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Abstract: Partial metrics constitute a generalization of classical metrics for which self-distance may
not be zero. They were introduced by S.G. Matthews in 1994 in order to provide an adequate
mathematical framework for the denotational semantics of programming languages. Since then,
different works were devoted to obtaining counterparts of metric fixed-point results in the more
general context of partial metrics. Nevertheless, in the literature was shown that many of these
generalizations are actually obtained as a corollary of their aforementioned classical counterparts.
Recently, two fuzzy versions of partial metrics have been introduced in the literature. Such notions
may constitute a future framework to extend already established fuzzy metric fixed point results
to the partial metric context. The goal of this paper is to retrieve the conclusion drawn in the
aforementioned paper by Haghia et al. to the fuzzy partial metric context. To achieve this goal,
we construct a fuzzy metric from a fuzzy partial metric. The topology, Cauchy sequences, and
completeness associated with this fuzzy metric are studied, and their relationships with the same
notions associated to the fuzzy partial metric are provided. Moreover, this fuzzy metric helps us
to show that many fixed point results stated in fuzzy metric spaces can be extended directly to the
fuzzy partial metric framework. An outstanding difference between our approach and the classical
technique introduced by Haghia et al. is shown.

Keywords: fuzzy partial metric; fixed point; completeness; convergence; Cauchyness

MSC: 54A05; 54A20; 47H10

1. Introduction

The concept of metrics becomes essential in many real problems in which a kind of
measurement between elements or objects is needed, for instance, when evaluating how
separated two objects are or how different they are. Indeed, it seems to be natural that
a tool to calculate such measurements should fit with the axioms that define a metric,
which are separation (and self-distance 0), symmetry, and triangular inequality. However,
the essence of the addressed problem is that it can be too restrictive to be fulfilled by the
aforementioned three axioms. Therefore, different generalizations of the notion of metrics
have appeared in the literature. To address this problem, it is worth mentioning the concept
of a partial metric space. Such a notion constitutes a generalization of the metrics in which
the self-distance 0 is not required. Partial metrics were introduced in 1994 by Matthews
in [1]. Since then, different works have been conducted on the theoretical study of partial
metrics, especially in the context of fixed point theory. Specifically, different authors have
contributed to this topic by obtaining classical metric fixed-point results in the more general
context of partial metrics. Such a topic is relevant nowadays (see, for instance, [2–7]).
Nevertheless, the adaptation of a classical metric, fixed-point result to the partial-metric
context does not often actually constitute a generalization but, on the contrary, a particular
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case. Indeed, in [8], many fixed point results established in partial metric spaces were
obtained as corollaries of classical metrics’ fixed points through the use of a classical metric
constructed from a partial one.

Coming back to the limitations of metrics, some real problems entail uncertainty in
itself when the measurement between objects has to be carried out. Fuzzy theory seems
to be a proper framework to tackle such situations. In this framework, we can find the
notion of fuzzy metric introduced by Kramosil and Michalek in [9]. This metric constitutes
a fuzzy version of the concept of a metric, which provides a degree of nearness between
two objects with respect to a parameter. Although fuzzy metrics in that sense, as well as the
later modification of them given by George and Veeramani in [10], are metrizable [11], they
are very interesting when purely metrical properties are considered. Indeed, such fuzzy
metrics have been shown to be useful (overcoming the limitations of classical metrics) in
engineering problems such as image processing [12–14], perceptual color difference [15,16],
task allocation [17,18], or model estimation [19–21]. Moreover, fixed-point theory in fuzzy
metrics shows significant differences when comparing with the classical counterpart (see,
for instance, [22–26]). Various recent works are devoted to adapting classical fixed point
theorems to the fuzzy metric context (see, for instance, [27–31]).

In spite of the aforementioned usefulness of fuzzy metrics in engineering problems,
we may again notice some restrictiveness in them. Motivated by this fact, different works
have been devoted to obtaining generalizations of the above-mentioned concepts of fuzzy
metrics by removing or relaxing some of the axioms that define them. In particular, we can
find some studies in the literature that obtain a fuzzy version of distinct generalizations
of the notion of classical metrics. Hence, Gregori et al. introduced in [32] the concept
of fuzzy partial metric space, both in Kramosil and Michalek’s sense and in George and
Veeramani’s sense. Taking into account that a usual issue in fixed point theory consists of
extending published fixed -point results to more general frameworks, one could expect to
find coming research works aimed to prove, in the context of fuzzy partial metric spaces,
those fixed-point theorems already established in (fuzzy) metrics. Then, keeping in mind
the discovery by Haghia et al. in [8], we wonder whether the situation in the fuzzy setting
could be similar.

The aim of this paper is to retrieve, for fuzzy partial metric spaces, as introduced
in [32], the main conclusions obtained in [8]. With this aim, we construct a fuzzy set MP
on X× X× [0, ∞[ from a given fuzzy partial metric space (X, P, ∗). Furthermore, we show
that MP is a fuzzy metric, provided that the condition (FPKM4*) (see Proposition 5 in
Section 3) holds for the considered fuzzy partial metric. Subsequently, we define in a
natural way the notions of a Cauchy sequence and completeness in the context of fuzzy
partial metric spaces. Then, we show that such a completeness in a fuzzy partial metric
satisfying (FPKM4*) implies that the fuzzy metric space (X, MP, ∗) is complete. Finally, we
illustrate by means of a particular case that the exposed results allow one to easily extend
fixed-point theorems that are already established in fuzzy metric spaces to the context of
fuzzy partial metric spaces whenever condition (FPKM4*) is fulfilled.

The remainder of this paper is organized as follows. The next section is devoted to
gathering the basics of partial metrics, fuzzy metrics, and fuzzy partial metrics, which
will be useful throughout this paper. In Section 3, we present the main results provided
in this study that allow us to retrieve the main conclusions drawn in [8] in a particular
case. In addition, we expose a way of obtaining a fixed-point theorem in fuzzy partial
metrics as a corollary of a fixed-point theorem established in fuzzy metric spaces and using
our developed theory. Finally, Section 4 presents the conclusions of the results provided
throughout the paper, as well as suggests future work in the context of fixed-point theory
in fuzzy partial metrics spaces.
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2. Preliminaries

This section is devoted to compile definitions and results that will be useful throughout
the paper. It is divided in two subsections devoted to recall the basics of partial metric
spaces and fuzzy partial metric spaces, respectively.

2.1. Partial Metric Spaces

In [1], Matthews introduced the notion of partial metric space as follows:

Definition 1. A partial metric space is a pair (X, p) such that X is a (non-empty) set and p is a
real-valued function on X× X satisfying, for all x, y, z ∈ X, the following conditions:

(PM1) x = y⇔ p(x, x) = p(x, y) = p(y, y);

(PM2) 0 ≤ p(x, x) ≤ p(x, y);

(PM3) p(x, y) = p(y, x);

(PM4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

If (X, p) is a partial metric space, then we say that p is a partial metric on X.

It is clear that a metric space (X, d) is a partial metric space that satisfies, in addition,
the following condition:

d(x, x) = 0 for all x ∈ X. (1)

According to [1], each partial metric p on X induces a T0 topology τ(p) on X that has
as a base the family of open balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x)+ ε}. Moreover, in such a topology τ(p), a sequence {xn}n∈N converges to
a point x ∈ X if and only if p(x, x) = lim

n→∞
p(x, xn). Furthermore, a sequence {xn}n∈N in a

partial metric space (X, p) is called a Cauchy sequence if lim
n,m→∞

p(xn, xm) exists and is finite.

On account of [33], {xn}n∈N is called a 0-Cauchy sequence whenever lim
n,m→∞

p(xn, xm) = 0.

So, as usual, a partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn}n∈N in X converges to a point x ∈ X; that is, p(x, x) = lim

n→∞
p(x, xn) = lim

n,m→∞
p(xn, xm).

Furthermore, (X, p) is said to be 0-complete if each 0-Cauchy sequence in X converges
to a point x ∈ X such that p(x, x) = 0. Note that every complete partial metric space is
0-complete but the converse is not true, as was shown in [33].

In [1], Mathews proved that every partial metric induces, in a natural way, a metric.
Indeed, given a partial metric space (X, p), then the function dp : X× X → [0, ∞), defined
by dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X, is a metric on X. According to [34],
every Cauchy sequence {xn}n∈N in a partial metric space (X, p) is a Cauchy sequence in
(X, dp). Hence, each 0-Cauchy sequence in (X, p) is Cauchy in (X, dp).

Another technique to obtain a metric from a given partial metric was established by
Hitzler and Seda in [35]. Let us recall such a technique in the following.

Proposition 1. Let (X, p) be a partial metric space; then, the function d : X × X → [0, ∞)
defined by

d(x, y) =

{
0, x = y
p(x, y), x 6= y

, (2)

is a metric on X such that τ(dp) ⊆ τ(d). Moreover, (X, d) is complete if and only if (X, p) is
0-complete.

In [8], the preceding result was crucial to show that some extensions of fixed-point
results to the partial metric context can be proved as corollaries of the celebrated classical
counterparts that they try to extend.
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2.2. Fuzzy (Partial) Metric Spaces

In this subsection, we gather both the concepts of fuzzy metrics and fuzzy partial
metrics, which we will discuss from now on, as well as some necessary results related to
them that will be key for our subsequent study. To start, we recall the concept of continuous
triangular norm, which is crucial to the concept of fuzzy (partial) metrics that we deal with.
For an outstanding reference to triangular norms, we refer the reader to [36].

Definition 2. A triangular norm (briefly, t-norm) is a binary operation ∗ on [0, 1] such that,
for all x, y, z ∈ [0, 1], the following axioms are satisfied:

(T1) x ∗ y = y ∗ x;

(T2) x ∗ (y ∗ z) = (x ∗ y) ∗ z;

(T3) x ∗ y ≥ x ∗ z, whenever y ≥ z;

(T4) x ∗ 1 = x.

If, in addition, ∗ is continuous (with respect to the usual topology) as a function defined on
[0, 1]× [0, 1], we will say that ∗ is a continuous t-norm.

Now we are able to present the notion of fuzzy metric space due to Kramosil and
Michalek [9]. It is worth mentioning that nowadays, this concept is commonly used in the
literature following its reformulation given by Grabiec in [23], which is given as follows.

Definition 3. A fuzzy metric space is an ordered triple (X, M, ∗) such that X is a (non-empty)
set, ∗ is a continuous t-norm and M is a fuzzy set on X× X× [0, ∞) satisfying, for all x, y, z ∈ X
and s, t ∈ (0, ∞), the following conditions:

(KM1) M(x, y, 0) = 0;

(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(KM3) M(x, y, t) = M(y, x, t);

(KM4) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s);

(KM5) The function Mx,y : (0, ∞) → [0, 1] is left-continuous, where Mx,y(t) = M(x, y, t) for
each t ∈ (0, ∞).

Below, we can find the modification of the preceding definition given by George and
Veeramani in [10].

Definition 4. A GV-fuzzy metric space is an ordered triple (X, M, ∗) such that X is a (non-empty)
set, ∗ is a continuous t-norm, and M is a fuzzy set on X×X× (0, ∞), satisfying, for all x, y, z ∈ X
and s, t ∈ (0, ∞), conditions (KM3), (KM4) and the following ones:

(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV5) The function Mx,y : (0, ∞)→ [0, 1] is continuous.

As usual, if (X, M, ∗) is a (GV-)fuzzy metric space, we say that (M, ∗), or simply M, is
a (GV-)fuzzy metric on X.

It should be noted that a GV-fuzzy metric M can be regarded as a fuzzy metric
defining M(x, y, 0) = 0 for each x, y ∈ X. Then, GV-fuzzy metric spaces can be considered
a particular case of fuzzy metric.

According to [10], each GV-fuzzy metric M on X induces a T2 topology τM on X that
has as a base the family of open balls {BM(x, r, t) : x ∈ X, r ∈ (0, 1), t ∈ (0, ∞)}, where
BM(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}. Moreover, in such a topology, convergent se-
quences are characterized as follows: a sequence {xn}n∈N in a fuzzy metric space (X, M, ∗)



Mathematics 2022, 10, 3092 5 of 15

converges to a point x ∈ X if lim
n→∞

M(x, xn, t) = 1 for all t ∈ (0, ∞). Although the preceding

statements were established for GV-fuzzy metrics in [10], it is well-known that they remain
true in the general context of fuzzy metrics.

The notions of Cauchy sequence and complete fuzzy metric space will play a relevant
role in our study. Let us recall them as follows [10].

Definition 5. A sequence {xn}n∈N in a fuzzy metric space (X, M, ∗) is called a Cauchy sequence
if lim

n,m→∞
M(xn, xm, t) = 1 for all t ∈ (0, ∞). A fuzzy metric space (X, M, ∗) is said to be complete

if every Cauchy sequence {xn}n∈N in X converges with respect to τM to a point x ∈ X.

The last part of this subsection is devoted to recalling the fundamental of fuzzy partial
metric spaces in the sense of [32]. In [32], the notion of fuzzy partial metric was introduced
following the essence of the Matthews concept, both in Kramosil and Michalek’s sense and
in George and Veeramani’s sense. In both definitions, the residuum operator associated
with a continuous t-norm is essential. The next proposition determines the expression of
such a residuum operator.

Proposition 2. Let ∗ be a continuous t-norm; then, ∗-residuum operator →∗ of ∗ is uniquely
determined by the formula

x →∗ y =

{
1, if x ≤ y;
max{z ∈ [0, 1] : x ∗ z = y}, if x > y.

(3)

To find a deeper treatment of the residuum operator we refer the reader to [36] (see
also [37]). Following [36], we have the following propositions, which will be useful later
on the residuum operator.

Proposition 3. Let ∗ be a continuous t-norm and denote by ∧ the minimum t-norm. Then

x ∧ y = x ∗ (x →∗ y) for all x, y ∈ [0, 1]. (4)

An immediate corollary of the previous propositions is the following one.

Corollary 1. Let ∗ be a continuous t-norm. Then x →∗ y ≥ y for all x, y ∈ [0, 1].

In light of the presented concepts we are ready to present the aforementioned notion
of a fuzzy partial metric space introduced in [32].

Definition 6. A fuzzy partial metric space is an ordered triple (X, P, ∗) such that X is a (non-
empty) set, ∗ is a continuous t-norm, and P is a fuzzy set on X × X × [0, ∞), satisfying, for all
x, y, z ∈ X and s, t ∈ (0, ∞), the following conditions:

(FPKM0) P(x, y, 0) = 0;

(FPKM1) P(x, y, t) ≤ P(x, x, t);

(FPKM2) P(x, y, t) = P(x, x, t) = P(y, y, t) for all t > 0 if and only if x = y;

(FPKM3) P(x, y, t) = P(y, x, t);

(FPKM4) P(x, x, t + s) →∗ P(x, z, t + s) ≥ (P(x, x, t) →∗ P(x, y, t)) ∗ (P(y, y, s) →∗ P(y,
z, s));

(FPKM5) The function Px,y : (0, ∞) → [0, 1] is left-continuous, where Px,y(t) = P(x, y, t) for
each t ∈ (0, ∞).

According to the notion of a GV-fuzzy metric space, the following refinement of the
previous concept was introduced in [32].
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Definition 7. A GV-fuzzy partial metric space is an ordered triple (X, P, ∗) such that X is a
(non-empty) set, ∗ is a continuous t-norm, and P is a fuzzy set on X × X × (0, ∞), satisfying,
for all x, y, z ∈ X and s, t ∈ (0, ∞), conditions (FPKM3), (FPKM4), as well as the following
conditions

(FPGV1) 0 < P(x, y, t) ≤ P(x, x, t);

(FPGV2) P(x, y, t) = P(x, x, t) = P(y, y, t) if and only if x = y;

(FPGV5) The function Px,y : (0, ∞)→ [0, 1] is continuous.

Again, if (X, P, ∗) is a (GV-)fuzzy partial metric space, we say that (P, ∗), or simply P,
is a (GV-)fuzzy partial metric on X.

In [32], it was proven that, given a fuzzy partial metric (X, P, ∗), a T0 topology τP on X
can be defined in such a way that the family of sets {BP(x, r, t) : x ∈ X, r ∈ (0, 1), t ∈ (0, ∞)}
is a base, where, for each x ∈ X, r ∈ (0, 1) and t ∈ (0, ∞), BP(x, r, t) = {y ∈ X : P′(x, y, t) >
1− r} and P′(x, y, t) = sup{P(x, x, s)→∗ P(x, y, s) : s ∈ (0, t)}.

3. The Main Results

We begin this section by showing that, unlike the classic partial metric case (see
Proposition 1), given a fuzzy partial metric space (X, P, ∗), the fuzzy set MP : X×X× [0, ∞)
defined, for each x, y ∈ X, by

MP(x, y, t) =


0, i f t = 0
1, x = y and t > 0
P(x, y, t), x 6= y and t > 0

, (5)

may not be a fuzzy metric. The following example corroborates such an affirmation.

Example 1. Denote by R the set of real numbers. Let X = R, and consider the fuzzy set P :
X× X× [0, ∞)→ [0, 1] given, for each x, y ∈ X and for each t ∈ [0, ∞), by

P(x, y, t) =


0, if t = 0
e−t, if x = y and t > 0
1
2 e−t, if x 6= y and t > 0

. (6)

In [32], Example 3.8, (X, P, ∗p) was proved to be a fuzzy partial metric space, where ∗P
denotes the product t-norm. The aforementioned mapping MP is given, for each x, y ∈ X and for
each t ∈ [0, ∞), by

MP(x, y, t) =


0, if t = 0
1, if x = y and t > 0
1
2 e−t, if x 6= y and t > 0

. (7)

Next, we will see that (MP, ∗P) is not a fuzzy metric by showing that (KM4) is not fulfilled.
Take x, y, z ∈ X such that x 6= z and y = z. Set s, t ∈ (0, ∞). Then, we have MP(x, z, t +

s) = 1
2 e−(s+t), MP(x, y, t) = 1

2 e−t and MP(y, z, s) = 1. This means that MP(x, z, t + s) <
MP(x, y, t) ∗p MP(y, z, s) and, hence, (MP, ∗P) is not a fuzzy metric on X.

In light of the preceding example, we are interested in finding under what conditions
the previous fuzzy set MP becomes a fuzzy metric. Observe that in the preceding example,
for each different x, y ∈ X , the function Px,y : (0, ∞) → [0, 1] fails to be non-decreasing.
Next we will see that the monotony of the function Px,y is crucial to show that MP is a fuzzy
metric. With this aim, we need to prove the next result, which states a condition that every
fuzzy partial metric P must satisfy when the function Px,y is non-decreasing.

Proposition 4. Let (X, P, ∗) be a fuzzy partial metric space. The following assertions are equivalent:
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(1) The function Px,y : (0, ∞)→ [0, 1] is non-decreasing for all x, y ∈ X.
(2) For each x, y, z ∈ X and t, s ∈ (0, ∞), the following condition is satisfied:

(FPKM4*) P(x, z, t + s) ≥ P(x, y, t) ∗ (P(y, y, s)→∗ P(y, z, s)).

Proof. (1)⇒ (2). Let x, y, z ∈ X and s, t ∈ (0, ∞). Since the function Px,x is non-decreasing,
we have that P(x, x, t + s) ≥ P(x, x, t). So, by axiom (FPKM4), we have the following:

P(x, x, t + s) ∗ (P(x, x, t + s)→∗ P(x, z, t + s)) ≥
P(x, x, t) ∗ (P(x, x, t)→∗ P(x, y, t)) ∗ (P(y, y, s)→∗ P(y, z, s))

(8)

Whence we deduce, by Proposition 3, that

P(x, x, t + s) ∧ P(x, z, t + s) ≥ (P(x, x, t) ∧ P(x, y, t)) ∗ (P(y, y, s)→∗ P(y, z, s)). (9)

Thus, by axiom (FPKM1), we conclude that

P(x, z, t + s) ≥ P(x, y, t) ∗ (P(y, y, s)→∗ P(y, z, s)), (10)

which means that condition (FPKM4*) holds.
(2) ⇒ (1). Let (X, P, ∗) be a fuzzy partial metric space satisfying the condition

(FPKM4*). For the purpose of contradiction, suppose that there exists x, y ∈ X such
that Px,y is not non-decreasing. Therefore, we can find t, s ∈ (0, ∞), with s < t, such
that P(x, y, s) > P(x, y, t). Then, we have from condition (FPKM4*) that the following
is satisfied:

P(x, z, t) ≥ P(x, y, s) ∗ (P(y, y, t− s)→∗ P(y, z, t− s)). (11)

Taking z = y in the preceding inequality, we have that

P(x, y, t) ≥ P(x, y, s) ∗ (P(y, y, t− s)→∗ P(y, y, t− s))
= P(x, y, s) ∗ 1 = P(x, y, s) > P(x, y, t),

(12)

which is a contradiction. Hence, the function Px,y : (0, ∞)→ [0, 1] is non-decreasing for all
x, y ∈ X.

From the above proposition, we deduce the following two corollaries. They give two
examples of fuzzy partial metric spaces, which were provided in [32], satisfying condition
(FPKM4*). Such examples of fuzzy partial metric spaces are constructed from a partial
metric space. This fact shows a connection between classical and fuzzy partial metrics.

Corollary 2. Let (X, p) be a partial metric space and (X, Pe, ∗p) be the fuzzy partial metric space

where, for all x, y ∈ X, Pe(x, y, 0) = 0 and Pe(x, y, t) = e
−p(x,y)

t for all t ∈ (0, ∞). Then,
(X, Pe, ∗p) satisfies the condition (FPKM4*).

Corollary 3. Let (X, p) be a partial metric space and (X, Pd, ∗H) be the fuzzy partial metric space,
where ∗H denotes the Hamacher t-norm and, for all x, y ∈ X, Pd(x, y, 0) = 0 and Pd(x, y, t) =

t
t+p(x,y) for all t ∈ (0, ∞). Then, (X, Pd, ∗H) satisfies the condition (FPKM4*).

Observe that, as mentioned before, Example 1 yields an instance of fuzzy partial metric
space which does not satisfies the property “Px,y : (0, ∞)→ [0, 1] is non-decreasing for all
x, y ∈ X”.

Next we show that each fuzzy partial metric induces, in a natural way, a fuzzy metric
through the technique, inspired by Proposition 1, exposed at the beginning of Section 3
when such a fuzzy partial metric fulfils condition (FPKM4*).
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Proposition 5. Let (X, P, ∗) be a fuzzy partial metric space satisfying the condition (FPKM4*).
Let MP : X× X× [0, ∞) be the fuzzy set defined, for each x, y ∈ X and for each t ∈ [0, ∞), by

MP(x, y, t) =


0, if t = 0
1, if x = y and t > 0
P(x, y, t), if x 6= y and t > 0

. (13)

Then (X, MP, ∗) is a fuzzy metric space.

Proof. Let x, y, z ∈ X and t, s ∈ (0, ∞). We will see that MP satisfies all the axioms
of Definition 3. Observe that axioms (KM1) and (KM3) are obviously satisfied by the
construction of MP. Therefore, we focus on showing that MP satisfies the rest of the axioms
in Definition 3.

(KM2) Suppose that MP(x, y, t) = 1 for each t ∈ (0, ∞). For the purpose of contradiction,
assume that x 6= y. It follows that P(x, y, t) = 1 for all t ∈ (0, ∞), and, by axiom
(FPKM1), we conclude that P(x, x, t) = 1 and P(y, y, t) = 1 for all t ∈ (0, ∞). There-
fore, axiom (FPKM2) ensures that x = y, which is a contradiction. Now, if x = y, then,
by the definition of MP, we obtain the result that MP(x, y, t) = 1 for each t ∈ (0, ∞).

(KM4) Let x, y, z ∈ X and t, s ∈ (0, ∞). We only consider the case in which x 6= z, since
otherwise the required condition is satisfied trivially. Nex,t we distinguish two cases:

Case 1. x 6= y and y 6= z. Applying (FPKM4*) and Corollary 1, we have that

MP(x, z, t + s) = P(x, z, t + s) ≥ P(x, y, t) ∗ (P(y, y, s)→∗ P(y, z, s))
≥ P(x, y, t) ∗ P(y, z, s) = MP(x, y, t) ∗MP(y, z, s).

(14)
Case 2. x = y or y = z. Notice that x = y and y = z cannot be satisfied at the same

time, since x 6= z. Assume that x = y and y 6= z. It follows, by Proposition 4,
that the function Py,z is non-decreasing. Thus, we have that

MP(x, z, t + s) = P(x, z, t + s) ≥ P(y, z, s) = MP(y, z, s)
= 1 ∗MP(y, z, s) = MP(x, y, t) ∗MP(y, z, s).

(15)

(KM5) The function (MP)x,y : (0, ∞) → [0, 1] is left-continuous for all x, y ∈ X. Indeed,
if x 6= y, then (MP)x,y = Px,y, which is left-continuous by (FPKM5). Moreover,
if x = y, then (MP)x,y(t) = 1 for all t ∈ (0, ∞), which is obviously (left-)continuous.

Therefore, we conclude that (X, MP, ∗) is a fuzzy metric space.

We leave it to the reader to verify that, if (X, P, ∗) is a GV-fuzzy partial metric space
satisfying the condition (FPKM4*), then (X, MP, ∗) is a GV-fuzzy metric space.

Once we have seen that MP is a fuzzy metric on X when considering a fuzzy partial
metric space (X, P, ∗) satisfying (FPKM4*), we are now interested in establishing the
relationship between the topologies τMP and τP induced by MP and P, respectively. Next
result shows that the topology τP is included in τMP .

Theorem 1. Let (X, P, ∗) be a fuzzy partial metric space satisfying the condition (FPKM4*) and
consider (X, Mp, ∗) the fuzzy metric space defined in Proposition 5. Then the topology τMP is finer
than the topology τP, i.e., τP ⊆ τMP .

Proof. Let (X, P, ∗) be a fuzzy partial metric space satisfying the condition (FPKM4*).
Observe that A ∈ τMP (A ∈ τP) if and only if for each x ∈ A there exists r ∈ (0, 1) and
t ∈ (0, ∞) such that BMP(x, r, t) ⊆ A (BP(x, r, t) ⊆ A) . Therefore, in order to show that
τP ⊆ τMP , we just need to prove that BMP(x, r, t) ⊆ BP(x, r, t), for each x ∈ X, r ∈ (0, 1)
and t ∈ (0, ∞).
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First of all, observe that x ∈ BP(x, r, t) for each x ∈ X, r ∈ (0, 1) and t ∈ (0, ∞). Indeed,
P(x, x, s)→∗ P(x, x, s) = 1 for each s ∈ (0, t).

Now, fix x ∈ X, r ∈ (0, 1) and t ∈ (0, ∞), and consider BMp(x, r, t). We distinguish
two cases:

Case 1. Suppose that for each y ∈ X, with x 6= y, we have P(x, y, t) ≤ 1− r. It follows that

BMp(x, r, t) = {x} ⊆ BP(x, r, t). (16)

Case 2. Assume that there exists y ∈ X, with x 6= y, such that P(x, y, t) > 1− r. In this case,
we can find y ∈ BMP(x, r, t) with y 6= x. Next, we show that BMP(x, r, t) ⊆ BP(x, r, t).
To this end, let y ∈ BMP(x, r, t). If y = x, then we conclude that y ∈ BP(x, r, t).
Therefore, suppose that y 6= x. The construction of MP implies that P(x, y, t) > 1− r.
Then, by axiom (FPKM5), we can find s ∈ (0, t) such that P(x, y, s) > 1− r. Therefore,
by Corollary 1, we obtain the following

P(x, x, s)→∗ P(x, y, s) ≥ P(x, y, s) > 1− r. (17)

Furthermore, we have that

sup{P(x, x, α)→∗ P(x, y, α) : α ∈ (0, t)} ≥ P(x, x, s)→∗ P(x, y, s) > 1− r. (18)

Whence we deduce that y ∈ BP(x, r, t).

Thus, BMP(x, r, t) ⊆ BP(x, r, t), for each x ∈ X, r ∈ (0, 1) and t ∈ (0, ∞), which implies
that τP ⊆ τMP .

The next example shows that the inclusion τMP ⊆ τP is not satisfied in general.

Example 2. Let X = [0, ∞[ and let (X, p) be the partial metric space, where p(x, y) = max{x, y}
for each x, y ∈ X. Consider the fuzzy partial metric space (X, Pd, ∗H) introduced in Corollary 3,
i.e., for each x, y ∈ X (see [32], Proposition 3.4),

Pd(x, y, 0) = 0 and Pd(x, y, t) =
t

t + p(x, y)
, for all t ∈ (0, ∞). (19)

Corollary 3 guarantees that (X, Pd, ∗H) satisfies property (FPKM4*). Now we will show that the
topologies induced by Pd and MPd , respectively, are not the same. First, observe that, for each
x, y ∈ X, t ∈ (0, ∞), (see [38], Example 3 (ii) and Theorem 2), we have

P(x, x, t)→∗H P(x, y, t) =
t

t + p(x, y)− p(x, x)
. (20)

Now, we are able to show that τPd and τMPd
are not the same; i.e., τMPd

* τPd .
On the one hand, {1} ∈ τMPd

since BMPd
(1, 1/2, 1/2) = {1}. Indeed, if y ∈ BMPd

(1, 1/2,
1/2) with y 6= 1, then we have

1
2
≤ MPd(1, y, 1/2) = Pd(1, y, 1/2) =

1/2
1/2 + max{1, y} ≤

1/2
1/2 + 1

=
1
3

, (21)

which provides a contradiction.
On the other hand, [0, x] ⊆ BPd(x, r, t), for each r ∈ (0, 1), t ∈ (0, ∞) and x ∈ X. Indeed,

for each y ∈ [0, x] we have

P(x, x, s)→∗H P(x, y, s) =
s

s + p(y, x)− p(x, x)
= 1 for each s ∈ (0, ∞). (22)

Therefore y ∈ BPd(x, r, t) for all r ∈ (0, 1) and t ∈ (0, ∞).
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Hence we conclude that {1} /∈ τPd because otherwise there should exist x ∈ X, r ∈ (0, 1) and
t ∈ (0, ∞) such that [0, x] ⊆ BPd(x, r, t) ⊆ {1}.

After establishing the relationship between τP and τMP when the fuzzy partial metric
space satisfies the property (FPKM4*), we continue studying the completeness of such
fuzzy partial metrics. With this aim, we will characterize convergent sequences, but before-
hand, we should take into account the following remark and the subsequent lemma.

Remark 1. Let (X, P, ∗) be a fuzzy partial metric space. Then, for each x ∈ X, r ∈ (0, 1) and t ∈
(0, ∞), we have that B̃P(x, r, t) = {y ∈ X : P(x, x, t)→∗ P(x, y, t) > 1− r} is a neighbourhood
of x in τP. Indeed, given t > 0, we have that P(x, x, t)→∗ P(x, y, t) ≥ P(x, x, s)→∗ P(x, y, s),
for each s ∈ (0, t) due to the fact that, by condition (FPKM4), the function P(x, x, ·)→∗ P(x, y, ·)
is non-decreasing on t. Then, P(x, x, t) →∗ P(x, y, t) ≥ sup{P(x, x, s) →∗ P(x, y, s) : s ∈
(0, t)} and so, for each r ∈ (0, 1) and t > 0, we have that x ∈ BP(x, r, t) ⊆ B̃P(x, r, t).

The next lemma will be useful to characterize convergent sequences with respect to τP.

Lemma 1. Let ∗ be a continuous t-norm and consider a, b, c ∈ [0, 1] with a ≥ b. If b > a ∗ c, then
a→∗ b > c.

Proof. Since ∗ is continuous, Proposition 2.5.2 in [37] warranties that a ∗ c ≤ b⇔ a→∗ b ≥
c and, in addition, Proposition 2 gives that a→∗ b = max{z ∈ [0, 1] : a ∗ z = b}. Assume
that a→∗ b = c. Then, we have that b = a ∗ c < b, which is a contradiction. Therefore, we
conclude that a→∗ b > c.

Below, we can find the promised characterization of convergent sequences with respect
to τP

Theorem 2. Let (X, P, ∗) be a fuzzy partial metric space and {xn}n∈N be a sequence in X. Then,
{xn}n∈N converges in τP to x ∈ X if and only if lim

n→∞
P(xn, x, t) = P(x, x, t) for all t ∈ (0, ∞).

Proof. (⇒) Suppose that {xn}n∈N converges in τP to x ∈ X. Then, for each neighbourhood
U of x in τP, there exists n0 ∈ N such that xn ∈ U for each n ≥ n0. Now, fix t ∈ (0, ∞) and
let ε ∈ (0, 1). By Remark 1, there exists n0 ∈ N such that xn ∈ B̃P(x, ε, t) for each n ≥ n0;
i.e., P(x, x, t) →∗ P(x, xn, t) > 1− ε for each n ≥ n0. In such a case, by Proposition 2.5.2
in [37], we know that a ∗ c ≤ b ⇔ a →∗ b ≥ c for all a, b, c ∈ [0, 1] and, thus, we
get that P(x, xn, t) ≥ (1− ε) ∗ P(x, x, t) for each n ≥ n0. Moreover, taking into account
axiom (FPKM1), we have that P(x, x, t) ≥ P(x, xn, t) for each n ∈ N. Therefore, we
conclude that P(x, x, t) ≥ P(x, xn, t) ≥ (1 − ε) ∗ P(x, x, t), for each n ≥ n0. Therefore,
lim

n→∞
P(x, xn, t) = P(x, x, t) for all t ∈ (0, ∞), since t is arbitrary.

(⇐) Suppose that lim
n→∞

P(x, xn, t) = P(x, x, t) for all t ∈ (0, ∞). Taking into account

that, for each t ∈ (0, ∞), we have that P(x, x, t) ≥ P(x, xn, t) for all n ∈ N, our assumption
implies the following: for all t ∈ (0, ∞), given ε ∈ (0, 1), there exists n0 ∈ N such that
P(x, xn, t) > (1− ε) ∗ P(x, x, t) for all n ≥ n0. Then, Lemma 1 ensures that P(x, x, t) →∗
P(x, xn, t) > 1− ε for all n ≥ n0.

Fix t ∈ (0, ∞) and let s0 ∈ (0, t). Given ε ∈ (0, 1), there exists n0 ∈ N such that
P(x, x, s0) →∗ P(x, xn, s0) > 1− ε for all n ≥ n0. Thus, we have, for all s ∈ (s0, t), that
P(x, x, s) →∗ P(x, xn, s) > 1− ε for all n ≥ n0, since the function P(x, x, ·) →∗ P(x, y, ·) is
non-decreasing (see Remark 1). Therefore, such an argument ensures that sup{P(x, x, s)→∗
P(x, xn, s) : s ∈ (0, t)} > 1− ε for each n ≥ n0, which is equivalent to xn ∈ BP(x, ε, t) for
each n ≥ n0.

Let U be a neighbourhood of x in τP. Then, there exists r ∈ (0, 1) and t > 0 such
that BP(x, r, t) ⊆ U. Hence, by what has been said before, there exists n0 ∈ N such that
xn ∈ BP(x, r, t) for all n ≥ n0. Hence, {xn}n∈N converges to x in τP.
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As mentioned above, we are interested in studying completeness in fuzzy partial
metrics satisfying (FPKM4*). In this context, we introduce the following natural definition,
which is inspired by the classical definition for partial metric spaces (see Section 2.1).

Definition 8. Let (X, P, ∗) be a fuzzy partial metric space and let {xn}n∈N be a sequence in X.

(i) {xn}n∈N is said to be a Cauchy sequence if for all t ∈ (0, ∞) there exists lim
n,m→∞

P(xn, xm, t)

and it is greater than 0. In the case that lim
n,m→∞

P(xn, xm, t) = 1 for all t ∈ (0, ∞), then

{xn}n∈N is said to be a 1-Cauchy sequence.
(ii) (X, P, ∗) is said to be complete if each Cauchy sequence {xn}n∈N in X converges to a point

x ∈ X in τP and lim
n,m→∞

P(xn, xm, t) = lim
n→∞

P(xn, x, t) = P(x, x, t) for all t ∈ (0, ∞).

In the case that each 1-Cauchy sequence in X converges to a point x ∈ X in τP such that
P(x, x, t) = 1 for all t ∈ (0, ∞), the fuzzy partial metric space is said to be 1-complete.

Unlike the fuzzy metric case, each convergent sequence in a fuzzy partial metric space
may not be a Cauchy sequence, as the following example shows.

Example 3. Let (X, Pd, ∗H) be the fuzzy partial metric space of Example 2. Let us consider the
sequence {xn}n∈N = (0, 1, 0, 1, ..., 0, 1, ...). Observe that

lim
n→∞

P(xn, 1, t) = lim
n→∞

t
t + pmax(xn, 1)

=
t

t + 1
= P(1, 1, t) (23)

for all t ∈ (0, ∞). Then Theorem 2 gives that {xn}n∈N = {0, 1, 0, 1, ..., 0, 1, ...} converges to the
point 1 ∈ X in τPd . However, lim

n,m→∞
P(xn, xm, t) does not exist. Indeed, lim

n→∞
P(xn, xn+2, t) = 1

for all t ∈ (0, ∞) whenever n is odd, whereas lim
n→∞

P(xn, xn+2, t) = t
t+1 , for all t ∈ (0, ∞)

whenever n is even. Therefore, {xn}n∈N = {0, 1, 0, 1, ..., 0, 1, ...} is not a Cauchy sequence in
(X, Pd, ∗H).

Observe that each complete fuzzy partial metric space is 1-complete. Moreover,
1-completeness in a fuzzy partial metric space (X, P, ∗) satisfying the condition that
(FPKM4*) is equivalent to completeness of (X, MP, ∗), as the next theorem below shows.

Theorem 3. Let (X, P, ∗) be a fuzzy partial metric space satisfying the condition (FPKM4*) and
consider (X, Mp, ∗) the fuzzy metric space defined in Proposition 5. Then, a sequence {xn}n∈N
non-eventually constant is Cauchy in (X, MP, ∗) if and only if {xn}n∈N is 1-Cauchy in (X, P, ∗).
Furthermore, (X, P, ∗) is 1-complete if and only if (X, MP, ∗) complete.

Proof. Let {xn}n∈N be a non-eventually constant sequence in X.
With the aim of showing the direct implication, suppose that {xn}n∈N is Cauchy in

(X, MP, ∗). Then, we have lim
n,m→∞

MP(xn, xm, t) = 1 for all t ∈ (0, ∞). Taking into account

that {xn}n∈N is non-eventually constant, by the construction of MP, we conclude that
lim

n,m→∞
P(xn, xm, t) = 1 for all t ∈ (0, ∞). Thus, {xn}n∈N is a 1-Cauchy sequence in (X, P, ∗).

The proof of the converse implication runs following similar arguments.
Now, assume that (X, P, ∗) is a 1-complete fuzzy partial metric space and let {xn}n∈N

be a Cauchy sequence in (X, MP, ∗). If {xn}n∈N is eventually constant, then it is obviously
convergent. Therefore, assume that {xn}n∈N is non-eventually constant. It follows that
{xn}n∈N is a 1-Cauchy sequence in (X, P, ∗). Since (X, P, ∗) is 1-complete, then there
exists a point x ∈ X such that lim

n,m→∞
P(xn, xm, t) = lim

n→∞
P(xn, x, t) = P(x, x, t) = 1 for all

t ∈ (0, ∞). Therefore lim
n→∞

MP(xn, x, t) = 1 for all t ∈ (0, ∞), which implies that (X, MP, ∗)
is a complete fuzzy metric space.

Next assume completeness in (X, MP, ∗) and let {xn}n∈N be a 1-Cauchy sequence in
(X, P, ∗). If {xn}n∈N is eventually constant, then there exists n0 ∈ N such that xn = xn0 for
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each n ≥ n0. So, 1 = lim
n,m→∞

P(xn, xm, t) = P(xn0 , xn0 , t) for all t ∈ (0, ∞). Thus, {xn}n∈N

converges to xn0 in τP and P(xn0 , xn0 , t) = 1 for each t ∈ (0, ∞). The case of {xn}n∈N being
non-eventually constant is proved following a similar argument to the one shown above
and, in addition, taking into account that P(x, xn, t) ≤ P(x, x, t) for all x ∈ X and for all
t ∈ (0, ∞).

Taking into account the previous theorem, we conclude that for each complete fuzzy
partial metric (X, P, ∗) satisfying (FPKM4*), the fuzzy metric (X, MP, ∗) is complete.

The remainder of the paper is devoted to illustrating how such a conclusion allows
to prove fixed-point results in fuzzy partial metrics, specifically, those results in which
a contractive condition given in the context of fuzzy metrics is established for fuzzy
partial metrics. In this context, we present a notion of contractivity in fuzzy metric spaces
introduced in [27]. First, let us recall that a binary operation � on [0, 1] is called a t-conorm
if, for each a, b, c ∈ [0, 1], it satisfies axioms (T1)–(T3) for t-norms given in Definition 2 and
additionally the following one:

(S4) a � 0 = a.

A t-conorm � is said to be continuous when it is continuous (with respect to the usual
topology) as a function defined on [0, 1]× [0, 1]. Moreover, if for each a, b ∈]0, 1[ there exists
n ∈ N such that a � · · ·n) � a > b, then the t-conorm is called Archimedean (see [36] for a
deeper treatment on t-conorms), where a � · · ·n) � a denotes n-power of a with respect to �
(see [36], Remark 1.10).

Below, we can find this concept of contractivity.

Definition 9. Let (X, M, ∗) be a fuzzy metric space. With fixed k ∈ (0, 1) and a continuous
t-conorm �, we will say that a mapping T : X → X is a fuzzy k-�-contraction in (X, M, ∗) if,
for each x, y ∈ X and t ∈ (0, ∞), the following condition holds:

M(T(x), T(y), t) ≥ k �M(x, y, t). (24)

In [27], the following fixed point theorem was established for fuzzy k-�-contractions
in the context of fuzzy metric spaces.

Theorem 4. Let (X, M, ∗) be a complete fuzzy metric space and let T : X → X be a fuzzy
k-�-contraction in (X, M, ∗). If � is Archimedean, then T has a unique fixed point.

As pointed out in [32], a fuzzy metric space is a particular case of fuzzy partial metric
space. In addition, we can easily extend the notion of fuzzy k-�-contractions to the context
of fuzzy partial metrics in the obvious way. Thus, one can try to generalize the preceding
theorem in fuzzy partial metrics instead of fuzzy metrics. Nevertheless, it can be established
for fuzzy partial metrics satisfying (FPKM4*) just as a mere corollary of Theorem 4, as we
show below.

Theorem 5. Let (X, P, ∗) be a complete fuzzy partial metric space satisfying (FPKM4*) and let
T : X → X be a fuzzy k-�-contraction in (X, P, ∗). If � is Archimedean, then T has a unique fixed
point x?. Moreover, P(x?, x?, t) = 1 for all t ∈ (0, ∞).

Proof. Let (X, P, ∗) be a complete fuzzy partial metric space satisfying (FPKM4*). Then,
by Theorem 3, the fuzzy metric space (X, MP, ∗) introduced in Proposition 5 is complete.
Let T : X → X be a fuzzy k-�-contraction in (X, P, ∗) for � being Archimedean. Then, for all
x, y ∈ X and for all t ∈ (0, ∞), we have that

P(Tx, Ty, t) ≥ k � P(x, y, t). (25)
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Therefore, for each x, y ∈ X, with x 6= y, and t ∈ (0, ∞), we obtain that

MP(Tx, Ty, t) ≥ P(Tx, Ty, t) ≥ k � P(x, y, t) = k �MP(x, y, t). (26)

Furthermore, if x = y, then MP(Tx, Ty, t) = 1 ≥ k � 1 = k �MP(x, y, t) for all t ∈ (0, ∞).
Therefore, T is also a fuzzy k-�-contraction in (X, MP, ∗). Theorem 4 ensures the existence
and uniqueness of a fixed point. Let x? be the fixed point of T. We will show by contradic-
tion that P(x?, x?, t) = 1 for all t ∈ (0, ∞). Therefore, assume that P(x?, x?, t) < 1 for some
fixed t0 ∈ (0, ∞). We know that

P(x?, x?, t0) ≥ k � P(x?, x?, t0) ≥ max{k, P(x?, x?, t0)} ≥ P(x?, x?, t0). (27)

Hence, we obtain the result that k � P(x?, x?, t0) = P(x?, x?, t0). The fact that � is Archimedean
and continuously shows that there exists an additive generator (see [36], Definition 3.39)
g� : [0, 1]→ [0, ∞] such that

P(x?, x?, t0) = k � P(x?, x?, t0) = g(−1)
� (g�(k) + g�(P(x?, x?, t0))). (28)

Since P(x?, x?, t0) < 1 we deduce that g�(k) + g�(P(x?, x?, t0) < g�(1). It follows that

P(x?, x?, t0) = g−1
� (g�(k) + g�(P(x?, x?, t0))). (29)

Hence
g�(P(x?, x?, t0)) = g�(k) + g�(P(x?, x?, t0)). (30)

Hence, we have that g�(k) = 0 and, thus, that k = 0. However, k ∈ (0, 1). Therefore
P(x?, x?, t) = 1 for all t ∈ (0, ∞).

4. Conclusions and Future Work

An interesting topic in fixed-point theory consists in extending a result established
in a certain context to another more general context. To achieve this goal, many authors
obtained generalizations of different fixed-point results, already established in metric
spaces, in the context of partial metric spaces. Nevertheless, in [8], it was shown that many
of the aforementioned generalizations were actually corollaries of their metric counterpart.
In this paper, we have shown that the main conclusions drawn in [8] can be retrieved in
the fuzzy setting when we consider the notions of fuzzy partial metric space introduced
in [32]. This is achieved by means of a technique for generating a fuzzy metric from
fuzzy partial metrics that extend the classical one. The relationship between the topology
and completeness of both the fuzzy partial metric space and the associated fuzzy metric
space have been explored. However, unlike partial metric spaces, in order to obtain the
conclusions obtained in the classical case, a condition must be required on the fuzzy partial
metric. Specifically, we have shown that we can extend the aforementioned technique
in a direct way whenever the condition (FPKM4*) is fulfilled. Moreover, a kind of fixed-
point results already established in fuzzy metric spaces have been extended to the more
general context of fuzzy partial metric spaces whenever the condition (FPKM4*) is also
satisfied. Therefore, the main results presented in this paper will allow us to avoid many
repetitive contributions devoted to extending fixed-point results in fuzzy metric spaces to
their partial counterpart.

Nonetheless, different topics remain to be explored in fixed-point theory for fuzzy
partial metrics. For instance, on the one hand, one can explore contractive conditions for
fuzzy partial-metric spaces that have not been studied in the context of fuzzy metrics.
On the other hand, one can try to study whether versions of fixed-point results already
established in fuzzy metrics remain valid in the fuzzy partial-metric framework when the
condition (FPKM4*) is not assumed.



Mathematics 2022, 10, 3092 14 of 15

Author Contributions: All authors contribute equally to this work. Formal analysis, J.-J.M. and O.V.;
Funding acquisition, H.A., J.-J.M. and O.V.; Investigation, E.G. and J.-J.M.; Methodology, E.G., J.-J.M.
and O.V.; Project administration, J.-J.M.; Resources, J.-J.M. and O.V.; Supervision, H.A., J.-J.M. and
O.V.; Validation, J.-J.M. and O.V.; Visualization, H.A., E.G., J.-J.M. and O.V.; Writing—original draft,
E.G.; Writing—review & editing, J.-J.M. and O.V. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Proyecto PGC2018-095709-B-C21 financiado por MCIN/AEI/
10.13039/501100011033 y FEDER “Una manera de hacer Europa” and from project BUGWRIGHT2.
This last project has received funding from the European Union’s Horizon 2020 research and in-
novation program under grant agreements No. 871260. This publication reflects only the authors’
views, and the European Union is not liable for any use that may be made of the information
contained therein.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

References
1. Matthews, S.G. Partial Metric Topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [CrossRef]
2. Altun, I.; Asim, M.; Imdad, M.; Alfaqih, W.M. Fixed point results for FR-generalized contractive mappings in partial metric spaces.

Math. Slovaca 2019, 69, 1413–1424. [CrossRef]
3. Bindu, V.M.L.H.; Kishore, G.N.V.; Rao, K.P.R.; Phani, I. Suzuki type unique common fixed point theorem in partial metric spaces

using (C)-condition. Math. Sci. 2017, 11, 39–45. [CrossRef]
4. Bugajewski, D.; Mackowiak, P.; Wang, R.D. On compactness and fixed point theorems in partial metric spaces. Fixed Point Theory

2022, 23, 163–178. [CrossRef]
5. Kumar, S.; Luambano, S. On some fixed point theorems for multivalued F-contractions in partial metric spaces. Demonstr. Math.

2021, 54, 151–161. [CrossRef]
6. Ninsri, A.; Sintunavarat, W. Toward a generalized contractive condition in partial metric spaces with the existence results of fixed

points and best proximity points. J. Fix. Point Theory Appl. 2018, 20, 13. [CrossRef]
7. Pant, R.; Shukla, R.; Nashine, H.K.; Panicker, R. Some New Fixed Point Theorems in Partial Metric Spaces with Applications.

J. Funct. Space 2017, 2017, 1072750. [CrossRef]
8. Haghia, R.H.; Rezapourb, S.; Shahzad, N. Be careful on partial metric fixed point results. Topol. Appl. 2013, 160, 450–454.

[CrossRef]
9. Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344.
10. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Set. Syst. 1994, 64, 395–399. [CrossRef]
11. Gregori, V.; Romaguera, S. Some properties in fuzzy metric spaces. Fuzzy Set. Syst. 2000, 115, 485–489. [CrossRef]
12. Camarena, J.G.; Greogri, V.; Morillas, S.; Sapena, A. Fast detection and removal of impulsive noise using peer groups and fuzzy

metrics. J. Vis. Commun. Image Represent. 2008, 19, 20–29. [CrossRef]
13. Gregori, V.; Morillas, S.; Sapena, A. Examples of fuzzy metrics and applications. Fuzzy Set. Syst. 2011, 170, 95–111. [CrossRef]
14. Ralevic, N.M.; Delic, M.; Nedovic, L. Aggregation of fuzzy metrics and its application in image segmentation. Iran. J. Fuzzy Syst.

2022, 19, 19–37.
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