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To the loving memory of Dr. D. José Manuel Seoane Capote (1942–2016)

Abstract. We analyze the dynamics of a system of several cars in a traffic lane, each car following
the ones in front of it. The effect of small perturbations in the speed of a certain car is propagated
to the cars behind of it in the lane. Nevertheless, these perturbations tend to dissipate along the
lane. The results can be used as an activity taught at a third year mathematics undergraduate
students to improve the knowledge of dynamical systems, modeling and physical interpretation of
mathematical models.

1. Introduction

In Mathematics, a dynamical system is a system in which a function describes the time de-
pendence of a point in a geometrical space. There are many examples of this, which include the
very famous mathematical model describing the swinging of a clock pendulum (which started with
Galileo’s research in 1602) and the three dimensional famous Lorenz attractor, which provided the
earliest example of chaos in a dynamical system, in the early 1960’s.

Teaching dynamical systems is far from being a simple task. At the moment there are too
many potential examples and models that one could use to present this notion, however not all
of them are accessible to everyone due to either their technicality or their complexity and level of
abstraction. The most common way to introduce this notion at an undergraduate level is by means
of the famous Lotka-Volterra system. The classical Lotka-Volterra system is a two dimensional
system in which the concept of stability can be easily presented by means of the typical example
of a predator/prey situation. For instance, a typical example is seen in

(LV)

{
x′(t) = a1x(t)− a2x(t)y(t)

y′(t) = −b1y(t) + b2x(t)y(t),

with a1, a2, b1, b2 > 0, and Figure 1 shows the typical trajectories of such a system.
In this paper we are interested in innovating by employing a different approach on teaching

dynamical systems, we propose the use of the “not that typical” car-following models.
Car-following models appeared with the intention of describing a driver’s reaction to the changes

in the speed to the car in front of him on a single lane. Modeling this behavior is necessary for

Key words and phrases. dynamical systems; car-following models; quick-thinking-driver model; near-nearest
model.
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Figure 1. Trajectories for a the classical Lotka-Volterra system such as system
(LV) for values a1 = 1.4, a2 = 0.9, b1 = 1.8 and b2 = 1.2.

the development of traffic flow theory. The first car-following models were due to Greenshields
[Gre34, Gre35] in the 1930’s. During 50’s and 60’s, car-following models were refined by taking
into account considerations involved in driving a motor vehicle on a lane [Cum64] such as the
difference between the velocities of a car and the car in front of it, the distance of a car respect
to the preceding one, or the driver’s reaction time, see for instance [For63, Pip53]. Chandler et al.
[CHM58] and Herman et al. [HMPR59] proposed a mathematical model which assumes that the
acceleration of the following car in each two-vehicle unit is linearly proportional to the cars relative
velocities at some earlier time, with a fixed time lag of transmission of the driver-vehicle system.
This model is well-known as the Quick-Thinking Driver QTD model.

In the practice, the acceleration of a car does not only depend on the velocity of the car in front
but it also slightly depends on the velocity of a car two ahead as it is considered in the nearest and
Next-Nearest NN model. It can be also modeled taking into account the speeds of the cars that go
in front and behind of it as it is considered in the Forward and Backward Control FBC model. An
interested reader can find a historical evolution of these models in [BM99, HB01].

Chaos is closedly linked with car-following models. Even in a simple model such as the QTD one,
it is possible to find chaos relating its dynamics to certain solutions of the logistic equation [MG04,
McC09]. Such a model is a particular case of a more general non-linear car-following developed
by Gazis, Herman, and Rothery (GHR) for General Motors [GHR61, Rot92]. The discontinuous
behavior of some of its solutions suggested the existence of chaos for a certain range of input
parameters. Other authors studied the existence of chaos for this model under some assumptions:
Disbro and Frame [DF89] showed chaos for the (GHR) model without taking into account signals,
bottlenecks, intersections, etc. or with a coordinated signal network. In [AL98, AMLC96] chaos
was observed for a platoon of vehicles described by the (GHR) model when adding a nonlinear
inter-car separation dependent term.

More recently, in [BCMASS15, CMASS16] the authors studied the existence of chaos for dif-
ferent car-following models for an infinite number of cars driving on a road using techniques from
semigroup theory. It is worth to mention that chaos can be also found when studying traffic models
at macroscopic level, as it is the case of the Lighthill-Whitham-Richards [CMGPR16].
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Our concern in this paper is to study the dynamics of the continuous dynamical system that
represents the behavior of cars driving on a road when considering some classical car-following
models such as the QTD and the NN models. More concretely, we determine their equilibria and
stability in terms of the parameters involved in the models. Moreover, we illustrate the outcome
with numerical solutions.

The models proposed in this paper can be considered in teaching for many different applications
such as the study of dynamical systems and differential equations and the improvement of comput-
ing skills with mathematical software such as Maple, Matlab, R or Mathematica. It is also good
as a proposal for developing skills in model formulation, solution and interpretation.

2. Preliminaries

We first introduce the models that we are going to study. In the basic formulation of any of
the car-following models, there is a relation between the acceleration of a car and the difference
between its velocity and the velocity of the car that goes in front of it. In a basic formulation for a
car-following model, the driver of a car adjusts her speed according to the relative velocity between
her car and the one in front, that is,

(1) x′′1(t+ t1) = λ1(x
′
2(t)− x′1(t)),

where x2(t) denotes the position of the car which goes in front of car 1 at time t whose position is
given by x1(t), t1 denotes the reaction time of driver 1 and the positive number λ1 is a sensitivity
coefficient that measures how strong the driver 1 responds to the acceleration of the car in front
of her. Usually λ1 lies between 0.3 − 0.4s−1 [BM99]. Under the assumption that all drivers react
“very quickly”, one can take t1 = 0. This is known as the Quick-Thinking-Driver QTD model.

(2) x′′1(t) = λ1(x
′
2(t)− x′1(t)),

This model can be reformulated in terms of velocities u1(t) = x′1(t) and u2(t) = x′2(t)

(3) u′1(t+ t1) = λ1(u2(t)− u1(t)),
It can be also improved when taking into account that the reaction time depends on the speed of

the car, as it is indicated in [McC09] and in [MG04, p. 92]. This leads us to formulate a modified
version of it:

(4) u′1(t) = γ1u1(t)(u2(t)− u1(t)),
As it is indicated in [MG04], the models in (3) and (4) should provide the same acceleration for

the same relative velocity. For instance, in the case of a car moving at 45 km/h, namely about
13m/s, in order that models (3) and (4) should predict the same acceleration we take 13γ1 = λ1,
and typical values of γ1 will be in the range of 0.02 to 0.03 s−1. For further details on driving
simulation, we refer to the excellent handbook edited by Fisher et al [FRCL11, Ch.5,7 & 12].

It is also interesting to investigate the effect of a control that involves the car two ahead in
addition to the car in front as it usually happens in the practice. This model is known as the
nearest and next-nearest NN model which is given by

(5) u′1(t) = λ1,1(u2(t)− u1(t)) + λ1,2(u3(t)− u1(t)),
in which λ1,1 stands for the sensitivity coefficient in relation with the car ahead and λ1,2 the one
with the car two ahead, such that λ1,1 + λ1,2 plays the role of λ1.
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Figure 2. (a) On the left, the case of 3 cars, the speed of the leading car constant
and equal to v, and the speed of the others behind, u2(t) and u1(t), respectively.
(b) On the right, the speed of the car ahead will be denoted as u3(t), and the speed
of the car behind, u2(t) and u1(t). Designed by Freepik.

Analogously, one can also improve it in the same way as (4). This yields

(6) u′1(t) = γ1,1u1(t)(u2(t)− u1(t)) + γ1,2u1(t)(u3(t)− u1(t)),

with γ1,1 + γ1,2 instead of γ1.
Some results related to the stability of dynamical systems will be needed. Let us consider a

dynamical system on Rn+,0 of the form x′ = f(x), x ∈ Rn0,+ and f a differentiable function. We
recall that an equilibrium point x0 is called hyperbolic if all the eigenvalues of the Jacobian matrix
J(x0) have nonzero real part. Such a point is called a sink if all the eigenvalues of J(x0) have
negative real part. It is said to be a source if all the eigenvalues have positive real part and it
is a saddle point if it is a hyperbolic point and it has at least one eigenvalue with positive real
part and one with negative real part. In terms of stability, sinks correspond to asymptotically
stable equilibria points. Hyperbolic equilibrium points are unstable if and only they are saddles or
sources. The stability of nonhyperbolic equilibrium points is more dificult to determine and it is
typically necessary to use the famous Lyapunov functions. In section 3, we study the equilibria of
the Quick-Thinking-Driver model with 3 cars and we also analyze its trajectories and the ones of
the perturbed model by adding an oscillation term.

In Section 4, we first study the situation of three cars with the leading car driving with a fixed
speed and two cars following it and one to each other. Such a model can be perturbed in order to
provide a cyclic orbit to which the speeds converge.

In Section 5, we add an additional car and we compare the QTD and NN models. We present
two situations: In the first one, the cars start with different speeds, but as time goes by, their
speeds tend to the one of the leading car. In the second one, we perturbate the speed of the leading
car and we analyze the propagation of that perturbation along the cars on the lane.

Finally, in Section 6, we propose some possible extensions and class activities.

3. The Quick-Thinking-Driver model with 3 cars

First, we study the stability of the QTD model of 3 cars, with the leading car driving at constant
speed. Here, the model describing the speed of the cars behind the leading car can be described
by the following 2 equations:

(7)

{
u′1(t) = γ1u1(t)(u2(t)− u1(t))
u′2(t) = γ2u2(t)(v − u2(t))

Solving the system

(8)

{
0 = γ1u1(u2 − u1)
0 = γ2u2(v − u2)
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we obtain the following 3 equilibrium points: P1 = (0, 0), P2 = (0, v), P3 = (v, v), which can be
seen by looking at the nullclines, see Figure 3. Looking at the phase plane, we can appreciate that
P3 is an attractor. To confirm this, we now calculate the eigenvalues associated to the equilibrium
points P1, P2, and P3. The Jacobian of the system is given by

(9) J(u1, u2) =

(
γ1(u2 − 2u1) γ1u1
0 γ2(v − 2u2)

)
.

Figure 3. On the left, phase plane, equilibrium points, and nullclines for the solu-
tion of system (7), where γ1 = γ2 = 0.03, and v = 13m/s. On the right, we see the
trajectories for the initial conditions (5, 10), (5, 20), (20, 5), and (20, 20) after t =
15s.

We next obtain the eigenvalues associated to J(Pi), i = 1, . . . , 3. J(P1) has a null and a positive
eigenvalue γ1v, but J(P2) has a negative (- γ2v) and a positive (γ2v) eigenvalue. Anyway, both P1

and P2 are unstable. On the contrary, P3 has both eigenvalues, −γ1v and −γ2v, with negative real
part and it is a stable equilibrium point for the system. This can be seen also by looking at the
trajectories depicted in Figure 3.

If we perturb the speed of the leading car by a term sin(t) ,

(10)

{
u′1(t) = γ1u1(t)(u2(t)− u1(t))
u′2(t) = γ2u2(t)(v + sin(t)− u2(t))

the speed falls into a cycle around the point (13,13), see Figure 4, which is a similar situation
to what happens with Lotka-Volterra trajectories, but it is obtained in this case through a non-
autonomous dynamical system. This can be related with the existence of pullback attractors, see
for instance [HY18]. More information about the topological connections of both systems in the
discrete case can be found in [Bal16]. From a physical point of view, these kind of perturbations
are very typical to model dynamical systems in the presence of external perturbations as it occurs,
for instance, with the pendulum [Git10]. In this specific case, this perturbation can be seen in
situations in which the driver accelerates or decelerates as a consequence of a multiple collision
which take place when the velocities are equal.
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Figure 4. On the left, the trajectory for the initial condition (10, 10) after 100 s.
On the right, an amplified view of the converging cycle.

4. Stability of traffic models with 3 cars

Let us analyze the stability of the dynamical systems that model how three cars will progress in
time, following a car at fixed speed, when we consider the QTD and the NN models. We consider
that the leading car goes at constant speed v, which is followed by cars 3, 2, and 1.

4.1. Stability of the QTD model. First, we concentrate on the study of the dynamics of these
three cars when considering they follow the leading one according to QTD model.

(11)

 u′1(t) = γ1u1(t)(u2(t)− u1(t))
u′2(t) = γ2u2(t)(u3(t)− u2(t))
u′3(t) = γ3u3(t)(v − u3(t))

Solving the system

(12)

 0 = γ1u1(u2 − u1)
0 = γ2u2(u3 − u2)
0 = γ3u3(v − u3)

we obtain the equilibrium points: P1 = (0, 0, 0),P2 = (0, 0, v),P3 = (0, v, v), and P4 = (v, v, v).
We now calculate the eigenvalues associated to the equilibrium points P1, P2, P3, and P4. The

Jacobian of the system is given by

(13) J(u1, u2, u3) =

 γ1(u2 − 2u1) γ1u1 0
0 γ2(u3 − 2u2) γ2u2
0 0 γ3(v − 2u3)

 .

We next obtain the eigenvalues associated to J(Pi), i = 1, . . . , 4. J(P1) has γ3v as a positive
eigenvalue, and then P1 is not stable. Points P2 and P3 are unstable equilibrium points because
they both have positive and negative eigenvalues, and P4 is a stable equilibrium point for the system
since all its eigenvalues have negative real part. It is important to point out that an equilibrium
for system (11) corresponds to a stationary solution, namely a solution for which each one of the
three cars has constant velocity.

Since our model is nonlinear, it may present chaotic motions. For checking whether it is chaotic
or not, we analyze both, the bifurcation diagrams and the Lyapunov exponent of the system in
order to show the global behavior of our model for different values of the parameters.
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On the one hand, bifurcation diagrams provide graphical information on the changes in the
dynamics of the system in terms of one of its parameters [Str14]. They are very useful for checking,
from a qualitative point of view, if the system is chaotic or not. For plotting it, we take an arbitrary
initial condition and we compute the final state of the system versus a chosen parameter of it. If
the system is periodic of period n, n points appear in a vertical line in our bifurcation diagram.
Otherwise, if the system is chaotic, a continuous vertical line is depicted in the diagram.

On the other hand, the Lyapunov exponent is the most common tool to have a quantitative
indicator to observe chaotic motions [NY12]. These tools are the most useful indicators for charac-
terizing possible chaotic regimes in a dynamical system but, in general, they are not so known for
undergraduate students in Math and other Sciences. The Lyapunov exponent, namely λ, indicates
the divergence between two trajectories of the system which start their motion with very similar
initial conditions. It measures this distance as a function of the time and it can be calculated as
follows:

λ = lim
t→∞

=
1

t
ln
||δx(ti)||
||δx0||

(14)

where ||δx(ti)|| denotes the distance between the trajectories after the time t = ti and ||δx0|| denotes
the distance between the trajectories at the initial time t = 0. If the system diverges, the Lyapunov
exponent is positive and therefore our system presents chaotic motions. This is due to the nonlinear
nature of our equations and therefore it satisfies the necessary condition for that. We can observe
that these 2 nearby trajectories are sensitive to the initial conditions and their distance increases
with respect to time in an exponential manner and therefore, if the equations are nonlinear, they
become chaotic.

Otherwise, our system is stable and periodic motions take place. Figure 5 illustrates these
last comments, showing both, the bifurcation diagram and the Lyapunov exponent of the QTD
model by taking as a parameter, the sensitivity coefficient γ = γi, i = 1, 2, 3, representing the
drivers’ reactions times of a driver in a realistic situation. In Figure 5 we consider speeds around
13 m/s and values of γ around 0.3 s−1. To compute both, we have taken as initial condition
(u1(0), u2(0), u3(0)) = (20, 13, 10), a physical situation in which collisions can take place since the
first and the second car are at rest and the last one has positive velocity.

Notice that, to compute numerically the Lyapunov exponents, we take high values of the inte-
gration times according to the experiment we have carried out. In our case, we have taken 500 t.u
which is very large in comparison with the times we use in the computations of the trajectories. In
that sense, the time, in these practical situations, can be considered as infinity and therefore the
estimation of the Lyapunov exponents is very accurate.

In both plots, we clearly see the final stabilization of the dynamics of our system and therefore
the nonexistence of chaotic motions. This result is interesting since the equations are nonlinear
but, in a practical case, there are no vehicle collisions and the cars finish in a stable situation.

4.2. Stability of the NN model. We now suppose that the three cars following the leading one
at constant speed behave according to a NN model. Now, the acceleration of each car does not
only depend on the velocity of the car just in front but also on the two cars ahead of it. For the
car that only has one car ahead of them, we consider they follow the QTD model.

In this case, the system describing the model can be written as follows:
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Figure 5. Plot of both, the bifurcation diagram, by plotting u versus γ and the
Lyapunov exponent versus γ. We can observe that the motions are not chaotic for
any parameter value and the system is always stable. The initial condition is given
by (u1(0), u2(0), u3(0)) = (20, 13, 10). Observe in this case the value of velocity
v = 13 m/s as an asymptotic fixed point and therefore there is not presence of
chaos. The corresponding Lyapunov exponent distribution corroborates it properly.

(15)

 u′1(t) = γ1,1u1(t)(u2(t)− u1(t)) + γ1,2u1(t)(u3(t)− u1(t))
u′2(t) = γ2,1u2(t)(u3(t)− u2(t)) + γ2,2u2(t)(v − u2(t))
u′3(t) = γ3u3(t)(v − u3(t))

We now obtain the equilibrium points of the system

(16)

 0 = γ1,1u1(u2 − u1) + γ1,2u1(u3 − u1)
0 = γ2,1u2(u3 − u2) + γ2,2u2(v − u2) = 0
0 = γ3u3(v − u3) = 0

Again, we also have P1 = (0, 0, 0), P2 = (0, 0, v), P3 = (0, v, v), P4 = (v, v, v), as in the previous
case, and P5 = (0,

vγ2,1
γ2,1+γ2,2

, 0), P6 = (
vγ1,2

γ1,1+γ1,2
, 0, v), and P7 = (

vγ1,1
(γ1,1+γ1,2)(γ2,1+γ2,2)

,
vγ2,1

γ2,1+γ2,2
, 0).

We point out that points P5, P6 and P7 won’t be considered when analyzing the system in the
car-following context since they do not represent realistic situations.

The Jacobian matrix, J(u1, u2, u3), in this case is given by:

(17)

 γ1,1u2 − (2γ1,1 + 2γ1,2)u1 + γ1,2u3 γ1,1u1 γ1,2u1
0 γ2,2u3 − (2γ2,1 + 2γ2,2)u2 + γ2,2v γ2,1u2
0 0 γ3v − 2γ3u3

 .

Substituting the equilibrium points we get that Pi, for all 1 ≤ i ≤ 7, i 6= 4 are unstable
equilibrium points. For the case of P4, all the eigenvalues of J(P4) are negative, and then it is a
stable point. So as to, all models agree in the fact that the unique stable solution is obtained when
all the cars approach to the speed of the leading car.

5. Stability of perturbed traffic models

In realistic situations, when a car approaches there is a variation in the motion like the one given
by a periodic force acting on the cars. When trying to maintain a certain distance, cars sometimes
get a little closer and they sometimes get a little more separated. This is to prevent collisions of
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one car with the two others when they are too close and they circulate in the same direction. This
effect can be modeled by adding in the equations a new term, namely α sin(t), with α > 0.

We discuss the stability of the previous models for the aforementioned case in which we introduce
a small perturbation given by α sin(t), α > 0 in the speed of the leading car. Then, the QTD model
with 3 cars following a leading one at constant speed v is given by

(18)

 u′1(t) = γ1u1(t)(u2(t)− u1(t))
u′2(t) = γ2u2(t)(u3(t)− u2(t))
u′3(t) = γ3u3(t)(v + α sin(t)− u3(t))

In the case of the NN model the analogous perturbed model is described as follows:

(19)

 u′1(t) = γ1,1u1(t)(u2(t)− u1(t)) + γ1,2u1(t)(u3(t)− u1(t))
u′2(t) = γ2,1u2(t)(u3(t)− u2(t)) + γ2,2u2(t)(v − u2(t))
u′3(t) = γ3u3(t)(v + α sin(t)− u3(t))

Even in this case, chaotic motions cannot be found for any value of γ as we represent in Fig. 6,
in which both, bifurcation diagrams and Lyapunov exponent are calculated for the QTD model.
As in Fig. 5, we have taken as initial condition (u1(0), u2(0), u3(0)) = (20, 13, 10) and v = 13, a
physical situation in which collisions can take place. If v = 13, the speeds of each car will converge
to a cycle around (v, v, v), and the speeds can be assumed to be greater than 1, in order that all
accelerations will be positive. These tools can be easily used for other systems to see the existence
of irregular motions and they are very intuitive concepts for undergraduate students in Math or
any degree in Sciences.
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λ

Figure 6. Plot of both, the bifurcation diagram, by plotting u versus γ and the
Lyapunov exponent versus γ. We can observe that the motions are not chaotic for
any parameter value and the system is always stable even under the existence of an
external forcing. The initial condition is given by (u1(0), u2(0), u3(0)) = (20, 13, 10).
We can see on the picture on the left side, that the velocity v changes periodically
with period equal one. On the other hand and in the right panel, the Lyapunov
exponent is zero or negative, therefore the non-chaotic behavior is corroborated.

In Figure 7, we plot the trajectories of non-perturbed and perturbed models and we see that the
perturbation is transmitted to the cars following the leading one both for the QTD and the NN
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Figure 7. Top on the left, trajectory following the QTD model, see (11), where
the velocity of car 1 is represented in the x-axis, the velocity of car 2 in the y-axis
and the velocity of the third one in the z-axis. Top on the right, trajectory following
the perturbed QTD model, see (18). Bottom on the left, trajectory following the
NN model (15). Bottom on the right, trajectory following the perturbed NN model,
see (19). The initial condition in all the cases is (u1(0), u2(0), u3(0)) = (20, 13, 10).
The parameters γi, i = 1, 2, 3 are equal to 0.03. The parameters γi,j , i, j = 1, 2 are
equal to 0.015. The parameter α = 1.

models. Moreover, we observe that the amplitude of these perturbations tends to zero for the NN
model, in contrast to what happens for the QTD.
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6. Possible extensions and class activities

Once the previous models QTD and NN have been studied, and the students are familiarized
with them, the most natural activities to propose are possible extensions and modifications of the
models. One possible activity is to generalize and study the previous models for a finite given
number of vehicles, that is, to study the system{

u′i(t) = γiui(t)(ui+1(t)− ui(t)) for 1 ≤ i ≤ k − 1
u′k(t) = γkuk(t)(v − uk(t))

and  u′i(t) = γi,1ui(t)(ui+1(t)− ui(t)) + γi,2ui(t)(ui+2(t)− ui(t)) for 1 ≤ i ≤ k − 2
u′k−1(t) = γk−1,1uk−1(t)(uk(t)− uk−1(t)) + γk−1,2uk−1(t)(v − uk−1(t))
u′k(t) = γkuk(t)(v − uk(t))

Another possible activity is to propose the same analysis but now for a new model that takes into
account the speeds of the cars that drive in front and behind the main driver, which is known in
its linear version as the Forward and Backward Control model developed in [HMPR59] for General
Motors are considered in [BCMASS15] and to investigate if this new consideration can lead to
chaotic situations in contrast to the other models:

u′1(t) = −γ1u1(t) + γ2u2(t)(u2(t)− u1(t)),
u′2(t) = γ1(u1(t)− u2(t)) + γ2u2(u3(t)− u2(t)),

with control constants γ1, γ2 > 0, γ1 < γ2. We have considered the original model but adding a
nonlinearity assuming that the control parameter γ2 is proportional to u2(t).

6.1. Closing remarks. Although classical mathematical models such as population models are
really useful for teaching dynamical systems, our objective in this paper is to provide a not-so-
common model to emphasize the several applicactions that dynamical systems present. Moreover,
the apogee of autonomous cars encourages the study of car-following models in this subject. The
car-following models considered in this paper can also serve to improve students skills for modeling
dynamical systems using software which contributes to a deeper understanding of abstract con-
cepts. Moreover, it supposes an opportunity to introduce the students to a simple but important
class of traffic models which are widely used in engineering and can help them to give a physical
interpretation of mathematical models.
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