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Industrial canneries are subject to perturbations that may compromise food safety require-

ments. In such cases, plant operators typically increase the processing time, leading to

undesirable large processing cycles and excessive quality degradation. In addition, differ-

ences among the items in a batch lead to variability in terms of quality and safety which, if

not  explicitly considered in the processing strategy, forces the use of conservative operation

policies.

In  this work, we present an event-based dynamic optimization approach that combines

available plant measurements and mathematical model predictions to anticipate the effect

of  plant perturbations on food safety. A safety software sensor is build upon an on-line

predictive simulation and a previous food-variability characterization such that, if any

perturbation during the sterilization compromises food safety, a new processing strategy

that optimizes a trade off among quality, uniformity and processing time is recomputed

and implemented. Such multi-objective dynamic optimization problem under food product

variability is efficiently addressed by taking advantage of the monotonicity and convexity
properties of the food quality/safety dynamics.

© 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

identical, so they do not address the problem of product vari-
1.  Introduction

Thermal processing is a time and energy demanding opera-
tion which employs around 70% of the total production time
(Palacin and de Prada, 2019), and demands near 60% of the
total energy consumed by a standard food processing fac-
tory (Peesel et al., 2016). In addition, excessive processing may
cause significant quality losses, in terms of nutrient or sensory
indicators degradation, which has a direct impact on the con-
sumer acceptance and, therefore, on the company turnover
(Miri et al., 2007; Alonso et al., 2013). Optimization approaches
have been widely used to minimize process duration (Chalabi

et al., 1999; Simpson et al., 2004; Chen and Ramaswamy, 2004;
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Lespinard et al., 2012; Vilas et al., 2020), energy consumption
(Peesel et al., 2016; Simpson et al., 2020) or quality degra-
dation (Banga et al., 2001; Balsa-Canto et al., 2002; García
et al., 2005; Simpson et al., 2007; Ansorena and Salvadori, 2011;
Alonso et al., 2013; Ávila-Gaxiola et al., 2016). In these works,
only one objective at a time is considered. Research focusing
on optimizing several objectives simultaneously, i.e. multi-
objective optimization problems, in the food industry has
received less attention (Erdogdu and Balaban, 2003; Abakarov
et al., 2009; Sendin et al., 2010; Madoumier et al., 2019). How-
ever, these works consider that all items to be processed are
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Fig. 1 – General scheme of the sterilization unit considered
in this work. Available on-line measurements include the
steam pressure after the reducing valve and the retort
Nevertheless, differences among the canned products to
e processed in a batch usually result into different heat pen-
tration rates, thus leading to differences in the values of
uality and safety indicators reached by each of the items after
terilization. There exist different sources for such variabil-
ty (Smout et al., 2000). For instance, spatial variability of the
emperature inside the thermal processing unit (Cronin et al.,
000; Nicolaï et al., 2010) or differences from item to item in
he quantity of food product, its compaction, and the quan-
ity of packing liquid, among others. The characterization of
uch product variability in thermal processes for quality con-
rol purposes (e.g. color, texture or nutrients degradation) has
eceived great attention in the last two decades (Nicolaï et al.,
998; Demir et al., 2003; Varga et al., 2000; Smout et al., 2000,
003; Nicolaï et al., 2010). However, references to the design
f optimal processing strategies in food products under vari-
bility are more  scarce (Chalabi et al., 1999; Baucour et al.,
003; Cronin et al., 2007). In addition, most of these works
ocus just on the food product dynamics, disregarding retort
ynamics which may lead to infeasible processing strategies

n practice (Alonso et al., 2013). Besides, the usual way to han-
le product variability is based on Monte-Carlo simulations,
ith parameter values sampled from a probability distribu-

ion, performed at each step of the optimization procedure.
his approach is not practical for real-time tasks, particularly
hen uncertainty is considered in more  than one parameter.
herefore, efficient alternatives to solve the arising stochastic
ptimization problems are required to address this issue.

Another important aspect that must be considered is the
resence, during the thermal processing cycles, of unexpected
aults such as processing scheduling problems or deficiencies
n the steam supply, particularly when resources are shared
mong the different equipment. These faults may cause that
he optimal processing strategies cannot be fully tracked, com-
romising the safety of the food product and leading to the
ejection or reprocessing of the batch (Alonso et al., 2013).
azard analysis critical control point (HACCP) programs are
esigned to ensure safe production against such situations

Mortimore and Wallace, 2013). However, those that do not
ntegrate statistical process control (SPC) (Lim et al., 2014),
ither because there is no online monitoring and/or pre-
ictability of process variations, cope with these faults by

ncreasing process time to avoid batch rejection, which usually
esults into an unnecessary degradation of product quality,
niformity as well as an expensive energy consumption incre-
ent. To avoid this limitation, advanced real-time control

pproaches capable of recomputing optimal processing strate-
ies, using available plant measurements, have been proposed
n the context of food thermal processing (Flores-Cerrillo and

acGregor, 2005; Banga et al., 2008; Kurtanjek, 2008; Alonso
t al., 2013; Kondakci and Zhou, 2017). Nevertheless, again
hese approaches mainly focus on one objective or do not take
nto account the variability in the product properties.

In line with the recommendations for a good HACCP
ystem, we  analyze the main sources of variability in the ster-
lization of canned tuna that might compromise food safety,
nd we  propose an event-based multi-objective dynamic opti-
ization strategy that can detect and act against deviations

n real time. Using the available plant measurements and the
cheduled sterilization strategy, the proposed model-based
afety sentinel is continuously monitoring (i.e. predicting) the
icrobial lethality to be reached at the end of the batch. In case
 significant deviation in the selected safety requirement is
etected, the event-based multi-objective dynamic optimiza-
temperature.

tion recomputes the processing strategy so that the effect
of the perturbations on food quality, uniformity, and process
time are minimized. Note that the approach easily integrates
with SPC by explicitly considering food-product variability
resulting from differences among items (e.g. the quantity
of tuna in each tin can, its compaction, or the quantity
of packing liquid, among others). Such variability translates
into uncertainty on the thermal parameters, namely ther-
mal  diffusivity, and heat-transfer coefficients. The possible
dependence of thermal parameters on the temperature, as
well as measuring errors derived from instrument precision,
are embedded within such uncertainty. However, uniform
temperature within the sterilization unit is assumed in our
case study. The multi-objective dynamic optimization prob-
lem (MODOP) under product variability is efficiently addressed
by taking advantage of the convexity of food quality dynamics
and the monotonicity of both food quality and safety dynam-
ics with respect to the uncertain thermal parameters. This
allows us to avoid the use of Monte-Carlo simulations which
are computationally expensive. On the one hand, the mono-
tonic behavior is exploited to define a polytopic bounding
region, within the parameter variability, which allows us to
ensure food safety by evaluating just the worst-case scenario.
On the other hand, convexity is used in the context of the
Jensen’s inequality (Perlman, 1974) to maximize the average
food quality by just considering one more  scenario, in which
we use the mean value of the thermal parameters. Both the
sterilization unit and the food product mathematical models
are used in the MODOP formulation to ensure that the optimal
solutions can be implemented in the real plant.

The manuscript is structured as follows: first, we  briefly
describe the sterilization process on steam retorts, present the
mathematical models representing the behavior of the food
product and sterilization unit, and describe the formulation
and tools for solving the MODOP on-line. Then, we  discuss
the main outcomes of the work resulting from the applica-
tion of the proposed event-based MODOP approach. Finally,
the concluding remarks are presented.

2.  Materials  and  methods

2.1.  Sterilization  unit  description

The sterilization unit considered in this work consists of
a steel vessel with a product storage grid box with rotary
capacity and a fan to ensure uniform temperature inside the

retort during the sterilization cycle (Fig. 1). Steam generated
in the boiler is subject to large pressure variations. There-
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Table 1 – Values of the parameters included in the
mathematical model of the sterilization unit, the food
product and the different valves.

Parameter Value Units Description

A 23.478 – Antoine law parameter
B −3984.8 – Antoine law parameter
C 39.724 – Antoine law parameter
VR 0.3 m3 Volume of the retort
AR 3.1 m2 Surface area of the

retort metallic carcass
mR 398.6 kg Mass of the retort

metallic carcass
cp,R 500 J kg−1 K−1 Specific heat of the

retort metallic carcass
cp,s 2200 J kg−1 K−1 Steam specific heat
cp,a 1010 J kg−1 K−1 Air specific heat
cp,w 4180 J kg−1 K−1 Water specific heat
�w 1000 kg/m3 Water density
Mw 18.0 kg kmol−1 Molecular weight of

water
Ma 28.9 kg kmol−1 Molecular weight of air
R 8314 J kmol−1 K−1 Universal gas constant
� 2260.9×103 J kg−1 Steam condensation

heat
� 5.67×10−8 W m−2 K−4 Stefan-Boltzmann

constant
ε 0.99 – Thermal emissivity
cv,s 5.2088 – Steam valve parameter
cv,a 5.0 – Air valve parameter
cv,b 6.8834 – Bleeder valve parameter
Kp 0.1 – PI controller parameter
�I 40 s PI controller parameter
Pia 6.078×105 Pa Air pressure in the inlet

stream
Piw 6.078×105 Pa Water pressure in the

inlet stream
Cf 0.92 – Gas valve parameter
Gf 1.0 – Gas valve parameter
Aw, Ad 3.93×10-5 J kg−1 Water and drain valve

parameter
Patm 101,325 Pa Atmospheric pressure
hR 11.983 W m−2 K−1 Heat transfer parameter

retort/ambient
mp 0.2 kg Mass of the packed food

product
�p 1007 kg m−3 Density of the packed

food product
cp,p 3653 J kg−1 K−1 Specific heat of the

packed food product
Rp 0.0418 m Radius of the RO-200 tin

can
Lp 0.03 m Length of the RO-200 tin

can
np 500 – Number of RO-200 cans

in the sterilizer
zF,ref 10 K Reference parameter for

lethality
Tref 394.25 K Reference temperature

for lethality
zC,ref 14.93 K Reference parameter for

surface color
Dref 8390.6 s Reference parameter for

surface color
fore, a reducing valve, that provides constant steam pressure,
is installed before the retort steam valve. Then, the steam
enters the retort and heats the packed food product. Temper-
ature in the retort (TR) and steam pressure after the reducing
valve (Pred) are measured. In the first stage of the steriliza-
tion process (venting stage), air is removed from the retort by
introducing steam, keeping the bleeder valve open. As a con-
sequence, temperature in the retort rapidly increases in this
stage. Then, during the holding stage, a PI controller, that actu-
ates on the retort steam valve, is used to keep track of a given
reference trajectory (TR,sp(t)). At the end of this stage, water is
introduced in the retort to rapidly cool down  the food product
and avoid further quality degradation, in the so-called cooling
stage. Air is used to avoid large pressure drops during the cool-
ing stage. Another valve is used to drain water from the vessel
(either condensate or cooling water).

For the sake of completeness, the mathematical models
of the packed product and sterilization unit will be briefly
described in the following sections. Detailed model descrip-
tions are provided in Alonso et al. (1997, 2013) and Vilas et al.
(2018). The values of the parameters are shown in Table 1.

2.2.  Mathematical  model  of  the  food  product

In this paper, we  consider tuna packed in cylindrical RO-200 tin
cans as the food product over which we illustrate the approach
and extract conclusions, but note that other kinds of packages
and/or canned food could be considered. The food product
is mainly solid, therefore, its temperature (Tp(r, z, t)) can be
described by the following heat equation in cylindrical coor-
dinates:

∂Tp

∂t
= ˛p

[
∂2Tp

∂z2
+ 1
r

∂

∂r

(
r
∂Tp

∂r

)]
. (1)

Robin boundary conditions are considered to describe the
effect of the packing liquid on heat transmission on the top
and bottom parts of the product:

˛p
∂Tp

∂z

∣∣∣
z=L

= ht
(
TR − Tp

∣∣
z=L

)
, ˛p

∂Tp

∂z

∣∣∣
z=0

= hb
(
TR − Tp

∣∣
z=0

)
.

(2)

On the right boundary (r = R), the food product is in direct
contact with the metal container. Therefore, Dirichlet condi-
tions are considered. Besides, no-flux (symmetry) boundary
conditions are used at r = 0:

Tp
∣∣
r=R = TR.;

∂Tp

∂r

∣∣∣
r=0

= 0. (3)

In the above equations, ˛p denotes the food product thermal
diffusivity whereas ht and hb correspond with the heat trans-
fer coefficients between the food product boundaries (top and
bottom, respectively) and the retort, divided by the density (�p)
and specific heat (cp,p) of the food product. The upper layer
of packing liquid is thicker than the lower layer, therefore, ht
and hb have different values. The different items to be pro-
cessed in a batch are not identical. For instance, the quantity of
tuna, its compaction or the quantity of packing liquid among
other attributes differ from item to item. Therefore, param-
eters ˛p, ht and hb vary from item to item. To characterize
such variability, we  assume that the values of the parameters

belong to a normal distribution (Baucour et al., 2003; Cronin
et al., 2007). Then, from extensive data collection through
experimentation with instrumented cans, we  were able to
estimate the following mean values and standard deviations:
�˛p = 1.33 × 10−7 m2 s−1, 	˛p = 3.48 × 10−9 m2 s−1, �ht = 8.72 ×
10−5 m2 s−1, �hb = 2.44 × 10−4 m2 s−1, 	ht = 9.68 × 10−6 m2 s−1,

−5 2 −1
	hb = 4.47 × 10 m s (details omitted for brevity).



Food and Bioproducts Processing 1 2 7 ( 2 0 2 1 ) 162–173 165

t
(
a
i
t
t
m
b
o

w
A
A
r

2

2
T
h
c
t
c

w
r
t
f
s
o

�

w
b
t
P
A

i
b[

F

F

w
i

The application of classical numerical techniques, such as
he Finite Element Method or the Finite Differences Method
Vande Wouwer et al., 2014), for solving Eqs. (1)–(3) results into

 large number of ordinary differential equations, around 1000
n this case. This issue hampers the use of robust optimization
echniques to this problem, in particular when solutions need
o be obtained in real time. The Proper Orthogonal Decomposition

ethod (Sirovich, 1987) is used to alleviate the computational
urden. As a result, the following equivalent system consisting
f 15 ordinary differential equations, is obtained:

ds
dt

=
(
˛pA˛p + htAht + hbAhb + hrAhr

)
s

+
(
htBht + hbBhb + hrBhr

)
TR. (4)

here s = [s1, s2, . . .,  s15] are the modes of the POD method.
 brief description of the derivation of Eq. (4) is provided in
ppendix A. For more  details about the method, the reader is

eferred to the literature (Sirovich, 1987; Vilas et al., 2018).

.3.  Mathematical  model  of  the  sterilization  unit

.3.1.  Detailed  mathematical  model
he mathematical model describing the retort temperature
as been developed in Alonso et al. (1997). For the sake of
ompleteness, we  will summarize here the final model equa-
ions. Evolution of steam, water and air mass in the retort is
omputed as:

dms

dt
=  Fis − xsFb − 
, (5)

dmw

dt
= Fiw − Fd + 
, (6)

dma

dt
= Fia − xaFb, (7)

here, as shown in Fig. 1, Fis, Fiw and Fia are, respectively, the
etort input flows  of steam, water and air. Fb and Fd represent
he bleeder and drain flows whereas xs and xa are the mass
ractions of steam and air within the sterilization unit. The
team condensation flow (
) is computed by finding the roots
f the following equation:

(
) = ms(
) − m
eq
s (
); m

eq
s (
):=P

eqVvMw

RTR
, (8)

ith Vv denoting the volume of retort that is not occupied
y water or by the tin cans Vv = VR − mw

�w
− npVp, where Vp is

he volume of the RO-200 tin can. Equilibrium pressure (Peq, in
a) is computed from the retort temperature (TR, in K) using
ntoine’s law Peq = exp

(
A + B

TR−C
)

.
The temperature in the retort is described by the follow-

ng equation, derived in Alonso et al. (1997) from an energy
alance:

ms(cp,s − Rs) + ma(cp,a − Ra) + mwcp,w
] dTR

dt
=

i
s(cp,s(T

i
s − TR) + RsTR) + Fa,i(cp,a(T

i
a − TR) + RaTR)+ (9)

i
wcp,w(Tiw − TR) − FbTR(xsRs + xaRa) + �
 − (Qa + Qp + QR),
here Tix with x = s, w, a represents the temperature of the
nlet streams whereas Rs = R/Mw and Ra = R/Ma. Heat losses to
the surrounding media (Qa), heat absorbed by the retort metal
carcass (QR), and heat absorbed by the food product (Qp) are
computed as:

Qa = AR
(
hR (TR − Tamb) + �ε

(
T4
R − T4

amb

))
,

QR = mRcp,R
dTR
dt

,

Qp = npmpcp,p
dTp,n

dt
; with Tp,n =

∫
Vp
Tp(r, z, t)dVp

Vp
.

Flows (in kg s−1) through the steam, air and bleeder valves
are described by (Smith and Corripio, 1997):

Fix = 3.4 × 10−8cv,xuxCf Pred
√
Gf

(
wx − 0.148w3

x

)
, x = s, b, a.

(10)

wx = 1.63
Cf

√
Pin − Pout

Pin
,

with ux ∈ [0,  1] denoting the valve opening. For the steam
valve, input and output pressures correspond, respectively,
with the reducing valve pressure (Pin = Pred) and the retort
pressure (Pout = PR). For the air valve, Pin = Pia and Pout = PR.
Finally, for the bleeder valve, Pin = PR and Pout = Patm. Water
and drain valves transport liquid so the flows through them
can be computed as (Smith and Corripio, 1997):

Fd = Adud�w

√
2 (PR − Patm)

�w
, Fw = Awuw�w

√
2
(
Piw − PR

)
�w

.

(11)

2.3.2.  Simplified  model  for  the  retort  dynamics
The solution of Eqs. (5)–(11) involves the computation of the
steam condensation flux (
) at each integration step through
Eq. (8). Because of the non-linearity of the equations involved,
the solution of Eq. (8) must be obtained through an iterative
procedure which hampers the simulation of the model. This
is particularly relevant when the model is used for real-time
tasks. To reduce the computational effort, a simplified ver-
sion of the sterilization unit model was derived in Alonso
et al. (1997). In this version, retort temperature evolution is
described by:

[
mRcp,R

�
−

(
BTR

(TR − C)2
+ 1

)
VvPeq

RT2
R

]
dTR
dt

= Fis − Fb − Ql
�
. (12)

Note that Eqs. (5)–(7) are not required in the simplified version.
However, Eq. (12) cannot be used for describing the cooling
stage. Therefore it will only be used during venting and hold-
ing stages, whereas Eqs. (6)–(9) will be used during the cooling
stage.

The retort temperature is regulated by a PI controller acting
on the steam valve:

us,k = us,k−1 + Kp

(
1.0 + �t

�I

)
k − Kpk−1, (13)
where k is the difference between the retort temperature and
the reference trajectory at time tk, i.e k = TR,sp(tk) − TR(tk). us,k
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represents the steam valve opening in during the time interval
t ∈ [tk, tk+1].

2.4.  Safety  and  quality  indicators

Microbial lethality (F0), which is typically used as the safety
indicator, is described by:

dF0

dt
= 10

Tc (t)−Tref
zF,ref , (14)

where Tc(t) is the temperature at the coldest point (the center)
of the food product. In this work, F0 ≥ 8 min  will be used as
the lethality value to be reached at the end of the process,
although other (less conservative) values could be considered
as well.

Heating has a negative effect on food quality either defined
as nutrient or organoleptic indicators (e.g. color or texture).
Surface color (Cs) has been extensively used as a quality indi-
cator for canned tuna both in the literature (Banga et al.,
1993; Scherer et al., 2009; Sendin et al., 2010; Mohan et al.,
2014; Rueangwatcharin and Wichienchot, 2015) and in canner-
ies. Typically, when canneries produce gourmet articles (highly
appreciated by consumers), they use less aggressive steriliza-
tion strategies that result into whiter tuna, at the price of
reducing productivity. Therefore, in this work, surface color
is used as the quality indicator. Degradation of Cs can be
described using a Thermal Death Time (TDT) kinetics of the
form (Banga et al., 1993):

dlog10Cs
dt

= − 1
Dref

10
Ts (t)−Tref
zC,ref . (15)

where Ts(t) is the temperature on the top surface of the solid
food product.

2.5.  Multi-objective  optimization  under  product
variability

In this section, we will formulate the optimization problem
with multiple objectives (such as process time, average food
product quality, and uniformity) when variability on the food
product is considered. Variability in the thermal coefficients
(˛p, ht and hb) affects both safety and quality indicators. The
operation strategy of the sterilization process must be such
that all items in the batch fulfill the requirement of safety
(lethality). Regarding the quality indicator (surface color), vari-
ability might cause that thermal treatments with good average
quality contain some items with much poorer quality. Uni-
formity is, therefore, an important issue to be considered
together with the average quality. Process time is also a rele-
vant objective to increase plant productivity. Other objectives,
such as other quality indicators (nutrient degradation, texture,
etc.) or process energy consumption could be also considered.
However, for the sake of clarity in the presentation, in this
work we  will only consider:

• To maximize the average color retention (�Cs ).
• To minimize surface color variability (	Cs ), i.e. maximize uni-

formity.
• To minimize batch sterilization time (tf ).

This constitutes a multi-objective dynamic optimization

problem (MODOP) with many  potential optimal solutions
depending on the preferred trade off among objectives
(Miettinen, 2012). The decision variable in this problem is the
reference trajectory of the retort temperature (TR,sp(t)). Math-
ematically, the MODOP can be written as:

min
TR,sp(t)

J:=[−�Cs , 	Cs , tf ] ∈ R
3. (16)

Subject to:

• The food product dynamics, Eq. (4).
• The retort dynamics, including the PI controller, Eqs.

(5)–(13).
• Safety and quality indicators dynamics, Eqs. (14) and (15),

respectively.
• Final lethality of the food product in all items of the batch,
F0(tf ) ≥ 8.0 min.

• Final temperature at the central point of all food items,
Tc(tf ) ≤ 90 ◦C.

The last temperature constraint is to ensure that the prod-
uct does not continue to degrade once the batch is finished.
Besides, since canneries usually work with retort tempera-
tures in a given interval, we will also consider the following
bounds on the decision variable 105 ◦C ≤ TR,sp(t) ≤ 130 ◦C.
Note, however, that different bounds could be taken into
account.

Usual approaches aiming at maximizing average quality or
uniformity are based on Monte-Carlo simulations that allow
the computation of �Cs and 	Cs (Baucour et al., 2003; Smout
et al., 2003). However, this is not practical for real-time imple-
mentations as thousands of simulations have to be performed
at each step of the optimization procedure. This is particularly
relevant when variability in more  than one parameter is con-
sidered. In the remaining of this section, we  will show that
optimization of both average color retention and color vari-
ability is possible without the need of performing thousands
of simulations covering the whole uncertain-parameter space.

Let us recall the mean and standard deviation values for
the thermal parameters ˛p, ht and hb presented in Section
2.2. Then, according to this variability characterization, the
following region of parameter uncertainty can be defined:

�:={˛p, ht, hb | �˛p − c	˛p ≤ ˛p ≤ �˛p + c	˛p ,

�ht − c	ht ≤ ht ≤ �ht + c	ht ,

�hb − c	hb ≤ hb ≤ �hb + c	hb }.

(17)

In this work, we will follow the work by Baucour et al. (2003)
and use c = 3, for which the region � includes 99.7% of the
parameter values in the Gaussian distribution. Note that � is
a polytopic convex set defined by 23 vertices.

Besides, note that heat transfer is slower in those items
with lower values of the thermal parameters. Therefore, qual-
ity degradation will be also slower in these items (monotonic
response of the safety and quality indicators with respect to
the thermal parameters). Hence, the maximum (minimum)
quality will be reached in the items with the lowest (largest)
values of the thermal parameters. Let us denote by Cs,max and
Cs,min the final surface color obtained with the minimum and
maximum values of the parameters:

Cs,max:=Cs(tf , �˛p − 3	˛p , �ht − 3	ht , �hb − 3	hb ),
Cs,min:=Cs(tf , �˛p + 3	˛p , �ht + 3	ht , �hb + 3	hb ).
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Fig. 2 – Illustrative scheme of the on-line safety sensing
and event-based dynamic optimization approach.

are weighted in a linear combination according to the plant-

1 Intervals of different duration could be also considered.
However, this may imply increasing the number of decision
variables ad hoc.

2 Differences between the optimal profiles computed off-line
n this way, we  can use (Cs,max − Cs,min) to fully characterize
uality variability (up to the confidence level c = 3) instead
f computing 	Cs from thousands of simulations in a Monte-
arlo scheme.

Analogously, the lowest final lethality value will correspond
o the item with the slowest heat flow, i.e. with the lowest
alues of the thermal coefficients:

0,min = F0(tf , �˛p − 3	˛p , �ht − 3	ht , �hb − 3	hb ).

The monotonic property with respect to the thermal
arameters can also be exploited to (conservatively) ensure

c(tf ) ≤ 90 ◦C for all food items. Note that, given the pro-
osed retort-temperature bounds, Tc(th) ≤ 130 ◦C for all items
t the end of the holding stage (thermal equilibrium would
et TR = Ts = Tc = 130). Therefore, assuming the worst case,
.e. the central point of the food item with slower heat trans-
er reached the highest possible temperature, we  propose to
et the duration of the cooling stage (tc) by solving a bound-
ry value problem (BVP) with the food-product dynamics (4),
etort cooling dynamics (5)–(11), and the following boundary
onditions:

TR(0) = 130 ◦C,

Tc(0,  �˛p − 3	˛p , �ht − 3	ht , �hb − 3	hb ) = 130 ◦C,

Tc(tc, �˛p − 3	˛p , �ht − 3	ht , �hb − 3	hb ) = 90 ◦C.

(18)

onsequently, the total batch time will be the time of the hold-
ng stage (variable) plus the one of the cooling stage (fixed in
dvance by the above BVP): tf = th + tc.

Finally, Jensen’s inequality (Perlman, 1974) states that: for a
andom variable x taking values in the domain of a convex function

 , the mathematical expectation (E) of f (x) is larger than (or equal to)
 applied to the mathematical expectation of x, i.e. E(f (x)) ≥ f (E(x)).
herefore, instead of computing the mean value of color �Cs

rom thousands of simulations in a Monte-Carlo scheme, we
an set a lower bound for the average surface color using the
ean value of the thermal parameters, i.e:

s:=Cs(tf , �˛p , �ht , �hb ).

ence, problem (16) is recast to solving:

min
R,sp(t)

J:=[−Cs, Cs,max − Cs,min, tf ] ∈ R
3. (19)

ubject to:

 The food product dynamics, Eq. (4).
 The retort dynamics, including the PI controller, Eqs.

(5)–(13).
 Safety and quality indicators dynamics, Eqs. (14) and (15),

respectively.
 Minimum final lethality, F0,min ≥ 8.0 min.
 Bounds on the reference trajectory, 105 ◦C ≤ TR,sp(t) ≤ 130 ◦C

ote that solving the MODOP (19) involves performing only
hree simulations of the model at each optimization step:
ne to compute Cs,min (using the maximum value of the ther-
al  parameters), another one to compute Cs (using the mean

alue of the thermal parameters), and another one to compute

s,max and F0,min (using the minimum value of the thermal
arameters).
The control vector parameterization (CVP) approach is
elected, among the different options (Biegler et al., 2002; Vilas
et al., 2012), to describe the reference trajectory (TR,sp(t)). The
CVP proceeds dividing the process duration into a number of
elements and approximating TR,sp(t), typically using low order
polynomials which become the new decision variables. In this
work, we divided the venting and holding stages duration
into a number (n) of intervals equally spaced1 . The decision
variables for optimization are, therefore, the reference trajec-
tory temperature values at the boundaries of such intervals
(TR,sp(tk), with k = 1, 2, . . .,  n + 1) and the duration of the hold-
ing stage (th). The CVP approach allows us, then, to re-write
the infinite-programming MODOP (19) as:

min
TR,sp(tk),th ∈ Rn+2

J:=[−Cs, Cs,max − Cs,min, tf ] ∈ R
3, (20)

subject to constraints analogous to the ones in problem (19)
above.

2.6.  Online  safety  sensing  and  dynamic  optimization
under  product  variability

The scheme for event-based optimization proposed in this
work is presented in Fig. 2. First, a given reference trajectory for
sterilizer temperature (TR,sp(t)) is selected from the Pareto front
obtained off-line by solving Problem (20). The PI controller uses
this TR,sp(t) and the measured values in the retort (TR(t)) to
compute, according to Eq. (13), the steam valve openings (us).

Once the sterilization has started, available plant mea-
surements (TR and Pred) are fed to the mathematical model.
The model acts as a software sensor,  using these measure-
ments to predict, in real-time, the microbial lethality that
the item with the slower heat transfer will reach at the end
of the sterilization (F0,min). If the safety requirement is ful-
filled (F0,min ≥ 8 min), the process continues with no action
on the original reference trajectory. On the contrary, if plant
perturbations arise such that the predicted F0,min < 8 min,
then the optimization scheme computes a corrective refer-
ence trajectory2 from the current plant state, that is passed
to the PI controller. Obviously, in this contingency situation,
the optimization problem must be solved on-line. Therefore,
computing and analyzing all Pareto optimal solutions from
Problem (20) is not practical due to the demanding time con-
straints. For this reason, the different objectives in the MODOP
and on-line are mainly caused by perturbations in the steam
pressure coming from boilers.
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Table 2 – Values obtained for the individual objectives
using different weights in Problem (21).

Point Cs(tf ) [%]
(
Cs,max(tf ) − Cs,min(tf )

)
[%] tf [min]

Blue 63.9 7.1 64.9
Cyan 72.4 2.1 103.3
Magenta 72.3 1.7 111.4
Red 70.1 3.8 79.7
engineers preferences. In this way, the MODOP becomes a
single-objective dynamic optimization problem (SODOP):

min
TR,sp(tk),th ∈ Rn+2

J = −w1
Cs
C∗

s
+ w2

Cs,max − Cs,min

�C∗
s

+ w3
tf

t∗
f

, (21)

subject to the same constraints presented in the previous sec-
tion. Although this option is quite common in practice, it must
be pointed out that the performance of the obtained solution
highly depends on the chosen weights (w1, w2, w3). Besides,
other hidden solutions in the Pareto front, that cannot be
revealed by this approach, may exist (Reynoso-Meza, 2014).
Parameters C∗

s, �C∗
s and t∗

f in Eq. (21) are used to normalize
individual objectives so that they are in the same order of
magnitude.

The MEIGO toolbox (Egea et al., 2014) is used to find the
solution of the SODOP problems. This toolbox includes several
metaheuristic methods among which, the enhanced scat-
ter search metaheuristic (eSS) (Egea et al., 2009) is selected.
This eSS solver combines the scatter search approach, to
escape from local optima, and local optimization methods, to
enhance convergence to the global solution. Of course, solv-
ing the optimization elapses some time (5 min  maximum in
this case study), during which the plant continues running
with the previous reference trajectory. This small time delay
is already contemplated in the formulation to avoid discrep-
ancies between the predicted final lethality and quality with
the reality.

3.  Results  and  discussion

3.1.  Multi-objective  optimization  under  product
variability

As previously mentioned, multi-objective optimization prob-
lems have many  potentially optimal solutions. The selection
of one solution or another will depend on the preferences
on the objectives. Before proceeding with the event-based
dynamic optimization problem, let us analyze the different
solutions of the MODOP (20) obtained off-line. To this pur-
pose, several options are available (Boada et al., 2016), among
which we  have chosen to proceed as follows. We  first define a
pertinency region (Reynoso-Meza, 2014). Outside this region the
objectives are either not reachable or they degrade too much
in terms of production efficiency or quality. Therefore, solu-
tions outside the pertinency region are not considered. For
instance, using the constraint F0(tf ) ≥ 8 min, and considering
that the maximum temperature allowed in the retort is 130 ◦C,
sterilizing faster than 40 min  is not possible with this equip-
ment. Besides, using operation strategies with duration larger
than 130 min  for RO200 containers would significantly reduce
the productivity of the plant and, as it will be shown in this
section, no relevant improvement in quality is achieved. Also,
values of 40% in average color retention or 18% in the differ-
ence between the items with maximum and minimum color
are considered of very poor quality and canneries do not work
close to these limits. The limits set for the pertinency region
in this work are, therefore:
Cs ∈ [40,  75]%, (Cs,max − Cs,min)

∈ [0,  18]%, tf ∈ [40,  130] min  .
In this regard, note that upper bounds for Cs above 75% could
be included. In this work, they have been neglected because,
using this equipment and for this product, the established
constraint F0,min ≥ 8 min  prevents reaching higher values.
Note, also, that these bounds could be included as constraints
in the optimization problem (21). In this way, convergence to a
point inside the pertinency region is ensured despite the selec-
tion of the weights. Now, we discretize the intervals of two of
the objectives in a fixed number of points. For illustrative pur-
poses, we  have chosen to discretize Cs and (Cs,max − Cs,min) in
n
Cs

= n(Cs,max−Cs,min) = 20 equidistant points. This defines a 2D

grid with 400 intersection points.
Now, the MODOP is cast as a set of SODOP. To that pur-

pose, we  choose a given pair of Cs and (Cs,max − Cs,min) in the
grid. These values are introduced as upper-bounded inequality
constraints and the SODOP consists of finding the sterilization
strategy that minimizes tf . This is repeated for the other 399
points in the grid to approximate the Pareto front.

Following the CVP strategy, the continuous reference
trajectory (TR,sp) is constrained to n piece-wise linear polyno-
mials. In this case, we have chosen n = 5, what results in 7
decision variables, namely the temperature values at six time
instants (tk) as well as the duration of the holding (th) stage.

The Pareto front obtained from solving the 400 SODOPs is
depicted in Fig. 3. Since the solutions obtained may be difficult
to visualize and analyze in the 3D representation (Fig. 3(a)),
the different 2D projections are also included (Fig. 3(b)–(d)).
As shown in the figure, strategies with fast sterilization times
result in high degradation of average surface color and uni-
formity. Note also that little quality improvement is obtained
at strategies with processing times larger than 100 min. When
the workload in the sterilizers of the plant is relatively low,
the operator can select reference trajectories with process-
ing times close to 100 min  to improve quality and uniformity.
On the contrary, if many  carts containing the packed product
are waiting for sterilization, faster strategies can be chosen to
increase productivity and to avoid bottlenecks, at the price of
getting lower product quality and/or uniformity of course.

For illustrative purposes, Fig. 3 also highlights four qual-
itatively different solutions that can be obtained by solving
Problem (21) with different weights in the individual objec-
tives. The values used to normalize the individual objectives
are chosen as the upper bounds of the pertinency region,
i.e. C∗

s = 75%, �C∗
s = 18% and t∗

f = 130 min. The blue point in
Fig. 3 was obtained by giving more  importance to process time
(w1 = 1, w2 = 5 and w3 = 20), whereas the solutions marked
as cyan (w1 = 20, w2 = 1 and w3 = 1) and magenta (w1 = 5,
w2 = 20 and w3 = 5) prioritize average quality and quality vari-
ability, respectively. Finally, the red point corresponds with an
intermediate solution (w1 = 4, w2 = 1 and w3 = 3). The pro-
files obtained for each of these cases are depicted in Fig. 4
whereas the optimal values of each individual objectives for
the blue, cyan, magenta and red points are shown in Table 2.

As mentioned before, process time, average quality and uni-
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Fig. 3 – Pareto front obtained by solving the MODOP (20). (a) 3D representation, (b)–(d) 2D projections. Colored dots highlight
some representative solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4 – Optimal reference trajectories for the retort
temperature obtained by solving Problem (21) using
different weights for the individual objectives. Dots in the
x-axis just indicate the end time of the cooling stage. (For
interpretation of the references to color in the text, the
r
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eader is referred to the web version of this article.)

ormity largely depend on the selected weights. As expected,
ore aggressive strategies with higher retort temperatures

esult into shorter processing times whereas using smoother
emperatures benefit product quality.

The sterilization strategy for the solution marked as a red
ot is represented in Fig. 5. Subplot 5 (a) shows the evolution
f the temperature in the sterilizer (gray line); at the product
urface (blue band); and at the center of the food product (red
and). Limits of the bands are defined by the simulation results
btained with the minimum and maximum values of the ther-
al  parameters, within the variability region � defined in Eq.

17). The dashed line represents the reference trajectory of the
terilizer obtained as the solution of problem (21). Note that,

t the end of the process, the temperature at the center of the
ood product for all items is lower than 90 ◦C, as desired. Sub-
plot 5 (b) shows the evolution of the microbial lethality for the
different items in a batch. As in Subplot 5 (a), the limits of the
bands correspond with the simulations performed using the
minimum and maximum values of the thermal parameters.
The minimum value of F0 at the end of the process, i.e. F0,min,
is larger than (although close to) 8 min, which means that all
items in the batch fulfill the required safety constraint. Evolu-
tion of surface-color retention is also included in Subplot 5 (b).
It can be seen that average color retention is close to 70% and
the difference between the maximum and minimum values is
lower than 4%. Consequently, implementing this sterilization
strategy is expected to provide products with good average
quality (close to the maximum possible) and uniformity.

3.2.  On-line  safety  sensing  and  event-based  dynamic
optimization  under  product  variability

In canneries, resources such as steam may be shared by
several sterilization units or other equipment, such as can-
washing machines or cookers. Thus, when several units,
whose correct operation depends on shared resources, are
working at the same time, pressure drops might occur if
resource generation (e.g. boilers) is not capable of fulfilling
the demand at nominal conditions. Besides, faults in the
boiler might occur during the sterilization procedure. These
disturbances prevent the perfect tracking of the reference tem-
perature trajectory. In these cases, the lethality constraint
might not be fulfilled for some or all the items of the batch,
with the corresponding rejection or reprocessing of the whole
batch.

To illustrate this point, let us consider the optimal steriliza-
tion strategy obtained by solving the SODOP (21) with w1 = 4,
w2 = 1 and w3 = 3 (Fig. 5). At t = 28.2 min  we simulate a fault
in the boiler that makes the input steam pressure (Pred) to drop

from 3.54e5 Pa to 0 Pa. After 1.7 min  the boiler recovers. Then,
at time t = 38.2 min, we simulate the effect of having several
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Fig. 5 – Sterilization strategy obtained using the approach of weighting the objectives to obtain a SODOP. Weights used are
w1 = 4, w2 = 1 and w3 = 3. The subplots show the evolution of (a) Retort and product temperatures, (b) lethality (red) and
surface color (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6 – Top figures: effect of a perturbation in the input steam pressure on the sterilization strategy obtained from the
Pareto front. Bottom figures: on-line update of the sterilization profile after the perturbation occurs. The subplots (a) and (c)
show the evolution of retort and product temperatures, whereas (b) and (d) show the lethality (red) and surface color (blue)
respectively. Black dots in subplot (c) indicate the times at which the reference trajectory is updated. (For interpretation of

erred
the references to color in this figure legend, the reader is ref

retorts, that use the same steam source, working at the same
time. In this case, Pred drops from 3.54×105 Pa to 2.03×105 Pa.
As shown in Fig. 6(a), when the perturbations are introduced,
the retort is not able to track the reference trajectory. This has
an important effect on the lethality reached by the items in the
batch (Fig. 6(b)). Note that, although the highest final lethality
is above 8 min, many  items in the batch are clearly below this
safe value, as F0,min is 6.7 min.

As shown in the bottom subplots of Fig. 6, the batch can be
saved if the final microbial lethality is predicted by the model
using available plant measurements. When a process pertur-
bation is large enough to prevent all items from reaching the
safety constraint, a new sterilization profile is recomputed
by the optimization routine following the methodology pro-
posed in Section 2.6. This is, the event-based optimization
triggers when the software sensor predicts that the safety

constraint will not be reached at the end of the batch (distur-
bances that cannot be compensated quickly by the PI control
 to the web version of this article.)

loop is detected). Then, a corrective strategy for finishing the
sterilization is computed by the SODOP (21). In this case, the
reference trajectory is recomputed five times during the batch
(black dots in Fig. 6(c)). The remaining TR,sp(tk) (i.e. those not
yet implemented at current time) as well as a new heating
time th are the decision variables in the SODOP. Note that
solving the SODOP to full optimality can elapse a several min-
utes with the employed setup. In this case study, 5 min  of
computation is considered an acceptable limit to stop the opti-
mization obtaining reasonably optimal solutions. During this
time-lapse, the plant continues running with the previous ref-
erence trajectory. Our event-based approach takes this issue
into account by using the model to predict the evolution of the
plant during these 5 min  with the previous control reference.

The updated reference trajectory is presented in Fig. 6(c)
together with its effect on the retort temperature (gray line),

as well as the temperature at the product surface (red bands)
and product center (blue bands). As shown in Fig. 6(d), the new
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terilization strategy results into a batch with F0,min ≥ 8 min.
esides, since the new strategy was optimally computed, pro-
ess duration is only increased by 4 min  with respect to the
riginal strategy and the effect on quality degradation is min-

mal (Fig. 6(d)).
The reader may realize that, although the final safety con-

traints are fulfilled, part of the recomputed optimal trajectory
s also above the heating capacities of the retort. This is
ecause all sterilization profiles above such capacities result

n the same value of the objective function (zero sensitivity
f the model outputs with respect to decision variables) so
he optimization algorithm cannot distinguish among them.
evertheless, this does not create any problem, as happened
ith the initial reference after the disturbance, because final

ethality is well predicted by the model in current process con-
itions. Anyway, an additional term that penalizes solutions
bove unreachable temperatures could be added to the cost
unction to overcome this little inconvenience.

.  Conclusions

n this contribution, we  presented a closed-loop control
ramework that uses model-based optimization to deal with
nexpected disturbances in sterilization processes. It is well
nown that such disturbances might compromise the require-
ents of food safety, even more  with the variability inherent

o the food products, leading to the rejection of the batch
n the worst case. To avoid this issue, we have derived and
mplemented a software sensor together with an event-based
trategy that make use of available plant measurements to
ecompute the thermal processing profile when unexpected
erturbations occur. The approach takes into account vari-
bility among the food items to be processed and multiple
bjectives simultaneously in a mathematical optimization
ashion. For illustrative purposes, the objectives considered
ere the minimization of the process duration as well as the
aximization of average surface color retention and unifor-
ity among the items in the batch. Other objectives such as

nergy consumption or other quality indicators can be eas-
ly included in the methodology. Monotonicity and convexity
roperties of the safety/quality indicators were used to effi-
iently evaluate food safety, average quality, and uniformity.
e  showed that the profiles recomputed using our method-

logy allow to guarantee that, even under the presence of
lant disturbances, food safety requirements are met, while
inimizing, at the same time, their influence on food quality,

niformity, and process duration.
Once the safety sentinel is deployed, the replacement of

he limited PI control loops by a real-time optimal control,
.k.a. economic model-predictive control, might be the next
vident step. However, the times to solve the SODOP need to
e reduced drastically in this case. A way to achieve this could
e coding the SODOP in a software environment that provides
xact sensitivities and algorithmic differentiation (Andersson
t al., 2019), so that gradient-based solvers can run efficiently.
esides, the use of computing strategies that allow to run in
arallel the three required simulations (i.e. using the mini-
um,  mean and maximum values of the thermal parameters)
ill be studied too. Finally, we  would like to integrate this

pproach into the recently developed scheduling algorithms
ith redundant equipment and shared resources (Palacin
nd de Prada, 2019). The benefits would be twofold: The off-
ine MODOP provides a static database of thermal treatments
among which the scheduling tool can choose, depending on
the factory situation; whilst the on-line routine guarantees
product safety and can give feedback of actual operation to
the scheduler.
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Appendix  A.  The  proper  orthogonal
decomposition

In this section, a brief description of the proper orthogonal
decomposition (POD) (Sirovich, 1987) applied to the thermal pro-
cessing of solid food is provided.

For the sake of clarity, let us rewrite the food product equa-
tions:

∂Tp

∂t
= ˛p

[
∂2Tp

∂z2
+ 1
r

∂

∂r

(
r
∂Tp

∂r

)]
, (A.1)

˛p
∂Tp

∂z

∣∣∣
z=L

= ht
(
TR − Tp

∣∣
z=L

)
,

˛p
∂Tp

∂z

∣∣∣
z=0

= hb
(
TR − Tp

∣∣
z=0

)
,

˛p
∂Tp

∂r

∣∣∣
r=R

= hr
(
TR − Tp

∣∣
r=R

)
,

∂Tp

∂r

∣∣∣
r=0

= 0,

where the Dirichlet condition at the right boundary has been
approximated, for convenience, as a Robin boundary condition
with a large transfer coefficient hr.

In the POD method, the product temperature is approxi-
mated by truncated Fourier series expansion of the form:

Tp(r, z, t) ≈
n∑
i=1

�i(r, z)si(t), (A.2)

where n is the number of elements required to obtain a suf-
ficiently accurate approximation. The set of modes {si(t)}Ni=1
contain the spatial information of the solution whereas the
basis function set {�i(r, z)}Ni=1 contains the spatial informa-
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tion and they are obtained by solving the following eigenvalue
problem:

�i�i =
∫

V
K�idV,

where the kernel K  is computed as:

K  = 1
p

p∑
i=1

Tp,iT
′
p,i,

with Tp,i ∈ R
N being vector of food product temperature mea-

surements at different N spatial points and at time ti. The
prime symbol indicates the transpose. The basis functions
obtained in this way are orthonormal, i.e.:∫

V
�i�jdV  =

{
1 if i = j

0 if i /= j
.

Now, the Fourier equation (A.1) is projected over the basis
set to obtain the set of modes {si(t)}Ni=1. In practice, such pro-
jection is performed by multiplying Eq. (A.1) by the basis
functions and integrating over the spatial domain, i.e.∫

V
�j
∂T

∂t
dV  = ˛

∫
V
�jATdV; j = 1, . . ., n,

where A represents the Laplacian operator in cylindrical coor-
dinates. Substituting Tp by the series expansion (A.2) and using
the boundary conditions, the following set of ODEs is obtained:

ds
dt

=
(
˛pA˛p + htAht + hbAhb + hrAhr

)
s

+
(
htBht + hbBhb + hrBhr

)
TR, (A.3)

where s = [s1, s2, . . ., sn]T . Each element (i, j) of A˛p , Aht , Ahb and
Ahr is computed as:

A˛p (i, j) = −
∫

V
∇�i∇�jdV,

A�(i, j) = −
∫

B�
�i�jdB�; with � = ht, hb, hr,

whereas vectors Bht , Bhb and Bhr is obtained as:

B�(i) =
∫

B�
�iTrdB�; with � = ht, hb, hr,

with Bht , Bhb
and Bhr being, respectively, the top, bottom and

right boundaries.
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