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Abstract

As the use of robotic manipulators expands across various industries and tasks, the need for
efficient and precise object manipulation has become increasingly crucial. The development of a
robotic arm capable of manipulating objects with precision relies heavily on accurately identifying
the optimal grasping position. Considering this, this project presents a novel method for optimal
grasping point calculation and uses machine learning techniques for grasp stability prediction,

thus significantly improving the system's performance and efficiency.

The results show evidence of the major improvements achieved thanks to the new developed
techniques. First, our system has achieved a success rate of 80% for simple-shaped objects,
increasing to a remarkable 92% when inverse kinematics errors were discounted. This success rate
outperforms the previous reference of 73% (or 86% without IK errors). Moreover, the system also
displayed the same outstanding performance with complex-shaped objects, achieving a success
rate of around 90%, whereas the previous benchmark was just around 18% for this type of objects.
Apart from the IK-related problems, the only issue that has arisen, preventing us from achieving
100% performance, is a problem with the gripper which, for no apparent reason, does not close to

grasp the object when it should.

Overall, these compelling results underscore the efficacy of the innovative methodologies
implemented in the system. Despite certain persisting challenges, the research lays the groundwork
for future advancements in the field of robotics and automation. The findings of this study have
promising applications across a multitude of sectors, particularly in automated manufacturing and

logistics, foreseeing a future of higher efficiency and productivity.
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Introduction

1. Introduction

1.1. Background

Over the past few years, there has been a notable increase in the use of robotic manipulators in a
variety of industries, services, and inspection tasks. This shift is largely driven by the growing
trend towards Industry 4.0 [1], which allows manufacturers to integrate new technologies, including
robots, Artificial Intelligence (AI), and Machine Learning (ML), that can automate repetitive and
monotonous tasks, that for humans can be tedious, and thus increasing operational efficiency and

productivity.

Human beings use their senses (such as, vision, hearing, touch, etc.) to interact with and explore
their environment. Thus, when we try to perceive an object, we tend to rely on vision to identify
it and assess its location. Robots, on the other hand, use sensors to gather information about their
surroundings, such as cameras and microphones, among others if needed. In both cases, the ability

to accurately sense and perceive the environment is fundamental to performing tasks effectively.

One of the primary challenges of robotic manipulators is to handle objects with precision. This
involves finding the exact and best position to grasp an object, which is crucial for successful
manipulation. Identifying this optimal location is a challenging but vital aspect that greatly

impacts the overall effectiveness and accuracy of the grasping task.

1.2. Problem Statement

As the use of robotic manipulators increases in various industries and tasks, there is a pressing
need for accurate and efficient object manipulation. The development of a robotic arm capable of
precise object manipulation relies heavily on the accurate identification of the optimal location for

grasping an object [2].

In the current landscape, most methodologies for discerning optimal grasping positions fall into
two extreme categories: overly simplistic or excessively complex. The simplistic ones tend to base
their strategies on direct geometrical properties, such as merely selecting the centre of an object
as the grasping point. At the other end of the spectrum, some methods employ intricate neural
networks which also have their own drawbacks. The first simpler approach often fails when trying
to predict the best grasping location for complex objects due to its lack of sophistication and
complexity. In contrast, neural network-based methods face their own challenges such as the
requirement of large databases and long training times, limited efficiency in unknown scenarios
due to their limited generalisation capability, the need for powerful hardware for training, among
others, which makes these solutions not only difficult to implement, but also highly resource-

intensive.

Our innovative approach aims to find a balance by developing a fast yet efficient method for
determining optimal grasping locations exclusively from vision-based sensor data, in particular,

2D images. This approach is designed to streamline the process, bypassing the pitfalls of
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oversimplification and the complexities of neural networks. In addition, our proposed method will
incorporate data fusion techniques as well as machine learning algorithms to predict and enhance
grip stability. This integrated design will significantly improve the accuracy and speed of operation
of the robotic arm, while ensuring a level of consistency and reliability out of the ordinary in

current methodologies.

In addition, precise key performance indicators (KPIs) need to be formulated to measure the
accuracy and stability of grasping tasks. By addressing these requirements, this method will
substantially contribute to improving operational efficiency and productivity in a variety of

industrial environments.

1.3. Research Goals and Methods

Based on the problem statement, the aim of this project is to develop a new method to identify
the optimal grasping position of objects by vision, as well as to use machine learning techniques
to predict and enhance grip stability. To accomplish our objective, the research goal has been

divided into several specific sub-objectives. Some of these include, but are not limited to:
e Improve sensor data fusion in terms of speed and quality.

e Develop an accurate and reliable method to identify the optimal grasping position of

objects.
e Apply machine learning techniques to improve grasp stability by predicting grasp success.
e TImplement, test and evaluate the designed system on an actual robotic arm.

e Determine Key Performance Indicators (KPIs) to assess the accuracy and stability of the

grasping task.
1.4. Sustainability

When considering new methods, ideas, and systems, it is crucial to integrate sustainability into
the discussion. This inclusion is of paramount importance, not just because of our inherent duty
to maintain and enhance the quality and diversity of life on Earth, but also as it aligns with
globally recognized goals of sustainable development. The United Nations (UN) has outlined

seventeen such goals, designed to guide humanity towards a sustainable future[3].

In the context of this research, these goals serve as a source of inspiration, demonstrating how the
utilization of visual-sensor fusion and machine learning techniques in the process of robotic
grasping can contribute to sustainable development. While several of these goals can potentially
align with the implications of this research, the focus will be placed on Goal 9: Industry,

Innovation, and Infrastructure.

The developed method for identifying the optimal grasping position of objects through vision can

have significant implications for Industry 4.0. By enhancing the adaptability and versatility of
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robotic manipulators, we can reduce the need for producing additional robotic arms, thus fostering
sustainable industrialization. This aligns with Goal 9, as it not only promotes resilient
infrastructure but also underlines the importance of sustainable industrialization and innovation,

all while enhancing productivity and minimizing waste.

Therefore, this research directly supports the UN's ninth sustainable development goal (SDG),
underlining the importance of sustainable practices in the ongoing evolution of industry and

innovation.

1.5. Thesis Overview

This thesis is structured into six more chapters which are organized as follows. Firstly,
Chapter 2 provides a Literature Review, offering a brief overview of current research in the field
of robotic grasping and the application of machine learning techniques in this context. Following
that, Chapter 3 presents a System Overview, providing a description of the Hardware and Software
components utilized in this project. Chapter 4 discusses the Design and Implementation, outlining
the approach taken to develop and improve the system's object grasping capabilities. Subsequently,
Chapter 5 presents the Results obtained from the various experimental trials conducted in this
project. The Discussion in Chapter 6 considers topics unrelated to the experimental results,
introduces the Limitations encountered, and outlines potential Future Work directions. Finally,

Chapter 7 draws a Conclusion that summarizes the key findings and contributions of the project.




Literature Review

2. Literature Review

In this segment, we will present a comprehensive summary of the pertinent literature that is
relevant to the scope of this project. First, we will explain the evolution of robotic grasping from
its foundational beginnings to its current complex manifestations. This historical perspective
provides us with the necessary context and paves the way for a thorough examination of our main

point of reference: the research conducted by Nils Meile [4].

Meile's thesis is used as the starting point for the development of the present project, since the
system we will be working with is very similar. However, from his work, potential improvements
have been identified and new methods have been developed to improve the performance of the
object grasping task, aiming for a higher grasping success rate and a faster and more reliable

system.

To conclude, we will introduce decision tree classifiers, a machine learning technique that we will
later use to develop a grip stability predictor. Our review will span from its fundamental concept

to its operational mechanics, providing a comprehensive understanding of its role in our project.

2.1. Background and Evolution of Robotic Grasping

Robotic grasping has been a focal point of robotics research for many decades due to its
fundamental importance in a wide range of applications, from industrial automation to healthcare
and domestic environments. The evolution of robotic grasping has seen remarkable progress,
driven by advances in robotic technology, computational methods, and the increasing availability

of sophisticated sensors.

2.1.1. Early Developments

Early robotic systems designed for object manipulation primarily relied on rigid, pre-programmed
routines for specific tasks. These systems, prevalent during the 1960s and 1970s, had limited
adaptability to changes in their operating environment. They were mainly used in assembly line

environments, where tasks were highly repetitive and predictable. [5]

2.1.2. Advancements in Sensing and Control

As robotic research progressed towards the end of the 20th century, the development of more
sophisticated sensors, such as force/torque sensors and vision systems, transformed the capabilities
of robotic manipulators. These sensors enabled robots to interact with a wider variety of objects

and adapt to changes in their environment in real time.

The introduction of control methodologies like impedance and force control also allowed for safer
and more efficient interaction with the environment. Force control played a pivotal role in enabling

robots to perform delicate operations like part insertion and assembly. [6]
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2.1.3. Vision-Based Robotic Grasping

The advent of vision-based robotic grasping in the late 1990s and early 2000s marked another
major milestone in the field. By integrating cameras and advanced image processing algorithms,
robots could identify, locate, and grasp a variety of objects. Techniques such as stereo vision and,
later, depth sensors, enabled three-dimensional perception of the environment, which significantly

enhanced the object manipulation capabilities of robotic systems. [7]

2.1.4. Machine Learning and Robotic Grasping

In the last decade, machine learning, in particular deep learning techniques, have been increasingly
applied to robotic grasping. Leveraging large datasets and high computational power, these
approaches aim to teach robots to grasp different objects based on learned patterns and features.
Reinforcement learning has also been explored as a strategy for robotic grasping, allowing robots

to learn successful grasping strategies through trial and error. [8][9]

Despite these advances, robotic grasping remains a challenging problem due to the complexity
and variability of the real world. Issues such as occlusions, sensor noise, object variability and
real-time processing remain major challenges. However, the field continues to evolve, with more
sophisticated sensor fusion techniques, advanced machine learning algorithms and the emergence

of soft robotics promising to revolutionise the future of robotic manipulation.

In summary, the evolution of robotic grasping has been characterised by continuous advances in
robotic technology, computational methods and sensing capabilities. From the early days of rigid,
pre-programmed systems to the intelligent, adaptive manipulators of today, the journey reflects
the quest to create machines that can interact with the world with the same dexterity and

adaptability as a human hand. [10]

2.2. Using Visual-Tactile Fusion for Intelligent Robotic Grasping

The integration of vision and tactile modalities for improved robotic grasping has been an active
field of research, yet it continues to pose challenges that need attention. The research project
named “Visual-Tactile Fusion for Intelligent Robotic Grasping” conducted by Nils Meile [4], as
part of his master's thesis completed in early 2023, investigated this field in depth. In his project,
the primary goal was to develop grasping system that integrates tactile and visual sensors. This
fusion was expected to provide a richer data set, since information from tactile sensors would
complement that information provided by a purely visual system, in the hope of improving object

manipulation.

2.2.1. Systems Integration

In his project, Meile first had to take the crucial step of integrating several systems from different

research projects into a cohesive unit. This involved both hardware and software.
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On the hardware side, the integration consisted of attaching a robotic gripper supplied by
Graspian Aps to a Franka Emika Panda 7 degrees of freedom (DoF) robotic arm. This was a
fundamental step, as it allowed the subsequent study of the concept of tactile and visual sensor

fusion explored in his research.

In terms of software integration, Meile also carried on from the development of other master's
thesis by previous students in this field. A key example was "A Model-Free Predictive Control
Framework for Trajectory Optimisation with a Collaborative Robot"[11] by Christian Kampp
Kruuse in 2022, which developed the full control system of the robot. Last, the gripper's own
software was also integrated into the overall system. All these software systems were then brought

together harmoniously in the Robot Operating System (ROS) framework.

The consolidation of such diverse systems into a single functional unit was crucial for Meile's
research, as it paved the way for the development and actual testing of the gripper controller

based on the fusion of tactile and visual sensors.

2.2.2. Inverse Kinematics Failures

Partly related to the topic of the previous section, in the execution of this project, we anticipate
encountering some challenges like those faced by Meile, particularly in the realm of Inverse
Kinematics (IK). Meile's system’s integration of the control system designed by student Christian
Kampp Kruuse, also incorporated a TRAC-IK solver. Although this solver was functional, it was

not without some flaws.

In Meile's experiments, issues were observed with the IK-solver, including erratic shaking of the
robotic arm when attempting movements towards specific areas, occasional overshooting of joint
limits, and complete IK-solver failures that resulted in the shutdown of the ROS-node of the
controller. These failures tended to occur when the robotic arm was operating near its extreme
range of motion, such as when attempting to reach objects in the far front-left side of the operating

area, which is the rightmost part of the conveyor belt.

In the context of our project, it is important to clarify that solving these IK issues is not our
primary objective. We do acknowledge that these complications can interfere with successful object
grasping. However, we have been able to partially mitigate these effects indirectly through the

application of machine learning techniques.

As we will detail further in section 5.2.2, the Decision Tree Classifier that we will generate will
help us discern certain attributes that contribute to unsuccessful grasping attempts, aside from
the inherent IK failures. Thus, by recognizing and avoiding these unfavourable conditions, we will

be able to decrease the rate of grasp failures, even in areas traditionally prone to IK failures.

While we cannot eliminate the occurrence of IK failures, our project has been able to leverage
Machine Learning to mitigate some of these problems, thereby also improving the overall grasping

success rate.
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2.2.3. Identification of the Grasping Point for Objects

In his endeavour to identify in real time the best grasping location of objects, Meile already
identified some limitations in the mono-static camera system we will use, since it lacks both colour
and depth perception. Furthermore, the camera setup only gives us a top view of the conveyor

belt and the objects to be grasped, which also limited the methods available for object detection.

Meile also realized that the requirement for real-time visual processing introduced substantial
complications, as object detection algorithms need to process images around the live video frame
rate, which imposes computational limits [12]. Therefore, it's generally not feasible to identify all
objects on an image in real-time. Research findings have indicated that it's considerably more
feasible to pinpoint specific features of an object, such as its edges, symmetry, corners among
others instead [13]. In Meile's case, the object shapes, whether circular or rectangular, and the

orientation of the rectangular shapes, were the key features to be extracted.

For distinguishing between circular and rectangular objects, Meile used the Ramer-Douglas-
Peucker (RDP) algorithm. The RDP algorithm reduces a detailed curve into a simpler series of
points by creating lines between points and removing those points that do not significantly affect
the shape of the curve [14]. Using this algorithm, Meile took advantage of the fact that rectangles
can be described with fewer data points than a circle to distinguish between them. Thus, the

number of data points required by the RDP algorithm became a distinguishing factor.

Then, for rectangular objects and to determine their orientation, Meile utilized Principal
Component Analysis (PCA). PCA reduces the dimensions of a multivariate dataset by defining a
new reduced set of uncorrelated variables called principal components [15]. These components can
provide a simplified representation of the original dataset. In this case, this was used to extract

the general direction or orientation of rectangular objects.

The goal of PCA is to capture as much of the data's variance as possible with fewer dimensions.
It achieves this by establishing a new coordinate system, where the basis vectors, or principal
components, are oriented in the directions of maximum variance. In a 2D dataset, two orthogonal
principal components are identified. The first component, corresponding to the larger eigenvalue
of the covariance matrix, aligns with the greatest variance in the dataset. The second component,

orthogonal to the first, captures the next most significant variance.

A visual representation of the way that PCA reduces the dimensions of a given dataset can be

seen in the following image:
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Figure 1. Dimensionality reduction through principal component analysis (PCA)

In terms of determining the optimal grasping point, regardless of whether the objects were
rectangular or circular, Meile deployed a method centred around the concept of the object's centre
of mass. This approach was adopted for both object shapes, considering the centre of mass as a

simple but good point for grasping the objects.

2.2.4. Evaluation of Meile's Method for Identifying the Grasping Point of Objects

and Potential Enhancements

The methods employed by Meile provided an efficient way of identifying the object shapes, their
locations, and their orientation, in case of rectangular objects. However, this oversimplistic
approach was not good enough for complex objects that were neither circular nor rectangular, as
the centre of mass was not actually the correct grasping location. In fact, this was clearly observed
when trying to grasp a slightly more unusual object, such as a banana, in the testing and results
phase of his thesis. In the specific case of the banana, it could be observed that the success rate

in grasping this object was only 18%, compared to an average of 86% in the other experiments.

Therefore, my research will build on the foundations laid by Meile's work, where, as has been
seen, there is potential to improve the process of identifying the best grasping location of the
object, which forms the central focus of my project, thus achieving a better success rate of the
grasping task. On the other hand, my project will also seek to improve data fusion from different
sensors (by reducing some bottlenecks), as well as making the overall system more robust (less

prone to errors and failures).

By addressing these areas, the goal is to advance the tactile-visual sensor fusion approach to

robotic grasping, enabling more effective and efficient object manipulation.

2.3. Decision Tree Classifiers

In this section, we introduce Decision Tree Classifiers, a machine learning technique employed in
our work for predicting the success or failure of grasping tasks. We will delve into the mechanism
of how they operate and explain why they are an effective choice for our specific application. This

understanding serves as the foundation for their later implementation in Section 4.4, Grasp
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Stability Prediction using Machine Learning Techniques, with the goal of improving the

performance of the robotic system.

2.3.1. Introduction to Decision Tree Classifier

A Decision Tree Classifier is a form of supervised machine learning model that represents decisions
and their possible results visually and analytically. It's essentially a flowchart-like structure in
which each internal node represents a test on an attribute (e.g., “Grasping Rotation”), each branch
signifies an outcome of the test, and each leaf node (terminal node) holds a class label

(i.e., “Success” or “Failure”).

For a better understanding of Decision Tree Classifiers, an illustrative representation is provided
below. This diagram highlights the essential components of a Decision Tree: the root node, the
decision nodes and the leaf nodes. In this model, each decision and each root node represents an
attribute of the dataset under evaluation, splitting the data according to the satisfaction of the
attribute condition in two branches, yes or no. Finally, the leaf nodes represent the final classified

classes, formed by the combination of the individual evaluations up to that node.
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Figure 2. Visualisation of the structure of the decision tree classifier
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The key reason for choosing a Decision Tree Classifier for this project is its simplicity and
interpretability. Decision Trees are easy to understand and visualize, which makes them
particularly valuable for our use case, where the aim is to predict stable object grasping. Moreover,
they are capable of handling both numerical and categorical data, although in our case the inputs
are only numerical data. Furthermore, decision trees implicitly perform feature selection, giving
importance to the most significant variables first. This will become beneficial as it will help us

understand what features contribute the most to a successful grasp.

2.3.2. Understanding Gini Impurity

A key aspect of the operation of a Decision Tree Classifier is the proper selection of an attribute

at each node to split the data. If no perfect attribute can lead to pure leaf nodes (i.e., leaf nodes
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representing only one class, in our case, either 100% of Success or 100% of Failure), an impurity
measure guides the choice of the "best" attribute to split the data into the purest possible

nodes. [16]

In this case, Gini impurity will be our selected impurity measure. Essentially, Gini impurity
quantifies the purity of the split in a Decision Tree Classifier. It will help us to identify the most
efficient attribute splitter, enabling the construction of a decision tree that maximises class purity

at each split.

Mathematically, the Gini impurity for a leaf is computed as:

j
Ginligay =1 ) () 1)
i=1
Where j is the total number of classes (in our case 2, Success or Failure), and p; the probability

of each of the corresponding classes.

But that only was the Gini impurity of a single leaf for a given node that evaluates the separation
of the data according to certain condition applied to one attribute (input) of the dataset. For
obtaining the Gini impurity of the split of a node (given a certain condition to an attribute) into
2 leaves, we just need to compute the weighted average of the Gini impurities for the leaves, as

shown in the formula below:

N.points, N.points,
p leaf 1 + Ginileaf 5 p leaf 2

Gini,oq, = Ginigeqs 4

Total N.points,,qe Total N.points, 4

Where the Total N.points,,q, is basically the N.pointsi,r1 + N.pointseqs ;.

In order to provide a much better understanding, a very simple dataset table is shown below as
an example, where we can see 3 different attributes (A, B, C) and a resulting class (Result) which

will be either Success or Failure:

10
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Yes No 1

Success
Yes Yes 3 Success
No No 5 Failure
Yes No 7 Failure
Yes No 9 Success
Yes Yes 13 Success

Table 1. Example of dataset to illustrate Gini impurity calculation

Let’s now calculate the Gini impurity of the possible root nodes. Let’s pick, for instance, the first

attribute, “Likes A?”, to evaluate how well we can split the data. As it can be seen, this attribute

True / \F&lse

Result Result
Success Failure Success Failure

will have 2 possible values of Yes or No.

4 1 0 1

Figure 3. Example of decision tree split based on an attribute

So, based on the previous split, first we will calculate the Gini impurity of each resulting node.

Thus, we will have:

J
. _ ) _ ) s (N (YL (3)
Glnlleaf True — 1- (pResult) =1- (pSuccess) - (pFailure) =1- g - g =0,32
i=1

- 02 /1y2
Gini _ 2 _ 2 2 _ _ (4)
ln"leaf False — 1- (pResult) =1- (pSuccess) - (pFailure) =1- I - I =0
i=1

N.pointsieqs true N.pointSieqr raise

+ Gini . =
Total N.points, g, leaf False “Total N. points,ge

Ginijiyes 40 = Glnlleaf True

0,32 > 0 ! 0,27 ©)
mOserg U=

Now that we have obtained the Gini impurity for the first attribute, we would find the Gini
impurity for the other ones and compare it between each other. The Gini impurity always lies
between 0 and 0,5, with 0 being the best-case scenario where all elements at a node belong to a

single class, resulting in pure class segregation (like in leaf False for the first attribute, as seen).

11
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Conversely, a Gini impurity of 0.5 represents the worst-case scenario, indicating a 50-50 class split
at a node and therefore, the highest uncertainty. Thus, at the end we will select the split which
has the lowest Gini impurity, which will give us the best (the purest) split of data in order to at
the end classify better the Result class (Success or Failure) based on the splits of data done in the

different attributes.

In the exact same way, if we compute the Gini impurity for attribute “Likes B7”, we obtain a Gini
impurity of 0,33, which is worse than the Gini impurity for the first attribute. If these 2 were the
only 2 attributes to evaluate, we would pick the first one to split the data since it returns us a

purer split. However, the third attribute, “Number of C”, has not been considered yet.

Third attribute, as it can be seen, doesn’t have 2 possible values as the previous ones had. Instead,
this one consists of numerical values. In this situation, what we will do to calculate the Gini
impurity, is to calculate the Gini impurity of each of the average values between the different
possible values taken by the attribute. So, if we look again at Table 1, we will first obtain the

mean values of the different values of the attribute as follows:

1 Suceess
2
3 Suceess
4
5 Failure
2
7 Failure
8
9 Suceess
11
13 Suceess

Figure 4. Average values between the different possible values of numerical attributes

Now, we can calculate the Gini impurity for each of the average values. Just as before, we will

show a representation of the division of the nodes simply for the first case as an example:

Number of C< 2

True / \ False

Result Result

Success Failure Success Failure
1 0] 3 2

Figure 5. Example of decision tree split based on a numerical attribute

12
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N.pointSr ye N.pointspgyse

Gini = Gini 4 Gini e -
N.of c<2 True “Total N.points False “Total N. points

2 2 (6)
co (-]

As we have done for the mean value of 2 of the "C number", we will then calculate the remaining

Gini impurities for the remaining values:

L. 4

Giniy,rccs =0 ‘5 +0,5- = 0,33 (7)

L _ 3 3

Giniyof c<g = 044 =+ 0,44 - = = 0,44 (8)

L. _ 4 2

GlnlN_ofc<8 = 0,5 . g +0- g = 0,33 (9)
L. 5 1

GlnlN_,,f c<11 — 0,48 . g +0- g = 0,4 (10)

Now that all these values have been calculated, they can be compared together with the previously
obtained value of the Gini impurity of attribute A (0,27) as well as with the Gini impurity of
attribute B (0,33), picking thus the lowest of these values, that is, 0,27 (attribute A).

If we recall, Figure 3 already showed how the nodes would have been split in the end. In that
image we can see that the resulting node on the right was a pure node, since only one class
(Failure) jumped into this split according to the criteria applied to attribute A. However, the left-
hand node was not completely pure, leaving room to split again into purer splits. Thus, if we
wanted to continue the separation of the data points for better categorisation, we would then
evaluate the other attributes not yet evaluated at this depth of the decision tree (i.e., attribute B

and C), this time only for the set of points belonging to the new node.

This process would be repeated either until completely pure nodes are reached or until a certain

level of desired depth in the decision tree is reached.

13
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3. System Overview

This system overview section provides a comprehensive insight into the principal hardware and
software components used in the project. First, we will review the main hardware components,
consisting of a 7-DoF Franka Emika Panda robot arm, a BlueFox3 Camera, and a Graspian tactile
gripper, each of which makes a unique contribution to the project. Additionally, we utilize several
distinct objects for experimental manipulation, representing various real-world challenges. On the
software side, the project leverages the powerful Robotic Operating System (ROS) framework,
using Python and C++ programming languages, to ensure efficient programming, scalability, and
design flexibility. Altogether, the project combines these elements to create a versatile and precise

robotic system, capable of performing intricate manipulation tasks.

3.1. Hardware
3.1.1. Franka Emika Panda Robot Arm

In this project, one of the essential components employed is the
Franka Emika Panda robotic arm, a 7-degrees-of-freedom (7-DoF)
mechanism capable of handling a payload of up to 3 kg and
extending its reach to 855 mm. Known for its interactive functions,
the robot features an intuitive graphical user interface (GUI) that
makes it even easier to operate, allowing the user to easily interact
with the robot and program, for example to design simple task
flows. [17]

However, it is important to note that despite the ease of use of the
GUI, our project will work on the 1 kHz Franka Control Interface
(FCI), an additional feature of the Franka Emika robot. The FCI

is an optimal platform for exploring and testing various elements, Figure 6. Franka Emika

such as control and motion algorithms, grasping tactics, Panda robot arm
interaction scenarios and machine learning as this interface enables a fast, low-level bidirectional
connection with the robot's arm and hand, extending its versatility and responsiveness for intricate
tasks. In addition, the manufacturer also offers a pair of practical software libraries, "franka_ ros"
and "libfranka", which significantly simplify the establishment of a functional connection to the
robot via ROS (Robotic Operating System), allowing easy access to critical data such as joint

states and end-effector position in world coordinates.

The robot also includes several other functionalities and features, such as the inclusion of a
"guiding mode" in which by pressing a couple of buttons on the robot you can operate the robot
freely and without resistance, as well as an emergency stop button to stop the robot at any

moment.
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It should also be noted that although the Franka Emika robot has a native robotic gripper, the
project did not use it because, as already mentioned, our project is based on the previous work
done by Meile [4]. In his case, the decision to use another robotic gripper instead was because the
one provided by Franka Emika lacked real-time control support and used another different

interface, which would complicate working with it.

3.1.2. Graspian Tactile Gripper

In this project, the robotic gripper employed is manufactured
by the company Graspian, as it has tactile sensing capabilities.
This, as shown in Figure 7, is a non-industrial 1-DoF robotic
gripper, consisting of two fingers, each with a resistive tactile
sensor consisting of seven piezoresistive taxels (TActile piXEL)
covering an area of 4,1 cm by 3,05 cm. These taxels are
enveloped in a foamy substance that serves as a protective and

damping layer to compensate for the uneven force distribution.

When the finger experiences pressure, there is a change in the

resistivity of the taxel, which causes a decrease in voltage. This

voltage fluctuation can be used to calculate the force exerted

Figure 7. Graspian tactile

based on a conductivity/force model. Communication between
the clamp and a computer is established via a USB connection to a Teensy board, using the RS-
232 serial protocol. Accompanying the touch sensor is a pre-developed embedded software, built
on PlatformIO, used throughout this project. The software allows the transmission of various
commands to the gripper, initiating specific actions and sharing sensor information back with the

computer.

3.1.3. BlueFox3 Camera

The project employs a stationary Matrix Vision’s BlueFox3
camera similar to the one shown in Figure 8. As an
industrial camera, it's designed to consistently provide high-
quality imaging for diverse applications, including

continuous 24/7 operations. The camara will provide us a

/)
:
()
5
a

top view of the conveyor belt where objects will be placed,
capturing monochrome images, which, while they offer high

levels of detail, lack colour representation and depth

information, complicating the task of obtaining the best

grasping location for the objects. Figure 8. Matriz Vision’s

Calibration of the camera wasn't a requirement for this BlueFOXS3 camera

project, as this process had already been undertaken by

Christian Kampp Kruuse [11]. Likewise, the integration of the camera into the ROS environment
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with the relevant installation of drivers and packages necessary for imaging was carried out by

Niels Meile.

3.1.4. Objects

To run the different experiments, different types of objects have been chosen. Among the many
different possible objects, it has been decided to keep the 5 main objects already used by Meile in
his project in order to be able to compare the results of the various improvements made to the
system. These 5 objects are a sponge, a rectangular wood block, a Christmas ornament, a tennis

ball and a soft ball as shown below.

N

> -
-, ﬂ

o\

Figure 9. Selected objects for comparative experiment results

However, new objects of a more complex shape, other than circular or rectangular objects, were
also added to evaluate and demonstrate the capabilities of the newly developed method for
obtaining the grasping location of objects. In fact, we will use a banana among other ones, which
Meile already tried to grasp in his project [4], but then realised that his method of obtaining the
grasping position was not suitable for objects with more complicated shapes. Some of the other
objects used in this part are pieces of polystyrene cut in such a way as to create more complex

shapes such as U-shaped or O-shaped objects, as seen in the following picture.

Figure 10. Selected objects of complex shape

The only limitation that remains in both projects is when choosing the height of the objects, since,
as mentioned above, a single camera without sensors capable of estimating the depth makes it
impossible to adapt the height of the gripper at the end of the robot arm that will grasp the
object in question. For this reason, objects cannot be too high, otherwise they will collide with

the gripper.
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3.2. Software
3.2.1. Robotic Operating System

In this project, the Robot Operating System (ROS) serves as the core framework for managing
the complex behaviour of the robot. ROS is not a conventional operating system, but rather an
open-source collection of tools, libraries, and protocols designed to streamline the process of

creating intricate and reliable robotic applications across a multitude of platforms. [18]

ROS is open-source and is used to manage various aspects of the robot's functionality. It's best
described as a middleware because it helps to manage communication and control between the
various software applications - running on the different hardware mentioned - that make up the
operation of the robot. As such, ROS plays an important role in operating and controlling the

various components used in this project in one place.

In ROS, the main components are Nodes and Topics. Nodes are basic units of computation
managed by ROS, which enable communication by publishing or subscribing to Topics. Topics act
as channels where Nodes publish and receive messages, facilitating communication and information
exchange between them. The Master plays a crucial role, offering name registration and lookup

services that enable Nodes to identify each other and establish communication.

3.2.2. Programming Languages

ROS provides a flexible programming interface that primarily supports C++ and Python. C++
is typically used for tasks requiring high computational performance, such as real-time signal
processing, due to its efficient handling of low-level computations and direct access to underlying
data structures. Python, with its simplicity and readability, is commonly used for high-level
software, testing, and user interactions where rapid prototyping and scripting are required.
Additionally, other languages like Lisp or Java are supported, although their use within the ROS
community is less common. In our project, we effectively leveraged both C++ and Python, making

use of their respective strengths for specific tasks.
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4. Design and Implementation

In this chapter, we take an in-depth look at all the different processes and methodologies employed
to convert raw camera images into the execution of the specific robot commands needed to

successfully grasp and manipulate the objects.

This process comprises several stages, each unique in its contribution to the final product. The
path to successful object manipulation begins with images preprocessing enhancing raw camera
feed for effective object detection in the subsequent step. Following object detection, a newly
devised method is employed to determine the most optimal grasping point for each detected object.
Leveraging machine learning techniques, we then predict the success rate of the grasping task,
assessing its stability. Concluding the process, the necessary commands are sent to the robot to
execute the task of object manipulation, completing the entire sequence of operations needed to

move the object.

Figure 11 below provides a comprehensive overview of this entire sequence of operations, covering

every step from image preprocessing to final object manipulation.

Grasping
Point Stability
Identification Prediction

Image Object

Preprocessing Detection

Figure 11. Process flow diagram of the implemented design

4.1. Preprocessing Techniques for Improved Image Analysis

The first crucial step in the object manipulation process is the image preprocessing stage. The
purpose of this step is to refine the raw images received from the camera, reducing noise and
irrelevant details, which enables more precise object detection and differentiation in the subsequent
stages. The entire procedure is broken down into several key steps, each employing different image
processing techniques. For this purpose, we made significant use of OpenCV functions, a powerful

open-source computer vision and machine learning software library.

The raw images we receive from the camera are initially quite cluttered with unnecessary details
and noise, as can be seen in Figure 12. To effectively focus our object detection and differentiation

efforts, we perform a series of refinements on these images.
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Figure 12. Raw image received from the camera

Firstly, to restrict our focus to the region of interest, the conveyor belt in this case, we mask all
other sections of the image by overlaying black rectangles over them. This process, depicted in
Figure 13, helps us eliminate distractions from the image, thereby optimizing the efficiency of the

object detection process that follows.

Figure 13. Segmentation of the region of interest in the image

Next, we apply Gaussian blurring to the image. This technique helps to suppress the
high frequency noise present in the image and to reduce the level of detail, as shown in Figure 14.

The outcome is a smoother image that helps to detect objects more accurately.
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Figure 14. Noise reduction in image via Gaussian blurring

Following the Gaussian blurring, we apply a thresholding technique to the image. In this
procedure, the grayscale image is transformed into a binary image, in which the pixel intensities
are assigned to the maximum value of 255 (white) if they exceed a certain threshold, or to 0
(black) otherwise. This binary transformation accentuates the contrast between the objects and
their surroundings, a change that is clearly illustrated in Figure A. Given that the conveyor belt
is black, it blends in perfectly with the previously applied black frames. Therefore, setting a
threshold relatively close to zero (absolute black) facilitates a remarkable distinction between the
objects and the conveyor belt, ensuring accurate identification of the objects in subsequent analysis

steps.

Figure 15. Applying threshold technique for improved object segmentation

Our preprocessing stage concludes with the application of morphological operations—namely
erosion and dilation—to the image. These two techniques work hand in hand, with the aim of

minimising image noise while retaining as much of the original object detail as possible.

First, we perform the erosion operation. Erosion essentially works by shrinking the objects in the
image, thereby reducing their boundaries. This operation helps to eliminate small scale noise. The

image post-erosion provides a clearer focus on the main objects, as can be seen in Figure 16.
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Figure 16. Shrinking object boundaries via erosion operation for noise reduction

Subsequently, we apply the dilation process. Dilation attempts to enlarge the remaining shrunken
objects in the image back to their original size. The purpose of this step is to recover the necessary
object details lost during the erosion process. The outcome of the dilation process can be seen in
Figure 17. This sequence of erosion followed by dilation results in a cleaner and sharper

representation of the objects to be manipulated, now with practically no noise.

Figure 17. Restoration of object size and details with dilation

In conclusion, our image preprocessing stage involves a series of transformations - masking,
blurring, thresholding, erosion and dilation — to facilitate the subsequent stages of object detection,
optimal grasping point calculation and stability prediction. Thus, these preliminary
transformations lay the foundation for the smooth and efficient execution of the forthcoming steps

in the process pipeline.
4.2. Object Detection and Differentiation

In this section, we delve into the next critical phase of our process: Object Detection and
Differentiation. This stage essentially picks up where the preprocessing left off. The cleaner,
sharper image generated from the preprocessing stage is now subjected to further analysis to
identify and distinguish the various objects present in the image. The object detection process,
which consists of different sub-steps such as contour detection, filtering, and object centre

calculation, is detailed below.

After preprocessing, the image is ready to undergo the process of contour detection. Here, contours

are essential mathematical concepts used to represent the shapes of the objects present in the
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image. In computer vision, contours are simply continuous curves that join all the contiguous

points along the object's boundary that have the same colour or intensity.

We first apply the cv2.findContours function from the OpenCV library to our pre-processed image.
This function detects contours in the image and returns a list, with each element of the list
representing a unique contour in the image, as a collection of the (x, y) coordinates of the boundary

points of the object.

Next, we filter the detected contours based on the number of points they contain. Contours with
a minimum of 100 points are retained, and the rest are disregarded. This filtering process helps

us in discarding noise and focusing on the significant objects present in the image. The filtered

contours are shown in Figure 18.

Figure 18. Detection and filtering of contours in the pre-processed image

After capturing the filtered contours, our goal is to discern the objects that these contours
represent. To do this, we establish two empty lists: one to store the contours of the recognised
objects ("objects") and one to record the corresponding centres ("centres') of these

objects/contours.

Then, we calculate the centre of each filtered contour and evaluate if this contour corresponds to
an existing object in the "objects" list by checking if the centre of the contour is inside the other
contours found thanks to the function cv2.pointPolygonTest. If yes, the contour is appended to

“i” in the list will have 2 contours, i.e., the object will

this object element (now, object element
have 2 contours). If not, we designate this contour as a new object, thus adding it to the "objects"

list as a new element, and we enter its centre in the respective element of the "centres" list.

This step mainly allows us to distinguish between objects of 2 different shapes. Objects with an
"O" shape (as they will have two contours, both belonging to the same object) and other objects
with any other kind of shapes (as they will have only one contour). Thus, by evaluating whether
the centre of one contour lies inside another contour, we can distinguish between these two types
of objects, as explained above. This differentiation will be very important for calculating the
optimal grasping point of any object, since although all objects will use the same method as a

basis, for "O"-shaped objects it will follow a slightly different approach.

Below are two images side by side, where we can see the two types of objects that we are going to

differentiate as we have explained. Thus, in Figure 19 (representing most of the objects) we can
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see how we will only have 1 contour, while in the case of Figure 20 (O-shaped objects only), we

will instead have 2 contours for a single object.

Figure 19. Single contour objects Figure 20. Double contour objects

(most objects) (O-shaped objects)

Finally, to conclude this stage, we select the object with the smallest x-coordinate centre of all
detected objects, i.e., the object furthest to the left of the conveyor belt, which will serve as the
input for the subsequent step of the process flow, the calculation of the optimal grasping point.
Therefore, if there are more objects on the conveyor belt, these will not be considered for the time
being, as we can only pick up one object with the robotic arm at a time and calculating the best
grasping point of all objects would entail unnecessary processing time. Once the manipulation of
an object will finish, the entire process flow will start all over again, giving way to the grasping of

the next object.

4.3. Calculation of the Optimal Grasping Point

Following the process flow, we will now delve into our novel method for determining the most
suitable grasping location for different types of objects. As noted in the previous section, a critical
aspect of our method is the differentiation between O-shaped objects and other shapes. This
distinction is due to the fact that O-shaped objects are defined by two contours (one outer and

one inner), while all other objects are characterised by a single contour.

The first part of this subchapter will be centred in to elaborating the method we have devised for
objects with a single contour. We will detail the calculations, algorithms and strategies used to
calculate the optimal grasping point for these items. Following this, we will explain the minor
adaptations necessary to apply our method to O-shaped objects, accounting for their unique
two-contour structure. This distinction is important because the optimal grasp position for an
O-shaped object will use a slightly different approach to accurately compute the most effective

grasping location.

4.3.1. Single Contour Objects

For objects with a single contour, the best grasping point is determined by examining each pair

of points with equal y-coordinates along the x-axis of the same contour. Below, Figure 21 shows
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a visual representation of our method of examining each pair of points under consideration. This
image shows our method of going through each y-coordinate of the contour (in green) along the
x-axis (lines in red), while highlighting the pairs of points (crosses in yellow) on each of the red
lines depicted (only a few red lines are shown for better understanding and visibility). Each of

these pair of points are the ones that will be considered in the subsequent calculations.

Figure 21. Pairs of points along the x-axis for future evaluation on a single contour object

In the above image, as observed, we also filter out the y-coordinates that have an excess of contour
points (more than 15 pixels), thus no pair of points is visible in the top and bottom red lines. This
is because a large number of points at a single y-coordinate typically signifies that these points
are likely representing the same side of an object. As such, it would not be feasible to achieve any

grasping at these locations.

Furthermore, we also ensure that there is a minimum distance of 10 pixels and a maximum
distance of 100 pixels between pairs of points. The minimum gap guarantees that the points belong
to different sides of the object, which allows for the possibility of grasping the object, while the
maximum distance restricts the points that will be considered due to the physical limitation of
the maximum opening of the gripper's fingers, thus preventing picking up objects through a pair

of points separated by more than a certain distance.

Afterwards, to determine the quality of these selected point pairs, three main measures are
considered and scored between 0 (not very favourable pair of points) and 1 (very favourable pair

of points for grasping):

1. Slope Difference: This measure assesses how parallel the two surfaces on which the two
points lie are to each other. The more parallel they are, the more desirable the grasping
point and therefore the higher the score. This is because the gripper used is a two-finger
parallel gripper, so gripping two points whose tangent lines (slopes of the points) are not
parallel is physically more complicated. Thus, if the slopes are perfectly parallel (0 degrees

difference), the score is 1 and the less parallel they are the less they score, until the score
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reaches 0 when they are completely perpendicular (90 degrees difference). This calculation

would be given by the following expression:

|slope dif ference
Scoreslope dif. = 1- 90 (11)

For the avoidance of doubt, the slopes at the points have been calculated simply by the
following formula:

_, (By
Slopecontour point (x;,y;) = tan ! (E) (12)

Where Ax and Ay are the difference of the value of the variable x and y, respectively, of a
point of the contour situated 5 points ahead with another point of the contour situated 5

points before:
AXcontour point (x;,y) — Xi+5 — Xi—5 (]_3)

AYcontour point (x;y) — Yi+s — Vi-5 (14)

The choice of taking 2 points equally spaced by 10 points between them (5 points before
and 5 ahead) is the point of equilibrium to obtain a proper calculation of the slope of the
tangent line to the contour point in question, because if we take a smaller number the
slope could take extreme values and if we take a larger number, we would no longer be

considering the correct part of the contour in question.

2. Distance to Centre: This metric calculates the distance between the midpoint of the
two points and the centre of the contour. The closer this midpoint is to the centre of the
object, the better the grasping point, and hence, the higher the score will be. In this case,

the formula that can be used to range the score from 0 to 1 will be the following:

dist.to centre

Scoregist. 1o centre = (15)

" max. dist. to centre

As it can be seen in the previous formula, the closer it gets the midpoint to the centre of
the object, the closer the distance to the centre will be to 0, thus improving the score
more and more until it reaches 1. To avoid confusion, the distance to the centre and the

maximum distance to the centre are obtained according to the following calculations:

dist. to centre = midpoint — contour_centre (16)

max. dist.to centre = max (contour — contour_centre) (17)

Where the midpoint is just the mean of point 1 and point 2, the contour centre is the
mean of all contour points and the max.dist.to centre will be the maximum value from

any point of the contour to the centre of it.
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3. Inter-point Distance: This measure simply considers the distance between the two
evaluated points. The smaller the distance, the preferable the grasping point and therefore
the higher the score. This is because gripping an object through points closer together
tends to have more stability than gripping the same object through points further apart.
The score is calculated using the following formula, where pairs of points with smaller

distances between them are guaranteed to receive higher scores.:

point dist.

Scoreinter—point dist. = 1 (18)

" max. possible dist.

In the above formula, it should be noted that the maz. possible dist. is determined by the
maximum distance in pixels allowed to grasp an object, which, as explained before,
corresponds to the maximum separation of the gripper's fingers, taking a value (in pixels)
of 100. Thus, any pair of points that are considered to have a greater distance will receive

a score of 0 in this section, with a higher score as the assessed points are closer together.

Each of these metrics contributes a weighted portion to the overall score for each pair of points.
The weightings are as follows: 50% for the slope difference (w1l), 30% for the distance to centre
(w2), and 20% for the inter-point distance (w3).

With these weightings, the overall score for each pair of points is computed as:

scorepair =wl x SCOT@Slope dif. + w2 * Scoredist. to centre + w3 * Scoreinter—point dist. (19)

As each pair of points is evaluated, we will overwrite another variable called “best_ score” in case
the score of the evaluated points is higher than the one we had so far, keeping at the end the pair

of points associated with the best score as well as the corresponding score.

At this point, we have the best pair of points along the x-coordinate axis direction for all possible
y-values of the contour. As a graphical display of the best grasping point according to the above

calculation on a pair of objects, Figure 22 is shown below, where the best pair of points are shown

in blue, their midpoint in red, and the tangent lines at each point of the contour in green.

Figure 22. Best pair of grasping points along the z-direction for all y-values of the contour
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However, as can be seen these cannot be the best points, as we have only checked pairs of points

in one direction, which is along the x-axis.

If we now repeat the above set of calculations, for different directions (at different angles to the
x-axis), we can now check which would be the best overall grasping point in any orientation of

the end effector. To illustrate this idea, below is a figure showing 2 other directions, that will now

be considered among other ones.

Figure 23. Visualisation of different directions to determine the best overall grasping point

To achieve this, we simply rotate the contour of the object we were working with, so that once
the contour is rotated, we recalculate the best point along the x-direction. A better representation

of this can be seen in Figure 24:

Figure 24. Visualisation of the actual contour rotation performed to simulate the search for

the best pair of points in different orientations

Lastly, we employ the method explained above that performs the three different calculations,
obtaining the best score and the corresponding pair of points for each set rotation. If the score of
the best point pair in a new rotation exceeds the current best score, we overwrite the variables
corresponding to the former best score, the corresponding point pair and the rotation applied.
After performing all the scheduled rotations, we have identified the best pair of points in all
rotations. These points are then rotated back to plot them on the original unrotated image, and
the gripper, when picking up the object, will rotate according to the rotation of the contour that

produced the best pair of points.

The rotation to be performed will range from 0 to 180 degrees because angles from 180 to 360
degrees will produce essentially the same contour analysis. To achieve this we use the np.linspace
function, which generates a sequence of equally spaced values within a defined range. In our case,

it will distribute the total degrees of rotation (from 0 to 180) in equal divisions.
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A practical trade-off between analysis granularity and computational time is to divide the rotation
range into 10 equal parts, resulting in rotations at 20-degree intervals. Therefore, we will run the
previous method (with the 3 different calculations) a total of 9 times, as the results for 0 and 180
degrees would be identical and therefore there is no need to compute the 180-degree rotation. This
approach allows us to perform the rotation process without requiring excessive computational

resources, with the complete cycle of nine rotations taking just around 0,1 to 0,2 seconds.

In short, what we will basically do is rotate the object's contour a total of 9 times, evaluating for
each of the rotations the best pair of grasping points. Figure 25 shows a visual representation of
the 9 equivalent search directions (red lines) that would be considered the same as rotating the

object contour and then searching along the x-axis.

Figure 25. Display of all directions considered for the proper determination of the

best pair of points overall

To illustrate that when we look for the best pair of points in all the directions considered, we end
up getting the most optimal grasping point possible, Figure 26 below shows that indeed the pair
of points obtained now are much better candidates to be grasped from than those obtained

previously in Figure 22.

Figure 26. Optimal grasping points across all considered directions for single contour objects

This method provides a highly efficient and accurate evaluation of all possible pairs of grasping
points, smartly bypassing numerous iterative computations in areas that would not significantly
enhance the result, thereby saving substantial computational time without compromising the

quality of the output.
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Furthermore, to ensure the reliability of the identified best pair of points, before sending to the
robot arm the corresponding command to grasp the object, we verify that the same best pair of
points is consistently retrieved at least 15 times. This precautionary step eliminates the risk of

premature command execution, which could potentially occur from a rushed object detection.

4.3.2. Double Contour Objects

In the case of two-contour objects, the process to be followed and the calculations to be performed
are exactly the same, except that now the pair of points to be evaluated must each belong to one
of the 2 contours. A graphical view of these possible points to be taken into account, similar to

the previous case with single contour objects in Figure 21, is shown in the following image:

Figure 27. Pairs of points along the x-axis for future evaluation on a double contour object

The only additional modification for dual-contour objects pertains to the assignment of weights
to our evaluation metrics. In the case of single contour objects, the weights allocated were 50%
for the slope difference (w1), 30% for the distance to the centre (w2), and 20% for the inter-point
distance (w3). For dual-contour objects, however, these weightings are adjusted to 40% for the
slope difference (w1), 40% for the distance to the centre (w2), and 20% for the inter-point distance
(w3), providing a more balanced influence of the difference in slope and the distance to the centre
on the final score. This is because usually the slope of the 2 points of the 2 different contours, will
in most cases already be parallel with each other, so the weighting of the slope difference will not
be as important as before. On the other hand, increasing the weight of the distance to the centre
will enable us to get the midpoint of the sides of polygons in the form of squares, triangles and

others.

To clearly illustrate the result obtained with the slightly modified method for determining the

optimal grasping pair of points for objects with two contours, we present the following picture:
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Figure 28. Optimal grasping points across all considered directions for double contour objects

As can be seen in the image, the selected pair of points (in blue) is a pair of points each belonging
to one of the contours. We can also see how the midpoint of these 2 points (point in red) is the

closest possible point to the centre of the object.

Having explained our 2 methods of calculating the best grasping point adapted to the different
types of objects, we will illustrate the sequence of events in the process. This includes from image
pre-processing to the transmission of the calculated optimal grasping point to the grasping

stability predictor. The details of this predictor will be explained in the next section.
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Figure 29. Flowchart of events following Optimal Grasping Point Identification

4.4. Grasp Stability Prediction using Machine Learning Techniques

In this section, we outline the process of implementing Machine Learning techniques, such as
Decision Tree Classifiers introduced in Section 2.3, to predict the stability of the grasping task.
Stable object grasping can be defined as the continuous ability to pick up, hold, and manipulate
an object without accidentally dropping it. The purpose of this endeavour is to proactively prevent
unsuccessful grasping attempts by predicting their likelihood of success and failure using a

Decision Tree Classifier model previously trained on historical data.
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4.4.1. Dataset and Features

The dataset used in this project is composed of 148 records, each documenting an individual
grasping attempt. These records were collected through extensive experimentation involving
objects of various shapes and sizes and attempts to grasp these objects from different positions

and rotations.

Each record consists of three key attributes and their associated grasp attempt result. The 3
attributes are the X and Y coordinates, representing the grasping position, and Oz, which indicates
the grasping rotation. The grasping position provides the spatial location of the object in relation
to the robot (in metres), while the grasping rotation provides the angular orientation of the gripper
during the grasp attempt (in radians). These attributes are obtained from the Calculation of the
Optimal Grasping Point explained in detail in the previous section, but not after a small
transformation that will be explained in detail in the upcoming Section 4.5. Robot Commands
Execution. This basically done to convert the calculated grasping position from the image, from
pixels to metres, as this is the unit that we will use to send the robot commands to grab the
object. Lastly, the result of each attempt, designated as either a success or failure, serves as the

binary output for each record.

4.4.2. Model Training and Testing

The training and testing of the Decision Tree Classifier model are conducted using the scikit-learn
library in Python [19]. Initially, the dataset is partitioned into a training set and a test set, where
70% of the dataset's records are randomly selected for training the model, and the remaining 30%
is reserved for testing. This division ensures that the model has a broad and representative learning
base while maintaining a substantial subset of data to independently validate the model's

effectiveness.

Following this, the Decision Tree Classifier model is initialised without any pre-set parameters.
This allows for the implementation of the GridSearchCV function, a hyperparameter tuning
technique that examines a wide range of potential configurations. The GridSearchCV function
essentially builds and evaluates a model for every combination of the specified parameters, such

as maximum tree depth, minimum sample splits, and minimum samples at leaf nodes.

In this specific project, the tree depth was explored within the range of 2 to 4, the minimum
samples required to split a node ranged from 2 to 10, and the minimum samples required at a leaf
node varied from 4 to 15. By searching over these defined parameters, GridSearchCV helps identify
the combination that yields the best performance, providing the most suitable parameters for the

Decision Tree Classifier model.

To evaluate the performance of the decision tree classifier model, a set of performance metrics is
used to provide a comprehensive assessment. The main metric used is accuracy, which gives a
measure of the overall correctness of the model's predictions. However, given the unbalanced

distribution of classes in our dataset, where there are more successes than failures in grasping
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attempts, relying on accuracy alone may give a misleading interpretation of the model's

performance. To counter this, additional metrics such as precision, recall and F1Score are used.

e Accuracy: Accuracy measures the overall correctness of the model's predictions, given
by the ratio of true predictions (both positives and negatives) to the total number of

predictions.

e Precision: Precision quantifies the model's exactness, given by the ratio of true positive
predictions to all positive predictions (i.e., from the true predictions, how many are
actually true?). This metric provides insight into the reliability of the model's positive

predictions.

e Recall: Recall, also known as sensitivity or true positive rate, assesses the model's ability
to identify all actual positive instances (i.e., from all the actually true cases, how many
were predicted also as true?). It evaluates the model's ability to avoid false negatives,

reflecting its completeness.

e F1 Score: The F1 score is the harmonic mean of precision and recall, providing a
balanced measure between the two metrics. This approach is especially useful when you

want to evaluate the performance on imbalanced datasets, which is our case.

Once the performance of the model has been evaluated and optimal parameters identified through
iteration with GridSearchCV, these parameters are used to train the decision tree classifier model.
The model, trained with these optimal parameters, is then used to predict outcomes on test data
not seen during the training phase. This methodology allows for a rigorous and independent
evaluation of the model's ability to accurately generalise and predict outcomes, thus assessing its

practical applicability.

4.4.3. Model Visualisation

The trained model is visualised using the plot_tree function from the scikit-learn library. This
graphical illustration provides detailed overview of the decision-making process of the model. Each
decision node in the tree signifies a decision based on the attributes (grasping position and

rotation), leading to a leaf node that represents either a success or failure outcome.

Note: Further analysis, including a discussion on the model's accuracy and the resultant
implications, will be presented in Chapter 5 (Results). The purpose of this section is to detail the

implementation process of the Decision Tree Classifier for predicting grasp stability.

4.5. Robot Commands Execution

The final stage in our process flow, prior to the actual task of object manipulation, is sending the
necessary robot commands to the robot. This critical phase involves transforming theCalculation

of the Optimal Grasping Point, identified in Section 4.3, from pixel coordinates (in the processed
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image), to the physical distance from the robot to the intended grasping point on the object (in

meters).

The transformation from image-based coordinates to real-world measurements is a vital bridge
between computational analysis and practical execution. This conversion feeds the Inverse
Kinematics solver with tangible world-coordinate values, that, together with the controller, will

drive the robotic gripper to the desired position for proper object manipulation.

Furthermore, the use of physical measurements enhances our understanding of the objects'
placement in the real world. Lastly, it is important to notice that these measures are the ones that
were also used when predicting Grasp Stability Prediction using Machine Learning Techniques, as
explained in Section 4.4 earlier. In essence, this final process in our pipeline ensures that the robot
can effectively act on the processed information, thereby efficiently performing the object

manipulation task.

4.5.1. Translation from Pixel Coordinates to Real-World Positions

For a clearer perspective, we will first examine an example of an image captured by the camera,
zoomed to the region of interest (Figure 12 has already shown a complete view of the raw image).
This time, in this image, we also have added reference points and their corresponding coordinate
axes, as well as some numerical measurements. All this will be analysed and explained in detail
below, with the aim that this contextual visualisation will be of great help to understand the next

transformation process.

Y = 0,355 m

Calss

(556, 935) [px] L X 1195 pixels

1,416 m
Y' ’

166 px | 0,192 m

Figure 30. Zoomed raw camera image with reference points, axes and measurements

Ultimately, our objective is to transpose the optimal grasping position (depicted as the red point
on the object in Figure 30) into the real-world coordinates relative to the robot's frame of
reference. As an initial step, we will reference the grasping point (P) to the top-left corner of the

conveyor belt, which, on the full-size image, holds coordinates x = 556 and y = 935:
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chonv._belt_reference [px] = Pxfull—size image [px] — 556 (20)

[px] =

=P
Y full—size image

[px] — 935 (21)

Yconv._belt_reference

Afterwards, we can convert the units of the position of the grasping point from pixels to meters.
This transformation is possible by determining the size of the conveyor belt in both pixels and

meters, as indicated by the red rectangle in Figure 30:

1,416 [m]
chonv._belt_reference [m] = chonv._belt_reference px] ’ W[Px] (22)
B 0,192 [m] ‘
yconv._belt_reference [m] - Pyconv._belt_reference [px] ) 166 [px] (23)

Finally, the last transformation consists of shifting the reference of the grasping point from the
top left corner of the conveyor belt to the centre of the robot base, where its coordinate origin is

located:

[m] [m] — 0,481

PXrobot_reference = Px conv._belt_reference (24)

m] + 0,355 (25)

PYrobot_reference [m] = Pyconv._belt_reference [
4.5.2. Sequence of Events following Grasping Point Identification

With the grasping position now defined in suitable units, we could then move on to the Grasp
Stability Prediction using Machine Learning Techniques, as detailed in Section 4.4. The result of
inputting this position into the trained model will be the probability of successful grasping. If this
probability is too low (less than 50%, for instance), the process flow would jump back with a
warning to the Calculation of the Optimal Grasping Point step. Then, we could either change the
position of the current object to a section of the conveyor belt that is known to have a higher
probability of success (known thanks to the evaluation of the results from the Decision Tree
Classifier that will be seen in the next chapter) or see if the new calculated best grasping point
has a higher probability of grasping success (although we are likely to stand at the same point as
the best calculated point will not deviate much). This integration of stability prediction increases
the flexibility and decision-making capability of our robotic system, avoiding wasting time on

attempts that are likely to fail.

If we proceed with the grasping attempt, the robot arm will move to the calculated position, just
above the object, and close the gripper. It is now when we make use of the gripper’s tactile
sensors to evaluate whether an object has been grasped correctly, stopping the procedure again if
it has not. This evaluation is basically done by setting a certain threshold on the pressure received

by the sensors, which if not surpassed means that the object has not been gripped firmly enough.
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Finally, at this point, all that remains is to manipulate the object by moving it from the conveyor
belt to a designated area to release the objects. The following figure shows a flowchart of all the

processes and evaluations performed as explained in detail in this subsection.

Execution of Robot Commands
(Gripper moves to optimal
grasping point and attempts to
grasp the object)

Gripper's
Tactile
Pressure = 0.IN

Execution of Robot Commands
(Object Manipulation)

Probability

Optimal Grasping | | Grasp Stability . iy
uccess = 30%

Point Identification Prediction Yes —

Warning E——No

T No

Figure 31. Flowchart of events following Optimal Grasping Point Identification
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5. Results

This chapter will present the concrete findings from our testing process. To effectively quantify
these results, our evaluation is mainly based on visual comparisons of the calculated grasping
points, as well as the measurement of the “success rate” (our main numerical KPI), to objectively
measure the efficiency of our developed system. Together, these methods enable us to examine the

benefits of our work in a comprehensive and methodical manner.

5.1. Grasping Point Identification

In this section we will compare our newly devised method for the Calculation of the Optimal
Grasping Point of an object, against Meile's approach, explained in depth in Section 2.2.3. As
already mentioned, it will be of particular interest to see how an overly simplistic approach can
give good results with objects of simple shapes (in the concrete case of Meile's method, only with
circular or rectangular shapes), but on the other hand have difficulties with objects of other
shapes. For this reason, although we have already shown some results of our new method in section
4.3, this time we will show side-by-side images of both methods for calculating the grasping point

for better comparison and evaluation.

5.1.1. Evaluation of Grasping Points on Simple-Shaped Objects

We will now evaluate the grasping point obtained with each of the 2 methods on circular and
rectangular objects (simple-shaped objects). In the following figures, on the left side of the image
we will be able to see the grasping point obtained with Meile's method while on the right side,

the one obtained with our new method.

Figure 32. Tennis ball grasping point comparison:

Meile's method (left) vs Novel method (right)
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Figure 33. Metal can grasping point comparison:

Meile's method (left) vs Novel method (right)

Figure 34. Wood block grasping point comparison:

Meile's method (left) vs Novel method (right)

As anticipated, for objects with simple geometric shapes, both the proposed method and Meile's
approach deliver effective and similar good grasping points. This result, in the case of Meile’s
method, can be attributed to the fact that the calculation of the centre and principal orientation
(via the PCA), in simple shaped objects such as circles or rectangles, is a good enough method
and results in good grasping points. In our case, the newly devised method also demonstrates a
good calculation of the grasping points for such objects, as can be seen in the images above.
Consequently, both methods demonstrate similar performance in these scenarios, identifying the

optimal grasping points that are likely to result in a successful grasp.
5.1.2. Evaluation of Grasping Points on Complex-Shaped Objects

Building on the results obtained from the simple-shaped objects, we will now proceed to a more
complex scenario: objects with intricate shapes. This evaluation aims to challenge both methods
and explore the grasp point outcomes on shapes that are far from the standardized geometries we

previously examined.

In the upcoming figures, we maintain the same comparison format. Meile's method results are
depicted on the left side, while our method's results are on the right side. This direct juxtaposition

allows for an immediate visual comparison between the calculated grasp points.
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Figure 35. Banana grasping point comparison: Meile's method (left) vs Novel method (right)

Figure 36. Complex-shaped object grasping point comparison:

Meile's method (left) vs Novel method (right)

Figure 37. O-shaped object grasping point comparison:

Meile's method (left) vs Novel method (right)

As it can be seen in the previous images, the complex shapes of the objects under consideration
in this section pose a significant challenge, as the optimal grasping points are not as
straightforward or easily determinable as they were with simpler shapes. Thus, the more complex
object shapes examined in this section showcase a noticeable divergence in the performance of

Meile's method and our newly devised method.

With these intricate shapes, the underlying assumptions of Meile's method, taking the centre of
the object as the grasping position and the main object orientation, with PCA, as the gripper
orientation, are less applicable, leading to varying degrees of effectiveness in identifying optimal

grasping points.
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In some instances, Meile's method's calculated grasping point comes reasonably close to the
optimal one, such as in the case of the banana. However, in more challenging cases like the

O-shaped object, the calculated point is significantly off from the actual optimal position.

To underscore the implications of minor deviations in determining the optimal grasping point,
let's consider one of Meile's experiments involving the task of grasping a banana. The success
rate in this case, in his experiments, was only 18%, significantly lower than the average success
rate of 86% that he achieved with the simple-shaped objects (excluding IK failure attempts). This
discrepancy clearly demonstrates that the accuracy of determining the optimal grasping point
influences the overall efficiency and success of the task. In our case, the success rate of grasping
the banana was even better than the 86% average of his other simpler objects, with a success rate
of around 90%, let alone the low 18% in the case of his experiments with the banana. Furthermore,
it should be noted that in our case, when we had an unsuccessful attempt to manipulate the
banana, it was not because the optimum point was not correctly found, which in fact was done
correctly 100% of the time, but because the gripper did not close correctly for some reason on

that occasion.

In conclusion, this section highlights the limitations of Meile's approach when dealing with
complex object shapes. The Meile method's reliance on the object's geometric centre and its
principal orientation is not adequate for accurately determining the optimal grasping point and
orientation. The observations made in this section underline the need for more sophisticated
methodologies that can consistently and accurately identify optimal grasping points on a diverse

range of object shapes, such as the one developed in the present project.

5.2. Grasp Stability Prediction

In this section, we will critically examine the decision tree model developed for predicting the
stability of a grasp. This model, as previously described in Section 4.4. Grasp Stability Prediction
using Machine Learning Techniques, aims to enhance the efficiency of the robotic system by
making intelligent choices in grasp attempts. To better comprehend the performance and
effectiveness of the model, we will divide our examination into two subsections: Performance of

the Decision Tree Classifier Model and Evaluation of the Generated Decision Tree Structure.

5.2.1. Performance of the Decision Tree Classifier Model Obtained

In this subsection, we will explore the overall performance of the classifier. We will investigate the
model's predictive power, and evaluate its accuracy, precision, and recall metrics, amongst others.
As previously explained in depth in Section 4.4.2, these metrics are crucial for understanding the

model's ability to make accurate predictions.

Our model obtained an accuracy score of approximately 73.33%, suggesting that it correctly
identifies the result of a grasp attempt in approximately 73% of all cases. While this performance

is encouraging, it's crucial to consider this in the context of our dataset's class distribution, which
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is unbalanced (76% of Success vs. 24% of Failure). This unbalance can skew the accuracy metric,

potentially making it appear more optimistic than it is in reality.

In unbalanced datasets, a high accuracy can sometimes be achieved by a model that simply
classifies most instances into the majority class. In this context, our model's accuracy score is in
line with the distribution of the majority class (76%), which could imply that the model might be

biased towards predicting the majority class.

Hence, while accuracy is a helpful metric, it's critical to also consider other metrics that give a
fuller picture of the model's performance, especially in the context of unbalanced datasets. In our
case, the precision, recall, and F1 score provide additional important insights into the model's

performance. Consequently, it is prudent that we delve into these performance metrics as well:

e The accuracy of our model is 0.75, which indicates a high reliability of successful grasp
predictions. When our model predicts a successful grasp attempt, it is right 75% of the

time.

e The model's recall, or sensitivity, score is quite high, at 0.9375. This suggests that the
model excels at identifying actual successful grasp attempts, accurately predicting 93.75%

of all actual successful grasps.

e The F1 score is approximately 0.8333, suggesting a strong balance between accuracy and
recall. This score suggests that, even with the unbalanced distribution of classes in our
dataset, our model effectively balances between minimizing false positives and identifying

true positives.

Upon evaluating all these metrics, it becomes apparent that our decision tree model, while not
perfect, does exhibit solid performance. Despite certain challenges inherent to the unbalanced
nature of our dataset, the model manages to demonstrate a noteworthy ability to predict grasp
stability. This validates the potential of decision tree classifiers in this application, while also

suggesting some possible room for improvement.

5.2.2. Evaluation of the Generated Decision Tree Structure

Moving forward, we will closely scrutinize the structure of the decision tree itself. We aim to
understand the critical decision nodes, thresholds and branches that play a key role in grasp
stability predictions. This will help us appreciate the key features that the model considers vital
in determining the success or failure of a grasp attempt. The knowledge of these aspects will assist

in enhancing the model's effectiveness and guiding future improvements.

For the generation of our decision tree, we have adopted a grid search strategy to determine the
optimal hyperparameters, as explained in depth at 4.4.2. Model Training and Testing. This
approach involves an exhaustive searching through a manually specified subset of the
hyperparameter space of the decision tree model. In our case, the best parameters, obtained after

cross-validation, were as follows:
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e Maximum depth of tree: 3
e Minimum samples at leaf node: 5
e  Minimum samples required to split an internal node: 2

With these optimal parameters, our decision tree model was trained and tested to make

predictions. The decision tree finally generated is shown below.

A

Yes No Yes No

Calc 0z <= 4.847
gini = 0.48
samples = 48.5%
value = [0.6, 0.4]
class = Success

Calc_X <= 0.455 7
gini = 0.469
samples = 23.3%
value = [0.375, 0.625]
class = Failure

Yes No Yes No Yes No

gini = 0.48
samples = 4.9%
value = [0.6, 0.4]
class = Success

Figure 38. Visualisation of the generated decision tree

gini=0.5
samples = 17.5%
value = [0.5, 0.5]
class = Success

The generated Decision Tree visualization represents the model's learned decision rules based on
the training data. Each box in the diagram, or 'node', represents a decision based on the values
of one of the attributes (Calc_X, Calc_Y and Calc_ Oz, representing the X, Y position of the
calculated grasping point and the calculated rotation of the gripper respectively) or a final
prediction (Success or Failure). Details of each of the measures that can be observed in the different

nodes are listed next:

e Internal Nodes (Decision Nodes): The internal nodes (not the final leaf nodes) show
the decision rule used to split the data. Each decision node contains a condition based on
one of the attributes. For instance, on the first node the condition is “Calc_ X <= 0.225",
so if the value of the feature “Calc_X” is less than or equal to 0.225, the decision tree

will follow the left branch, otherwise, it will follow the right branch.
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e Gini: The Gini index, as explained in 2.3.2. Understanding Gini Impurity, is a metric
that quantifies the purity of the node/leaf. A smaller Gini index means that the node is
purer, with a Gini index of 0 representing the perfect purity where all elements belong to
a single class. For a binary classification problem, the maximum Gini index is 0.5, which

represents a node in which elements are equally split into the two classes.

e Samples: This field represents the number of samples at each node which satisfy the

conditions from the root node (the one on top) to the current node.

e Value: This field indicates the distribution of samples of each class at the respective node.
It provides the proportion of each target class samples that ended up in that node, in our

case, [% Success, % Failure].

e Class: This information displays the class that the model predicts for data points that

reach that node.

Each path from the root of the tree to a leaf represents a distinct classification decision sequence.
Moreover, the decision criteria applied at the higher-level nodes (closer to the root) represent the

most influential attributes in determining the outcome of the object grasping attempt.

Calc X <=0.225 7
gini = 0.336
samples = 100.0%
value = [0.786, 0.214]
class = Success

Yes No

Figure 39. Illustration of the first split in the decision tree

For our decision tree, the initial split is based on the calculated X-coordinate (Calc_X). More
specifically, the tree partitions the data by evaluating whether Calc_ X is greater than or less than
0.225. This split aligns with our expectations. As explained in section 2.2.2. Inverse Kinematics
Failures, we are aware that certain IK issues arise when attempting to grasp objects located in
specific areas of the conveyor belt, particularly on the rightmost part of it. A closer examination

of the leaf nodes following the first node split confirms this observation.

Notably, from the initial split at X=0.225m, we observe a greater likelihood of “Failures”. The
right branches of the tree, which result from the condition X>0.225m, predominantly classify
instances as “Failures”. In contrast, the left branches, derived from the condition X<=0.225m,
tend to result in “Success” classifications. This distribution reaffirms our understanding that
objects placed in the right end of the conveyor belt — more specifically when X>0.225m — are
more challenging to grasp successfully. For a more comprehensive understanding, see previous
Figure 30, Zoomed raw camera image with reference points, axes and measurements, where it can
be seen that the X-axis origin of the conveyor belt is situated at X= -0.481m, and the total length
of the conveyor belt extends to 1.416m. Consequently, any point at X>0.225m means any location

from around the middle of the conveyor belt towards its right end.
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Continuing the analysis of the decision tree, we observe a somewhat surprising trend in the
subsequent nodes following the initial split. Both branches resulting from the first split at
Calec. X <= 0.225 now focus on the gripper's grasping rotation (Calc_Oz) as the decisive
attribute:

/ .

Calc_Oz <= 4.847
gini = 0.48
samples = 48.5%
value = [0.6, 0.4]
class = Success

/ N

Figure 40. Illustration of the subsequent nodes of the first splitting of the decision tree

Interestingly, in both nodes, a similar pattern emerges whenever the Calc_ Oz value exceeds
approximately pi and a half (3n/2 = 4.71), the corresponding branches lead to subsequent nodes
with a higher probability of “Failure”. This trend holds true regardless of whether the initial
Calc_ X value was less than or greater than 0.225m, but much more noticeable when

Calc_ X > 0.225, since more leaf nodes and percentage of samples results in “Failure”.

On the other hand, branches that don't exceed this Calc_ Oz threshold tend to lead to nodes with
a higher probability of 'Success'. This finding suggests that the gripper's rotation (Calc_Oz)
beyond 3n/2 significantly impacts the success rate of the grasping attempt, which in combination
with the IK problems mentioned above, makes the probability of successful gripping on the right

side of the conveyor belt even lower.

pd N
Calc_X <= 0.625 7 Calc_X <= 0.455 7
gini = 0.311 gini = 0.469
samples = 25.2% samples = 23.3%
value = [0.808, 0.192] value = [0.375, 0.625]
class = Success class = Failure

gini =
samples = 1? 5%
value = [0.5, 0.5]
class = Success

Figure 41. Illustration of the right-hand nodes of the second splitting of the decision tree

A closer examination of the decision tree, in particular the right-hand branches (originating from
Cale_X > 0.225), reveals a strong correlation between increasing X values and classification
results. In particular, it is evident that “Failure” results become more frequent as X values

increase.

Delving deeper into these nodes, it is evident that for X values greater than 0.625, regardless of
the Oz wvalue, there is a high probability of a “Failure” outcome. This phenomenon is

predominantly attributed to IK failures.
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On the other hand, on the rightmost nodes, we notice that for X values greater than 0.455, the
effect of Oz being greater than 3m/2 significantly impacts the classification outcome, consistently

resulting in “Failures”.

In summary, the decision tree reveals a clear trend: as X values increase beyond 0.225, in
conjunction with Oz values greater than 3m/2, the likelihood of a “Failure” classification increases
substantially. This indicates that the X location of the object and the Oz rotation of the gripper

play significant roles in the success of the grasping process.

We cannot do anything about the X location of the object, but we can change the operation of
the robot in relation to the gripper orientation. Thus, by maintaining Oz values lower than 3m/2,
we can potentially prevent datapoints from branching into the right side of the decision tree,
where failures are more likely to occur. This strategy will be a practical way to partly mitigate
grasping failures occurring when trying to grasp objects placed on the right part of the conveyor
belt. To understand the logic behind this action, it is first necessary to explain how the rotation

of the gripper has worked so far.

Initially, the range of rotation for the gripper was set from m to 2 n, with the gripper's idle state
at m. Hence, the rotation considered was solely in one direction (from 7 to 2 7). When the grasping
task required a rotation larger than n/2 (leading to final Oz > 3n/2 = 4.71), the gripper would
attempt large rotation to achieve the desired rotation rather than a small rotation in the opposite
direction that would lead to the same grasping. This approach led to unnecessarily large rotations,

and consequently, potential failures in the grasping task when combined with IK disorders.

To address this, we revised the range of rotation now to be from n/2 to 3 /2, effectively still
covering all possible orientations as before, but now without the need for such large rotations.
Instead of rotations from 0 to +=m radians, we now perform smaller rotations ranging from

-n/2 to +m/2.

This modification resulted in better performance, particularly in areas where the robot previously
struggled to grasp objects successfully, notably the right part of the conveyor belt where inverse
kinematics failures were frequent. Although this adjustment hasn't completely eradicated the
problem, especially in areas with very large X values (far right of the conveyor belt), it has

considerably reduced the likelihood of such failures.

In conclusion, the use of machine learning methodologies, such as the decision tree classifier, has
allowed us to understand the key attributes that lead to lower successful grasping attempts. By
identifying and bypassing some of the problematic attribute values, we have therefore been able
to improve the overall success rate of our grasping attempts. These findings underscore the
invaluable role of advanced machine learning techniques in optimizing the performance and

efficiency of systems.
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5.3. Overall Grasping Performance

In this section, we aim to replicate and expand upon certain experiments originally conducted by
Meile, in order to quantify the overall improvements in grasping performance accomplished
through our primary enhancements, previously discussed. These improvements mainly consist of
the design of our new method for the Calculation of the Optimal Grasping Point and the
mitigation of some of the IK failure attempts by restricting the gripper rotation angle, as explained

in the previous section.

In addition to these primary modifications, several smaller incremental improvements have been
made to the overall system that are not covered in detail here, yet have cumulatively contributed
to significant system enhancement in terms of grasping success rate, speed and stability. By
reintroducing Meile's experiments within this evolved framework, we seek to highlight the

compound benefits of these improvements on the system's overall grasping performance.

As said, in the interest of drawing comparative insights, we reconstructed the same experiments
as in Meile's project. This involved 100 trials across 5 distinct simple-shaped objects (seen in
Figure 9), each object being grasped 20 times from four different set areas as per the original
experiment. To visualise these 4 different areas to be used for analysis, let's take a look at a very
similar image we have seen earlier above, this time detailing the areas of interest above the

conveyor belt:

(556, 935) [px] X 1195 pixels

1,416 m
o g
66px | 0192 m Area 1 rango)

(Out of robot's

Figure 42. Conveyor belt areas designated for experiment replication

In our replicated experiments, results demonstrated an appreciable enhancement in overall
grasping performance. Our system achieved a success rate of 80% in comparison to the 73%
recorded in Meile's experiments, and 92% vs. the 86% when excluding IK errors. This increase in
success rate is largely attributable to the enhancements made to the system as detailed in the

previous sections.

The failures that did occur were primarily due to two causes in our case: the gripper not closing

upon moving to the always correctly calculated grasping position (it can be seen that, practically
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100% of the time, the calculated grasping point is the optimal one) and persisting IK problems.
Even with these difficulties, the improvements made to our model and system implementation
helped to overcome some of the common pitfalls encountered in both studies (such as the IK
problems). The higher overall success rate illustrates this fact and demonstrates the effectiveness

of the changes made to our system.

In the following subsections, we will elaborate on the object-specific and location-specific success

rates.

5.3.1. Success Rate per Object

When we examine the success rate stratified by object type, it becomes apparent that our model's
performance exhibits a far lower dependency on the object in question when compared to Meile's
experiments. This reduction in variability is likely attributable to the improvements we

implemented to the overall system, enhancing its stability across a wide range of situations.

Considering all experiments, our model achieved an average success rate of approximately 80%

compared to Meile's 73%. The success rates of the individual objects can be seen in the following

figure:
Success Rate per Object Overall Success Rate per Object Overall
100% 100%
B85% B5%

90% 80% 90% 80% 80% 80%
80% 75% 75% B0% 75%

70% 70%

60% 50% 60%

50% 50%

40% 0%

30% 30%

20% 20%

10% 10%

0% 0%

Christmas  Soft ball Sponge  Tennis ball Wood block Christmas  Soft ball Sponge Tennis hall Wood block
ball ball

Figure 43. Success rate per object (overall) comparison: Meile's results (left) vs Ours (right)

If we further refine our analysis by excluding IK error attempts, the success rates for both projects
show an expected increase. However, our model comes closest to perfection by consistently
achieving around 92% success across all object types, compared to Meile's average success rate of
86%. It is pertinent to mention that in this refined subset, the total number of experiments reduced
due to the exclusion of attempts with IK errors. This decreased the sample size from 100 to 85 in

Meile's case and 87 in ours.
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Success Rate per Object Excluding IK errors

00% Success Rate per Object Excluding IK errors

100% 94% 94% 100% 94% 94% 94%
0% 83% 0% B88% 88%

80% BO0%

o 59% 0%

60% 60%

50% 50%

40%% 409

30% 30%

20% 20%

10% 10%

0% 0%

Christmas Soft ball Sponge Tennis ball Wood block Christmas Soft ball Sponge Tennis ball Wood block
ball ball

Figure 44. Success rate per object (excluding IK errors) comparison:

Meile's results (left) vs Ours (right)

It is important to note that the consistent yet suboptimal success rate of around 92%, is largely
due to instances in which the gripper did not close to grasp the object when it was supposed to,

rather than issues related to the model's object recognition or decision-making processes.
In the upcoming subsection, we will delve into a location-specific analysis of success rates.

5.3.2. Success Rate per Area

When we analyse the success rates across different areas on the conveyor belt, it's clear that, both
our experiments and Meile's ones, display a noticeable drop in performance in Area 1, and to a
lesser extent in Area 2 (in our case). Nevertheless, our model proves its resilience by achieving a

higher overall success rate of 80% compared to Meile's 73%.

Success Rate per Area Overall Success Rate per Area Overall
100% 100%
58% o 92% 92%

90% 90% BO%

BO% 72% BO%

70% T0%

60% 60% S6%

48%

50% 508
a0% a0
30% 30%
20% 20%

10 10%

0% 0%

Areal Area 2 Area 3 Area 4 Areal Area 2 Area 3 Area 4

Figure 45. Success rate per area (overall) comparison: Meile's results (left) vs Ours (right)

Upon excluding attempts plagued by IK errors, our model's performance becomes remarkably
consistent across all areas, averaging a success rate of approximately 92%. This finding underscore
two main observations: Firstly, the known IK problems are particularly pronounced in Area 1 and,
to a smaller degree, in Area 2. Secondly, the occasional issue of the gripper failing to close and
grasp the object is consistently independent of the object's location on the conveyor belt. In

contrast, Meile's performance, once adjusted for IK errors, reaches an average success rate of 86%.
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Success Rate per Area Excluding IK errors Success Rate per Area Excluding IK errors

100% 96% e 100% 93% a1% a2% 9%
o -

7% 70%

60% 60%

50% 50%

a0% 40%

30% 30%

20% 20%

10% 10%

0% 0%

Areal Area 2 Area 3 Area 4 Area 1 Area 2 Area 3 Area 4

Figure 46. Success rate per area (excluding IK errors) comparison:

Meile's results (left) vs Ours (right)

In essence, the success rate achieved by our model remains high and stable in all areas,
demonstrating its ability to cope well with a wide variety of object positions, with a slightly
improved success rate in the IK error areas as well. This result reflects the effectiveness of the
improvements implemented in our system, including the strategic management of gripper rotation

thanks to the effective use of decision trees, thus anticipating and mitigating potential failures.
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6. Discussion

In this chapter, we will delve into a comprehensive discussion surrounding the potential application
areas, the limitations encountered, and prospective future work based on the research and findings
presented during this project. This will allow for a deeper understanding of the implications and

possibilities arising from this study.

6.1. Potential application areas

The improvements made in our object grasping algorithm and system, as demonstrated in the
context of a robot arm in a conveyor belt setup, have wide-ranging potential applications across

several environments.

One of the most direct applications is within automated manufacturing and assembly lines. By
enhancing the efficiency and success rate of the robotic arm's grasping capabilities, our system
can help to increase overall productivity, reduce errors, and limit human intervention. The
improvements made to the Calculation of the Optimal Grasping Point and the Grasp Stability
Prediction using Machine Learning Techniques can lead to smoother operations in environments

such as automotive assembly, electronics manufacturing and packaging facilities.

The advancements could also be of significant value in the realm of logistics and warehousing,
where the automation of tasks like sorting, packaging, and moving items is rapidly increasing. The
same principle could be applied to e-commerce distribution centres, where the demand for efficient

and reliable automation solutions is constantly growing.

In addition, there are promising applications in the field of service robotics, for instance, in
domestic, healthcare, or elderly care environments. Improving the precision and reliability of
robotic grasping can help these service robots to perform daily tasks more effectively, contributing

to enhanced quality of life for individuals requiring assistance.

6.2. Limitations

Despite the improvements made and the promising results achieved, there were limitations

encountered during the course of this project.

The primary limitation was the persistence of IK errors, especially in certain areas of the conveyor
belt. Although these errors were reduced to some extent through restricting the gripper rotation

angle, they were not completely eliminated.

Another limitation was that the gripper occasionally failed to close upon reaching the correctly
calculated grasping position. Despite the system's ability to nearly always calculate the optimal
grasping point, there were instances where the gripper failed to act accordingly, leading to

unsuccessful attempts.
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6.3. Future Work

Building on the foundation established in this thesis, several paths for future work are evident.
One clear direction is to further investigate and address the persistent issues relating to IK errors
and the gripper's failure to close at times. This could involve studying the hardware elements
involved, including the design of the gripper itself, or looking deeper into the software and control

algorithms.

Another direction for future work would be to augment the system with further sensory inputs.
This enhancement could incorporate depth perception and colour recognition capabilities, along
with the deployment of more cameras, amongst other potential advancements. By taking
advantage of these additional sensory inputs, the robotic arm's decision-making process and
understanding of the environment could be enriched, enhancing the system's adaptability and
efficiency. This multisensory approach has the potential to enhance the system's performance in

a wide range of tasks, further strengthening its applicability in various fields.

Thanks to these improvements and upgrades, the usability and applicability of our robotic arm

system can be further enhanced, expanding its potential in the fields of automation and robotics.
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7. Conclusion

This thesis has presented a comprehensive study into improving the performance of a robotic arm
in a conveyor belt setup through enhanced object grasping capabilities. The work performed builds
on the foundation laid by previous research, focusing on the design of a new Calculation of the
Optimal Grasping Point Calculation of the Optimal Grasping Point method and the utilization

of machine learning techniques to predict grasp stability.

The Literature Review, as outlined in Chapter 2, provided an overview of the existing knowledge
and methodologies in the field. It highlighted the pivotal role that machine learning and robotic
automation play in modern manufacturing and logistics. However, it also underscored the need
for continued research and innovation to overcome persisting challenges, particularly in optimizing

robotic grasping techniques for enhanced efficiency and reliability.

Chapter 3’s System Overview provided a detailed explanation of all different hardware and
software components that we have been working on. Then, in Chapter 4, we analysed our newly
devised method, the Calculation of the Optimal Grasping Point, which, together with the
implementation of a Grasp Stability Prediction using Machine Learning Techniques, enabled the

system to achieve better results in terms of success rate and stability.

Our Results, detailed in Chapter 5, demonstrated remarkable improvements achieved through our
newly developed techniques. With an impressive success rate of 80% for simple-shaped objects
(an astounding 92% if we discount IK errors), we have superseded the previous reference of 73%
(86% without IK errors). Most notably, we have excelled in the complex field of intricately shaped
objects as well, manifesting a success rate around 90% for bananas, for example, a striking
elevation from the previous 18%. This significant leap forward is largely thanks to the innovative

methodologies we have integrated into the system, which corroborates their efficacy.

Despite these promising results, we also encountered limitations in our study. Persistent IK errors
and occasional gripper failures highlighted areas for future improvement. However, the consistency
in the success rate across different objects indicates the effectiveness of the improvements made

to the whole system, especially when calculating the best grasping point.

The implications of this research extend broadly to all sectors, especially automation and robotics,
and promise greater efficiency and innovation. Our thesis contributes to the development of new
techniques for enhanced object manipulation, which can be used by a variety of robots in several
industries. Although challenges remain, our effort have laid a solid foundation for further
exploration of robotics. With continuous improvement and the integration of more advanced
sensory inputs and control algorithms, we foresee significant improvement of robotic capabilities

in various sectors.
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A. Additional images on the calculation of the optimal grip point

A. Additional images on the calculation of the optimal grip

point
Slope 1 Slope 2 Slope 2-1 Score x1 yl X2 y2
11,4591559 354,087917 342,628761 0,0965 1185 977 1196 977
11,4591559 354,087917 342,628761 0,0965 1186 977 1197 977
5,72957795 348,931297 343,201719 0,0933 1187 977 1198 977
5,72957795 348,931297 343,201719 0,0933 1188 977 1199 977
21,7723962 348,931297 327,158901 0,1825 1182 978 1200 978
16,6157761 348,931297 332,315521 0,1538 1183 978 1200 978
16,6157761 348,931297 332,315521 0,1538 1184 978 1200 978
26,3560586 338,045099 311,689041 0,2684 1180 979 1203 979
21,7723962 338,045099 316,272703 0,2429 1181 979 1203 979
26,3560586 333,461437 307,105378 0,2939 1178 980 1206 980
26,3560586 333,461437 307,105378 0,2939 1179 980 1206 980
30,9397209 328,877774 297,938053 0,3448 1176 981 1208 981
30,9397209 328,877774 297,938053 0,3448 1177 981 1208 981
34,9504255 321,429323 286,478898 0,4085 1175 982 1210 982
41,825919 321,429323 279,603404 0,4466 1173 983 1211 983
34,9504255 321,429323 286,478898 0,4085 1174 983 1211 983
41,825919 317,991576 276,165657 0,4657 1172 984 1212 984
45,2636658 317,991576 272,72791 0,4848 1171 985 1213 985
48,1284548 315,126787 266,998333 0,5167 1170 986 1214 986
48,1284548 312,261998 264,133544 0,5326 1169 987 1215 987
55,0039483 312,261998 257,25805 0,5708 1169 988 1216 988
55,0039483 312,261998 257,25805 0,5708 1168 989 1217 989
59,0146529 308,824252 249,809599 0,6122 1167 990 1218 990
59,0146529 304,813547 245,798894 0,6345 1167 991 1219 991
63,5983153 304,813547 241,215232 0,6599 1166 992 1219 992
63,5983153 300,802842 237,204527 0,6822 1166 993 1220 993
63,5983153 300,802842 237,204527 0,6822 1165 994 1221 994
68,1819776 296,792138 228,61016 0,7299 1165 995 1221 995
68,1819776 291,635518 223,45354 0,7586 1164 996 1221 996
73,3385978 291,635518 218,29692 0,7872 1164 997 1222 997
73,3385978 286,478898  213,1403 0,8159 1164 998 1222 998
78,4952179 281,322277 202,827059 0,8732 1163 999 1223 999
78,4952179 281,322277 202,827059 0,8732 1163 1000 1223 1000
84,2247959 281,322277 197,097482 0,905 1163 1001 1223 1001
84,2247959 275,592699 191,367904 0,9368 1163 1002 1223 1002
84,2247959 275,592699 191,367904 0,9368 1163 1003 1223 1003
89,9543738 269,863122 179,908748 0,9995 1163 1004 1223 1004
89,9543738 269,863122 179,908748 0,9995 1163 1005 1223 1005
89,9543738 269,863122 179,908748 0,9995 1163 1006 1223 1006
89,9543738 269,863122 179,908748 0,9995 1163 1007 1223 1007
89,9543738 269,863122 179,908748 0,9995 1163 1008 1223 1008
89,9543738 269,863122 179,908748 0,9995 1163 1009 1223 1009
89,9543738 269,863122 179,908748 0,9995 1163 1010 1223 1010
89,9543738 269,863122 179,908748 0,9995 1163 1011 1223 1011
89,9543738 269,863122 179,908748 0,9995 1163 1012 1223 1012
95,6839518 269,863122 174,17917 0,9677 1163 1013 1223 1013
95,6839518 269,863122 174,17917 0,9677 1163 1014 1223 1014
95,6839518 264,133544 168,449592 0,9358 1163 1015 1223 1015
101,41353  264,133544 162,720014 0,904 1163 1016 1223 1016
101,41353  264,133544 162,720014 0,904 1163 1017 1223 1017
106,57015 258,403966 151,833816 0,8435 1164 1018 1223 1018
106,57015 258,403966 151,833816 0,8435 1164 1019 1223 1019
111,72677 253,247345 141,520575 0,7862 1164 1020 1222 1020
111,72677 248,090725 136,363955 0,7576 1165 1021 1222 1021
116,310432 248,090725 131,780293 0,7321 1165 1022 1222 1022
111,72677 243,507063 131,780293 0,7321 1166 1023 1221 1023
116,310432 238,923401 122,612968 0,6812 1166 1024 1221 1024
120,894095 238,923401 118,029306 0,6557 1167 1025 1220 1025
120,894095 234,912696 114,018601 0,6334 1167 1026 1219 1026
124,904799 231,474949 106,57015 0,5921 1168 1027 1219 1027
124,904799 231,474949 106,57015 0,5921 1168 1028 1218 1028

Figure 47. Difference of slopes of each evaluated pair of points and resulting score for a ball
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A. Additional images on the calculation of the optimal grip point

Figure 48. Ball used for the evaluation of the scoring function results

x¥x1 yl1 x2 y2 Slope score dist to center score point_dist score score

2 |1185 977 1196 977 0,0965 0,0263 0,8736 0,231
3 (1182 978 1200 978 0,1825 0,0585 0,7931 0,2674
4 |1180 979 1203 979 0,2684 0,0%01 0,7356 0,3084
5 |1178 980 1206 980 0,2939 0,1214 0,6782 0,319
& (1176 981 1208 981 0,3448 0,1522 0,6322 0,3445
7 {1175 982 1210 9382 0,4085 0,1833 0,5977 0,3788
8 (1173 983 1211 983 0,4466 0,2138 0,5632 0,4001
9 |1172 984 1212 934 0,4657 0,2446 0,5402 0,4143
10 (1171 985 1213 985 0,4848 0,2754 0,5172 0,4285
11170 986 1214 9386 0,5167 0,3002 0,4343 0,4491
12 |1169 987 1215 987 0,5326 0,337 0,4713 0,4617
13 /1169 988 1216 988 0,5708 0,3682 0,4598 04878
14 /1168 989 1217 989 0,5708 0,399 0,4368 0,4925
5 (1167 990 1218 990 0,6122 0,4298 0,4138 0,5178
16 |1167 991 1219 3991 0,6345 0,4606 0,4023 0,53359
7 (1166 992 1219 992 0,6599 0,4914 0,3908 0,5555
15 |1166 993 1220 993 0,6822 0,5222 0,3793 0,5736
19 /1165 954 1221 13954 0,6822 0,553 0,3563 0,5783
20 11165 995 1221 995 0,7299 0,5838 0,3563 0,6113
211164 996 1221 996 0,75860 0,6146 0,3443 0,6320
22 11164 997 1222 997 0,7872 0,6454 0,3333 0,6539
23 1164 998 1222 998 0,8159 0,6762 0,3333 0,6775
24 11163 999 1223 993 0,8732 0,707 0,3103 0,7108
25 1163 1000 1223 1000 0,8732 0,7378 0,3103 0,72
26 1163 1001 1223 1001 0,905 0,7686 0,3103 0,7451
27 11163 1002 1233 1002 0,9368 0,7994 0,3103 0,7703
28 1163 1003 1223 1003 0,9368 0,8302 0,3103 0,7795
29 1163 1004 1223 1004 0,9995 0,801 0,3103 0,8201
30 11163 1005 1223 1005 0,9995 0,8917 0,3103 0,8293
371 1163 1006 1223 1006 0,9995 0,9224 0,3103 0,8385
32 11163 1007 1233 1007 0,9995 0,953 0,3103 0,8477
33 1163 10038 1223 1008 0,9995 0,9827 0,3103 0,85660
34| X 1009 1223 1009 0,9995 0,983 0,3103 0,8567

Figure 49. Visualisation of the 3 scoring function values and the total weighted score

for all evaluated pair of points of the ball - Image 1 of 2
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A. Additional images on the calculation of the optimal grip point

1 x1 y1 x2 vy2 Slope score dist to center score point dist score score
35 (1163 1010 1223 1010
36 (1163 1011 1223 1011
37 (1163 1012 1223 1012
38 (1163 1013 1223 1013
39 1163 1014 1223 1014
40 1163 1015 1223 1015
41 1163 1016 1223 1016
42 |1163 1017 1223 1017
43 |1164 1018 1223 1018
44 |1164 1019 1223 1019

0,6888

45 [1164 1020 1222 1020 0,6535
45 1165 1021 1222 1021 0,6321
47 1165 1022 1222 1022 0,6101
45 |1166 1023 1221 1023  0,7321 0,5528 0,3678 0,6054
491166 1024 1221 1024  0,6812 0,5221 0,3678 0,5708
50 11167 1025 1220 1025  0,6557 0,4913 0,3908 0,5534
51 1167 1026 1219 1026  0,6334 0,4609 0,4023 0,5354
52 11168 1027 1219 1027  0,5921 0,4297 0,4138 0,5077
53 1168 1028 1218 1028  0,5921 0,3993 0,4253 0,5009
54 11169 1029 1217 1029  0,5507 0,3685 0,4483 0,4756
55 1170 1030 1216 0,4709

56 1171 1031 1215 04488
571172 1032 1214
558 1173 1033 1213
50 /1174 1034 1212
60 1175 1035 1211
611177 1036 1209
62 11179 1037 1207
63 1181 1038 1204
64 1183 1039 1201
65 1186 1040 1197

Figure 50. Visualisation of the 3 scoring function values and the total weighted score

for all evaluated pair of points of the ball - Image 2 of 2
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A. Additional images on the calculation of the optimal grip point

After rotation of image/contours
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[array([1294, 1046]), array([1312, 1846])] ©. 0.0

[array([1173, 1011]), array([1217, 1832])] ©.7963 25.714285714285715
[array([1193, 997]), array([1221, 1631])] e. 51.42857142857143
[array([1222, 985]), array([1232, 1028])] ©. 77.14285714285714
[array([1249, 1), array([1239, 1028])] ©.8606 102.85714285714286
[array([1270, ]1), array([1239, 1027])] ©. 128.57142857142858
[array([1311, 1045]), array([1298, 1@51])] e. 154.28571428571428

Elapsed time: ©.1393730640411377 second

Figure 52. FEvaluation of the total weighted score values for different rotation

and its computational time required

(868, 1033, @, @, 2.79, @), (870, 1837, 0, @, 2.09, 8)] counter: [13, 8, 8, 8, 7, 14, 1, 1, 1]
Best point overall: None
, 1033, 0, @, 2.89, 0), (871, 1835, ©, @, 2.89, 8), (870, 1836, @, O, 2.89, 8), (871, 1036, .09, (869, 1034, .09, 1035,
68, 1633, @, @, 2.79, ©), (870, 1037, 0, @, 2.89, 8)] counter: [14, 8, 8, 8, 7, 14, 1, 1, 1
Best point overall: None
[(868, 1033, 0, O, 2.09, 0), (871, 1035, 0, @, 2.09, @), (870, 1036, ©, 0, 2.09, 0), (871, 1036, . 0), (869, 1034, . 1035
(868, 1633, 0, @, 2.79, 0), (870, 1837, 6, 8, 2.09, 0)] counter: [14, 9, 8, 8, 7, 14, 1, 1, 1]
Best point overall: None
[(868, 1833, @, @, 2.09, @), (871, 135, @, 0, 2.69, @), (870, 1036, @, 0, 2.09, 0), (871, 1036, . 0), (869, 1034, . 1035,
(868, 1033, @, @, 2.79, @), (870, 1037, ©, O, 2.09, 0)] counter: [14, 9, 8, 8, 7, 14, 2, 1, 1]
Best point overall: None
[(868, 1833, @, @, 2.09, @), (871, 1035, 6, 0, 2.09, @), (876, 1836, 6, 0, 2.09, 0), (871, 1036, . 0), (869, 1834, . 1035,
(868, 1033, @, @, 2.79, @), (870, 1037, 0, @, 2.09, 8)] counter: [14, 9, 8, 8, 7, 14, 2, 1, 2]
Best point overall: None
8, 1033, @, 0, 2.09, 0), (871, 1835, @, 0, 2.09, 0), (870, 1836, ©, 0, 2.89, 0), (871, 1036, 0, O, 2.09, 8), (869, 1034, O, . 1035,
68, 1633, 0, @, 2.79, 0), (870, 1637, 0, @, 2.09, 0)] counter: [14, 9, 8, 9, 7, 14, 2, 1, 2]
Best point overall: None
[(868, 1033, @, @, 2.09, @), (871, 1635, 0, @, 2.09, @), (870, 1636, 6, 6, 2.09, 0), (871, 1836, @, @, 2.09, 8), (869, 1034, @, . 1035,
(868, 1633, @, @, 2.79, 0), (870, 1837, 6, 6, 2.89, @), (878, 1835, 6, 6, 2.79, 8)] counter: [14, 9, 8, 9, 7, 14, 2, 1, 2, 1
Best point overall: None
[(868, 1833, @, @, 2.09, 0), (871, 1035, 6, 0, 2.09, @), (870, 1836, 6, 6, 2.09, 0), (871, 1036, 8, O, 2.09, 0), (869, 1834, 0O, . 1035,
(868, 1033, @, @, 2.79, @), (870, 1037, 6, @, 2.09, 0), (870, 1835, ®, O, 2.79, 0)] counter: [14, 9, 8, 10, 7, 14, 2, 1, 2, 1]
Best point overall: None
[] counter: []
Best point overall: (869, 1635, 6, 0, 2.44, @)
r 1T 5 7]: Going t 4

8.891911877]: Task 2 finished.

[ INFO] [1686676693.443954584]: Task 3 finished.

[ INFO] [1686676695.899988731]: Task 5 finished.
[INFO] [168 98.018598]: 1.62

[ INFO] [1686676698.031918020]: Task 6 finished.

[ INFO] [1686676700.835877067]: Task 7 finished.

INFO] [1686676707.215949245]: Task 8 finished.

Figure 51. FEvaluation of the correct sending of the calculated best grasping point

(“Best point overall”) to the robot once the same best-calculated point reaches a count of 15
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