic behavior of the blade of the NREL
Phase VI Rotor [44] using two different structural composite material layups. The comparison
between a quasi-isotropic material and a purely orthotropic configuration is presented.
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The section shows the capabilities of the ROM for predicting the nonlinear aeroelastic
dynamic evolution of rotating lifting surfaces. In addition, the benefits of using an appropriate
bending-torsion coupling are demonstrated.

Case of study

The NREL Phase VI Rotor blade geometry was selected due to the extensive data available
in the literature. The geometrical characteristics of the rotor are presented in Table 4.7. The
blade cross-section uses an S809 airfoil. From the structural perspective, the airfoil is divided
into two cells internal cells divided by a vertical spar located in the mean chord, Figure 4.54.

Fig. 4.54 Transition of the unitary chord cross-section of the blade. The figure shows the
blade airfoil S809, the root circular cross-section and the transition airfoils.

Two different structural configurations are presented in the section. In both cases, the
cross-section wall is a laminated layup of 8 plies, the six internal plies of unidirectional
carbon fiber [36] and the external of quasi-isotropic glass fiber fabric [45]. For the first layup
(Structure 1), a quasi-isotropic structure is created using orientations (90/45/−45)s, while
the external present a configuration 90/0. For the second structure (Structure 2), the skin
layup after the transition sections are modified, using a (60)6 lamination for the internal
carbon fiber plies, except for the spar, which maintains the previous layup. The composite
material fibers are rotated backward on both blade surfaces in this configuration.
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Table 4.7 Geometrical distribution of the NREL Phase VI rotor blade. r is the radial
position of the section, c is the chord of the section, θg geometric torsion of the section, ξ

nondimensional position of the geometric torsion axis (percentage of the chord).

r (m) c (m) θg (deg) ξ (%) Airfoil

0.00 0.22 0.0 50.0 Circ
0.51 0.22 0.0 50.0 Circ
0.66 0.22 0.0 50.0 Circ
0.88 0.18 0.0 50.0 Circ
1.01 0.35 -6.7 35.9 Tr1
1.07 0.44 -9.9 33.5 Tr2
1.13 0.54 -13.4 31.9 Tr3
1.26 0.74 -20.0 30.0 S809
1.34 0.73 -18.1 30.0 S809
1.51 0.71 -14.3 30.0 S809
1.65 0.70 -11.9 30.0 S809
1.95 0.67 -8.0 30.0 S809
2.26 0.64 -5.3 30.0 S809
2.34 0.63 -4.7 30.0 S809

r (m) c (m) θg (deg) ξ (%) Airfoil

2.56 0.61 -3.4 30.0 S809
2.87 0.57 -2.1 30.0 S809
3.17 0.54 -1.2 30.0 S809
3.19 0.54 -1.1 30.0 S809
3.48 0.51 -0.5 30.0 S809
3.78 0.48 0.0 30.0 S809
4.02 0.46 0.4 30.0 S809
4.09 0.45 0.5 30.0 S809
4.39 0.42 0.9 30.0 S809
4.70 0.39 1.4 30.0 S809
4.78 0.38 1.5 30.0 S809
5.00 0.36 1.8 30.0 S809
5.31 0.33 2.2 30.0 S809
5.53 0.31 2.5 30.0 S809

Table 4.8 Composite material properties for the wind turbine blade. Material properties
of the carbon-fiber and the glass-fiber-reinforced polymer: El longitudinal elastic modulus,
Et transverse elastic modulus, Glt longitudinal-transverse shear modulus, Gtt transverse-
transverse shear modulus, νlt longitudinal-transverse Poisson’s ratio, νtt transverse-transverse
Poisson’s ratio, hply ply thickness, ρ material density.

Material El Et Glt Gtt νlt νtt hply ρ

Units (GPa) (GPa) (GPa) (GPa) (-) (-) (mm) (kg/m3)

CFRP 141.96 9.78 6.0 4.83 0.42 0.5 0.13 1445
GFRP 20.0 19.0 4.2 4.2 0.13 0.13 0.53 2540

Material properties are presented in Table 4.8. The previous material properties would
correspond to a glass and carbon fiber volume fraction of approximately 27% and 63%,
respectively, according to Vijcic and Dimic [46] and Singh et al. [47].

In addition, shell cross-section distortion is prevented by adding dense aluminum ribs at
the root, the transitions and the tip and thin-walled ribs being located every 2% of the span,
Figure 4.55.
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The reference system of the wind turbine blade is presented in Figure 4.56. The figure de-
fines the main displacements of the section: horizontal displacement u, vertical displacement
v, and twist θ . Note that the directions of the angle of attack α and the twist θ are inverted.
In the figure, the variables a and a′ are the induced velocities, and r is the radial position.

Fig. 4.55 Geometry of the NREL Phase VI blade. The figure shows the external geometry
of the blade, and the internal elements, such as the main spar and the dense and thin-walled
ribs

Fig. 4.56 Blade reference system. The global reference frame and the main displacements
of the section are shown.

Computational solid dynamics

In order to validate the results of the ROM, an FEA of the blade is calculated. The FEM
simulation was calculated using NASTRAN for a composite laminate shell mesh. The mesh
was created using a final grid of 1.2 ·104 quadrilateral parabolic elements, which keeps the
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discretization error below the acceptable accuracy value, Figure 4.57. The finite element
mesh of the blade is shown in the figure. The details on the external shell, the ribs, and the
spar are visualized in the figure. This mesh is used for simulating linear elastic analysis of the
structure. The FEA is resolved for both steady deformation and vibration modes simulations.

Fig. 4.57 Mesh of the blade. Detail of the cross-section for the cylindrical, transition, and
S809 zones. Skin, spar, and dense and thin-walled ribs are included.

Computational fluid dynamics

A CFD simulation is run to validate the results of the Theodorsen transient aerodynamic
coefficients. This simulation has been performed by calculating a pitching and plunging
airfoil with the proprietary software Simcenter Star-CCM+. The mesh of the domain is made
using an overset strategy and polygonal elements, Figure 4.58. The conservative equations
of the fluid are computed by means of a coupled solver. The advection terms are solved
with second order upwind ROE FDS scheme for the advection terms [21, 22]. A Gauss-
Least Squares Method with the Venkatakrishnan limiter [23] is employed for computing the
gradients.

Fig. 4.58 CFD mesh of the blade. (Left) global mesh and (right) detail of the overset region.
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Structure validation

As previously mentioned, the NASTRAN FEA simulation has been used to validate the ROM
accuracy. The blade stiffness was compared to the FEM solution by analyzing the simulation
results. Then, a modal analysis was employed to validate the vibration modes and the modal
shapes.

The steady simulation was configured for testing the blade structural stiffness. A com-
bination of forces and moments was applied to the blade tip, locating their center in the
geometrical rotation axis. A vertical (Fy) and horizontal (Fx) forces of 100 N and a twisting
moment (Mz) of 100 Nm were applied to the structure. The deformation of the blade is
visualized in Figure 4.59. The results evidence the high accuracy of the ROM with respect to
the FEA model, been the displacement error of around 3% in the blade tip. Nevertheless, the
FEA twist presents higher errors, such as the sawtooth behavior near the root.

Fig. 4.59 Deformation of the blade under static loads. The external loads are: Fy = 100 N,
Fx = 100 N, Mz = 100 Nm. The longitudinal black line on the bottom-right image presents
the geometrical center of rotation where the displacements are measured. In the Figure, v is
the vertical displacement (top-left), u the horizontal displacement (top-right) and θ the twist
(bottom-left) and the three-dimensional (bottom-right).
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In addition, the validity of the ROM requires the one-dimensional beam behavior of the
blade. The cross-section distortion of the blade is analyzed in Figure 4.60 by determining the
rotation of the sell elements in the three axes. These shell effects are conditioning the rotation
of the blade cross-section. The contours of the figure evidence the contribution of the internal
ribs, which are restraining the rotation of the shell over them. Their presence allows them to
maintain the 1D beam behavior, which is crucial for applying the beam element solver.

Fig. 4.60 Rotation of the shell elements of the blade. The geometrical rotation axis is
marked over the surface. (Top) rotation in the x direction, (middle) rotation in the y direction
and (bottom) rotation in the z direction.
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Moreover, the vibration modes were analyzed in order to ensure the accurate dynamic
modeling of the structure. The first four vibration modes of the blade are compared in Table
4.9. These modes are expected to be the most influential for the dynamic behavior of the
blade. Both models agree with a maximum error of 9%. Therefore, the structural ROM can
accurately reproduce both stiffness and mass properties and be used in the elastic analysis of
the structure. The possibility of predicting the motion of the blade using a ROM also allows
us to reduce the computational cost compared with a 3D finite element analysis.

Table 4.9 Natural frequencies of the first four vibration modes. The results show the
comparison between the reduced order model and the finite elements analysis.

Solver Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)

NASTRAN 4.647 6.504 21.494 48.951
ROM 4.456 6.430 19.794 48.067

Deviation (%) 4.11 1.15 8.82 1.81

Fig. 4.61 Vibration modes obtained from the 1D reduced order model. (Top-left) mode 1,
(top-right) mode 2, (bottom-left) mode 3 and (bottom-right) mode 4.
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Additionally, Figure 4.61 displays the modal shape of the blade. Similar modal shapes
are obtained for both methodologies: the ROM and NASTRAN models. This fact can be
tested in the Modal Assurance Criterion (MAC) of Figure 4.62 [9]. In the figure, a higher
correlation is presented for the darker colors, having the diagonal of the matrix values closer
to the unity. Thus, both models correlate. Note that the problem is dominated by bending
modes due to the high torsional stiffness of the multicell cross-sections. Nevertheless, modes
3 and 4 include bending-torsion couplings.

0.2

0.4

0.6

0.8

Fig. 4.62 Modal Assurance Criterion. Note that the darker colors are related to a higher
correlation between the ROM and NASTRAN.

Validation of the wind turbine aerodynamic characteristics

The steady aerodynamic blade element momentum model for the wind turbine lifting surface
was validated against the experimental data of Lee et al. [48] for a tip speed ratio of λ = 6,
Figure 4.64 (left). The predicted force coefficient is slightly higher for the BEM model
than for the literature data. Indeed, the power coefficient curves are compared in the right
image of Figure 4.64 with the simulated and experimental data of Torregrosa et al. [49]. The
figure shows a difference in the maximum power peak between the CFD results and the
BEM calculations. According to Plaza et al. [50], the maximum power peak is obtained for
lower values of the tip speed ratio in the BEM. In the figure, the BEM was demonstrated
to overpredict the loads; this fact is consistent with the higher power obtained. Although
there is a lack of accuracy when obtaining the power peak, the methodology reduces by
orders of magnitude the computational cost. Therefore, it speeds up the initial stages of the
aerodynamic design with acceptable accuracy in predicting the loads.
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Fig. 4.63 Aerodynamic validation of the BEM. (Left) Normal force coefficient distribution
for a wind velocity of 7 m/s and a rotation velocity of 73 rpm and (right) Validation of the
blade element momentum theory with CFD and experimental data.

In addition, the transient loads calculated with Theodorsen’s theory are compared to a
pitching and plunging airfoil whose movement is described by Equation (4.11).

θ(t) = θ̄ +2.5sin(20πt); v(t) = 0.01sin(8πt) (4.11)

Fig. 4.64 Aerodynamic validation of Theodorsen model. (Left) Validation for mean
incidence of 0 deg and (right) validation for mean incidence of 8 deg.

Figure 4.64 presents the lift coefficient calculated by the ROM and the CFD simulations.
In the figure, two validation cases are visualized. The first simulation is performed for a low
mean incidence, θ̄ = 0 deg, while the second is calculated near the stall phenomena, θ̄ = 8
deg. Note that the transient Theodorsen’s model supposes an attached flow; for this reason,
the accuracy of the solution is higher for low incidence angles, reducing its accuracy in the
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point of maximum efficiency of the blade, approximately 8 deg of incidence. However, the
models exhibit an efficient computational cost and low deviations from CFD simulations in
the operating points. Thus, it is applied for calculating the transient effects of this work.

Elastic wind turbine solution: prediction of flutter speed

In order to calculate the aeroelastic dynamics of the blade, the structural beam momentum
and the aerodynamic blade element method with Theodorsen’s transient coefficients models
were coupled. The structure deformation and the transient displacements were obtained
for different operation points. The free stream and rotation velocities were modified in
terms of the characteristic parameters of the simulations: tip speed ratio

(
λ = ΩR

V∞

)
and

nondimensional elastic modulus
(

E∗ = El
1
2 ρ∞V 2

∞(1+λ 2)

)
. The mean twist of the tip section is

analyzed in the aeroelastically speaking stable operations. The stability of the simulations is
limited by defining two consecutive intervals in the time evolution curve, Figure 4.65. Then
the evolution of its amplitude is measured and analyzed. The range of the time intervals has
been chosen to contain twice the first natural frequency, in other words, the main oscillation
of the structure. In this figure, three different conditions are presented: damped, Figure 4.65
(left), limit cycle (middle), and unstable (right).
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Fig. 4.65 Torsion evolution for structure 1 under different operation points. (Left) λ = 7,
E∗ = 500, (middle) λ = 7, E∗ = 80 and (right) λ = 7, E∗ = 62.

When the amplitude of the oscillations tends to increase with time, negative damping is
detected, and the unstable condition is reached in the computed time signals. Figure 4.66
shows these limits for both layup configurations. In the figure, the aeroelastic limitations are
improved for structure 2 in the range between λ = 2 and λ = 7 due to the bending-twisting
coupling effect, which compensates for the unsteady aerodynamic loads.
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Fig. 4.66 Limitations of the structure for nondimensional variables. The limitations
are presented for a quasi-isotropic material (structure 1) and an oblique fiber distribution
(structure 2).

Wind turbine range of operation

In this subsection, the previous deformation results of Figure 4.66 are used for setting the
limits in the operation curves of the turbine. Inside the stability limits, The mean values of
the power coefficient are evaluated inside the stability limits of the structure. In the previous
results, the reduction of nondimensional stiffness is not producing noticeable effects on the
power generation, which is a function of the tip speed ratio, Figure 4.67. For this reason, in
the operational analysis of the turbines, the generation of power is evaluated using the rigid
rotor data using the elastic blade information for determining the operation limits of each
structure.

Fig. 4.67 Mean value of the power coefficient of the structures for the different operation
conditions. (Left) structure 1 and (right) structure 2.

The following control law determines the operation of the wind turbines:
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• The turbine can rotate at optimum tip speed ratio (λ ≈ 7) until the maximum rotation
velocity is reached. This maximum angular velocity is limited to generate the maximum
power for the values of the wind velocity in which the power derivative remains low or
null. Higher values of power could damage the electrical system. Accordingly, with
the literature [44], the rated power of the turbine is 19.8 kW.

• Then, a maximum rotation velocity is maintained, forcing the rotor to operate out of
the optimum performance point.

The power and rotational velocity curves are presented in Figure 4.68 together with the
structural and electrical limitations.

The increased range of operation produced by the modified structure can be observed in
Figure 4.68. Figure 4.68 (top-left) visualizes the control law in terms of the nondimensional
variables. In this figure, the solid dark line represents the value of the dimensionless
parameters. The direction of the arrowheads indicates the direction of increasing the wind
velocity, following the control law of Figure 4.68 (top-right). The dashed lines mark the
physical limitations established by the structure and the electrical generator of the wind
turbine. The intersection between the solid and the dashed lines supposes the collapse of the
structure. After these points, the deformation of the blade will be amplified with time.

According to the results, it is evidenced that rotating the fibers backward protects against
the instabilities. The analysis of the capabilities of the system may be performed in dimen-
sional terms. Figure 4.68 (bottom-left) presents the power generated by the rotor as a function
of the wind velocity. This figure shows the benefits of a correct bending-torsion coupling.
This coupling acts as a passive aeroelastic control, increasing the wind velocity of the struc-
tural limit with respect to the original structure. This oblique fiber structure is demonstrated
to produce an improvement of approximately 10% in the maximum wind velocity of the
system. The rotation of the fiber generates the phenomenon called wash-in, which is related
to delaying the flutter effects of a lifting surface. In the present analysis, the wash-in provides
better blade performance for the same structural weight (29.6 kg). In addition, the modified
structure may be loaded with higher axial forces, Figure 4.68 (bottom-right); therefore, the
tower and blades should also be calculated under these loads to prevent static failure.
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Fig. 4.68 Operation curves of the wind turbine. (Top-left) operation limits, (top-right)
rotational velocity in the operations, (bottom-left) power in the operations and (bottom-
right) axial force in the operations. The dashed lines represent the structural and electrical
limitations of the system, whereas the solid curves represent the operation of the turbine.

Discussion

The current section analyzed the aeroelastic behavior of a carbon-fiber-reinforced polymer
wind turbine blade. The results provided a general idea of the effects of fiber orientation
influence and tested the calculation capabilities of the ROM in rotating aerodynamic problems.
The structural integrity of the blade has been evaluated for two different layup configurations.
The first configuration presented a quasi-isotropic layup. Then, the layup was modified,
proposing a different fiber orientation for the second layup. In this case, a negative bending-
torsion structural coupling was created by rotating the unidirectional fibers backward. This
rotation is related to load alleviation as stated by Stanford et al. [42]. These results open the
possibility of future work to evaluate the optimum layup configuration for a general wind
turbine operation and validate the elastic results with high computational cost simulations or
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experimental data. The main findings of the work are summarized in the following bullet
points:

• The steady blade deformation of the blade was proven to predict with an error lower
than 5% the steady deformation of the blades and with less than 9% the dynamic
behavior through the vibration modes.

• Blade element momentum methodology and Theodorsen’s theory provide accurate
results with a low computational cost compared with experimental data and CFD
simulations.

• The power coefficient has been demonstrated to depend exclusively on the tip speed
ratio in the stable region.

• Flutter velocity has been calculated for two different layup configurations, showing
the oblique fibers better limitations for the operating conditions. Indeed, the modified
structure has been demonstrated to improve the maximum allowable wind velocity by
10% as a consequence of the structural coupling.

4.3.4 Flexible membrane semi-monocoque wing.

The interest in resistant membrane wings has been increasing in the last decades. This growth
of interest is strongly connected with the development of civil and military micro air vehicles
(MAVs) due to their capability of carrying video cameras and sensors in hazardous locations
while being lightweight and easy to transport [51]. These aircraft operate in low Reynolds
numbers, between 104 and 105. In these conditions, the airflow around the wing may detach
and produce nonlinearities or stall for low angles of attack. Therefore, the MAV application
requires using bio-inspired structures [52–54]. Flying animals, such as bats and insects, can
maneuver in the air by morphing their wings to adapt to the flying conditions [55, 56]. These
capabilities have attracted the attention of the MAV industry for the membrane wing [57–59].

Additionally, to the previous benefits of the membrane structures, their lightweight and
safe operation in proximity to a human have spread their application in sailing and sports
to manufacture aerodynamic surfaces or flexible kites [60, 61]. For instance, the yachts of
America’s Cup have replaced the traditional sails with membrane-resistant wings, achieving
a higher lift-to-drag ratio [62]. As a drawback, the membrane-resistant wings present a
higher weight than the traditional sails. Therefore, a semi-monocoque structure composed of
a main spar, a set of battens, and a resistant membrane is widely used, similarly to the MAV
industry [63]. The resistant membrane wings are lightweight compared to traditional wings
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and are significantly susceptible to aerodynamic loads. The aeroelastic effects are critical,
and the control of the yacht is dependent on the deformation of the structure [64].

Many researchers have extensively analyzed membrane-resistant wings. The study can
be conducted employing experimental campaigns or fluid-structure interaction simulations.
Regarding the former, Stanford et al. [65] performed a set of experiments to investigate the
aeroelastic behavior of a MAV wing. Similar studies have been applied to sails and yacht
wings [66, 67]. Concerning the numerical simulations, authors like Scott et al. [68] have used
the FEA to calculate a flexible membrane’s structural response. Furthermore, the coupled
fluid-structure simulation has also been calculated for the resistant membrane [69]. This
section focuses on applying the beam element-based ROM to the resistant membrane wing
problem. The results are compared with the three-dimensional fully coupled simulations,
accurately predicting the aeroelastic instabilities while reducing the computational cost by
orders of magnitude.

Case of study

In this section, a semi-monocoque wing is analyzed. The internal structure of the wing
is composed of a C-shape cross-section main spar, a set of nine internal battens, and the
external membrane skin. Figure 4.69 presents the layout of the wing structure. Regarding the
structure dimensions, the wing presents a chord, c, of 100 mm and a span, b = 3.98c. The
batten thickness, tb = 0.03c and the distance between them db = 0.464c, the spar external
diameter ds = 0.06c and its thickness ts = 0.005c. Concerning the cross-section of the wing,
a triangular airfoil is used.

Fig. 4.69 Membrane resistant structure. Wing (left-up) and cross-section (left-down) layout
composed of the C-shaped spar, the battens, and the membrane. Wind tunnel cross-section
(right).



176 Results

The wing is fixed by one of its ends, as Figure 4.69 indicates. The fixed end restricts the
displacements and rotations of the structure, while the other end is allowed to move freely. In
addition, a perfect rigid contact is assumed for the connections between the internal elements.
The elements are bonded, and no relative displacement between them is allowed.

In addition, the case study is a benchmark for validating the capabilities of the ROM.
Therefore, the simulations are calculated for a wing immersed in a wind tunnel, Figure 4.69,
so the results could be compared with experimental data in the future. The wind tunnel
cross-section presents a square shape of side W = 4c. Due to the small size of the wind
tunnel with respect to the wing, a gap g = 0.02c is generated in the wing tip. This gap could
be observed in the detail of Figure 4.69.

The airflow is modeled incompressible due to the low free stream velocity. A density of
1.225 kg/m3 and dynamic viscosity 1.74 ·10−5 Ns/m2 are assumed. The velocity of the free
stream is modified in the range from 5 to 25 m/s. Finally, the solid mechanical properties
are presented in Table 4.10 for the different materials.

Table 4.10 Material properties of the membrane wing structure. The table shows the
materials of the different elements of the wing.

Element Material Elastic modulus Shear modulus Density
(MPa) (MPa) (kg/m3)

Spar Aluminum 71000 27000 2770
Membrane Latex rubber 2 0.75 1000
Battens PMMA 2690 964 1180

Coupling simulation of the resistant membrane wing

The coupled aeroelastic simulations were calculated using a procedure similar to the previous
sections. The proprietary software Simcenter STAR-CCM+ version 17.06.007-R8 was
employed for the three-dimensional simulations. A polyhedral mesh of 10.9M cells was
created to discretize the domain. The numerical accuracy of the previous grid was determined
by a mesh independence analysis, ensuring that the computational deviation was lower than
5% compared to a finer mesh. The details of the mesh refinements on the fluid and the solid
are visualized in Figure 4.70.

The flow was solved using the Unsteady Reynolds Average Navier-Stokes equations with
a k−ω SST turbulence model. This model was selected due to its applicability under adverse
pressure gradients and high incidences. The advection terms are resolved with SIMPLE and
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PISO segregated schemes for the steady and transient simulations, Figure 3.5. The gradients
are computed using a Gauss-Least Squares Method with Venkatakrishnan limiter.

Fig. 4.70 Mesh of the membrane resistant wing simulation. Fluid mesh (left), detail of the
overset mesh (right-top) and structure mesh (right-bottom).

The structural mesh is composed of a total of 560,000 hexahedral elements, Figure 4.70.
The number of grid points is determined to limit the error to 3.6% in a twist. The elastic
equations are also solved using Simcenter STAR-CCM+ version 17.06.007-R8. A MUMPS
sparse solver was used for calculating the solid [70]. The contact between the elements is a
surface-to-surface contact interface with bonded restriction. The spar and batten material
is considered an elastic solid. Nevertheless, the membrane is modeled using nonlinear
geometric properties. The stiffness and mass matrices of the membrane must be recomputed
at every time step due to its low thickness and elastic modulus. Considering the membrane, a
linear elastic solid results in unrealistic deformations. Finally, in order to stiffen the skin of
the wing, an analysis of adding prestress on the membrane was also performed. The structure
includes the prestress by applying a thermal deformation (contraction) in the membrane.
Therefore, a thermal displacement model was also included in the simulation.

The solid and the fluid are coupled through a mapped contact interface. The aerodynamic
loads are interpolated in the membrane surface. The pressure and viscous stresses are
applied to the wing surface, generating a displacement of the structure and then morphing the
fluid domain. The overset methodology, Figure 4.70, was applied to the problem to reduce
the computational cost of morphing the whole mesh at high deformations. The mesh is
morphed from the initial position in each iteration, allowing repeatable meshes in oscillatory
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movements. The interfaces of the contact are recomputed at every time step. A time step
sensibility analysis determines the maximum time step and the minimum number of internal
iterations that maximize the computational accuracy. A resulting time step of 5 ·10−4 s with
a second order implicit solver was used in the time integration in combination with three
internal iterations, which ensure similar results than five or ten with a high reduction of the
computational cost.

Aeroelastic reduced order model

The main objective of the section is to prove the accuracy of the reduced-order model for
predicting the aeroelastic phenomena of a membrane-resistant wing. The simplified solver
based on the beam element model was applied to the problem to reduce its computational
costs.

The membrane-resistant structure is configured in the ROM by defining a single beam
that contains the spar and the membrane. Then, the effect of the battens is taken into account
in the simulation by applying a rib boundary condition. The boundary condition limits the
twist derivative to null values in the positions of the battens.

For the aerodynamic forces, the nonlinear steady model interpolated from a CFD bi-
dimensional polar and the transient aerodynamic coefficients calculated by Theodorsen’s
theory are applied to the problem. Figure 4.71 presents the steady bi-dimensional aerody-
namic CFD polar. The tip vortex and three-dimensional effects were considered using an
infinite wing model and a nonlinear lifting line theory.

Fig. 4.71 Bi-dimensional polar of the triangular cross-section. Lift coefficient (left) and
pitching moment coefficient (right).

Note that although the ROM can provide a computationally efficient alternative for
calculating the aeroelastic behavior of the whole structure, it cannot predict the distortion of
the membrane.
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Validation of the aeroelastic ROM

Verifying the accuracy of the reduced order model requires ensuring the precision of the
models isolatedly. Firstly, the structural model was validated. In order to perform the
validation, the results are compared with the FEM simulations calculated with SimCenter
STAR-CCM+. A vertical load of 1 N is applied in the trailing edge of the wing tip. Plunge
and twist were calculated along the beam. Figure 4.72 presents the distribution of the previous
displacements. The structural model shows high accuracy for the bending and torsion effects
with an error of approximately 1% and 2%, respectively. Note that higher deviations are
obtained for the twist while the bending solution is perfectly reproduced. The effect of the
battens is also reproduced in the ROM; see the waves on the twisting curves. These waves
result from the boundary conditions, which limit the twist of the beam, as calculated in the
FEA simulations.

Fig. 4.72 Comparison of ROM and FSI simulations for the resistant membrane wing.
The results are calculated for a vertical load of 1 N located in the trailing edge tip section.
The vertical displacement is shown in the left image, while the twist is exhibited in the right.

In addition, the aerodynamic forces of the rigid beam are compared with the CFD steady
simulations of the wing to validate the aerodynamic model. The results of the analysis are
presented in Table 4.11. The comparison between the models evidences that the infinite
wing model tends to overpredict the aerodynamic loads with an approximate error of 10%
while the LLT tends to underpredict them with an error of around 20%. A small gap between
the wing and the tunnel walls generates three-dimensional effects. However, the tip vortex
presents lower intensity than the finite wing calculated by LLT and only affects the last
sections of the wing, remaining almost constant in the load distribution. Figure 4.73 shows
the lift and moment distribution for the CFD and the ROM models. The curves show the
necessity of determining an aerodynamic model to address the small-gap effects. Moreover,
modifying the models needs to correct the lift and moment differently, as the moment is
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more affected by the previous tip effects. In order to address the previous problems, the
aerodynamic coefficients were corrected by reducing the moment coefficient and the lift
coefficient value by 10%, as illustrated in Figure 4.73. These results were obtained using the
last correction for the three-dimensional aerodynamic effects and present an error of around
5% of the simulated three-dimensional wing.

Table 4.11 Aerodynamic coefficients of the different models. The table compares the
global coefficients of the lift and moment for the CFD and ROM models.

Model CL CM εCL (%) εCM (%)

CFD 0.4307 0.1002 - -
Infinite Wing 0.4651 0.1166 8.0 16.4
LLT 0.3860 0.090 10.4 10.2

Fig. 4.73 Load distribution on the wing. Lift coefficient (left) and pitching moment
coefficient (right).

Aeroelastic coupling validation of the ROM

The dynamic aeroelastic simulations are performed using the CSD/CFD solvers and the
reduced-order models. Initially, the aeroelastic behavior of the system is estimated by
determining the eigenvalues of the linear system. The results of the aeroelastic eigenvalues
calculated by the ROM are presented in Figure 4.74. This figure presents the evolution of
the first six vibration modes as a function of the free stream velocity. The instability is
determined to appear around 15 m/s when the real part of mode six becomes positive. In
addition, modes three and four present a low damping in the whole velocity range and are
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minimally influenced by the aerodynamic loads. However, as the magnitude of their real part
is negligible, the modes are expected to be damped in the transient simulations.

Fig. 4.74 Aeroelastic eigenvalues of the ROM for the membrane-resistant wing. (Left)
imaginary part of the modes and (right) real part of the modes

The modal information of the last figure is complemented in Figure 4.75, where the
modal shape of the first six modes after the instability are shown, for a velocity of 19 m/s.
Note that modes five and six exhibit a combination of bending and torsion deformations.
These modes generate instability. Regarding the critical stability modes, the shapes can
clearly be related to bending, modes three and four, while a mixture between bending and
torsion dominates the first two modes. Although the first modes are expected to dominate
the problem, the instability is produced for higher-order modes, evidencing the necessity
of taking them into account. This fact evidences the limitations of the equivalent section
models, which can only take into account a mode per degree of freedom.

Fig. 4.75 Modal shape of the modes after instability. The figure shows the first six vibration
modes for a velocity of V∞ = 19 m/s. (Top-left) mode 1, (top-center) mode 2, (top-right)
mode 3, (bottom-left) mode 4, (bottom-center) mode 5 and (bottom-right) mode 6.
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After the eigenvalues were used for estimating the instability velocities, the ROM and
FSI solvers were used for calculating the dynamic behavior of the wing without prestress for
a range of velocities between 0 and 25 m/s. Initially, the ROM solver was evaluated to obtain
a low-cost estimation of the dynamic aeroelastic behavior of the wing. The deformation
of the wing was calculated with the transient ROM. The transient evolution of the plunge
and the twist of the tip cross-section of the wing is shown in Figure 4.76. An important fact
extracted from the figure is the higher value of the instability velocity compared with the
linear eigensystem, around 18 m/s. The difference is a consequence of the nonlinearities in
the aerodynamic model included in the transient simulations.

Fig. 4.76 ROM deformation evolution of the sail. (Left) bending evolution and (right)
torsion evolution of the membrane wing.

Then, the coupled FSI simulation was calculated using the CSD/CFD solver. The
results of bending and twisting are presented in Figure 4.77. This model can include the
three-dimensional aerodynamic effects and the shell deformation of the membrane. The
deformation of the external membrane of the wing can be observed in Figure 4.78 for a stable
condition and the LCO. The membrane visualization shows more significant deformations
far from the battens in both cases, presenting a nonlinear behavior. In addition, higher
deformations are presented near the wing tips. In this simulation, as in the transient ROM
calculations, the LCO is reached for a velocity of approximately 18 m/s, Figure 4.77. The
structures start to flutter for higher free stream velocities due to the instability; the coupled
bending and torsion deformations increase their amplitude as the motion evolves. Both
models agree, predicting a flutter velocity higher than the eigensystem. In this case, similar
reasons produce the deviation in the unstable velocity. Indeed, neglecting nonlinearities is
the principal source of error in the eigensystem.
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Fig. 4.77 FSI deformation evolution of the wing. (Left) vertical displacement and (right)
torsion of the beam.

Fig. 4.78 FSI displacement of the wing.(Left) preflutter, V∞ = 10 m/s, and (right) LCO
conditions, V∞ = 18 m/s.

Fig. 4.79 Detail of the flow around the deformed structure. Note the increase in the
boundary layer after the circular surface.
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As previously stated, the discrepancy between the flutter velocity obtained by the eigen-
value identification and the transient simulations can be attributed to the use of linear
aerodynamic coefficients in the eigensystem. This assumption is inaccurate for the triangular
cross-section of the membrane, as shown in Figure 4.79. This figure illustrates the velocity
field around the deformed membrane wing. Note the increase in the thickness of the boundary
layer after the circular surface. This effect lowers the stall velocity and, thus, contributes to
the onset of nonlinearities in the aerodynamic coefficients.

A nonlinear behavior is presented on the membrane as it stiffens at the same time that
it is deforming. As a consequence of this deformation, the cross-section shape is modified.
The ROM cannot account for this effect. Therefore, the membrane had to be simplified as a
linear shell that strains coupled to the spar. The membrane distortion is shown in Figure 4.80.
A maximum deformation of approximately 3% of the cross-section chord can be obtained
between the battens.

Moreover, the aerodynamic effects derived from morphing the external shape of the wing
cannot be included in the ROM. Figure 4.81 (left) shows the shear wall stress lines over
the wing walls. These lines define the direction of the air over the surface. The membrane
distortion produces a modification on the streamlines far from the battens, affecting the
aerodynamic loads on these sections. Nevertheless, despite its limitations, the ROM was
demonstrated to accurately predict the flutter velocity with a noticeable lowering in the
computational cost, being a powerful tool for structural design.

Fig. 4.80 Vertical displacement of the external membrane. Displacement calculated for a
free stream velocity of 18 m/s.
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Fig. 4.81 Visualization of the three-dimensional aerodynamic effects of the flexible
membrane wing. (Left) distortion of the flow over the wing surface due to the membrane
deformation and (right) tip vortex effects of the wing.

Finally, the ROM cannot take into account either the tip vortex appearing in the wing
or the effects of the walls. As shown in Figure 4.81 (right), a pressure loss is generated in
the small gap between the wing and the wall. This pressure loss leads to a reduction in the
wing-tip vortex intensity. Due to the previous effect, the aerodynamic coefficient is closer
to the infinite wing multiplied by some corrective factor. Although membrane distortion
and the tip effects influence the streamlines, the figure reveals that almost infinite wing
aerodynamics can still be observed. Therefore, the adequacy of a corrected infinite wing
model was demonstrated.

Effects of the prestress

In addition to the previous aeroelastic analysis, the effects of stiffening the membrane by
applying prestress loads are presented in this section. Three different prestress configurations
are studied in the analysis: 0%, 0.05%, and 0.1% of material deformation. As previously
mentioned, the deformation of the membrane is defined as a volumetric thermal contraction.
The temperature variation generating the contraction is calculated in Equation (4.12).

∆Tps =
ε0

αthex
(4.12)

A homogeneous deformation is obtained on the material using the previous thermal
contraction. Figure 4.82 presents the resulting initial deformation of the membrane after
applying the previous prestress conditions. In this figure, the distortion increases with the
contraction of the membrane. Two effects are observed on the wing external surface. First,
the membrane is less sensitive to aerodynamic loads. The prestress adds internal contraction
forces that reduce the aeroelastic effects, stiffening the material. Then, the aerodynamic
loads are modified due to the initial deformations and the lower distortion generated by the
aerodynamic forces.
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Fig. 4.82 Residual displacement of the prestress. Displacement of the structure generated
by an initial prestress of 0.00%, 0.05% and 0.10%.

Fig. 4.83 Evolution of plunge-twits with time for the prestressed membrane. (Left) LCO
conditions, V∞ = 18 m/s, and (right) post-flutter conditions, V∞ = 20 m/s.

The solutions of the different cases of prestressed structures are compared. Figure 4.83
shows the plunge-twist evolution of the structure for the limit cycle oscillation conditions,
V∞ = 18 m/s, and post-flutter conditions, V∞ = 20 m/s. The mean torsion of the resistant
membrane wing is demonstrated to remain lower for higher prestress conditions. Never-
theless, higher prestress increases the plunge motion. The membrane generates higher lift
coefficients in the case of higher prestress due to the membrane distortion and higher stiffness,
Figure 4.84. In addition, in the LCO conditions, the motion presents slightly higher ampli-
tudes for a value of prestress of ε0 = 0.05 %. Furthermore, the amplitude of its lift coefficient
is also higher. Moreover, the prestress of the membrane is demonstrated to improve the flutter
velocity compared with the non prestressed structure 4.83 (right).
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Regarding the applicability of the ROM, the simulation results can reproduce the instabil-
ity appropriately. In the case of the ROM, the whole membrane cross-section is considered
rigid. For this reason, the section acts closer to a prestressed membrane but with a different
initial geometry. Nevertheless, in the ROM, the aerodynamic coefficients tend to dampen
the amplitude; consequently, the amplitude of the LCO remains lower than for the FSI
simulations.

Fig. 4.84 Transient evolution of the lift coefficient for the prestressed membrane. (Left)
LCO conditions, V∞ = 18 m/s, and (right) post-flutter conditions, V∞ = 20 m/s.

Regarding the mean displacements of the tip section of the structure, Figure 4.85 presents
the mean plunge and twist time evolution. A progressive increase of the mean deformation
value is observed with the velocity until reaching the instability velocity. The reduced order
model yields a satisfactory agreement in the mean structure deformation compared to the
three-dimensional simulations of the CSD/CFD methodology. Thus, the ROM is a powerful
tool when optimizing the initial designs of the membrane-resistant wing. The instability
can be visualized by analyzing the motion amplitude. Figure 4.86 shows the amplitude as a
function of the free stream velocity. In the figure, the instability can be determined as the
point ins in which the plunge and twist amplitude increase dramatically. The point at which
the amplitude remains finite but cannot be damped is the so-called LCO. The results show
that ROM accurately captures the instabilities. Therefore, its relevance in the design process,
even for prestressed membranes, has been demonstrated in this section.
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Fig. 4.85 Mean values of bending and twist of the prestressed membrane wing. (Left)
mean bending and (right) mean twist.

Fig. 4.86 Amplitude of bending and twist of the prestressed membrane wing. (Left)
bending amplitude and (right) twist amplitude.

Finally, as a consequence of the distortion of the shell structure, a discrepancy is presented
between the ROM and the FSI solutions. These differences are due to the modification of the
stiffness characteristics and the aerodynamic coefficients of the cross-sections.

Discussion

This section presents a numerical analysis of the structural dynamics and aeroelastic behavior
of a resistant membrane wing. The previous FSI analysis has been performed by applying two
different and complementary methodologies. Firstly, the CSD/CFD coupled simulation. This
calculation can account for the effects of the membrane distortion, aerodynamic evolution
due to the external shape modification of the wing, interaction of the walls with the tip wing
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vortex, and prestress loads. Then, a ROM based on a beam element solver was used for
the calculation. The ROM reduces the computational cost of the simulations by orders of
magnitude. The most important outcomes extracted from the section are enumerated below:

• The Reduced Order Model structural solver has been validated against a finite element
analysis solution, presenting a high accuracy in the bending and torsion solutions and
being able to include the effects of the battens in the twist prediction.

• The Reduced Order Model aerodynamic solution has been compared with a CFD
simulation. The influence of the tip gap has been evidenced to deviate the result
from the well-known infinite and finite wing solution. The infinite wing model has
been selected as the distribution of the coefficients is similar to the CFD simulations.
However, the aerodynamic coefficients needed to be reduced by a small percentage
of their value to reproduce the effects of the gap correctly. This three-dimensional
correction presents a nature similar to the corrective factor of Section 4.2.2. Although
the correction improves the deformation results, this correction is not a simulation
requirement and could be avoided if the computational cost is lower. Because of
brevity, the results without correction are not provided, but the ROM predicts the same
flutter velocity of 18 m/s.

• The nonlinear behavior of the membrane has been analyzed. A distortion is presented
in the cross-section of the wing, modifying the external shape of the structure far from
the battens and altering the aerodynamic loads.

• Initial deformations are produced as a consequence of the prestress of the membrane.
Nevertheless, the prestress stiffens the structure and raises the flutter velocity.

• The reduced order model has been proven an efficient tool for predicting aeroelastic
instabilities. The reduced order methodology allows calculating the mean deformation
values with high accuracy and is a powerful tool for optimizing structural designs.

As previously stated, the ROM is a powerful tool for estimating the aeroelastic instabili-
ties, flutter velocity, and the average deformation of the resistant membrane wing structures.
Nevertheless, a higher fidelity tool is required to analyze the intricate details of the flow or
the phenomena. CSD/CFD simulations are required to calculate membrane deformations
and cross-section distortion, deviation of the streamlines as a consequence of the membrane
displacement, aerodynamic interactions with the wind tunnel walls, and prestressing effects.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Along the dissertation, different fidelity approaches to the computational resolution of the
aeroelastic phenomena were presented. The main objective of the work was the development
of new methodologies capable of simulating the aeroelastic dynamics of a general structure
of application problem. The methodology was developed to include complex nonlinear
aerodynamic effects in the simulations and allow the simulation of orthotropic material
structures.

Initially, the mathematical background underlying the algorithms was introduced. The
physical equations for fluid dynamics and solid elasticity were introduced. The widely known
computational techniques (CFD and FEA) for solving the previous equations were presented.
Then, a set of reduced-order models were derived to reduce the computational cost of the
previous algorithms.

The simplest model is based on the dimensional reduction of the structural problem. The
three-dimensional structure is reduced into an equivalent section. In order to simulate a
representative equivalent section that considers the boundary conditions of the beam, its
motion is based on the vibration modes of the three-dimensional solid. In addition, to include
complex nonlinearities on the aerodynamic coefficients, the flow field is calculated through a
two-dimensional CFD simulation. This CFD-based procedure can include the effects of stall
and boundary layer detachment. However, the three-dimensional aerodynamic effects cannot
be reproduced. For this reason, a corrective factor is proposed to decrease the value of the
bi-dimensional coefficients.

However, the computational cost associated with these simulations is still high for the
designing process in which iterating mass or stiffness properties results in additional CFD
simulations. For this reason, a fast calculation ROM based on ANN is also developed and
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presented in the dissertation. This ANN is trained using a database of forced oscillations in
a bi-dimensional airfoil and then used for predicting the transient term of the aerodynamic
coefficients. The surrogate model was trained and used for predicting the aeroelastic behavior
of the structure, showing its accuracy and demonstrating its capabilities for reproducing the
aeroelastic problems.

The equivalent section simplifies the structure so that only the main vibration modes
are included in the calculation. The example shown in this document only includes the first
bending and twisting mode. Therefore, this model needs to be extended to increase the
number of modes taken into account and reproduce complex bending-twisting couplings
of orthotropic materials. A beam model for generic orthotropic materials is presented in
the document. This ROM has been used in different engineering problems proving its
applicability for the resolution of the general aeroelastic problem. The model was tested in
different types of aeroelastic problems, using wing or blade aerodynamic models depending
on the requirements.

Along the work, the aeroelastic instabilities have been demonstrated to be produced by
the effect of the stalling process and nonlinear aerodynamics. Thus, the simulation of the
nonlinear loads becomes critical for many applications and flow conditions. The resolution
of the flow pattern created in these conditions is complex and requires, for the general case,
the resolution of conservation equations (CFD).

However, the simulation of the phenomena by solving the complete solid and fluid
equations may be computationally requiring. In order to reduce the computational cost of
the simulation without losing the nonlinear effects of the stall, the dimensional reduction of
the structure is recommended. After obtaining the mass and stiffness terms, the structure
can be simulated in a CFD calculation as an equivalent section with a rigid solid motion. In
fact, far from the unstable zone, where the dynamic effects are less critical, the results of the
equivalent section can be improved by correcting the aerodynamic coefficients of the section
with the three-dimensional coefficient.

Even with the previous simplifications, the computational cost of the rigid solid cross-
section motion is still restrictive during design stages. For this reason, the ROM based on
ANN is recommended for this process. The initial cost of the ROM is higher as it requires
training the aerodynamic surrogate model. Nevertheless, the training effort is compensated
as the ANN reduces by orders of magnitude the cost of the simulations. Note that training an
ANN requires the creation of a data set. This data set can be obtained from a computational
or experimental point of view. In this work, a database of CFD-forced oscillations has been
used for the process. As the aerodynamic coefficient obtained in the simulations presents a
high dependence on the initial angle of attack, its amplitude, and the frequency of the motion,
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the database should cover the interest conditions to avoid extrapolation. Feed-forward
and long short-term memory neurons were tested. Both typologies showed similar results.
Nevertheless, FNN does not require the use of past data, and thus, their computational cost is
lower than the LSTM architecture, and they are recommended for predicting aerodynamic
coefficients.

As previously stated, the inclusion of higher vibration modes and structural coupling
requires the use of a beam model. The beam model is first validated against the literature
showing accurate results. Then it is applied to a set of problems of different natures. The
beam model is combined with the previously mentioned ANN-based ROM and a lifting line
theory aerodynamic model for the three-dimensional effects, showing a high accuracy when
predicting the stall flutter effects. In addition, the effects that the fiber orientation has on
the results were also analyzed, showing the adequacy of the ROM for determining optimum
fiber layups. This structural ROM is also combined with rotating aerodynamics models.
In this case, the flutter effects were calculated using Theodorsen’s transient coefficients in
combination with blade element momentum theory. The ROM was used for predicting the
aeroelastic instabilities, showing that a correct fiber orientation could improve the limits of
the structure without increasing its weight.

Finally, resistant membrane structures were calculated using the ROM. Theodorsen’s
coefficients were combined with the lifting line theory in this case. Although the model is
too simple to reproduce the deformation of the membrane, it presented accurate results when
obtaining its free stream velocity limits. Moreover, the effects of prestressing the external
membrane of the structure were analyzed. The initial tension produced initial deformations,
but when the aerodynamic loads were applied, the stiffness of the structure was increased.

From the previous ideas, the main conclusion of the dissertation is inferred. The complete
three-dimensional aeroelastic simulation requires complex and computationally requiring
calculations. The resolution of these simulations is suitable for the final phases of the design
process. The use of ROMs is recommended for the initial stages, in which many parameters
are still undefined. The selection of the ROM depends on the characteristics of the physical
problem. If the motion of the structure is bi-dimensional and it does not present bending-
torsion couplings, the equivalent section is preferred. On the contrary, the beam element
model ROM should be used if the structure is expected to behave unidimensionally. The use
of artificial neural networks should be avoided in the case of a reduced number of simulations
due to the cost of the training process.
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5.2 Future works

The methodology presented in this dissertation is an initial point for the fluid-structure
simulations in CMT institute of Polytechnic University of Valencia. The algorithm developed
in the thesis can be applied to complex problems, including propulsion applications which
are the traditional field of applications in the so-mentioned institute. Future works will be
related to optimizing the code, including additional models and their application to different
engineering problems, and including structural damping in the calculations.

With respect to code optimization, the proposed improvements are related to reducing
memory usage and simplifying the algorithms. These algorithms could be improved and
optimized to optimize the computational cost reduction of the simulation.

In addition, new models can be included. The potential models used for calculating
finite wings aerodynamics can be extended between these models to simulate the interaction
between different lifting surfaces. This modification would allow the simulation of a complete
aircraft and the prediction of aeroelastic problems during flight. Moreover, to improve the
calculation of the dynamic stall of the airfoils, Theodorsen’s coefficients should be substituted
by the Leishman-Beddoes model [1]. Finally, combining the present results with aeroacoustic
simplified solutions is another possibility. In this case, the method proposed by Farassat
[2] could be included for estimating generated noise in flexible blades. Another possible
improvement is creating a flexible neural network that can calculate the dynamic effects of a
general airfoil. It applies to a wide range of problems with a wide range of geometries.

The solvers presented in this work could also be used for developing active control
techniques in the aeroelastic structure protection or the flexible wing optimization of the
structure. Machine learning strategies such as deep reinforced learning can be used to control
the deformation of the structure.

Finally, it is essential to mention that the turbulence model strongly conditions the
algorithms for simulating the flow field around the structures. These turbulent models are a
simplification of the conservation equations. Therefore, the aerodynamic forces generated
on the surface of the structure are an approximation of the actual loads. In order to improve
the accuracy of the forces, high-fidelity simulations are required, with LES and DNS as
the alternative to the RANS and URANS models. However, the drawback of high-fidelity
algorithms is their elevated computational cost. Therefore, new approaches are required to
improve the accuracy of the flow field prediction.
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Okan, and Şafak C. Karakaş, editors, 13th International Congress of International
Maritime Association of Mediterranean (IMAM2009), Towards the Sustainable Marine
Technology. 12-15 October, 2009, Istanbul, Turkey. Proceedings Vol.III, pages 907–916.
ITU Faculty of Naval Architecture and Ocean Engineering, 2009.

[222] Nils Haack. C-class catamaran wing performance optimisation. PhD thesis, The
University of Manchester (United Kingdom), 2011.

[223] Joseph Banks, Margot Cocard, and Jacobo Jaspe. Assessing the impact of membrane
deformations on wing sail performance. Journal of Sailing Technology, 6(01):73–90,
2021.

[224] Benoit Augier, Patrick Bot, Frederic Hauville, and Mathieu Durand. Dynamic be-
haviour of a flexible yacht sail plan. Ocean Engineering, 66:32–43, 2013.

[225] Bret Stanford, Peter Ifju, Roberto Albertani, and Wei Shyy. Fixed membrane wings for
micro air vehicles: Experimental characterization, numerical modeling, and tailoring.
Progress in Aerospace Sciences, 44(4):258–294, 2008.

[226] Fabio Fossati and Sara Muggiasca. Experimental investigation of sail aerodynamic
behavior in dynamic conditions. Journal of Sailboat Technology, 2(8):1–41, 2011.

[227] Benoit Augier, Patrick Bot, Frederic Hauville, and Mathieu Durand. Experimental
validation of unsteady models for fluid structure interaction: Application to yacht
sails and rigs. Journal of Wind Engineering and Industrial Aerodynamics, 101:53–66,
2012.

[228] Robert Scott, Robert Bartels, and Osama Kandil. An aeroelastic analysis of a thin flexi-
ble membrane. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, page 2316, 2007.

[229] Guojun Li, Boo Cheong Khoo, and Rajeev K Jaiman. Computational aeroelasticity
of flexible membrane wings at moderate reynolds numbers. In AIAA Scitech 2020
Forum, page 2036, 2020.

[230] Multifrontal Massively Parallel Solver (MUMPS 5.0.2) Users’ Guide. July 15, 2016.

[231] Feri Farassat. Linear acoustic formulas for calculation of rotating blade noise. AIAA
journal, 19(9):1122–1130, 1981.




	References
	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Importance of aeroelasticity for an efficient world
	1.2 Motivation and objectives
	1.3 Structure of the work

	References
	2 Fundamentals of fluid-structure interaction
	2.1 Introduction to the fluid-structure interaction
	2.2 Fundamentals of elasticity
	2.3 Fundamentals of fluid mechanics
	2.4 Introduction to the aeroelastic phenomena: instabilities
	2.4.1 Static instability: divergence
	2.4.2 Linear dynamic instability: flutter
	2.4.3 Nonlinear dynamic instability: stall flutter


	References
	3 Computational simulation of aeroelastic phenomena
	3.1 Introduction to the computational simulation
	3.2 Three-dimensional simulation of aeroelastic phenomena
	3.2.1 Computational fluid dynamics: CFD
	3.2.2 Finite elements analisys: FEA
	3.2.3 Fluid structure interaction: FSI

	3.3 Reduced order models
	3.3.1 Aerodynamic models
	3.3.2 Artificial Neural Networks for nonlinear flow predictions
	3.3.3 Structural models
	3.3.4 Reduced order model for generic aeroelastic phenomena


	References
	4 Results
	4.1 Introduction to the results
	4.2 Dimensional reduction of a clamped squared-section beam to a mass-spring system
	4.2.1 Problem description
	4.2.2 Bi-dimensional simulated aerodynamics
	4.2.3 Bi-dimensional ANN surrogate aerodynamics

	4.3 Application of beam theory to elastic structures
	4.3.1 Validation of the beam element solver
	4.3.2 Orthotropic 1D squared cross-section beam clamped by one edge.
	4.3.3 Orthotropic wind turbine blade.
	4.3.4 Flexible membrane semi-monocoque wing.


	References
	5 Conclusions and future work
	5.1 Conclusions
	5.2 Future works

	References
	References

