
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/199376

Zamudio-Ramírez, I.; Osornio-Rios, RA.; Antonino-Daviu, JA. (2022). Smart Sensor for Fault
Detection in Induction Motors Based on the Combined Analysis of Stray-Flux and Current
Signals: A Flexible, Robust Approach. IEEE Industry Applications Magazine. 28(2):56-66.
https://doi.org/10.1109/MIAS.2021.3114647

https://doi.org/10.1109/MIAS.2021.3114647

Institute of Electrical and Electronics Engineers



  

Abstract— The most recent trend in the electric motor 

condition monitoring area relies on combining the information 

obtained from different machine quantities in order to reach a 

more reliable conclusion about the motor’s health. This 

knowledge is of critical importance nowadays, especially in 

industrial applications in which unexpected outages can lead to 

severe repercussions. This paper presents a new intelligent 

sensor that combines, in a single unit, the information obtained 

from the analysis of stray fluxes (both axial and radial) and 

currents by means of a feed-forward neural network (FFNN) for 

classification purposes. Unlike other solutions, the sensor is 

based on the application of advanced signal processing tools that 

are adapted to the online analysis of these quantities under 

transient from a single processing unit (smart sensor). The 

combination of these new tools with the classical steady-state 

analysis of such quantities enables to obtain a more reliable 

conclusion on the motor health. The experiments included in the 

paper demonstrate the reliability provided by the sensor, which 

is being prepared to incorporate a third input based on infrared 

data. 

 
Index Terms— fault diagnosis, induction motor, stray flux, 

transient analysis, time-frequency transforms 

I. INTRODUCTION 

HE electric motor predictive maintenance area is 

living a renewed dynamism over recent years. The vast 

participation of these machines in a wide variety of industrial 

processes together with their prominent role in modern 

applications that are the core of future societies (e.g. electric 

vehicles) convert them into crucial assets, so that the 

determination of their health is of primordial importance [1]. 

Note that the presence of defects and anomalies in these 

machines has not only repercussions in terms of risk for their 

integrity (with potential motor outages and production 

downtimes), but also affects the efficiency and performance 

of the machine itself. In this regard, recent works have proven 
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that, in the event that certain defects are present, the motor 

efficiency is seriously compromised so that it may operate 

during long intervals below its rated features [2], [3]. 

Due to all these facts, there has been an intensive effort 

toward the search of reliable diagnosis systems, which 

include methods able to determine the motor’s health with 

high reliability and accuracy. In this context, several 

techniques have been proposed as a basis of those systems: 

analysis of vibration signals [4], [5], infrared data [6], [7], 

stray fluxes [8], partial discharges [9], [10], acoustic signals 

[11], among others. Each technique has provided satisfactory 

results for the diagnosis of certain faults or anomalies. 

However, it is a fact that no single technique has been proven 

to be reliable enough to diagnose all the possible failures that 

can appear in the electric motor. In other words, each 

technique is valid for detecting certain faults but not for 

others. And, even for those failures for which a technique 

works well, there may be cases in which the application of 

the method may be unsuitable or provide false indications 

[12]. 

This situation explains the current trend, which is also 

followed by several manufacturers, that is oriented toward the 

construction of modern diagnosis systems that are not based 

on the analysis of a single quantity, but that rely on the 

combined analysis of different machine quantities. The idea 

is to merge the information obtained from the application of 

several techniques in order to reach a more robust diagnosis 

of the machine condition. Some recent works have proposed 

this type of collaborative systems [13]. Nonetheless, most 

collaborative diagnostic systems process information offline. 

Furthermore, an additional research effort is still needed to 

find a combined system that is reliable enough to reach an 

accurate diagnosis conclusion for the detection of a certain 

range of faults, avoiding false indications of the current 

methods and, at the same time, able to be used under any 
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possible operation regime of the machine (including 

transients). 

This paper presents a new collaborative system that 

combines, in a single unit, the application of the most recent 

technologies relying on stray flux and current analysis. The 

proposed system, which constitutes an extension of the one 

already introduced in [14], takes advantage of the spectacular 

advance in the technology of smart sensors, which provide 

not only measurement capabilities but also onsite processing 

features making it a low-cost alternative able to be installed 

anywhere on the frame of the machine, compact, and non-

invasive [15], [16]. Regarding the measurement of stray flux 

data, the developed smart system uses an innovative triaxial 

sensor that can capture the stray flux in different directions 

and therefore, enabling the detection of the different 

components (radial/axial) modified by the considered 

failures. The processing unit relies on the combined 

application of classical methods (relying on stationary 

analysis) with modern technologies (based on time-frequency 

analysis of transient features), whose validity has been 

proven in previous works [10], [17]. Moreover, fault severity 

indicators based on the evaluation of the energy density in 

particular time-frequency regions are proposed. These fault 

indicators are the inputs of a feed-forward neural network 

(FFNN), which allows for an automated final diagnosis. The 

sensor is applied to the detection of rotor damages and 

eccentricities/misalignments. The results prove the potential 

of the proposed intelligent solution. 

II. COMBINED STRAY FLUX & CURRENT ANALYSIS 

The proposed diagnosis system relies on the combined 

analysis of stray flux and current data. In this way, the sensor 

performs the acquisition of these data both under steady-state 

and under starting, and processes each quantity with suitable 

signal processing tools. A time-frequency tool, the optimized 

Short Time Fourier Transform (STFT) is applied to the stray 

flux and current data captured under starting and during 

steady-state in order to extract information from transient 

states as well as from stationary states. Therefore, the 

developed system takes advantage of the important benefits 

of transient analysis, which has proven to be very effective 

for the diagnosis, avoiding occasional false indications 

obtained with the classical methods. In this regard, in the case 

of currents, the analysis of the starting current, enables to 

avoid false positive/negative indications caused by 

constructive characteristics of the machine or operation 

conditions [17]. On the other hand, flux-based analysis under 

starting has recently provided very satisfactory results to 

discern between eccentricities and misalignments, among 

other benefits [8], [18]. The idea of the transient analysis is 

well-known and relies on identifying the time-frequency 

evolutions of characteristic fault components under starting. 

These evolutions yield particular patterns that are reliable 

evidence of the presence of the fault, since they are unlikely 

caused by other faults or phenomena [17]. In the current 

version of the collaborative system, it enables to diagnose 

rotor damages and eccentricities/misalignments. This latter 

can be done by combining current and stray flux information 

[19]. Table I shows the main components amplified by these 

faults at steady-state that are considered by the intelligent 

system (f=supply frequency, s=slip fr=rotational frequency 

and p= pole pairs). Additionally, Fig. 1 shows the 

characteristic evolutions of these components under starting 

(considering p=2). The detection of which is the basis of the 

transient module of the proposed system.  

 

As shown in Fig.1, there are some components which are 

associated with rotor faults and others with 

eccentricities/misalignments. These components have 

different nature (axial/radial) and may be visible either in the 

starting current analysis, and in the stray-flux analysis under 

starting or in both of them, as stated in previous works [8], 

[18].  

 

To identify and characterize such evolutions, in this paper 

it is introduced an indicator, which is equivalent to the 

arithmetic mean for the peak energy values found in a specific 

time-frequency (t-f) region (R) of the STFT t-f maps. This 

indicator is given by (1). 

 

1
( )

f

i

t

R

i tf i

R i
t t


=

 
=   −  

  (1) 

 

where 𝛾𝑅(𝑖), which is given by (2), is the peak value at 

time sample 𝑖 of the t-f map enclosed region R, and 𝑡𝑖 and 𝑡𝑓 

are, respectively, the initial and final time samples defining 

the considered t-f area. 
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TABLE I.  MAIN FREQUENCY COMPONENTS AMPLIFIED 

BY DIFFERENT FAULTS AT  STEADY-STATE 

CURRENT 

Rotor faults f·(1±2·s) 

Eccentricities/misalignments fecc=f·±fr 

STRAY FLUX 

Rotor faults 
s·f , 3·s·f  (axial) 

f·(1±2·s) (radial) 

Eccentricities fecc= f·±fr 

 

 

 
Figure 1. Expected evolutions of the fault harmonics under starting. 
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where 𝐸𝑖,𝑗 is the normalized (over the fundamental 

component) energy density at the (𝑖, 𝑗) coordinate of the time-

frequency map, and 𝑓𝑖 and 𝑓𝑓 are, respectively, the initial and 

final frequency samples defining the considered t-f region R. 

In order to achieve an automated final diagnosis, it is 

proposed to use a FFNN with hyperbolic tangent sigmoid and 

linear activation functions in the hidden and output layers, 

respectively. This architecture allows for an easy learning 

generalizing its suitability about the data with which it is 

trained [20]. Furthermore, this model is selected due to its 

simplicity, low computational burden, and high performance 

as an automatic classifier. 

III. PROPOSED DIAGNOSTIC METHODOLOGY 

The proposed methodology for the automatic diagnostic of 

broken rotor bars and/or eccentricities/misalignments in 

induction motors by analyzing stray flux and current signals 

is shown in Fig. 2. It is based on the tracking of the power 

density at specific regions of interest which are penetrated by 

the different fault components during their evolutions under 

the startup transient as follows: 

1) Acquire the different stray flux component signals 

by means of an appropriate DAS (data acquisition 

system) module during the starting transient 

namely: radial stray flux (𝜙1), axial stray flux (𝜙2), 

and stator current (𝐶1). The method requires a 

minimum length for the startup in order to identify 

the characteristic pattern associated with the studied 

faults; as a guideline, with starting times above 0.5 

s, the method is suitable. 

2) Apply a suitable time-frequency decomposition 

mathematical tool in order to get a map containing 

the time-frequency (t-f) information of the acquired 

signals. For the purposes of this work, it is used the 

STFT due to its simplicity and wide availability in 

diverse mathematical software packages.  

3) Using (1), compute the indicator �̅� for the different 

regions of interest: R1R, R2R, …, R4C (see Fig. 2). 

These regions match to specific zones where the 

characteristic fault components evolve during 

starting, and to specific regions where harmonics of 

interests prevails at steady state. Region 1 (R1R, 

R1A, and R1C) cover the complete starting 

transient, and the other regions expanse during at 

least 1 𝑠 in time at steady-state. A 1 𝑠 time length is 

recommended as minimum size in order to capture 

short-time transient states and avoid processing 

noise produced by external sources. The automation 

process used to isolate the starting transient consist 

in obtaining the upper envelope of the time signal, 

and then setting a threshold value equal to the upper 

envelope amplitude at steady state (which can be 

obtained from the last samples). 

4) Classify the level of damage: healthy motor (HLT), 

2 broken rotor bars (2 BRB), 1 broken rotor bar (1 

BRB), and misalignment (MAL) by evaluating the 

different region indicators. For the purposes of this 

paper, it is used a FFNN having two hidden layers 

with 2 and 8 neurons in each hidden layer, 

respectively. 

5) Provide a final diagnosis to the end user through a 

user interface. In this paper, the use of a touch screen 

is proposed due to its ease of use, high capacity to 

display information, and very low cost. 

  

Figure 2. Proposed methodology flow-up. 



 

 

IV. SMART SENSOR STRUCTURE 

The smart sensor is developed based on the methodology 

shown in Fig. 2 by following the five steps described there. In 

this way, in step 1 the stray flux and current data acquisition is 

achieved by means of a proprietary DAS module based on a 

signal conditioning stage and a Texas Instrument 

microcontroller model MSP432P401R, which includes an 

analog to digital converter (ADC) with 14-bit precision. The 

main triaxial stray flux sensor is essentially made up by the 

combination of three individual Hall-effect primary sensors as 

the one depicted in Fig. 3(a). Each of the primary sensors are 

ALLEGRO ™ microsystems brand, model A1325 having a 

sensitivity of 5mV/G. This sensor is 3.02 mm wide by 4.1 mm 

high, and it has an output voltage proportional to the magnetic 

flux density as indicated by the manufacturer in their respective 

datasheet. The primary sensors are located on perpendicular 

axis to each other in order to capture the axial and radial stray 

flux components regardless of their relative location to the 

motor frame. Figure 3 (a) shows a schematic picture of this 

triaxial stray flux sensor. Each sub-sensor enables the capture 

of a certain portion of the flux: whereas sub-sensor 1 mainly 

captures the axial flux, sub-sensor 3 captures the radial one. 

Sub-sensor 2 captures a combination of both, if installed on the 

frame of the machine as in Fig. 3(b). Note that this sensor may 

be easily by a common metal (e.g., copper, steel, aluminum) in 

order to reject some electromagnetic interference (EMI) 

encountered on any harsh environment. Therefore, plenty of 

information is obtained for the diagnosis, since both axial and 

radial fault components can be identified in the resulting 

analyses. With regards to current data acquisition, the sensor 

has an additional input channel connected to a current clamp 

that enables to capture the current signals. Figure 3 (b) shows 

the proposed triaxial stray flux sensor installed on the frame of 

an induction motor. This sensor has the flexibility to be installed 

in almost any place on the frame of electric machines since it is 

a very small size sensor.  

The smart-sensor processing unit, which performs steps 2 to 

4 is based on a raspberry pi model 3 that has a 4 × ARM Cortex-

A53 processor. Firstly, the processing unit performs the STFT 

to the starting and steady-state signals by using the parameters 

detailed in [21]. Then, steps 3 and 4 are carried out internally 

by computing the proposed indicators (R1R, R2R, …, R4C), 

and then feeding them to a previously trained FFNN. This 

procedure allows for the discrimination between the studied 

faults by analyzing and comparing the stray flux and current 

signals [19]. If the rotational frequency component appears only 

in the current analyses, they are likely due to the misalignment 

whereas if it appears in both analyses, they are probably due to 

eccentricity problems, as reported in [19]. 

In order to provide an in-situ final diagnosis and show the 

results to the final user, a raspberry touchscreen is used. The 

user interface (shown in Fig. 3(c)) is composed mainly by three 

sections: stray flux / current spectrogram selection, which 

selects the spectrogram to be visualized by the end-user, start-

up transient spectrogram visualization region, which shows a t-

f map of the selected signal, and a quantified final diagnosis, 

which shows an automated final diagnosis by selecting between 

the different faults studied in this paper. Finally, the smart 

sensor is able to store and share any collected data to a PC via 

a USB interface. 

 

 

 
 

(a) 

 
 

(b) 

 
(c) 

 

Figure 3. smart sensor general structure; (a) schematic triaxial 

stray flux sensor view; (b) triaxial stray flux sensor and signal 

conditioning stage; (c) in-situ final diagnosis and user interface 

touchscreen. 



 

 

V. EXPERIMENTAL SETUP 

Several tests were carried out in order to assess the validity 

of the smart sensor under a variety of operating conditions, 

namely: healthy motor (HLT), healthy motor with 

misalignment in the coupling system (MAL), 1 broken rotor bar 

(1 BRB), and 2 broken rotor bars (2 BRB). Moreover, two 

different induction motors having distinct constructive 

characteristic were analyzed as different study cases, namely: 

on the hand, a WEG 00136APE48T 2-pole, 1 HP, 220 V cage 

induction motor with 28 bars that was coupled to an alternator 

by means of a belts and pulleys system (see Fig. 4(a)). This 

mechanical load represents 25% of rated load for the motor. On 

the other hand, a SIEMENS 4-pole, 400-V, 1.47 HP cage 

induction motor with 28 bars. To produce an artificial broken 

rotor bar condition, a 2.0 mm diameter hole was drilled in one 

and two bars of the rotor without harming the rotor shaft as 

shown in Fig. 4(b). Then, in order to force misalignment faults, 

the band in the motor pulley was shifted forward, so that the 

transverse axes of rotation for the motor and its load were not 

aligned forming a gap angle β as shown in Fig. 4(c). This 

condition can be clearly seen by comparing the aligned motor 

(Fig. 4(d)) and the misaligned motor (Fig. 4(c)). The stray flux 

and current signals are captured and stored using a proprietary 

DAS module based on a 14-bit resolution Texas Instrument 

analog-to-digital converter at a sampling frequency 𝑓𝑠 =
5 𝑘𝐻𝑧. The induction motor is driven under a direct-online 

start. 

The FFNN is trained through the Levenberg-Marquardt 

algorithm for identifying a healthy induction motor, 1 BRB 

fault, 2 BRB fault, and MAL fault. For this, a total of 160 

signals were captured and extracted from the measurement 

during the starting transient and 1 s after starting transient (40 

per fault condition state). From the 160 signals obtained, 80 are 

used for the training of the FFNN and 80 for validation. The 

FFNN final architecture has 12 inputs (𝑅1𝑅, 𝑅2𝑅, … 𝑅4𝐶), 2 

and 8 neurons in the hidden layers, and 4 outputs (one per each 

fault condition studied here). The number of 4 and 8 neurons in 

the hidden layer is selected by trial and error in order to obtain 

the minimum overall classification error, as suggested in [22]. 

  

VI. TESTS AND RESULTS 

The analyzes and results shown in this section are performed 

by the smart sensor itself; however, some of the figures have 

been edited (using the stored data from the smart sensor) in 

order to give a better presentation of the results of this work. 

Figure 5 shows the internal STFT analyses of the stray flux 

signals captured by each sub-sensor for different fault 

conditions. Note the presence of the evolutions of the fault 

components predicted by the theory and depicted in Fig. 1: on 

the one hand, the axial component at s·f is clearly visible 

(especially, at sub-sensor 1 and 2, which mainly capture the 

axial flux), while the evolution of the radial component f·(1-2·s) 

 
Figure 4. Experimental setup: (a) laboratory testbench; (b) broken rotor bars; (c) motor aligned with load; (d) motor misaligned with load. 



 

 

is especially visible at sub-sensor 3, which mainly captures the 

radial stray flux. Note that the identification of the evolutions 

of multiple components linked with the failure (in this case, the 

axial and radial ones), by using several sub-sensors, enables to 

reach a more reliable diagnosis. 

On the other hand, Fig. 8 shows the STFT analyses of the 

starting current. The information obtained is less rich in 

harmonics, but it enables to diagnose the presence of the rotor 

damage through the presence of the f·(1-2·s) component 

evolution. The misalignment caused by the coupling system can 

be identified through the appearance of the corresponding 

components in the current analyses (see fecc, note the pulleys 

diameter ratio) but not in the stray flux analyses. As commented 

in [19], if this component appears in the starting current 

analyses but it does not show up in the stray flux analyses (as it 

happens in this case), then it is mainly attributed to a 

misalignment between the motor and the driven load, whereas 

if it appears in both analyses it is due to eccentricity faults. 

Figure 6 shows the peak values tracked in the STFT plot 

under starting for 2 broken rotor bars, 1 broken bar, and healthy 

motor with misalignment, and for the different stray fluxes. 

Note the higher energy density found in the radial stray flux t-f 

map during the start-up, especially for the case of 2 BRB. A 

gradualness can be clearly seen when the fault severity 

increases, that is, the energy density is greater when the motor 

operates under 2 BRB than 1 BRB. The distribution of the 

indicator R1R obtained for the 160 tests performed (40 test per 

each condition state studied here) confirms this situation (see 

Fig. 7). A distribution with higher R1R values is obtained for 

more severe broken rotor bar damages. Similar results are 

obtained by analysing the current signals, as shown in Fig. 9. 

On the other hand, Fig. 10 shows the results obtained when 

analysing the case study 2 (1.47 HP induction motor). Note that 

the starting transient of this motor is much faster and it lasts 

approximately 1s. The results shown in this figure demonstrate 

the capability of the proposal to also diagnose electric motors 

with startup transients lasting 1s or less, since the normalized 

proposed indicators remains under closed intervals and 

amplitudes according to the fault. The smart sensor system has 

been validated in a wide range of operating conditions (various 

loading levels and supply voltages), yielding a very high 

success rate in the determination of its real condition. The 

objective is to test its validity in wider number of motors with 

different power ranges and constructive characteristics. 

Additionally, due to the flexibility of the proposed 

methodology, the boundaries of the specific regions of interest 

(i.e., R1R, R2R, …, R4C) can be redefined according to the 

actual trajectories followed by the fault harmonics during the 

startup transient, which can be modified depending on the 

motor drive settings. 

 

Figure 5. STFT analyses of starting stray-flux signals performed by the smart-sensor for the first case study (1 HP induction motor). 



 

 

 

 

Figure 8. STFT analyses of starting current signal performed by the smart sensor for the first case study (1 HP induction motor). 

 

Figure 6. Experimental results for the peak values found in the STFT plot under starting for the first case study (1 HP induction motor) having 

2 broken rotor bars, 1 broken bar, and healthy motor with misalignment for the different stray flux signals. 

 

 

Figure 7. Boxplots obtained from the experimental results of the indicator R1R for the first case study (1 HP induction motor). 

 

(a) 

 

(b) 

Figure 9. Experimental results of the proposed method for the first case study (1 HP induction motor): (a) peak values found in the STFT plot under starting 

for the current signals and the different fault conditions studied here; (b) boxplot of the R1C indicator obtained from the tests performed. 



 

 

 

Table II shows the classification results as well as the 

effectiveness percentage of the proposed methodology. Correct 

classifications are located in the diagonal of Table II 

(highlighted in bold). Through the proposed methodology it is 

possible to correctly classify the faults studied here with an 

effectiveness of 95% (worst case, which occurs in the case of 

small misalignment). The effectiveness, per fault studied, is 

obtained through the calculation of the fault detection rate index 

(FDR) by dividing the number of correct classifications over 

the total number of samples 

 

 

VII. CONCLUSIONS  

This paper presents a novel smart sensor based on the 

advanced analysis of stray flux and current data for the 

diagnosis of failures in induction motors. Unlike other 

solutions, the underlying processing unit relies on the analysis 

of both quantities under stationary and transient conditions. 

This feature provides a much higher reliability for the 

diagnosis. The hierarchical structure of the internal decision 

system, based on a feed forward neural network, enables to 

combine the diagnostic provided by both quantities, in such a 

way that it is possible to discern between different types of 

mechanical faults (e.g. eccentricities and misalignments). This 

feature provides the smart-sensor with a great flexibility to 

achieve automated final diagnosis about different 

electromechanical faults. As shown in the results, the peaks of 

the energy found in the t-f maps during starting and steady 

state provide relevant information related to broken rotor bars 

and misalignment faults. Furthermore, the combined analysis 

of stray flux and current signals performed by the smart-sensor 

provides a robust and in-situ final diagnosis.  

The proposed method requires a minimum startup transient 

length in order to identify the different patterns associated with 

each fault. As a guideline, the method is suitable to be applied 

under a minimum startup transient of 0.5 s, which represents 

the great majority of machines on the industry. Moreover, at 

this stage, the method is suited for line-fed operation, but it can 

be adapted to inverter-fed motors, considering that the 

evolutions of fault components are different [23]. 

 The sensor is planned to be applied to the detection of 

additional faults and, also, it is designed to incorporate other 

valuable inputs (e.g. infrared data). Moreover, more fault 

scenarios are possible to be diagnosed; however, a redefinition 

of the boundaries of the regions of interest may be required as 

well as retraining of the FFNN according to the characteristic 

pattern yielded by the fault evolution of interest. This 

redefinition implies that the fault to be diagnosed is clearly 

visible in the t-f map of either current signals or stray flux 

signals.  
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