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Abstract: The main purpose of this paper is to study the relationship between those functions that
aggregate relaxed indistinguishability fuzzy relations with respect to a collection of t-norms and
those functions that merge relaxed pseudo-metrics, extending the classical approach explored for
pseudo-metrics and indistinguishability fuzzy relations. Special attention is paid to the distinguished
class of SSI-relaxed indistinguishability fuzzy relations showing that functions merging this special
type of relaxed indistinguishability fuzzy relations can be expressed through functions aggregating
SSD-relaxed pseudo-metrics. Outstanding differences between those functions aggregating indistin-
guishability fuzzy relations and those that aggregate their counterpart separating points are shown.
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1. Introduction

In [1], E. Trillas introduced the concept of indistinguishability fuzzy relation with
respect to T (T-equivalence in [2]), where T is a t-norm. From now on, we assume that the
reader is versed in the fundamentals of t-norms. A reference where such a theory is treated
exhaustively is [2].

On account of [1] (see also [3]), an indistinguishability fuzzy relation with respect to T
on a non-empty set X is a fuzzy set E : X× X → [0, 1] which satisfies, for each x, y, z ∈ X,
the axioms below:

(I1) E(x, x) = 1;
(I2) E(x, y) = E(y, x);
(I3) T(E(x, y), E(y, z)) ≤ E(x, z).

Following [2,3], an indistinguishability fuzzy relation with respect to T is called an indis-
tinguishability fuzzy relation with respect to T that separates points (or T-equality) whenever

(I1’) E(x, y) = 1 implies x = y.

Since Trillas introduced the concept of indistinguishability fuzzy relation, many works
have focused their efforts both on the study of theoretical aspects and their applications.
A few references devoted to the aforementioned aim are [3–25].

In [25], a “metric behaviour” of indistinguishability fuzzy relations was proved (see
also [9,10]). Concretely, a technique for generating extended pseudo-metrics from indistin-
guishability fuzzy relations, and vice versa was introduced. In order to introduce such a
technique, let us recall that, according to [26], an extended pseudo-metric on a (non-empty)
set X is a function d : X× X → [0, ∞] such that for all x, y, z ∈ X :
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(d1) d(x, x) = 0;
(d2) d(x, y) = d(y, x);
(d3) d(x, z) ≤ d(x, y) + d(y, z).

An extended pseudo-metric d on X is said to be an extended metric when, in addition,
it satisfies the following condition for all x, y ∈ X:

(d1’) d(x, y) = 0⇔ x = y.

Following [9,10,25], given an extended pseudo-metric d on X and a continuous
Archimedean t-norm T with an additive generator fT , an indistinguishability fuzzy relation
Ed, fT with respect to T on X can be induced for all x, y ∈ X as follows:

Ed, fT (x, y) = f (−1)
T (d(x, y)), (1)

where f (−1)
T is the pseudo-inverse of fT . Let us recall that the pseudo-inverse f (−1)

T is given
as follows:

f (−1)
T (y) =

{
f−1
T (y) if 0 ≤ y < fT(0)

0 if fT(0) ≤ y ≤ ∞
.

Reciprocally, given an indistinguishability fuzzy relation E with respect to T on X,
an extended pseudo-metric d can be generated on X for all x, y ∈ X, by

d(x, y) = fT(E(x, y)). (2)

Based on the exposed duality relationship between indistinguishability fuzzy relations
and extended pseudo-metrics, A. Pradera, E. Trillas and E. Castiñeira studied the so-
called aggregation problem for indistinguishability fuzzy relations. Thus, they gave a
characterization of those functions that merge a collection of indistinguishability fuzzy
relations into a single one in [27,28]. The aforementioned characterization establishes
that such functions can always be obtained by means of those functions that aggregate a
collection of extended pseudo-metrics into a single one. With the aim of recalling such a
characterization, we introduce a few necessary notions exposed in [27,28].

Given a collection of t-norms T = {Ti}n
i=1 (n ∈ N) and a non-empty set X, a col-

lection of indistinguishability fuzzy binary relations {Ei}n
i=1 is said to be a collection of

T -indistinguishability fuzzy relations on X provided that each Ei is an indistinguishability
fuzzy binary relation on X with respect to Ti for all i = 1, . . . , n. Moreover, given a t-norm
T, a function F: [0, 1]n → [0, 1] aggregates T -indistinguishability fuzzy relations into a
T-indistinguishability fuzzy relation provided that F(E1, . . . , En) is an indistinguishability
fuzzy relation with respect to T on a non-empty set X when {Ei}n

i=1 is a collection of T -
indistinguishability fuzzy relations on X. Furthermore, a function G: [0, ∞]n → [0, ∞] aggre-
gates extended pseudo-metrics into an extended pseudo-metric provided that G(d1, . . . , dn)
is an extended pseudo-metric on a non-empty set Y whenever {di}n

i=1 is a collection of
extended pseudo-metrics on Y, and the function G(d1, . . . , dn) is given for all x, y ∈ Y, by

G(d1, . . . , dn)(x, y) = G(d1(x, y), . . . , dn(x, y)).

According to [29], an extended pseudo-metric d on X is called an s-bounded pseudo-
metric whenever there exists s ∈ R++ ∪ {∞} such that d(x, y) ≤ s for all x, y ∈ X, where
R++ = {a ∈ R+ : a > 0}. Observe that s-bounded extended pseudo-metrics are exactly
extended pseudo-metrics when s = ∞.

If we have a collection of (si)
n
i=1-bounded pseudo-metrics {di}n

i=1 on Y and s ∈ R++ ∪
{∞}, then a function H: ∏n

i=1[0, si] → [0, s] aggregates a collection of (si)
n
i=1-bounded

pseudo-metrics {di}n
i=1 on Y provided that H(d1, . . . , dn) is a s-bounded pseudo-metric

on Y.
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In the sequel, given a collection of continuous Archimedean t-norms T = {Ti}n
i=1, we

will say that { fTi}n
i=1 is a collection of additive generators of T provided that each fTi is an

additive generator of Ti for all i = 1, . . . , n.
In consideration of the exposed concepts, the aforementioned characterization of

functions aggregating T -indistinguishability fuzzy relations is provided by the result
below (see [27]):

Theorem 1. Let n ∈ N, let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms, and

let { fTi}n
i=1 be a collection of additive generators of T . If T is a continuous Archimedean t-norm

and F: [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates T -indistinguishability fuzzy relations into a T-indistinguishability fuzzy relation.
(2) The function H : ∏n

i=1[0, fTi (0)] → [0, fT(0)] aggregates every collection {di}n
i=1 of

( fTi (0))
n
i=1-bounded pseudo-metrics into a fT(0)-bounded pseudo-metric, where H = fT ◦

F ◦ ( f−1
T1
× . . .× f−1

Tn
).

Notice that all t-norms in the statement of Theorem 1 are continuous. This is due to
the fact that such a condition cannot be removed in order to guarantee that the technique
given by (1) generates T-indistinguishability fuzzy relations from extended pseudo-metrics.
A counterexample where this fact is made explicit can be found in [9] [Example 3].

The following result can be deduced from the preceding one in the particular case in
which all continuous Archimedean t-norms are assumed to be strict.

Corollary 1. Let n ∈ N, and let T = {Ti}n
i=1 be a collection of strict continuous Archimedean

t-norms. If T is a strict continuous Archimedean t-norm and F: [0, 1]n → [0, 1] is a function, then
the following assertions are equivalent:

(1) F aggregates T -indistinguishability fuzzy relations into a T-indistinguishability fuzzy relation.
(2) The function H : [0,+∞]n → [0, ∞] aggregates every collection {di}n

i=1 of extended pseudo-
metrics into an extended pseudo-metric, where H = fT ◦ F ◦ ( f−1

T1
× . . .× f−1

Tn
).

The study, on the one hand, of the aggregation of fuzzy relations in general, and indis-
tinguishability fuzzy relations in particular, and, on the other hand, of the aggregation of
distances plays a relevant role in the literature in such a way that these topics are treated in
outstanding monographs such as [3,26,30–33].

Regarding the aggregation of distances, J. Borsik and J. Doboš provided a description
of those functions that are able to aggregate a collection of pseudo-metrics into a new
one [31,34]. The same study was developed by Pradera and Trillas when bounded pseudo-
metrics are under consideration [35]. The aforementioned description was given in terms
of the so-called triangular triplets. Let us recall that a triplet (a, b, c), with s ∈]0, ∞] and
a, b, c ∈ [0, s]n (n ∈ N), is said to form an n-dimensional triangular triplet whenever, for all
i = 1, . . . , n,

ai ≤ bi + ci, bi ≤ ai + ci and ci ≤ bi + ai.

Notice that ≤ stands for the usual order in the extended real line.
The next result states the description given in [34,35].

Theorem 2. Let s ∈]0, ∞]. Then the below assertions are equivalent:

(1) The function H : [0, s]n → [0, s] aggregates every collection {di}n
i=1 of s-bounded pseudo-

metrics into an s-bounded pseudo-metric.
(2) The function H : [0, s]n → [0, s] transforms n-dimensional triangular triplets in [0, s]n into a

one-dimensional triangular triplet in [0, s] and H(0, . . . , 0) = 0.

Observe that the fact that H : [0, s]n → [0, s] transforms n-dimensional triangu-
lar triplets in [0, s]n into a one-dimensional triangular triplet in [0, s] must be under-
stood as (H(a), H(b), H(c)) is a one-dimensional triangular triplet provided that (a, b, c),
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with a, b, c ∈ [0, s]n, is an n-dimensional triangular triplet. It must be stressed that the
description yielded by Borsik and Doboš is retrieved from the preceding result when
s = ∞.

Later on, G. Mayor and J. Recasens gave a description of those functions that aggregate
indistinguishability fuzzy relations in [19]. The aforesaid description is based on a new
notion that they called T-triangular triplet and that it is inspired by the triangular triplet
concept of Borsik and Doboš. Concretely, given a t-norm T, a triplet (a, b, c), with a, b, c ∈
[0, 1]n, is said to be an n-dimensional T-triangular triplet provided, for all i = 1, . . . , n, that

T(ai, bi) ≤ ci, T(ai, ci) ≤ bi and T(bi, ci) ≤ ai.

In the spirit of Theorem 2, the new description of those functions that merge indistin-
guishability fuzzy relations was given as follows.

Theorem 3. Let n ∈ N and let T be a t-norm. If F : [0, 1]n → [0, 1] is a function, then the
following assertions are equivalent:

(1) F aggregates T-indistinguishability fuzzy relations.
(2) F satisfies the following conditions:

(2.1) F(1n) = 1, where 1n ∈ [0, 1]n with 1n = (1, . . . , 1).
(2.2) F transforms n-dimensional T-triangular triplets into one-dimensional T-triangular

triplets.

Stimulated by the equivalence stated, on the one hand, in Theorem 3 and, on the other
hand, in Theorem 1, the concept of T-triangular triplet was extended to the context of
collections of t-norms T in [36]. Specifically, given a collection of t-norms T = {Ti}n

i=1,
a triplet (a, b, c), with a, b, c ∈ [0, 1]n, is said to be an n-dimensional T -triangular triplet
provided, for all i = 1, . . . , n, that

Ti(ai, bi) ≤ ci, Ti(ai, ci) ≤ bi and Ti(bi, ci) ≤ ai.

In light of the preceding notion, the next new equivalence was given in [36].

Theorem 4. Let n ∈ N and let T = {Ti}n
i=1 be a collection of t-norms. If T is a t-norm and

F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates T -indistinguishability fuzzy relations into a T- indistinguishability fuzzy relation.
(2) F holds the following conditions:

(2.1) F(1n) = 1, where 1n ∈ [0, 1]n with 1n = (1, . . . , 1).
(2.2) F transforms n-dimensional T -triangular triplets into a one-dimensional T-triangular triplet.

Observe that Theorem 3 is recovered as a particular case when the collection of t-norms
T in Theorem 4 fulfills that Ti = T for all i = 1, . . . , n.

When the T -indistinguishability fuzzy relations separate points, the next result, which
differs significantly from Theorem 4, was also obtained in [36].

Theorem 5. Let n ∈ N and let T = {Ti}n
i=1 be a collection of t-norms. If T is a t-norm and F:

[0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates T -indistinguishability fuzzy relations that separate points into a T-indistinguishability
fuzzy relation that separates points.

(2) F holds the following conditions:

(2.1) F(1n) = 1.
(2.2) Let a ∈ [0, 1]n. If F(a) = 1, then there exists i ∈ {1, . . . , n} such that ai = 1.
(2.3) If a, b, c ∈ [0, 1[n such that (a, b, c) is an n-dimensional T -triangular triplet, then

(F(a), F(b), F(c)) is a one-dimensional T-triangular triplet.
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In order to make the relationship between Theorems 1 and 4 clear, new equivalences be-
tween functions that merge T -indistinguishability fuzzy relations and those functions that
are able to merge extended pseudo-metrics have been given recently in [37]. In particular,
the following results were obtained.

Theorem 6. Let n ∈ N, let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms, and

let { fTi}n
i=1 be a collection of additive generators of T . If T is a continuous Archimedean t-norm

and F: [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates T -indistinguishability fuzzy relations into a T-indistinguishability fuzzy relation.
(2) The function G: [0,+∞]n → [0, fT(0)] transforms n-dimensional triangular triplets in

[0, ∞]n into a one-dimensional triangular triplet in [0, fT(0)] and G(0, . . . , 0) = 0, where
G = fT ◦ F ◦ ( f (−1)

T1
× . . .× f (−1)

Tn
).

(3) The function G: [0,+∞]n → [0, fT(0)] aggregates every collection {di}n
i=1 of extended pseudo-

metrics into a fT(0)-bounded pseudo-metric, where G = fT ◦ F ◦ ( f (−1)
T1
× . . .× f (−1)

Tn
).

(4) The function H: ∏n
i=1[0, fTi (0)]→ [0, fT(0)] transforms n-dimensional triangular triplets

in ∏n
i=1[0, fTi (0)] into a one-dimensional triangular triplet in [0, fT(0)] and H(0 . . . , 0) = 0,

where H = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

In the particular case in which the indistinguishability fuzzy relations separate points,
the equivalences below can be obtained ([37]).

Theorem 7. Let n ∈ N and let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms.

If T is a continuous Archimedean t-norm and F : [0, 1]n → [0, 1] is a function, then the following
assertions are equivalent:

(1) F aggregates T - indistinguishability fuzzy relations that separate points into a T-indistinguishability
fuzzy relation that separates points.

(2) The function G : [0,+∞]n → [0, fT(0)], where G = fT ◦ F ◦ ( f (−1)
T1
× . . .× f (−1)

Tn
), fulfills

the following conditions:

(2.1) G(0, . . . , 0) = 0;
(2.2) Let a ∈ [0,+∞]n. If G(a) = 0, then there exists i ∈ {1, . . . , n} such that ai = 0;
(2.3) G transforms n-dimensional triangular triplets in [0,+∞]n into a one-dimensional

triangular triplet in ]0, fT(0)].

(3) The function G : [0,+∞]n → [0, fT(0)] aggregates every collection {di}n
i=1 of extended

metrics into an fT(0)-bounded metric, where G = fT ◦ F ◦ ( f (−1)
T1
× . . .× f (−1)

Tn
).

(4) The function H : ∏n
i=1[0, fTi (0)] → [0, fT(0)] aggregates every collection {di}n

i=1 of
( fTi (0))

n
i=1-bounded metrics into an fT(0)-bounded metric, where H = fT ◦ F ◦ ( f−1

T1
×

. . .× f−1
Tn

).
(5) The function H : ∏n

i=1[0, fTi (0)] → [0, fT(0)], where H = fT ◦ F ◦ ( f−1
T1
× . . . × f−1

Tn
),

fulfills the following conditions:

(5.1) H(0, . . . , 0) = 0;
(5.2) Let a ∈ ∏n

i=1[0, fTi (0)]. If H(a) = 0, then there exists i ∈ {1, . . . , n} such that
ai = 0;

(5.3) H transforms n-dimensional triangular triplets in ∏n
i=1[0, fTi (0)] into a one-dimensional

triangular triplet in [0, fT(0)].

Although extended (pseudo-)metrics occupy a central place in the literature, their
axiomatics limit their use in certain applications. In [38,39] (see also [40,41]), a new type of
distance notion is introduced in order to develop suitable quantitative mathematical models
and metric tools in computer science, appropriate, for instance, for program verification and
logic programming. The aforesaid notion is called relaxed pseudo-metric in [42] (d-metric
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in [38–41]). Let us recall that, according to [42], a relaxed pseudo-metric on a (non-empty)
set X is a function d : X× X → [0, ∞] such that for all x, y, z ∈ X :

(r1) d(x, y) = d(y, x),
(r2) d(x, z) ≤ d(x, y) + d(y, z).

A relaxed pseudo-metric d on X is said to be a relaxed metric when, in addition, it
satisfies the following condition for all x, y ∈ X:

(r3) d(x, y) = d(x, x) = d(y, y)⇔ x = y.

Clearly, an extended pseudo-metric d on X is a relaxed pseudo-metric such that
d(x, x) = 0 for all x ∈ X. However, there are relaxed pseudo-metrics which are not
extended pseudo-metrics. Indeed, according to [43], the following is an instance of a
relaxed pseudo-metric which is not an extended pseudo-metric. Let X = {1, 2, 3} and
define d : X× X → [0, ∞] by

d(x, y) =


1 if (x, y) = (1, 2) or (x, y) = (2, 1)

1
2 otherwise

. (3)

A relaxed pseudo-metric d on a non-empty set X satisfies the small self-distances (SSD
for short) property in the spirit of [44] whenever d(x, x) ≤ d(x, y) for all x, y ∈ X. In this
case, we say that d is an SSD-relaxed pseudo-metric on X. Observe that the preceding
example is an instance of an SSD-relaxed pseudo-metric. A celebrate special class of SSD-
relaxed pseudo-metrics is known as a partial metric, and they have been applied to many
fields in computer science (see, for instance, [38–41,45–49]).

Inspired by the dual relationship between T -indistinguishability fuzzy relations (T -
indistinguishability fuzzy relation that separates points) and extended pseudo-metrics
(extended metrics), the techniques given by (1) and (2) were extended to the relaxed
framework in [43]. To this end, it was necessary to introduce a new notion of indistin-
guishability which is known as relaxed indistinguishability fuzzy relation. Moreover, such
indistinguishability fuzzy relations are suggested to be the logical counterpart of relaxed
pseudo-metrics in [42] (see also [17,50]).

On account of [42] (see also [43]), the notion of relaxed indistinguishability fuzzy
relation can be formulated as follows:

Let X be a non-empty set and let T : [0, 1]× [0, 1] → [0, 1] be a t-norm. A relaxed
T-indistinguishability fuzzy relation E on X is a fuzzy set E : X× X → [0, 1] satisfying for
all x, y, z ∈ X the following:

(R1) E(x, y) = E(y, x),
(R2) T(E(x, z), E(z, y)) ≤ E(x, y).

Moreover, a relaxed T-indistinguishability fuzzy relation E is said to separate points
provided that the condition below is satisfied for all x, y ∈ X:

(R3) E(x, y) = E(x, x) = E(y, y)⇒ x = y.

When a relaxed T-indistinguishability fuzzy relation E on X fulfills, for all x, y ∈ X,
the condition

(R4) E(x, y) ≤ E(x, x),

then E is said to be an SSI-relaxed T-indistinguishability fuzzy relation. Notice that SSI
stands for small self-indistinguishability.

Next, we give an easy, but illustrative, example of SSI-relaxed T-indistinguishability
fuzzy relation which has been extracted from [43]. To this end, fix k ∈]0, 1[. Define the
fuzzy binary relation Ek : R+ ×R+ → [0, 1] by

Ek(x, y) = k
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for x, y ∈ R+. Clearly, it is obvious that Ek is an SSI-relaxed TMin-indistinguishability fuzzy
relation that does not separate points and, in addition, which is not a TMin-indistinguishability
fuzzy relation because E(x, x) = k 6= 1 for each x ∈ R+. Observe that Ek is na SSI-
relaxed TMin-indistinguishability fuzzy relation provided that it is an SSI-relaxed T-indistin-
guishability fuzzy relation for all t-norm T. We refer the reader to [43] [Example 3] for an
instance of SSI-relaxed T-indistinguishability fuzzy relation that separates points.

It is worth mentioning that the techniques for generating, one from the other, in-
distinguishability fuzzy relations and extended pseudo-metrics can be adapted to the
relaxed context simply interchanging indistinguishability fuzzy relations and extended
pseudo-metrics by their corresponding relaxed counterpart in expressions (1) and (2) ([43]
[Theorems 3 and 5]). An example of SSI-relaxed TP-indistinguishability fuzzy relation that
does not separate points can be obtained through the technique given by (2) and using the
relaxed pseudo-metric given by (3) (compare [43] [Example 7]).

Inspired by the characterizations exposed in terms of T -triangular triplets in
Theorems 4 and 5, a new equivalence was stated for those functions that aggregate relaxed
indistinguishability fuzzy relations in [36]. In order to introduce such an equivalence, let
us recall that a collection of fuzzy relations {Ei}n

i=1 is a collection of T -relaxed indistin-
guishability fuzzy relations when each Ei is a relaxed indistinguishability fuzzy relation
with respect to Ti. Concretely, the next result was proved.

Theorem 8. Let n ∈ N and let T = {Ti}n
i=1 be a collection of t-norms. If T is a t-norm and

F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates T -relaxed indistinguishability fuzzy relations into a T-relaxed indistinguishabil-
ity fuzzy relation.

(2) F transforms n-dimensional T -triangular triplets into a one-dimensional T-triangular triplet.

It must be stressed that a few properties of those functions that aggregate T -relaxed
indistinguishability fuzzy relations into a T-relaxed indistinguishability fuzzy relation
have been explored in [36]. In particular, every function F transforming n-dimensional
T -triangular triplets into a one-dimensional T-triangular triplet must dominate T with
respect to the collection T . Notice that, according to [36], a function F : [0, 1]n → [0, 1]
dominates a t-norm T with respect to a collection T = {Ti}n

i=1 of t-norms when F satisfies,
for all a, b ∈ [0, 1]n, the following condition:

T(F(a), F(b)) ≤ F(T1(a1, b1), . . . , Tn(an, bn)).

Motivated by the fact that, on the one hand, the exposed relationship of duality
between relaxed indistinguishability fuzzy relations and relaxed pseudo-metrics and, on the
other hand, the possibility of expressing the equivalence provided by Theorem 8 in terms
of new ones for functions aggregating relaxed pseudo-metrics in the spirit of Theorems 6
and 7 is not explored yet, the main purpose of this paper is to study the connection
between those functions that aggregate relaxed indistinguishability fuzzy relations with
respect to a collection of t-norms and those functions that merge relaxed pseudo-metrics
complementing the information provided by Theorem 8 and extending, in some sense,
Theorem 1 to the relaxed framework.

The remainder of the paper is organized as follows. In Section 2, we provide a
new characterization of those functions that aggregate relaxed indistinguishability fuzzy
relations. Thus, we show that there is an equivalence between functions that aggregate
T -relaxed indistinguishability fuzzy relations and those functions aggregating relaxed
pseudo-metrics. Moreover, such an equivalence is expressed in terms of triangular triplets
in the spirit of Theorem 2. An interesting consequence that can be derived from the
aforementioned equivalence is that the functions under consideration are in correspondence
with those that are subaddtive. Moreover, the separating points case is approached and
characterizations of the class of functions merging T -relaxed indistinguishability fuzzy
relations that separate points are obtained in terms of T -triangular triplets. It must be
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pointed out that the aggregation of this type of relaxed indistinguishability fuzzy relations
was not explored in [36]. Outstanding differences between those functions aggregating
T -relaxed indistinguishability fuzzy relations and those that aggregate their counterpart
separating points are shown.

Special attention is paid to the distinguished class of SSI-T -relaxed indistinguishabil-
ity fuzzy relations in Section 3. Thus, we show that functions merging this special type of
relaxed indistinguishability fuzzy relations can be expressed through functions aggregating
SSD-relaxed pseudo-metrics. It must be stressed that there is a notable difference between
the class of functions that are able to aggregate a collection of relaxed indistinguishability
fuzzy relations (relaxed pseudo-metrics) and SSI-relaxed indistinguishability fuzzy rela-
tions (SSD-relaxed pseudo-metric). In this case, the appropriate class of functions are those
that satisfy monotony and subadditivity. Section 4 ends the paper, exposing the conclusions
and future work.

2. Aggregation of T -Relaxed Indistinguishability Relations

In this subsection, we focus our efforts on the study of the interlink between those
functions that aggregate relaxed indistinguishability fuzzy relations with respect to a
collection of t-norms T and those functions that merge relaxed pseudo-metrics in such
a way that the information provided by Theorem 8 is complemented, and an extension
of Theorem 6 to the relaxed context is obtained. Moreover, the case in which the relaxed
indistinguishability fuzzy relations separate points is also explore,d and a version of
Theorems 5 and 7 in the new framework is proved.

With the aim of stating the aforesaid link, we prove the following result that will be
useful later on.

Lemma 1. Let n ∈ N and let a, b, c ∈ [0,+∞]n. If (a, b, c) is an n-dimensional triangular
triplet and X = {x, y, z} with card(X) = 3, then there exists a collection {di}n

i=1 of relaxed
pseudo-metrics on X such that di(x, y) = ai, di(x, z) = bi and di(z, y) = ci for all i = 1, . . . , n.

Proof. Define, for each i ∈ {1, . . . , n}, the function di : X × X → [0,+∞] by di(x, y) =
di(y, x) = ai, di(x, z) = di(z, x) = bi and di(z, y) = di(y, z) = ci. Clearly di(u, v) = di(v, u)
for all u, v ∈ X and for all i ∈ {1, . . . , n}. Moreover, di(u, v) ≤ di(u, w) + di(w, v) for all
u, v, w ∈ X and for all i ∈ {1, . . . , n}, since (a, b, c) is an n-dimensional triangular triplet. So
{di}n

i=1 is a collection of relaxed pseudo-metrics on X.

The next result provides a sequence of equivalences revealing the aforementioned inter-
link.

Theorem 9. Let n ∈ N, let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms, and

let { fTi}n
i=1 be a collection of additive generators of T . If T is a continuous Archimedean t-norm

and F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates T -relaxed indistinguishability fuzzy relations into a T-relaxed indistinguishabil-
ity fuzzy relation.

(2) F transforms n-dimensional T -triangular triplets into a one-dimensional T-triangular triplet.
(3) The function G : [0,+∞]n → [0, fT(0)] transforms n-dimensional triangular triplets into a

one-dimensional triangular triplet in [0, fT(0)], where G = fT ◦ F ◦ ( f (−1)
T1
× . . .× f (−1)

Tn
).

(4) The function G : [0,+∞]n → [0, fT(0)] aggregates every collection {di}n
i=1 of relaxed

pseudo-metrics into an fT(0)-bounded relaxed pseudo-metric, where G = fT ◦ F ◦ ( f (−1)
T1
×

. . .× f (−1)
Tn

).
(5) The function H : ∏n

i=1[0, fTi (0)] → [0, fT(0)] aggregates every collection {di}n
i=1 of

( fTi (0))
n
i=1-bounded relaxed pseudo-metrics into an fT(0)-bounded relaxed pseudo-metric,

where H = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).
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(6) The function H : ∏n
i=1[0, fTi (0)]→ [0, fT(0)] transforms n-dimensional triangular triplets

in ∏n
i=1[0, fTi (0)] into a one-dimensional triangular triplet in [0, fT(0)], where H = fT ◦

F ◦ ( f−1
T1
× . . .× f−1

Tn
).

Proof. (1)⇒ (2). This implication is warranted by Theorem 8.
(2) ⇒ (3). Let (a, b, c), with a, b, c ∈ [0,+∞]n, be an n-dimensional triangular

triplet. Then
f (−1)
Ti

(ui) ≥ f (−1)
Ti

(vi + wi) ≥ Ti( f (−1)
Ti

(vi), f (−1)
Ti

(wi))

for all i ∈ {1, . . . , n} and for all u, v, w ∈ {a, b, c}. So (α, β, γ) ∈ [0, 1]n forms an n-
dimensional T -triangular triplet, where α = ( f (−1)

T1
(a1), . . . , f (−1)

Tn
(an)), β = ( f (−1)

T1
(b1), . . . ,

f (−1)
Tn

(bn)) and γ = ( f (−1)
T1

(c1), . . . , f (−1)
Tn

(cn)). Thus, (F(α), F(β), F(γ)) is a one-dimensional
T-triangular triplet. It follows that

fT ◦ F(u) ≤ fT ◦ T(F(v), F(w)) = fT ◦ f (−1)
T ( fT ◦ F(v) + fT ◦ F(w))

for all u, v, w ∈ {α, β, γ}. Then

fT ◦ F(u) ≤ fT ◦ F(v) + fT ◦ F(w)

for all u, v, w ∈ {α, β, γ}, since

fT ◦ f (−1)
T ( fT ◦ F(v) + fT ◦ F(w)) ≤ fT ◦ F(v) + fT ◦ F(w)

for all u, v, w ∈ {α, β, γ}. Therefore

fT ◦ F ◦ ( f (−1)
T1

(u1)× . . .× f (−1)
Tn

(un)) ≤
fT ◦ F ◦ ( f (−1)

T1
(v1)× . . .× f (−1)

Tn
(vn)) + fT ◦ F ◦ ( f (−1)

T1
(w1)× . . .× f (−1)

Tn
(wn))

for all u, v, w ∈ {a, b, c}. Whence we conclude that (G(a), G(b), G(c)) is a one-dimensional
triangular triplet in [0, fT(0)].

(3) ⇒ (4). Consider a collection {di}n
i=1 of relaxed pseudo-metrics on a non-empty

set X. Symmetry is clear, since G(d1, . . . , dn)(x, y) = G(d1, . . . , dn)(y, x). The fact that
{di}n

i=1 are relaxed pseudo-metrics on X gives that, for every x, y, z ∈ X, we have that
(d, e, f ) ∈ [0, ∞]n is an n-dimensional triangular triplet, where d = (d1(x, y), . . . , dn(x, y)),
e = (d1(x, z), . . . , dn(x, z)) and f = (d1(z, y), . . . , dn(z, y)). Then (G(d), G(e), G( f )) is a
one-dimensional triangular triplet in [0, fT(0)]. Whence we have that

G(d1, . . . , dn)(u, v) ≤ G(d1, . . . , dn)(u, w) + G(d1, . . . , dn)(w, v)

for all u, v, w ∈ {x, y, z}. Moreover, G(d1, . . . , dn)(u, v) ≤ fT(0) for all u, v ∈ {x, y, z}.
Therefore, G(d1, . . . , dn) is an fT(0)-bounded relaxed pseudo-metric on X.

(4)⇒ (5). It is obvious.
(5) ⇒ (6). Consider an n-dimensional triangular triplet (a, b, c) in ∏n

i=1[0, fTi (0)].
Set X = {x, y, z} with card(X) = 3. By Lemma 1, which remains valid for bounded n-
dimensional triangular triplets, we have that there exists a collection of ( fTi (0))

n
i=1-bounded

relaxed pseudo-metrics on X such that di(x, y) = ai, di(x, z) = bi and di(z, y) = ci for all
i = 1, . . . , n. Then H(d1, . . . , dn) is a fT(0)-bounded relaxed pseudo-metric on X. Thus,

H(d1, . . . , dn)(u, v) ≤ H(d1, . . . , dn)(u, w) + H(d1, . . . , dn)(w, v)

for all u, v, w ∈ X. It follows that H(a) ≤ H(b) + H(c), H(b) ≤ H(a) + H(c) and H(c) ≤
H(a) + H(b), where H(a) = H(d1(x, y), . . . , dn(x, y)), H(b) = H(d1(x, z), . . . , dn(x, z))
and H(c) = H(d1(z, y), . . . , dn(z, y)). Whence we obtain that (H(a), H(b), H(c)) is a one-
dimensional triangular triplet in [0, fT(0)].
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(6) ⇒ (1). Consider a collection {Ei}n
i=1 of T -relaxed indistinguishability fuzzy

relations on a non-empty set X.
Next, consider x, y, z ∈ X. We need to show that

F(E1, . . . , En)(u, v) ≥ T(F(E1, . . . , En)(u, w), F(E1, . . . , En)(w, v))

for all u, v, w ∈ {x, y, z}. To this end, set ai = fTi (Ei(x, y)), bi = fTi (Ei(y, z)), and ci =
fTi (Ei(x, z)). We know that Ti(Ei(u, w), Ei(w, v)) ≤ Ei(u, v) for all u, v, w ∈ {x, y, z}.
From this fact, we can infer that ai + bi ≥ ci, bi + ci ≥ ai and ci + ai ≥ bi for all i = 1, . . . , n.
Next, we only show that ai + bi ≥ ci for all i = 1, . . . , n. The remainder inequalities can de
derived following similar arguments. From the fact that Ti(Ei(x, y), Ei(y, z)) ≤ Ei(x, z) for
all i = 1, . . . , n we obtain that

f (−1)
Ti

(
fTi (Ei(x, y)) + fTi (Ei(y, z))

)
≤ Ei(x, z)

for all i = 1, . . . , n. Then f (−1)
Ti

(ai + bi) ≤ f (−1)
Ti

(ci) = f−1
Ti

(ci) for all i = 1, . . . , n. It follows

that fTi ◦ f (−1)
Ti

(ai + bi) ≥ ci for all i = 1, . . . , n. Since ai + bi ≥ fTi ◦ f (−1)
Ti

(ai + bi), we
deduce that ai + bi ≥ ci for all i = 1, . . . , n.

Consequently, we have that (a, b, c) is an n-dimensional triangular triplet in ∏n
i=1[0, fTi (0)].

So (H(a), H(b), H(c)) is a one-dimensional triangular triplet in [0, fT(0)]. Thus, H(a) ≤
H(b) + H(c), H(b) ≤ H(a) + H(c) and H(c) ≤ H(a) + H(b). From the preceding inequal-
ities, we can obtain that

F(E1, . . . , En)(u, v) ≥ T(F(E1, . . . , En)(u, w), F(E1, . . . , En)(w, v))

for all u, v, w ∈ {x, y, z}. We only show that

F(E1, . . . , En)(x, y) ≥ T(F(E1, . . . , En)(x, z), F(E1, . . . , En)(z, y))

because the the same reasoning can be applied to prove the two remainder cases. Since
H(a) ≤ H(b) + H(c), we deduce that

fT ◦ F ◦ ( f−1
T1

(a1)× . . .× f−1
Tn

(an)) ≤
fT ◦ F ◦ ( f−1

T1
(b1)× . . .× f−1

Tn
(bn)) + fT ◦ F ◦ ( f−1

T1
(c1)× . . .× f−1

Tn
(cn)).

Hence we obtain that

F ◦ ( f−1
T1

(a1)× . . .× f−1
Tn

(an)) = f (−1)
T ◦ fT ◦ F ◦ ( f−1

T1
(a1)× . . .× f−1

Tn
(an)) ≥

f (−1)
T

(
fT ◦ F ◦ ( f−1

T1
(b1)× . . .× f−1

Tn
(bn)) + fT ◦ F ◦ ( f−1

T1
(c1)× . . .× f−1

Tn
(cn))

)
=

T(F ◦ ( f−1
T1

(b1)× . . .× f−1
Tn

(bn)), F ◦ ( f−1
T1

(c1)× . . .× f−1
Tn

(cn))).

Hence we conclude that

F(E1, . . . , En)(x, y) ≥ T(F(E1, . . . , En)(x, z), F(E1, . . . , En)(z, y)) .

Therefore, F(E1, . . . , En) fulfills condition (R2). Clearly, F(E1, . . . , En)(u, v) = F(E1, . . . ,
En)(v, u) for all u, v ∈ X. Therefore, F(E1, . . . , En) is a T -relaxed indistinguishability fuzzy
relation on X as claimed.

For strict continuous Archimedean t-norms, we have from Theorem 9 the following result.

Corollary 2. Let n ∈ N and let T = {Ti}n
i=1 be a collection of strict continuous Archimedean

t-norms. If T is a strict continuous Archimedean t-norm and F : [0, 1]n → [0, 1] is a function, then
the following assertions are equivalent:
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(1) F aggregates T -relaxed indistinguishability fuzzy relations into a T-relaxed indistinguishabil-
ity fuzzy relation.

(2) F transforms n-dimensional T -triangular triplets into a one-dimensional T-triangular triplet.
(3) The function G : [0,+∞]n → [0,+∞] transforms n-dimensional triangular triplets into a

one-dimensional triangular triplet, where G = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

(4) The function G : [0,+∞]n → [0,+∞] aggregates every collection {di}n
i=1 of relaxed pseudo-

metrics into a relaxed pseudo-metric, where G = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

The next result, which will be useful in our subsequent discussion, gives informa-
tion about those functions that transform n-dimensional triangular triplets into a one-
dimensional triangular triplet (see [19] [Proposition 7]). In order to introduce it, let us
recall that, given s ∈]0, ∞], a function G : [0,+∞]n → [0, s] is subadditive provided that
G(a + b) ≤ G(a) + G(b) for all a, b ∈ [0,+∞]n.

Proposition 1. Let n ∈ N and let T be a continuous Archimedean t-norm with an additive
generator fT . If a function G : [0, ∞]n −→ [0, fT(0)] transforms n-dimensional triangular triplets
into a one-dimensional triangular triplet in [0, fT(0)], then it is subadditive.

In light of Proposition 1 and Theorem 9, we obtain the next result.

Corollary 3. Let n ∈ N and let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms,

and let { fTi}n
i=1 be a collection of additive generators of T . If T is a continuous Archimedean t-norm

and F : [0, 1]n → [0, 1] aggregates T -relaxed indistinguishability fuzzy relations into a T-relaxed
indistinguishability fuzzy relation, then the function G : [0,+∞]n → [0, fT(0)] is subaddtitve,
where G = fT ◦ F ◦ f (−1)

T1
× . . .× f (−1)

Tn
.

In [36], the aggregation of relaxed indistinguishability fuzzy relations that separate
points was not explored. Taking this fact into account, we obtain a characterization of
those functions that are able to aggregate this type of T -relaxed indistinguishability fuzzy
relations extending Theorem 7 to the relaxed context and expanding the information
provided about relaxed indistinguishability fuzzy relations in the aforementioned reference,
and in addition, we give relationships between these functions and those that transform T -
triangle triplets and those that aggregate relaxed metrics. Outstanding differences between
this class of functions and the class of functions aggregating T -relaxed indistinguishability
fuzzy relations are shown.

Theorem 10. Let n ∈ N, let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms, and

let { fTi}n
i=1 be a collection of additive generators of T . If T is a continuous Archimedean t-norm

and F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates T -relaxed indistinguishability fuzzy relations that separate points into a T-
relaxed indistinguishability fuzzy relation that separates points.

(2) F satisfies the following conditions:

(2.1) If a, b, c ∈ [0, 1]n such that Ti(ai, ai) ≤ bi and Ti(ai, ai) ≤ ci for all i = 1, . . . , n
with ai ∈ [0, 1[ for all i = 1, . . . , n and F(a) = F(b) = F(c), then there exists
i ∈ {1, . . . , n} such that ai = bi = ci.

(2.2) If a, b, c ∈ [0, 1[n such that (a, b, c) is an n-dimensional T -triangular triplet, then
(F(a), F(b), F(c)) is a one-dimensional T-triangular triplet.

(3) The function G : [0,+∞]n → [0, fT(0)], where G = fT ◦ F ◦ ( f (−1)
T1
× . . .× f (−1)

Tn
), satisfies

the following assertions:

(3.1) If a, b, c ∈ ∏n
i=1[0, fTi (0)] such that f (−1)

Ti
(ai + ai) ≤ f (−1)

Ti
(bi) and f (−1)

Ti
(ai +

ai) ≤ f (−1)
Ti

(ci) for all i = 1, . . . , n with ai ∈]0, fTi (0)] for all i = 1, . . . , n and
G(a) = G(b) = G(c), then there exists i ∈ {1, . . . , n} such that ai = bi = ci.
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3.2) G transforms n-dimensional triangular triplets in ]0,+∞]n into a one-dimensional
triangular triplet in [0, fT(0)].

(4) The function G : [0,+∞]n → [0, fT(0)] aggregates every collection {di}n
i=1 of ( fTi (0))

n
i=1-

bounded relaxed metrics into an fT(0)-bounded relaxed metric, where G = fT ◦ F ◦ ( f (−1)
T1
×

. . .× f (−1)
Tn

).
(5) The function H : ∏n

i=1[0, fTi (0)] → [0, fT(0)] aggregates every collection {di}n
i=1 of

( fTi (0))
n
i=1-bounded relaxed metrics into an fT(0)-bounded relaxed metric, where H =

fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

(6) The function H : ∏n
i=1[0, fTi (0)] → [0, fT(0)], where H = fT ◦ F ◦ ( f−1

T1
× . . . × f−1

Tn
),

satisfies the following conditions:

(6.1) If a, b, c ∈ ∏n
i=1[0, fTi (0)] such that bi ≤ ai + ai and ci ≤ ai + ai with ai ∈]0, fTi (0)]

for all i = 1, . . . , n and H(a) = H(b) = H(c), then there exists i ∈ {1, . . . , n} such
that ai = bi = ci.

(6.2) H transforms n-dimensional triangular triplets in ∏n
i=1]0, fTi (0)] into a one-dimensional

triangular triplet in [0, fT(0)].

Proof. (1) ⇒ (2). First we prove that 2.1) holds. Suppose that a, b, c ∈ [0, 1]n such that
Ti(ai, ai) ≤ bi and Ti(ai, ai) ≤ ci for all i = 1, . . . , n with ai ∈ [0, 1[ for all i = 1, . . . , n and
F(a) = F(b) = F(c). For the purpose of contradiction, we assume that for all i ∈ {1, . . . , n}
we have that ai, bi, ci are not equal, since otherwise we have the desired conclusion. Then
consider the non-empty set X = {x, y} with x, y different. Define on X the collection
{Ei}n

i=1 of T -relaxed indistinguishability fuzzy relations that separate points as follows:
Ei(x, y) = Ei(y, x) = ai and Ei(x, x) = bi and Ei(y, y) = ci for all i = 1, . . . , n. Since F
aggregates T -relaxed indistinguishability fuzzy relations that separate points into a T-
relaxed indistinguishability fuzzy relation that separates points, we find that F(E1, . . . , En)
is a T-relaxed indistinguishability fuzzy relation that separates points. Moreover, F(a) =
F(b) = F(c) and, thus F(E1, . . . , En)(x, y) = F(E1, . . . , En)(x, x) = F(E1, . . . , En)(y, y). So
x = y which is a contradiction.

Next, we prove (2.2). With this aim, we assume that (a, b, c), with a, b, c ∈∈ [0, 1[n, is a
T -triangular triplet. Consider a set X = {x, y, z} with card(X) = 3. Define the collection
of fuzzy binary relations {Ei}n

i=1 on X given by ai = Ei(x, y) = Ei(y, x), bi = Ei(y, z) =
Ei(z, y), ci = Ei(x, z) = Ei(z, x) and Ei(x, x) = Ei(y, y) = Ei(z, z) = 1 for all i = 1, . . . , n.
Then {Ei}n

i=1 is a collection of T -relaxed indistinguishability fuzzy relations that separate
points on X. So F(E1, . . . , En) is a T-relaxed indistinguishability fuzzy relation that separates
points on X. Whence we deduce, by R2) that T(F(a), F(b)) ≤ F(c), T(F(a), F(c)) ≤
F(b), and T(F(a), F(b)) ≤ F(c). Therefore, we conclude that (F(a), F(b), F(c)) is a one-
dimensional T-triangular triplet.

(2) ⇒ (1). Let X be a non-empty set and let {Ei}n
i=1 be a collection of T -relaxed

indistinguishability fuzzy relations that separate points on X. Set x, y, z ∈ X and assume
that F(E1, . . . , En)(x, y) = F(E1, . . . , En)(x, x) = F(E1, . . . , En)(y, y). Take ai = Ei(x, y),
bi = Ei(x, x) and ci = Ei(y, y) for all i = 1, . . . , n. Then a, b, c ∈ [0, 1]n, Ti(ai, ai) ≤ bi and
Ti(ai, ai) ≤ ci for all i = 1, . . . , n. Observe that we can suppose that ai ∈ [0, 1[ because if
ai = 1 for any i ∈ {1, . . . , n} we obtain that Ei(x, y) = 1 and, hence, Ei(x, x) = Ei(y, y) = 1
and, as a consequence, that x = y. The fact that F(E1, . . . , En)(x, y) = F(E1, . . . , En)(x, x) =
F(E1, . . . , En)(y, y) gives that F(a) = F(b) = F(c). Whence we deduce, by 2.1), that there
exists i ∈ {1, . . . , n} such that ai = bi = ci. So Ei(x, y) = Ei(x, x) = Ei(y, y) and x = y.

In the following, we show that

T(F(E1, . . . , En)(u, v), F(E1, . . . , En)(v, w)) ≤ F(E1, . . . , En)(u, w)

for all u, v, w ∈ {x, y, z}. Of course, we can assume that x, y, z are all different elements, since
otherwise the preceding inequality is held immediately. So Ei(x, y), Ei(y, z), Ei(x, z) ∈ [0, 1[.
Now set ai = Ei(x, y), bi = Ei(y, z) and ci = Ei(x, z) for all i = 1, . . . , n. Then (a, b, c) is a
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T -triangular triplet. It follows, from (2.2), that (F(a), F(b), F(c)) is a T-triangular triplet,
and the above inequality is satisfied.

(2) ⇒ (3). Assume that a, b, c ∈ ∏n
i=1[0, fTi (0)] such that f (−1)

Ti
(ai + ai) ≤ f (−1)

Ti
(bi)

and f (−1)
Ti

(ai + ai) ≤ f (−1)
Ti

(ci) for all i = 1, . . . , n with ai ∈]0, fTi (0)] for all i = 1, . . . , n and

G(a) = G(b) = G(c). Set d = ( f (−1)
T1

(a1), . . . , f (−1)
T1

(a1)), e = ( f (−1)
T1

(b1), . . . , f (−1)
T1

(b1)) and,

in addition, g = ( f (−1)
T1

(c1), . . . , f (−1)
T1

(c1)). Clearly, d, e, g ∈ [0, 1]n. Since ai ∈]0, fTi (0)] for
all i = 1, . . . , n, we have that d ∈ [0, 1[n. Moreover, Ti(di, di) ≤ ei for all i = 1, . . . , n, since

Ti(di, di) = Ti( f (−1)
Ti

(ai), f (−1)
Ti

(ai)) =

f (−1)
Ti

(
fTi ◦ ( f (−1)

Ti
(ai)) + fTi ◦ ( f (−1)

Ti
(ai))

)
= f (−1)

Ti
(ai + ai) ≤ f (−1)

Ti
(bi) = ei.

Following the same arguments, we show that Ti(di, di) ≤ gi for all i = 1, . . . , n.
The fact that G(a) = G(b) = G(c) gives that fT(F(d)) = fT(F(e)) = fT(F(g)). Since

fT is injective, by (2.1), we deduce that F(d) = F(e) = F(g). So there exists i ∈ {1, . . . , n}
such that di = ei = gi. Whence we deduce that f (−1)

Ti
(ai) = f (−1)

Ti
(bi) = f (−1)

Ti
(ci). Therefore,

we obtain that ai = bi = ci because f (−1)
Ti
|[0, fTi

(0)] = f−1
Ti

and f−1
Ti

is injective on fTi ([0, 1])
(notice that fTi is continuous).

Next, consider an n-dimensional triangular triplet (a, b, c) in ]0,+∞]n. Then ui ≤
vi + wi for all i = 1, . . . , n and for all u, v, w ∈ {a, b, c}. Thus,

f (−1)
Ti

(ui) ≥ f (−1)
Ti

(vi + wi) ≥ Ti( f (−1)
Ti

(vi), f (−1)
Ti

(wi))

for all u, v, w ∈ {a, b, c}. Whence we deduce that ( f (−1)
Ti

(ai), f (−1)
Ti

(bi), f (−1)
Ti

(ci)) is a Ti-
triangular triplet. So (d, e, f ) ∈ [0, 1[n is an n-dimensional T -triangular triplet with d =

( f (−1)
T1

(a1), . . . , f (−1)
Tn

(an)), e = ( f (−1)
T1

(b1), . . . , f (−1)
Tn

(bn)) and f = ( f (−1)
T1

(c1), . . . , f (−1)
Tn

(cn)).
Then, by (2.2), (F(d), F(e), F( f )) is a one-dimensional T-triangular triplet. Hence we
have that

T(F(u), F(w)) ≤ F(v)

for all u, v, w ∈ {d, e, f }. Whence we deduce that

f (−1)
T ( fT ◦ F(u) + fT ◦ F(w)) = T(F(u), F(w)) ≤ F(v)

for all u, v, w ∈ {d, e, f }. Thus, we obtain

G(u) + G(w) = fT ◦ F(u) + fT ◦ F(w) ≥

fT ◦
(

f (−1)
T ( fT ◦ F(u) + fT ◦ F(w))

)
≥ fT ◦ F(v) = G(v).

for all u, v, w ∈ {a, b, c}. Therefore, (G(a), G(b), G(c)) is a one-dimensional triangular
triplet in [0, fT(0)].

(3)⇒ (4). Consider a collection {di}n
i=1 of ( fTi (0))

n
i=1-bounded relaxed metrics on a

non-empty set X. We show that G(d1, . . . , dn) is a fT(0)-bounded relaxed metric on X.
Suppose that

G(d1, . . . , dn)(x, y) = G(d1, . . . , dn)(x, x) = G(d1, . . . , dn)(y, y)

for any x, y ∈ X. We can assume that di(x, y) ∈]0, fTi (0)] because otherwise we have that
di(x, y) = di(x, x) = di(y, y) = 0 and, thus, that x = y.



Axioms 2022, 11, 431 14 of 25

Since, for any x, y ∈ X, di(x, y), di(x, x) ∈ [0, fTi (0)] for all i = 1, . . . , n and, in addition,
di(x, x) ≤ di(x, y) + di(y, x) we obtain

f (−1)
Ti

(di(x, y) + di(x, y)) ≤ f (−1)
Ti

(di(x, x))

for all i = 1, . . . , n. Similarly, we obtain

f (−1)
Ti

(di(x, y) + di(x, y)) ≤ f (−1)
Ti

(di(y, y))

for all i = 1, . . . , n. Set a = (d1(x, y), . . . , dn(x, y)), b = (d1(x, x), . . . , dn(x, x)) and c =
(d1(y, y), . . . , dn(y, y)). Then G(a) = G(b) = G(c). So there exists i ∈ {1, . . . , n} such that
ai = bi = ci. Thus, di(x, y) = di(x, x) = di(y, y), and hence, x = y.

Clearly, G(d1, . . . , dn)(x, y) = G(d1, . . . , dn)(y, x) for all x, y ∈ X.
Finally, we prove that the triangle inequality

G(d1, . . . , dn)(x, z) ≤ G(d1, . . . , dn)(x, y) + G(d1, . . . , dn)(y, z)

is held for each x, y, z ∈ X. Observe that without loss of generality we can check the triangle
inequality only for elements x, y, z ∈ X with u 6= v for all u, v ∈ {x, y, z}, and thus, we
can assume that the cardinality of X is at least three. Otherwise, the triangle inequality is
clearly satisfied.

By hypothesis, we have that di(u, v) 6= 0 for all u, v ∈ {x, y, z} and for all i = 1, . . . , n.
Otherwise, if there exists i ∈ {1, . . . , n} such that di(u, v) = 0 for some u, v ∈ {x, y, z} with
u 6= v, then di(u, u) = di(v, v) = 0 and u = v, which is not possible.

Define a = (d1(x, z), d2(x, z), . . . , dn(x, z)), b = (d1(x, y), d2(x, y), . . . , dn(x, y)) and
c = (d1(y, z), d2(y, z), . . . , dn(y, z)). By our assumptions, (a, b, c), with a, b, c ∈ ∏n

i=1]0, fTi (0)] ⊆
]0,+∞]n, is an n-dimensional triangular triplet. This gives, by 3.2), that (G(a), G(b), G(c))
is a one-dimensional triangular triplet in [0, fT(0)]. It follows that

G(d1, . . . , dn)(u, v) ≤

G(d1, . . . , dn)(u, w) + G(d1, . . . , dn)(w, v)

for all u, v, w ∈ {x, y, z}.
(4)⇒ (5). It is obvious.
(5) ⇒ (6). We first prove 6.1). Let a, b, c ∈ ∏n

i=1[0, fTi (0)] such that bi ≤ ai + ai and
ci ≤ ai + ai with ai ∈]0, fTi (0)] for all i = 1, . . . , n and H(a) = H(b) = H(c). For the
purpose of contradiction, we assume that {ai, bi, ci} are not equal for all i = 1, . . . , n.

Set X = {x, y} with x, y different. Define the function di : X × X → [0, fTi (0)] by
di(x, y) = di(y, x) = ai and di(x, x) = bi and di(y, y) = ci for all i = 1, . . . , n. Then {di}n

i=1
is a collection of ( fTi (0))

n
i=1-bounded relaxed metrics on X. Thus, H(d1, . . . , dn) is an

fT(0)-bounded relaxed metric on X. Since H(a) = H(b) = H(c), we have that

H(d1, . . . , dn)(x, y) = H(d1, . . . , dn)(x, x) = H(d1, . . . , dn)(y, y),

which is impossible because x 6= y. Therefore, there exists i ∈ {1, . . . , n} such that ai = bi = ci.
In the following, we prove 6.2). Consider an n-dimensional triangular triplet (a, b, c)

with a, b, c ∈ ∏n
i=1]0, fTi (0)]. Set X = {x, y, z} with card(X) = 3. Define, for each i ∈

{1, . . . , n}, the function di : X × X → [0,+∞] by di(x, y) = di(y, x) = ai, di(x, z) =
di(z, x) = bi, di(z, y) = di(y, z) = ci and di(x, x) = di(y, y) = di(z, z) = 0. It is not hard
to check that {di}n

i=1 is a collection of ( fTi (0))
n
i=1-bounded relaxed metrics on X. Then

H(d1, . . . , dn) is an fT(0)-bounded relaxed metric on X. Whence we deduce that

H(d1, . . . , dn)(u, v) ≤ H(d1, . . . , dn)(u, w) + H(d1, . . . , dn)(w, v)
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for all u, v, w ∈ {x, y, z}. It follows that (H(a), H(b), H(c)) is a one-dimensional triangular
triplet in [0, fT(0)].

(6) ⇒ (2). Next, we prove (2.1). Let a, b, c ∈ [0, 1]n such that Ti(ai, ai) ≤ bi and
Ti(ai, ai) ≤ ci for all i = 1, . . . , n with ai ∈ [0, 1[ for all i = 1, . . . , n. The fact that Ti(ai, ai) ≤
bi gives that f (−1)

Ti
( fTi (ai) + fTi (ai)) ≤ bi. Thus, we obtain, for all i = 1, . . . , n, that

fTi (bi) ≤ fTi ◦ f (−1)
Ti

( fTi (ai) + fTi (ai)) ≤ fTi (ai) + fTi (ai).

Following the same arguments, we obtain that fTi (ci) ≤ fTi (ai) + fTi (ai).
Put g, s, r ∈ ∏n

i=1[0, fTi (0)] given by

gi = fTi (ai), si = fTi (bi), ri = fTi (ci)

for all i = 1, . . . , n. Clearly, gi ∈]0, fTi (0)] because, for any i ∈ {1, . . . , n}, gi = 0⇔ ai = 1.
Moreover, we have that si ≤ gi + gi and ri ≤ gi + gi for all i = 1, . . . , n.

Observe that H(g) = fT ◦ F(a), H(s) = fT ◦ F(b) and H(r) = fT ◦ F(c). Suppose that
F(a) = F(b) = F(c). Then H(g) = H(r) = H(s), and thus, there exists i ∈ {1, . . . , n} with
gi = ri = si. It follows that fTi (ai) = fTi (bi) = fTi (ci). The injectivity of fT provides that
ai = bi = ci, as claimed.

Finally, we prove (2.2). Let a, b, c ∈ [0, 1[n such that (a, b, c) is an n-dimensional T -
triangular triplet. Then (e, f , g) is an n-dimensional triangular triplet in ∏n

i=1]0, fTi (0)],
where e = ( fT1(a1), . . . , fTn(an)), f = ( fT1(b1), . . . , fTn(bn)) and g = ( fT1(c1), . . . , fTn(cn)).
Indeed, we have that Ti(ui, vi) ≤ wi for all i = 1, . . . , n and for all u, v, w ∈ {a, b, c}. Hence
we obtain that

f (−1)
Ti

(
fTi (ui) + fTi (vi)

)
≤ wi

for all i = 1, . . . , n and for all u, v, w ∈ {a, b, c}. Whence we deduce that

fTi ◦ f (−1)
Ti

(
fTi (ui) + fTi (vi)

)
≥ fTi (wi)

for all i = 1, . . . , n and for all u, v, w ∈ {a, b, c}. Since

fTi (ui) + fTi (vi) ≥ fTi ◦ f (−1)
Ti

(
fTi (ui) + fTi (vi)

)
we deduce that

fTi (ui) + fTi (vi) ≥ fTi (wi)

for all i = 1, . . . , n and for all u, v, w ∈ {a, b, c}. Consequently, (H(e), H( f ), H(g)) is a
one-dimensional triangular triplet in ]0, fT(0)]. Thus,

fT ◦ F(u1, . . . , un) ≤ fT ◦ F(v1, . . . , vn) + fT ◦ F(w1, . . . , wn)

for all u, v, w ∈ {a, b, c}, since H(e) = fT ◦ F(a1, . . . , an), H( f ) = fT ◦ F(b1, . . . , bn) and
H(g) = fT ◦ F(c1, . . . , cn). Thus, we find that

f (−1)
T ◦ fT ◦ F(u1, . . . , un) ≥ f (−1)

T ( fT ◦ F(v1, . . . , vn) + ◦ fT ◦ F(w1, . . . , wn))

for all u, v, w ∈ {a, b, c}. So we have that

F(u) = F(u1, . . . , un) ≥ f (−1)
T ( fT ◦ F(v1, . . . , vn) + fT ◦ F(w1, . . . , wn)) = T(F(v), F(w))

for all u, v, w ∈ {a, b, c}. Therefore, (F(a), F(b), F(c)) is a one-dimensional T-triangular
triplet.

From the preceding result, we retrieve the following one when all t-norms under
consideration are strict.
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Corollary 4. Let n ∈ N, let T = {Ti}n
i=1 be a collection of strict continuous Archimedean t-norms,

and let { fTi}n
i=1 be a collection of additive generators of T . If T is a strict continuous Archimedean

t-norm and F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates T -relaxed indistinguishability fuzzy relations that separate points into a T-
relaxed indistinguishability fuzzy relation that separates points.

(2) F satisfies the following conditions:

(2.1) If a, b, c ∈ [0, 1]n such that Ti(ai, ai) ≤ bi and Ti(ai, ai) ≤ ci for all i = 1, . . . , n
with ai ∈ [0, 1[ for all i = 1, . . . , n and F(a) = F(b) = F(c), then there exists
i ∈ {1, . . . , n} such that ai = bi = ci.

(2.2) If a, b, c ∈ [0, 1[n such that (a, b, c) is an n-dimensional T -triangular triplet, then
(F(a), F(b), F(c)) is a one-dimensional T-triangular triplet.

(3) The function G : [0,+∞]n → [0,+∞], where G = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
), satisfies the

following assertions:

(3.1) If a, b, c ∈ [0,+∞] such that f−1
Ti

(ai + ai) ≤ f−1
Ti

(bi) and f−1
Ti

(ai + ai) ≤ f−1
Ti

(ci)

for all i = 1, . . . , n with ai ∈]0,+∞] for all i = 1, . . . , n and G(a) = G(b) = G(c),
then there exists i ∈ {1, . . . , n} such that ai = bi = ci.

(3.2) G transforms n-dimensional triangular triplets in ]0,+∞]n into a one-dimensional
triangular triplet in [0,+∞].

(4) The function G : [0,+∞]n → [0,+∞] aggregates every collection {di}n
i=1 of relaxed metrics

into a relaxed metric, where G = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

(5) The function H : [0,+∞]n → [0,+∞], where H = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
), satisfies the

following conditions:

(5.1) If a, b, c ∈ [0,+∞]n such that bi ≤ ai + ai and ci ≤ ai + ai with ai ∈]0,+∞] for all
i = 1, . . . , n and H(a) = H(b) = H(c), then there exists i ∈ {1, . . . , n} such that
ai = bi = ci.

(5.2) H transforms n-dimensional triangular triplets in ]0 + ∞]n into a one-dimensional
triangular triplet in [0,+∞].

3. Aggregation of SSI-T -Relaxed Indistinguishability Relations

In this section, we focus our attention on the study of the distinguished class of SSI-
T -relaxed indistinguishability fuzzy relations. Concretely, we show that functions merging
this special type of relaxed indistinguishability fuzzy relations can be expressed through
functions aggregating SSD-relaxed pseudo-metrics. It must be pointed out that there is
a notable difference between the class of functions that are able to aggregate a collection
of relaxed indistinguishability fuzzy relations (relaxed pseudo-metrics) and SSI-relaxed
indistinguishability fuzzy relations (SSD-relaxed pseudo-metrics). It must be stressed
that SSI-relaxed indistinguishability fuzzy relations are known as weakly reflexive fuzzy
relations in [51].

The next characterization was obtained for functions that aggregate SSI-relaxed
indistinguishability fuzzy relations in [36] [Theorem 32]. Let us recall that a function
G : [0, s]n → [0, s], s ∈]0, ∞], is monotone when G(a) ≤ G(b) for all a, b ∈ [0, s]n with
ai ≤ bi for all i = 1, . . . , n.

Theorem 11. Let n ∈ N and let T = {Ti}n
i=1 be a collection of t-norms. If T is a t-norm and

F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates SSI-T -relaxed indistinguishability fuzzy relations into an SSI-T-relaxed indis-
tinguishability fuzzy relation.

(2) F holds the following conditions:

(2.1) F is monotone.
(2.2) F transforms n-dimensional T -triangular triplets into a one-dimensional T-

triangular triplet.
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In view of the preceding result, we introduce a few equivalences expressed in terms of
functions aggregating SSD-relaxed pseudo-metrics and transforming T -triangle triplets.
In order to state such equivalences, we need the next auxiliary result which was proved in
[19] [Proposition 7].

Proposition 2. Let n ∈ N and let T be a continuous Archimedean t-norm with an additive
generator fT . If a function G : [0, ∞]n −→ [0, fT(0)] is monotone and subadditive, then it
transforms n-dimensional triangular triplets into a one-dimensional triangular triplet in [0, fT(0)].

The promised equivalences are given in the result below.

Theorem 12. Let n ∈ N, let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms, and

let { fTi}n
i=1 be a collection of additive generators of T . If T is a continuous Archimedean t-norm

and F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates SSI-T -relaxed indistinguishability fuzzy relations into a SSI-T-relaxed indistin-
guishability fuzzy relation.

(2) F holds the following conditions:

(2.1) F is monotone.
(2.2) F transforms n-dimensional T -triangular triplets into a one-dimensional T-

triangular triplet.

(3) The function G : [0,+∞]n → [0, fT(0)] is monotone and subadditive, where G = fT ◦ F ◦
( f (−1)

T1
× . . .× f (−1)

Tn
).

(4) The function G : [0,+∞]n → [0, fT(0)] is monotone and transforms n-dimensional trian-
gular triplets into a one-dimensional triangular triplet in [0, fT(0)], where G = fT ◦ F ◦
( f (−1)

T1
× . . .× f (−1)

Tn
).

(5) The function G : [0,+∞]n → [0, fT(0)] aggregates every collection {di}n
i=1 of SSD-relaxed

pseudo-metrics into an SSD- fT(0)-bounded relaxed pseudo-metric, where G = fT ◦ F ◦
( f (−1)

T1
× . . .× f (−1)

Tn
).

(6) The function H : ∏n
i=1[0, fTi (0)]→ [0, fT(0)] aggregates every collection {di}n

i=1 of SSD-
( fTi (0))

n
i=1-bounded relaxed pseudo-metrics into an SSD- fT(0)-bounded relaxed pseudo-

metric, where H = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

(7) The function H : ∏n
i=1[0, fTi (0)] → [0, fT(0)] is monotone and transforms n-dimensional

triangular triplets in ∏n
i=1[0, fTi (0)] into a one-dimensional triangular triplet in [0, fT(0)],

where H = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
),

Proof. (1)⇒ (2). Theorem 11 guarantees such an implication.
(2)⇒ (3). Theorem 9 gives that condition (2.2) implies that G transforms n-dimensional

triangular triplets into a one-dimensional triangular triplet in [0, fT(0)]. Thus, by Proposition 1,
we have that G is subadditive.

Next, we show that G is monotone provided that F is monotone. Indeed, consider
a, b ∈ [0,+∞]n with ai ≤ bi for all i = 1, . . . , n. Then f (−1)

Ti
(ai) ≥ f (−1)

Ti
(bi) for all i =

1, . . . , n. Whence we have that

F ◦ ( f (−1)
T1

(a1)× . . .× f (−1)
Tn

(an)) ≥ F ◦ ( f (−1)
T1

(b1)× . . .× f (−1)
Tn

(bn)),

since F is monotone. Hence

G(a) = fT ◦ F ◦ ( f (−1)
T1

(a1)× . . .× f (−1)
Tn

(an)) ≤

fT ◦ F ◦ ( f (−1)
T1

(b1)× . . .× f (−1)
Tn

(bn) = G(b).

So G is monotone.
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(3) ⇒ (4). Proposition 2 gives that G transforms n-dimensional triangular triplets
into a one-dimensional triangular triplet in [0, fT(0)].

(4) ⇒ (5). The implication (3) ⇒ (4) in Theorem 9 provides that the function
G : [0,+∞]n → [0, fT(0)] aggregates every collection {di}n

i=1 of relaxed pseudo-metrics
on X into an fT(0)-bounded relaxed pseudo-metric on X. We only need to show that G
aggregates SSD-relaxed pseudo-metrics into na SSD- fT(0)-bounded relaxed pseudo-metric.

Suppose that di(x, x) ≤ di(x, y) for all x, y ∈ X and for all i = 1, . . . , n. The monotony
of G gives that

G(d1(x, x), . . . , dn(x, x)) ≤ G(d1(x, y), . . . , dn(x, y))

for all x, y ∈ X. So G(d1, . . . , dn) is an SSD- fT(0)-bounded relaxed pseudo-metric on X.
(5)⇒ (6). It is obvious.
(6)⇒ (7). The proof of the fact that function H transforms n-dimensional triangular

triplets in ∏n
i=1[0, fTi (0)] into a one-dimensional triangular triplet in [0, fT(0)] is the same

as that given for the implication (5)⇒ (6) in Theorem 9.
It remains to prove that H is monotone. With this aim, let a, b ∈ ∏n

i=1[0, fTi (0)] such
that ai ≤ bi for all i = 1, . . . , n. Set X = {x, y} with x 6= y. Define the the function
di : X × X → [0, fTi (0)] by di(x, x) = di(y, y) = ai and di(x, y) = di(y, x) = bi for all
i = 1, . . . , n. It is clear that {di}n

i=1 is a collection of SSD-( fTi (0))
n
i=1-bounded relaxed

pseudo-metrics on X. Then H(d1, . . . , dn) is an SSD- fT(0)-relaxed pseudo-metric on X.
Hence H(d1, . . . , dn)(x, x) ≤ H(d1, . . . , dn)(x, y). Then

H(a) = H(d1(x, x), . . . , dn(x, x)) = H(d1, . . . , dn)(x, x) ≤
H(d1, . . . , dn)(x, y) = H(d1(x, y), . . . , dn(x, y)) = H(b).

Whence we deduce that H is monotone.
(7) ⇒ (1). Suppose that {Ei}n

i=1 is a collection of SSI-T -relaxed indistinguishabil-
ity fuzzy relations on a non-empty set X. By (6) ⇒ (1) in Theorem 9, we have that
F(E1, . . . , En) is a T-relaxed indistinguishability fuzzy relation on X. Next, we show
that F(E1, . . . , En)(x, y) ≤ F(E1, . . . , En)(x, x) for all x, y ∈ X. Since H is monotone and
F = f−1

T ◦ H ◦ ( fT1 × . . . × fTn), we obtain that F is monotone. F(E1, . . . , En)(x, y) ≤
F(E1, . . . , En)(x, x), since Ei(x, y) ≤ Ei(x, x) for all x, y ∈ X and for all i = 1, . . . , n. Hence
we deduce that F(E1, . . . , En) is an SSI-T -relaxed indistinguishability fuzzy relation on X,
which completes the proof.

It is worth mentioning that, according to [36], the functions F that aggregate SSI-T -
relaxed indistinguishability fuzzy relations into an SSI-T-relaxed indistinguishability fuzzy
relation are exactly those that dominate the t-norm T with respect to T .

We can derive the next result from Theorem 12 for strict continuous Archimedean t-norms.

Corollary 5. Let n ∈ N, and let T = {Ti}n
i=1 be a collection of strict continuous Archimedean

t-norms. If T is a strict continuous Archimedean t-norm and F : [0, 1]n → [0, 1] is a function, then
the following assertions are equivalent:

(1) F aggregates SSI-T -relaxed indistinguishability fuzzy relations into an SSI-T-relaxed indis-
tinguishability fuzzy relation.

(2) F holds the following conditions:

(2.1) F is monotone.
(2.2) F transforms n-dimensional T -triangular triplets into a one-dimensional T-

triangular triplet.

(3) The function G : [0,+∞]n → [0,+∞] is monotone and subadditive, where G = fT ◦ F ◦
( f−1

T1
× . . .× f−1

Tn
).

(4) The function G : [0,+∞]n → [0,+∞] is monotone and transforms n-dimensional triangular
triplets into a one-dimensional triangular triplet, where G = fT ◦ F ◦ ( f−1

T1
× . . .× f−1

Tn
).
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(5) The function G : [0,+∞]n → [0,+∞] aggregates every collection {di}n
i=1 of SSD-relaxed

pseudo-metrics into an SSD-relaxed pseudo-metric, where G = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

We end the section taking into consideration those functions that are able to aggregate
SSI-T -relaxed indistinguishability fuzzy relations that separate points. We refer the reader
to [43] [Example 3] for a non-trivial instance of an SSI-relaxed T-indistinguishability fuzzy
relation that separates points.

Theorem 13. Let n ∈ N, let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms, and

let { fTi}n
i=1 be a collection of additive generators of T . If T is a continuous Archimedean t-norm

and F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates SSI-T -relaxed indistinguishability fuzzy relations that separate points into an
SSI-T-relaxed indistinguishability fuzzy relation that separates points.

(2) F satisfies the following conditions:

(2.1) If a, b, c ∈ [0, 1]n such that ai ≤ bi and ai ≤ ci for all i = 1, . . . , n and ai ∈ [0, 1[
for all i = 1, . . . , n and F(a) = F(b) = F(c), then there exists i ∈ {1, . . . , n} such
that ai = bi = ci. Moreover, if for each i ∈ {1, . . . , n}, either ai < bi or ai < ci, then
F(a) ≤ F(b) and F(a) ≤ F(c).

(2.2) If a, b, c ∈ [0, 1[n such that (a, b, c) is an n-dimensional T -triangular triplet, then
(F(a), F(b), F(c)) is a one-dimensional T-triangular triplet.

(3) The function G : [0,+∞]n → [0, fT(0)], where G = fT ◦ F ◦ ( f (−1)
T1
× . . .× f (−1)

Tn
), satisfies

the following assertions:

(3.1) Let a, b, c ∈ ∏n
i=1[0, fTi (0)] such that ai ≥ bi and ai ≥ ci for all i = 1, . . . , n

with ai ∈]0, fTi (0)] for all i = 1, . . . , n. If G(a) = G(b) = G(c), then there exists
i ∈ {1, . . . , n} such that ai = bi = ci. Moreover, if for each i ∈ {1, . . . , n}, either
ai > bi or ai > ci, then G(a) ≥ G(b) and G(a) ≥ G(c).

(3.2) G transforms n-dimensional triangular triplets in ]0,+∞]n into a one-dimensional
triangular triplet in [0, fT(0)].

(4) The function G : [0,+∞]n → [0, fT(0)] aggregates every collection {di}n
i=1 of SSD-

( fTi (0))
n
i=1-bounded relaxed metrics into an SSI- fT(0)-bounded relaxed metric, where G =

fT ◦ F ◦ ( f (−1)
T1
× . . .× f (−1)

Tn
).

(5) The function H : ∏n
i=1[0, fTi (0)]→ [0, fT(0)] aggregates every collection {di}n

i=1 of SSD-
( fTi (0))

n
i=1-bounded relaxed metrics into a SSD- fT(0)-bounded relaxed metric, where H =

fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

(6) The function H : ∏n
i=1[0, fTi (0)] → [0, fT(0)], where H = fT ◦ F ◦ ( f−1

T1
× . . . × f−1

Tn
),

satisfies the following conditions:

(6.1) Let a, b, c ∈ ∏n
i=1[0, fTi (0)] such that ai ≥ ci and ai ≥ ci for all i = 1, . . . , n

and ai ∈]0, fTi (0)] for all i = 1, . . . , n with ai ∈]0, fTi (0)] for all i = 1, . . . , n.
If H(a) = H(b) = H(c), then there exists i ∈ {1, . . . , n} such that ai = bi = ci.
Moreover, if for each i ∈ {1, . . . , n}, either ai > bi or ai > ci, then H(a) ≥ H(b) and
H(a) ≥ H(c).

(6.2) H transforms n-dimensional triangular triplets in ∏n
i=1]0, fTi (0)] into a one-dimensional

triangular triplet in [0, fT(0)].

Proof. (1) ⇒ (2). Next, we prove (2.1). Suppose that a, b, c ∈ [0, 1]n such that ai ≤ bi
and ai ≤ ci for all i = 1, . . . , n with ai ∈ [0, 1[ for all i = 1, . . . , n and F(a) = F(b) = F(c).
For the purpose of contradiction, we can assume that, for all i ∈ {1, . . . , n}, we have
that ai, bi, ci are not equal, since otherwise we have the desired conclusion. Consider the
non-empty set X = {x, y} with x, y different. Define on X the collection {Ei}n

i=1 of SSI-
T -relaxed indistinguishability fuzzy relations that separate points as follows: Ei(x, y) =
Ei(y, x) = ai, Ei(x, x) = bi and Ei(y, y) = ci for all i = 1, . . . , n. Since F aggregates SSI-
T -relaxed indistinguishability fuzzy relations that separate points into an SSI-T-relaxed
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indistinguishability fuzzy relation that separates points we find that F(E1, . . . , En) is an
SSI-T-relaxed indistinguishability fuzzy relation that separates points. Moreover, F(a) =
F(b) = F(c) and, thus F(E1, . . . , En)(x, y) = F(E1, . . . , En)(x, x) = F(E1, . . . , En)(y, y). So
x = y which is impossible.

Now assume, in addition, that, for each i ∈ {1, . . . , n}, either ai < bi or ai < ci.
Again the collection {Ei}n

i=1 of fuzzy relations defined above is a collection of SSI-T -
relaxed indistinguishability fuzzy relations that separate points on the non-empty set
X = {x, y}. The fact that F aggregates SSI-T -relaxed indistinguishability fuzzy relations
that separate points into an SSI-T-relaxed indistinguishability fuzzy relation that separates
points yields that F(E1, . . . , En) is a SSI-T-relaxed indistinguishability fuzzy relation that
separates points. So F(a) = F(E1, . . . , En)(x, y) ≤ F(E1, . . . , En)(x, x) = F(b) and F(a) =
F(E1, . . . , En)(x, y) ≤ F(E1, . . . , En)(y, y) = F(c).

The same arguments to those given in the proof of (1)⇒ (2) in Theorem 10 remain
valid in order to show (2.2), i.e., (F(a), F(b), F(c)) is a one-dimensional T-triangular triplet
provided that a, b, c ∈ [0, 1[n and (a, b, c) is an n-dimensional T -triangular triplet.

(2) ⇒ (3). First we prove (3.1). Assume that a, b, c ∈ ∏n
i=1[0, fTi (0)] such that

ai ≥ bi and ai ≥ ci for all i = 1, . . . , n with ai ∈]0, fTi (0)] for all i = 1, . . . , n and

G(a) = G(b) = G(c). Set d = ( f (−1)
T1

(a1), . . . , f (−1)
T1

(a1)), e = ( f (−1)
T1

(b1), . . . , f (−1)
T1

(b1)),

g = ( f (−1)
T1

(c1), . . . , f (−1)
T1

(c1)). It is clear that d, e, g ∈ [0, 1]n. Since ai ∈]0, fTi (0)] for all
i = 1, . . . , n we have that d ∈ [0, 1[n. Moreover, di ≤ ei and di ≤ gi for all i = 1, . . . , n.

The fact that G(a) = G(b) = G(c) gives that fT(F(d)) = fT(F(e)) = fT(F(g)). Since
fT is injective we deduce that F(d) = F(e) = F(g). So there exists i ∈ {1, . . . , n} such
that di = ei = gi. Whence we deduce that f (−1)

Ti
(ai) = f (−1)

Ti
(bi) = f (−1)

Ti
(ci). Since

f (−1)
Ti
|[0, fTi

(0)] = f−1
Ti

and f−1
Ti

is injective on fTi ([0, 1]) we conclude that ai = bi = ci.
Suppose, in addition, that, for each i ∈ {1, . . . , n}, either ai > bi or ai > ci. Then either

f (−1)
Ti

(ai) = f−1
Ti

(ai) < f−1
Ti

(bi) = f (−1)
Ti

(bi) or f (−1)
Ti

(ai) = f−1
Ti

(ai) < f−1
Ti

(ci) = f (−1)
Ti

(ci)
for each i = 1, . . . , n. It follows that

F( f−1
Ti

(a1), . . . , f−1
Ti

(an)) ≤ F( f−1
Ti

(b1), . . . , f−1
Ti

(bn))

and
F( f−1

Ti
(a1), . . . , f−1

Ti
(an)) ≤ F( f−1

Ti
(c1), . . . , f−1

Ti
(cn)).

So G(a) = fT ◦ F( f−1
Ti

(a1), . . . , f−1
Ti

(an)) ≥ G(b) = fT ◦ F( f−1
Ti

(b1), . . . , f−1
Ti

(bn)) and G(a) =
fT ◦ F( f−1

Ti
(a1), . . . , f−1

Ti
(an)) ≥ G(c) = fT ◦ F( f−1

Ti
(c1), . . . , f−1

Ti
(cn)).

In order to prove (3.2), the same arguments to those given in the proof of Theorem 10
provide that G transforms n-dimensional triangular triplets in ]0,+∞]n into one-dimensional
triangular triplet in [0, fT(0)].

(3)⇒ (4). Consider a collection {di}n
i=1 of SSD-( fTi (0))

n
i=1-bounded relaxed metrics

on a non-empty set X. The same arguments to those given in Theorem 10 remain valid for
showing fact that G(d1, . . . , dn) satisfies the triangle inequality. Clearly G(d1, . . . , dn)(x, y) =
G(d1, . . . , dn)(y, x) for all x, y ∈ X. Next, suppose that G(d1, . . . , dn)(x, y) = G(d1, . . . , dn)
(x, x) = G(d1, . . . , dn)(y, y) for any x, y ∈ X. Since di(x, x) ≤ di(x, y) and di(y, y) ≤ di(x, y)
for all i = 1, . . . , n we have that there exists i ∈ {1, . . . , n} such that di(x, y) = di(x, x) =
di(y, y) and, thus, x = y. Finally, we can assume that, for each i ∈ {1, . . . , n}, either
di(x, x) < di(x, y) either di(y, y) < di(x, y). Then

G(d1, . . . , dn)(x, x) ≤ G(d1, . . . , dn)(x, y)

and
G(d1, . . . , dn)(y, y) ≤ G(d1, . . . , dn)(x, y).

(4)⇒ (5). It is obvious.
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(5)⇒ (6). We prove 6.1). Let a, b, c ∈ ∏n
i=1[0, fTi (0)] such that ai ≥ ci and bi ≥ ci for

all i = 1, . . . , n and ai ∈]0, fTi (0)] for all i = 1, . . . , n and H(a) = H(b) = H(c). Next, for
the purpose of contradiction assume that, for all i ∈ {1, . . . , n}, the equality ai = bi = ci
does not hold. It follows that there exists i ∈ {1, . . . , n} such that either ai > ci or bi > ci.

Set X = {x, y} with x, y different. Define the function di : X × X → [0, fTi (0)] by
di(x, y) = di(y, x) = ai, di(x, x) = bi and di(y, y) = ci for all i = 1, . . . , n. Then {di}n

i=1 is
a collection of SSD-( fTi (0))

n
i=1-bounded relaxed metrics on X. Thus, H(d1, . . . , dn) is an

SSD- fT(0)-bounded relaxed metric on X. Since H(a) = H(b) = H(c), we have that

H(d1, . . . , dn)(x, y) = H(d1, . . . , dn)(x, x) = H(d1, . . . , dn)(y, y),

which is impossible because x 6= y. Therefore, there exists i ∈ {1, . . . , n} such that ai = bi = ci.
Moreover, assume for each i ∈ {1, . . . , n} that either ai > bi or ai > ci. Then the above

construction gives that {di}n
i=1 is a collection of SSD-( fTi (0))

n
i=1-bounded relaxed metrics

on X. So
H(b) = H(d1, . . . , dn)(x, x) ≤ H(d1, . . . , dn)(x, y) = H(a)

and
H(c) = H(d1, . . . , dn)(y, y) ≤ H(d1, . . . , dn)(y, y) = H(a).

The proof of (6.2) runs in the same way as the proof given in Theorem 10.
(6)⇒ (1). Consider a collection {Ei}n

i=1 of SSI-T -relaxed indistinguishability fuzzy
relations that separate points on a non-empty set X.

In the same manner as in the proof of Theorem 10, we can prove that H transforms
n-dimensional triangular triplets in ∏n

i=1]0, fTi (0)] into a one-dimensional triangular triplet
in [0, fT(0)] implies that F(E1, . . . , En) satisfies that

T(F(E1, . . . , En)(u, v), F(E1, . . . , En)(v, w)) ≤ F(E1, . . . , En)(u, w)

for all u, v, w ∈ {x, y, z} and for each x, y, z ∈ X.
It is obvious that F(E1, . . . , En)(x, y) = F(E1, . . . , En)(y, x) for all x, y ∈ X.
Now let x, y ∈ X. Set

a = ( fT1(E1(x, y)), . . . , fTn(En(x, y))), b = ( fT1(E1(x, x)), . . . , fTn(En(x, x)))

and c = ( fT1(E1(y, y)), . . . , fTn E(n(y, y))). Clearly, a, b, c ∈ ∏n
i=1[0, fTi (0)]. We can assume

that Ei(x, y) ∈ [0, 1[ for all i = 1, . . . , n because otherwise we have that x = y, and there is
nothing to prove. Notice that bi ≤ ai and ci ≤ bi for all i = 1, . . . , n. Suppose that

F(E1, . . . , En)(x, y) = F(E1, . . . , En)(x, x) = F(E1, . . . , En)(y, y).

Then H(a) = fT ◦ F(E1, . . . , En)(x, y) = fT ◦ F(E1, . . . , En)(x, x) = H(b) and H(a) =
fT ◦ F(E1, . . . , En)(y, y) = H(c). Whence we deduce that there exist i ∈ {1, . . . , n} such that
ai = bi = ci. The injectivity of fT gives that Ei(x, y) = Ei(x, x) = Ei(y, y) and, thus, that
x = y.

Finally, we show that F(E1, . . . , En)(x, y) ≤ F(E1, . . . , En)(x, x) for all x, y ∈ X. Indeed,
we can assume that, for each i ∈ {1, . . . , n}, either Ei(x, y) < Ei(x, x) or Ei(x, y) < Ei(y, y).
Otherwise, x = y, and hence, the preceding inequality is held trivially. Then we have that,
for each i ∈ {1, . . . , n}, either ai > bi or ai > ci. So H(a) ≥ H(b) and H(a) ≥ H(c). Hence

fT ◦ F(E1, . . . , En)(x, y) ≥ fT ◦ F(E1, . . . , En)(x, x)

and
fT ◦ F(E1, . . . , En)(x, y) ≥ fT ◦ F(E1, . . . , En)(y, y).

Since fT is a strictly decreasing function, we find that F(E1, . . . , En)(x, y) ≤ F(E1, . . . , En)
(x, x) and F(E1, . . . , En)(x, y) ≤ F(E1, . . . , En)(y, y).



Axioms 2022, 11, 431 22 of 25

In the particular case in which all t-norms are strict continuous Archimedean t-norms,
we obtain from Theorem 13 the result below.

Corollary 6. Let n ∈ N, let T = {Ti}n
i=1 be a collection of continuous Archimedean t-norms, and

let { fTi}n
i=1 be a collection of additive generators of T . If T is a continuous Archimedean t-norm

and F : [0, 1]n → [0, 1] is a function, then the following assertions are equivalent:

(1) F aggregates SSI-T -relaxed indistinguishability fuzzy relations that separate points into an
SSI-T-relaxed indistinguishability fuzzy relation that separates points.

(2) F satisfies the following conditions:

(2.1) If a, b, c ∈ [0, 1]n such that ai ≤ bi and ai ≤ ci for all i = 1, . . . , n and ai ∈ [0, 1[
for all i = 1, . . . , n and F(a) = F(b) = F(c), then there exists i ∈ {1, . . . , n} such
that ai = bi = ci. Moreover, if for each i ∈ {1, . . . , n}, either ai < bi or ai < ci, then
F(a) ≤ F(b) and F(a) ≤ F(c).

(2.2) If a, b, c ∈ [0, 1[n such that (a, b, c) is an n-dimensional T -triangular triplet, then
(F(a), F(b), F(c)) is a one-dimensional T-triangular triplet.

(3) The function G : [0,+∞]n → [0,+∞], where G = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
), satisfies the

following assertions:

(3.1) Let a, b, c ∈ [0,+∞]n such that ai ≥ ci and bi ≥ ci for all i = 1, . . . , n with ai ∈
]0,+∞] for all i = 1, . . . , n. If G(a) = G(b) = G(c), then there exists i ∈ {1, . . . , n}
such that ai = bi = ci. Moreover, if for each i ∈ {1, . . . , n}, either ai > bi or ai > ci,
then G(a) ≥ G(b) and G(a) ≥ G(c).

(3.2) G transforms n-dimensional triangular triplets in ]0,+∞]n into a one-dimensional
triangular triplet in [0,+∞].

(4) The function G : [0,+∞]n → [0,+∞] aggregates every collection {di}n
i=1 of SSD-relaxed

metrics into an SSD-relaxed metric, where G = fT ◦ F ◦ ( f−1
T1
× . . .× f−1

Tn
).

4. Conclusions

In [36], characterizations of those functions that aggregate a collection of T -relaxed
indistinguishability fuzzy relations were given in terms of triangular triplets in the spirit
of Theorem 2. In this paper, we have complemented the aforementioned work. In partic-
ular, we have shown that there is an equivalence between those functions that aggregate
T -relaxed indistinguishability fuzzy relations and those functions aggregating relaxed
pseudo-metrics. The aforesaid equivalence has also been expressed in terms of triangu-
lar triplets. An interesting consequence derived from the obtained equivalence is that
the functions under consideration are in correspondence with those that are subaddtive.
Moreover, the distinguished class of SSI-T -relaxed indistinguishability fuzzy relations
has been also studied. We have proved that functions merging this special type of relaxed
indistinguishability fuzzy relations can be expressed through functions aggregating SSD-
relaxed pseudo-metrics. It must be stressed that a notable difference between the class
of functions that are able to aggregate a collection of relaxed indistinguishability fuzzy
relations (relaxed pseudo-metrics) and SSI-relaxed indistinguishability fuzzy relations
(SSD-relaxed pseudo-metric) has been shown. Concretely, in this case, the appropriate
class of functions are those that satisfy monotony and subadditivity. The separating points
case has,also been approached, and characterizations of the class of functions merging
T -relaxed indistinguishability fuzzy relations that separate points are obtained in terms of
T -triangular triplets. It must be pointed out that the aggregation of this type of relaxed
indistinguishability fuzzy relations was not explored in [36]. Outstanding differences
between those functions aggregating T -relaxed indistinguishability fuzzy relations and
those that aggregate their counterpart separating points are shown. Illustrative examples
of those functions able to aggregate any type of relaxed indistinguishability fuzzy relations
will be given as future work in order to complement their description provided by the
characterizations exposed in the present paper.
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Although the exposed theory is presented for functions that aggregate a collection of
T -relaxed indistinguishability fuzzy relations into a T-relaxed indistinguishability fuzzy
relation, where T is continuous Archimedean t-norm, surprising results were discovered
in [36] [Theorem 40] when the t-norm T is considered as the minimum t-norm TM, and
in addition, relationships between functions aggregating T -relaxed indistinguishability
fuzzy relations into a TMin-relaxed indistinguishability fuzzy and those that aggregate
SSI-T -relaxed indistinguishability fuzzy relations were obtained. As a future work, it
seems interesting to explore new equivalences of the aforementioned functions in terms of
functions that aggregate any kind of generalized metrics.

Observe that associativity does not seem to play any relevant role when relaxed T -
relaxed indistinguishability fuzzy relations are generated and aggregated. In the literature,
several works are devoted to exploring methodologies that generate, through generalized
additive generators, new conjunctors which are not t-norms because they are not associative
(see, for instance, [52,53]). The description of those functions that aggregate fuzzy relations
induced via generalized additive generators and the study of the existing relationship
with those functions that aggregate some type of associated generalized metric are natural
research lines that could be addressed in the near future.
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