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Abstract

The transport sector leads to detrimental effects on the economy, environment, and cit-
izens quality of life. During recent years, some key-performance indicators have been
proposed to quantify these negative impacts on the economic, environmental, and so-
cial dimensions of the sustainability concept. In this paper, we consider the sustainable
vehicle routing problem that takes into account the aforementioned dimensions. We
propose a multi-objective optimisation model to combine the three dimensions, as well
as a biased-randomised iterated greedy algorithm to solve the integrated problem. A
comprehensive set of experiments and a sensitivity analysis have been carried out with
newly generated instances, which were adapted from existing vehicle routing bench-
mark instances. The sensitivity analysis is performed to measure the impact of each
sustainability dimension and investigate trade-offs among them.

Keywords: Transportation, Sustainable vehicle routing problem, Multi-objective
optimisation, Hybrid metaheuristic

1. Introduction

Many modern cities around the globe have to face increasing operational complexities
as their population grow and new transport systems are considered, from bicycles to un-
dergrounds and car sharing services (Faulin et al., 2019). This is partly due to the fact
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that an increase in population usually implies a higher level of mobility requirements,
which leads to a boost in the expansion of e-commerce practices. Some of the transport-
related challenges that society face include, depletion of natural resources, management
of waste due to the increasing number of citizens, increase in road traffic accidents,
and increase in traffic congestion and the associated levels of pollution. Consequently,
Logistics and Transport (L&T) providers play a crucial role in the promotion of the sus-
tainability concept in its different dimensions, including economic, environmental, and
social (Browne et al., 2012). Therefore, L&T providers are faced with the challenge of
managing their L&T operations while considering the economic, environmental, and so-
cial impacts. According to the report in the European Conference of Ministers of Trans-
portation (ECMT Round Tables) (1999), a sustainable transport system is one that is
safe, easily accessible, affordable, and environmentally friendly. This has resulted in an
increase in research on Green VRPs (G-VRP) (Lin et al., 2014) usually connected with
the Sustainable VRPs (SU-VRP) (Omidvar & Tavakkoli-Moghaddam, 2012), which is
a much broader problem because it also includes other facets such as the social and the
economic dimensions apart from the environmental dimension. However, in most sus-
tainable VRP literature, the main objective is to minimise GHG emissions and in some
cases, some economic costs (Erdoğan & Miller-Hooks, 2012; Schneider et al., 2014;
Zhou et al., 2020). Mahdinia et al. (2018) stated that for a transport system to be re-
garded as sustainable, its social impacts must not be ignored. In this regard, road safety
in relation to traffic accidents is considered as one of the most critical social indicators in
road transport, which could be related to infrastructure and driver fatigue in relation to
workload (Sharafi & Bashiri, 2016). Road traffic accidents have a direct and substantial
effect on the residents of a city. For instance, accidents can cause pain, grief, and suf-
fering to the casualty. According to the European Road Safety Observatory, over 4, 800
people were killed in collisions involving heavy vehicles in 23 EU countries in 2008
(European Transport Safety Council, 2011).

To the best of our knowledge, the existing SU-VRP literature (Toth & Vigo, 2014) lacks
studies that holistically integrate the economic, environmental and social dimensions of
sustainability in the context of road freight transport (Tang & Zhou, 2012; Vega-Mejı́a
et al., 2019). Although the social dimension of transport is not straightforward to mea-
sure, it plays a relevant role in distribution activities related to retail and food shopping
and delivery services (Eskandarpour et al., 2015; Faulin et al., 2005). In order to close
these gaps, we propose a multi-objective optimisation model to model and measure the
impacts and trade-offs of three sustainability dimensions for the SU-VRPs with high
sensitivity towards the social and environmental impacts.

The costs studied in this work refer to cost of CO2 emissions of conventional vehicles,
fuel cost, drivers cost, vehicle fixed cost, and accident risk cost. Since accident risk
costs are not easy to estimate, we select and implement some monetary values from
Muñoz-Villamizar et al. (2017).The main contributions of this work are as follows: (i)
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Develop a multi-objective optimisation model for the sustainable vehicle routing prob-
lem (SU-VRP), which integrates the economic, environmental, and social dimensions;
(ii) Develop a hybrid solving method based on the combination of biased-randomisation
(BR) techniques (Grasas et al., 2017) and an iterated greedy (IG) framework (Ruiz &
Stützle, 2007); (iii) Provided a new set of benchmark instances for the SU-VRP, which
are derived from well-known VRP instances; (iv) Conduct a comparative analysis of
the performance of two multi-objective optimisation models, namely: the weighted sum
model and the ε-constraint model; and (v) Perform a sensitivity analysis to evaluate the
impacts and trade-offs between the sustainability dimensions. These contributions give
insights into current L&T challenges.

The rest of this paper is structured as follows. In section 2, a literature review is pre-
sented. Section 3 provides a formal description of the problem addressed, including
the multi-objective optimisation model. The proposed solving approach is presented in
section 4. Computational results and their corresponding discussions are provided in
section 5. Finally, section 6 presents the main conclusions and identifies future work
directions.

2. Literature review on Sustainable Vehicle Routing Problem

Nowadays, the paradigm of smart and sustainable cities (Beneicke et al., 2019) pro-
poses initiatives to reduce the negative environmental externalities resulting from the
L&T activity, such as the use of light goods vehicles and electric or hybrid-electric vehi-
cles (Erdoğan & Miller-Hooks, 2012; Juan et al., 2016) while optimising delivery routes
to local stores or e-commerce users. In recent years, VRP studies have emerged that
consider the environmental objective alongside the economic one. These studies gen-
erally aim to reduce GHG emissions and sometimes, some economic costs (Lin et al.,
2014). However, in practice, a sustainable transportation system is one that is safe,
easily accessible, affordable and environmentally friendly (McKinnon et al., 2015) and
according to Dekker et al. (2012), there is the need for new modelling schemes in or-
der to succeed in greening logistics operations. Among these new modelling concepts
are the G-VRPs. The G-VRP takes into account wider operational objectives regarding
GHG emissions minimisation which makes the problem more complex when compared
to classical VRPs. The use of electric vehicles concept is gaining popularity as an ef-
fective way to significantly reduce emissions and energy consumption at the roadside
thereby increasing environmental sustainability. In this regard, some researchers have
proposed the use of Alternative Fuel Vehicles (AFVs) (Erdoğan & Miller-Hooks, 2012).
However, AFVs have some limitations, such as limited driving ranges and limited re-
fuelling stations (Erdoğan & Miller-Hooks, 2012; Pelletier et al., 2016; Eskandarpour
et al., 2019; Hatami et al., 2020).

In Montoya-Torres et al. (2016) a G-VRP is solved with a heuristic that stores a set of
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routes defined by a randomised route-first cluster-second heuristics and a set partition-
ing formulation in the columns. Sawik et al. (2017) solved the G-VRP with multiple
objectives, including both monetary and environmental. In Leggieri & Haouari (2017)
an analysis of the distribution activity considering a given set of customers, a set of re-
fuelling stations and eco-friendly vehicles is presented. The authors proposed a Mixed
Integer Linear Programming (MILP) formulation for solving the G-VRP that minimises
the total travelling distance. This formulation compacts many variables and constraints
to design routes for a homogeneous vehicle fleet. The authors claim that the method is
flexible enough to deal with any VRP problem with eco-friendly vehicles. The solution
method is designed to optimally solve the G-VRP instances with 20 nodes and up to
10 refuelling stations. Similarly, Andelmin & Bartolini (2017) solved the G-VRP as a
set partitioning problem to serve a set of scattered customers with eco-friendly vehicles.
The authors demonstrated the advantages of partitioning formulation to solve instances
with up to 110 nodes and 28 refuelling stations. Andelmin & Bartolini (2019) analysed
the G-VRP considering refuelling operations between two nodes. The authors proposed
a multi-start local search heuristic to generate a pool of routes. Finally, a partitioning
method optimally combines these routes to determine the best solution. Based on 52
benchmark instances from the literature, the solution approach found 8 new best-known
solutions and matched 43 solutions. Later Bruglieri et al. (2019a) proposed a path-based
approach to generate feasible routes that serve a set of customers without intermediate
refuelling stops. The solution method consists of a MILP and a heuristic to solve small
and medium instances, respectively. The authors affirm that their solution approach out-
performs the exact methods known in the literature. Bruglieri et al. (2019b) studied
the G-VRP with time windows and Alternative Fuel Stations (AFSs).In their work, the
authors considered that the AFSs capacity is such that queues at AFSs increase the re-
fuelling time. The authors proposed two MILP formulations, one based on arc-variables
and one on path-variables. The first models the capacity constraints by considering clone
nodes (dummy copies) of the AFS for each fuelling operation by which the maximum
number of refuelling necessary per route can be computed. The second model solves the
problem through the combination of routes without intermediate stops at AFSs, thereby
determining routes that link to the depot and the ones that connect the AFS. These routes
are combined to determine the best solution. To this end, Macrina et al. (2019) analysed
the G-VRP to serve all the customers satisfying the time window constraints, minimis-
ing the transportation and the recharging costs. Furthermore, the authors proposed an
energy consumption model for a mixed fleet of electric and conventional vehicles. They
demonstrated that energy consumption is underestimated in models that only consider
travelling distance. Another recent study developed by Yu et al. (2019) addressed a
multi-objective ride-sharing problem, similar to the dial-a-ride problem. There, carbon
emissions are minimised while maximizing the ride profit. They affirmed that the distri-
bution plan changes according to preferences and objectives of decision-makers.

The work of Bektaş & Laporte (2011) is considered as a landmark in the Pollution-
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Routing Problem (PRP) literature, which considered as a category of G-VRP (Lin et al.,
2014) where vehicle operating costs and emissions costs are jointly minimised. The
authors presented a non-linear mixed-integer mathematical model of the problem with
fixed speeds and an emission function based on Barth et al. (2005), but only solved
small-size instances to optimality. An extension of this model was presented in Demir
et al. (2012), where the authors allowed the use of lower speed with a non-decreasing
discretised speed function and solved large-size problem instances. The advantage of us-
ing multiple vehicle types includes a reduction in fleet use, which means a reduction in
economic and environmental costs. Koç et al. (2014) proposed an extension of the PRP
to consider mixed fleet. According to these authors, this is the first paper that jointly in-
vestigates a heterogeneous VRP with time windows and the PRP objectives. Demir et al.
(2014) extended the PRP to a bi-objective optimisation problem. The main argument of
this work is that the objective of minimising fuel cost and driver time is conflicting.
Therefore, they proposed to solve the problem considering the two objectives in parallel.
Demir et al. (2014) extended the PRP to a bi-objective optimisation problem. The main
argument of this work is that the objective of minimising fuel cost and driver time is con-
flicting. Therefore, they proposed to solve the problem considering the two objectives
in parallel. In Kramer et al. (2015), the PRP is solved by means of a method combining
a local search-based metaheuristics with integer programming and a speed-optimisation
algorithm. For an extensive review on the G-VRP and PRP literature, readers can refer
to Bektaş & Laporte (2011); Dabia et al. (2016); Tajik et al. (2014); Demir et al. (2015);
Soysal et al. (2015); Zhang et al. (2015).

While environmental and economic objectives have been extensively studied in the SU-
VRP literature, social objectives have received less attention (McKinnon et al., 2015).
Indeed, it constitutes a subjective and complex component, where indicators may be
based on a customer-employee perspective (Delucchi & McCubbin, 2010). Moreover,
Bouchery et al. (2016) pointed out that models capturing the people element are scarce,
which may be due to the difficulty of measuring such impacts. In this regard, Sharafi
& Bashiri (2016) presented two mixed-integer programming models to tackle the eco-
nomic and social aspects related to workload balance and its influence on the accident
risk rate. The single objective model proposed in the study aims to maximise driver
fairness and minimise accident risk by achieving a tour balancing objective. This is for-
mulated as the minimisation of the gap between the longest tour and the shortest tour of
AFVs. Two closely related works to the problem studied in this paper –in terms of the
social dimension– are Eguia et al. (2013) and Sharafi & Bashiri (2016). In the latter, a
genetic algorithm-based approach is applied to address large problem instances and the
authors suggested that, it is essential to have a driver workload balance in order to min-
imise potential accident risk. In the former, the authors propose a single objective model
to minimise internal costs, which are related to vehicle fixed and variable costs and ex-
ternal costs composed of noise pollution, air pollution, accident risk costs, and climate
change costs. Despite proven relevance of sustainability impacts of L&T activities, only
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a small number of articles consider all three sustainability dimensions (economic, en-
vironmental, and social) as one decision criterion in the transport problem (Vega-Mejı́a
et al., 2019). Additionally, only a few papers are focused on the trade-offs among these
dimensions. As a result, the research proposed in this paper contributes to close this gap
by developing a weighted multi-objective model that combines the three sustainability
dimensions.

3. Problem definition and multi-objective optimisation model

In this section, we describe the proposed multi-objective SU-VRP optimisation mod-
els; a weighted sum model and an ε-constraint model. The proposed multi-objective
optimisation models extend the existing sustainable VRP models by including vehicle
operation costs, carbon emission cost, and safety cost. These costs are important for
ensuring sustainability in transportation activities, especially when considering a coor-
dination between the economic, environmental, and social dimensions.

The SU-VRP is defined over a complete graph G = (N, A), where N = {0} ∪ Nc is
a set of nodes, 0 corresponds to the depot, and Nc = {1, 2, . . . , n} to the customers.
A = {(i, j) : i, j ∈ N, i , j} is the set of arcs that connect all nodes in N. Each customer
i ∈ Nc has a known demand qi > 0, while the depot is assumed to have a demand of zero.
There is a fleet K = {1, 2, . . . , κ} of identical vehicles with a capacity Q > 0. di j ≥ 0
and ti j ≥ 0 are the distance and travelling time between i and j. The vehicles start their
trip at the depot, and return to it at the end of the trip. All customers’ demands must be
satisfied. The solution to this problem is a set of routes that can be represented by the
binary variable xi jk, i.e. xi jk = 1 if a vehicle k, travels between nodes i and j and xi jk = 0
otherwise. Each vehicle emits a certain amount of CO2 emissions. In addition, there
is a risk related to traffic accidents, which represents the social impact dimension and
depends on the travelling distance between nodes i and j. Table 1 describes the notations
for the sets, parameters, and variables of the multi-objective optimisation problem and
the integer linear programming formulation for the SU-VRP is presented below.

Equation (1) represents the economic dimension, where z1 is the total cost, which is
composed of three types of costs. The first part is the fixed cost (FC), which includes
depreciation, repairing, and maintenance of vehicles. The second, is a variable cost
(DW) representing the driver wages, which depends on the total travelling time of routes.
Finally, fi jk computes the fuel consumption weighted by the fuel cost (C f ).

z1 =
∑
j∈Nc

∑
k∈K

FC · x0 jk +
∑

(i, j)∈A

∑
k∈K

DW · ti j · xi jk +
∑

(i, j)∈A

∑
k∈K

C f · fi jk (1)

In Equation (3), the fuel consumption fi j is a simplified version of the one proposed in
Kuo (2010) and Zhang et al. (2015), where lphi j is the fuel consumption per unit of time
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Table 1: Model sets and parameters

Sets
N Set of all nodes
A Set of arcs connecting nodes
Nc Set of customers
K Set of vehicles
S Set of sustainability dimensions
i Index of origin nodes
j Index of destination nodes
k Index of vehicles
s Index of sustainability dimensions
Parameters
qi Demand of node i
di j Distance from i to j
ti j Travelling time from i to j
vi j Vehicle speed between i and j
Q Maximum payload of a vehicle
DW Driver cost per time unit
FC Vehicle fixed cost
kpl Km/l fuel consumption rate
lph l/h fuel consumption rate
C f Fuel price per liter
Ce Carbon price per kilogram CO2
γ Conversion factor for fuel consumption to CO2 (kg-CO2/liter)
αs Weight of the dimension s
Variables
xi jk Binary variable: 1 if vehicle k traverses between nodes i and j, 0

otherwise
yi jk Integer variable: load on vehicle k on traversal between nodes i

and j
fi jk Fuel consumption of vehicle k when travelling from i to j
f jk Continuous variable: remaining fuel of vehicle k when it arrives

at node j
zs Continuous variable: impact on the dimension s
U jk Auxiliary variable to eliminate sub-tours

7



and kpli j in Equation (3) represents the fuel consumption per unit of distance (Muñoz-
Villamizar et al., 2017). Thus, the fuel consumption of a vehicle per time unit when
travelling from node i to j is given by:

lphi j =
vi j

kpli j
(2)

Therefore, the fuel consumption of a loaded vehicle k when travelling from node i to
j ( fi jk) follows the criterion proposed in Kuo (2010). We assume that an additional
amount of load, with weight M, will increase fuel consumption by a ratio of p. Since
in this study we do not consider pickup, only deliveries, the load in the vehicle only
decreases as the vehicle delivers goods to the customers. Therefore, without loss of
generality, we assume that making p = 0, then fi jk can be up-bounded by fi j, where the
latter is given in Equation (3):

fi j = lphi j ·
di j

vi j
·

(
1 + p ·

yi j

M

)
(3)

Similarly, Equation (4) computes z2, which refers to the environmental dimension. This
relates to the CO2 emissions generated per unit of fuel consumed, where γ is an activity
based emission factor (Piecyk et al., 2015). These emissions are monetised by the per
unit emissions cost (Ce). This equation is a simplified version of that proposed by Kuo
(2010) and Zhang et al. (2015).

z2 =
∑

(i, j)∈A

∑
k∈K

Ce · fi j · xi j · γ (4)

Finally, the social dimension (z3) is computed by Equation (5), which estimates the cost
of the accident risk for the travelling distance from customers i to j. This risk varies
according to the travelling distance and the load of the vehicle k when travelling from
customer i to j (Eguia et al., 2013), and a factor a proposed in Delucchi & McCubbin
(2010) as a USD/kg-km coefficient used to monetise accidents.

z3 =
∑

(i, j)∈A

∑
k∈K

a · di j · yi jk (5)

The constraints of this problem are based on Erdoğan & Miller-Hooks (2012), these
are:

∑
j∈N

∑
k∈K

xi jk = 1 ∀ i ∈ Nc (6)
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∑
i∈N

∑
k∈K

xi jk = 1 ∀ j ∈ Nc (7)∑
j∈N

xi jk =
∑
j∈N

x jik ∀ i ∈ Nc, k ∈ K (8)

yi jk ≤ Q ∀ (i, j) ∈ A, k ∈ K (9)∑
j∈Nc

x0 jk ≤ 1 ∀ k ∈ K (10)

f jk ≤ fik −
di j

kpl
· xi jk + f0k · (1 − xi jk) ∀ i ∈ N, j ∈ Nc, k ∈ K (11)

f jk ≥
di j

kpl
· xi jk ∀ i ∈ N, j ∈ Nc, k ∈ K (12)∑

i∈N

y jik =
∑
i∈N

yi jk −
∑
i∈N

q j · x jik ∀ j ∈ Nc, k ∈ K (13)

yi jk ≤ (Q − qi) · xi jk ∀ (i, j) ∈ A, k ∈ K (14)

yi jk ≥ q j · xi jk ∀ (i, j) ∈ A, k ∈ K (15)

Uik − U jk + |Nc| · xi jk ≤ |Nc| − 1 ∀ i, j ∈ Nc, k ∈ K (16)

xi jk ∈ {0, 1} ∀ (i, j) ∈ A, k ∈ K (17)

yi jk ≥ 0 ∀ (i, j) ∈ A, k ∈ K (18)

fik ≥ 0 ∀ i ∈ N, k ∈ K (19)

Uik ≥ 0 ∀ i ∈ Nc, k ∈ K (20)

Thus, Equations (6) and (7) ensure that each customer is visited exactly once. The flow
conservation is introduced by Equation (8). Moreover, Equation (9) guarantees that the
total demand serviced by a vehicle does not exceed its capacity. Similarly, Equation (10)
imposes that each vehicle can leave the depot at most once, while Equation (11) defines
the state of a vehicle fuel amount after visiting a customer. Furthermore, Equation (12)
guarantees that there will be enough remaining fuel to return to the depot from any
customer location, while Equation (13) states that the load in the vehicle arriving at a
customer j minus the demand of that customer equals to the load in the vehicle after
serving it. Correspondingly, Equations (14) and (15) set lower and upper bounds for the
load of vehicle k when travelling between i and j. Equally, Equation (16) avoids sub-
tours, where U jk is an auxiliary variable and |Nc| is the number of customers. Finally,
Equations (17) to (20) define variable domains.

3.1. A weighted objective function model

The proposed weighted objective function (z∗) in Equation (21) is defined as a holistic
approach combining three sustainability dimensions by aggregating the objectives into a
single objective with priority weights (Deb, 2014). This function aims to minimise the
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cost associated with the negative impacts on each dimension zs, ∀s ∈ {1, 2, 3}. Likewise,
αs constitutes the weight or relative importance of the dimension s, where 0 ≤ αs ≤ 1
and

∑3
s=1 αs = 1:

Min z∗ = α1z1 + α2z2 + α3z3 (21)

3.2. ε-constraint model

In the ε-constraint model, the multi-objective optimisation model is transformed into a
single-objective model by transforming the other objectives into constraints and incor-
porating them in the constraint part of the model (Kovacs et al., 2015; Laumanns et al.,
2006). The proposed ε-constraint objective function zi in Equation (22) aims to min-
imise the cost associated with the negative impacts on each dimension zs, ∀s ∈ {1, 2, 3}
in a lexicographic order, i.e.:

Min zi (22)

Subject to:

zs − z∗s ≤ εs ∀ s ∈ {1, 2, 3} \ {i} (23)

Objective function (22) minimises the three objective functions in lexicographic order:
z1 first, then z2, and finally z3. Constraint (23) is the constraint that bounds the objective
value of zs. The value of, εs accounts for the maximum deviation of epsilon constraint
to its best value.

4. Biased-Randomised Iterated Greedy Local Search framework

We propose a Biased-Randomised Iterated Greedy with Local Search (BRIG-LS) ap-
proach to solve the SU-VRP. The BRIG-LS algorithm combines biased-randomised
technique (Quintero-Araujo et al., 2017) with the iterated greedy (Ruiz & Stützle, 2007),
which also includes a local search technique based on random swaps. The former meth-
ods have been selected because they constitute simple yet powerful techniques. More-
over, they use a reduced number of parameters, which makes it easier to replicate our
experiments and also to apply our approach in real-life scenarios. The remainder of this
section is split into the following subsections. The BRIG-LS generic framework, gen-
eration of solutions, the destruction-construction procedure, and the local search proce-
dure.
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4.1. BRIG-LS generic framework

The BRIG-LS (Algorithm 2) starts building an initial base solution (baseS ol), which
relies on the savings-based routing heuristics described in Dominguez et al. (2016). This
solution is further improved by means of a local search. Then, it is stored as the best
solution found so far (bestS ol). Afterwards, an iterative processes is initiated with a
stopping criterion based on the elapsed time (lines 5-20). Inside the iterative process,
the base solution is destructed and re-constructed, and a local search is applied to the
resulting new solution (newS ol). The next step is to compute the relative percentage
difference (rpd, line 8) between the costs of newS ol and baseS ol. If this measure is
negative (i.e., newS ol is better), newS ol replaces baseS ol. In addition, it is checked
whether bestS ol should be updated. Oppositely, if rpd is positive, newS ol may replace
baseS ol with a probability of e−rpd (lines 15-18). This acceptance criterion was first
proposed by Hatami et al. (2015), and is intended to avoid getting trapped in a local
optimal. Finally, bestS ol is returned.

Algorithm 1 :Pseudo code of the proposed IG-MMJ
1: procedure IG-MMJ(inputs,weights,maxTime, β, p)

. inputs: transport network data , demands, Q, impact parameters
. maxTime: max computing time allowed

. p: parameter of the destruction stage
2: baseS ol← double search(inputs, β) . Based on multi-criteria objectives
3: bestS ol← baseS ol
4: while (stopping criterion is not met) do . Search for promising solutions
5: newS ol← destructionConstruction(baseS ol, p, inputs, β)
6: newS ol← localS earch(newS ol)
7: rpd ← (cost(newS ol) − cost(baseS ol))/cost(baseS ol) · 100
8: if (rpd ≤ 0) then
9: baseS ol← newS ol

10: if (cost(newS ol) < cost(bestS ol)) then
11: bestS ol← newS ol
12: end if
13: else . Avoid local optimal
14: u← generateU()
15: if (u < exp(−rpd)) then
16: baseS ol← newS ol
17: end if
18: end if
19: end while
20: return bestS ol
21: end procedure
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Algorithm 2 BRIG-LS for SU-VRP
1: procedure BRIG-LS(inputs,weights,maxTime, β, p)

. inputs: geographical coordinates, demands, Q, impact parameters
. maxTime: max computing time allowed
. β: parameter for biased randomisation
. p: parameter of the destruction stage

2: baseS ol← BR-CWS(inputs, β) . Based on ‘rich’ savings
3: baseS ol←localSearch(baseS ol)
4: bestS ol← baseS ol
5: while (stopping criterion is not met) do . Search for promising solutions
6: newS ol← destructionConstruction(baseS ol, p, inputs, β)
7: newS ol← localS earch(newS ol)
8: rpd ← (cost(newS ol) − cost(baseS ol))/cost(baseS ol) · 100
9: if (rpd ≤ 0) then

10: baseS ol← newS ol
11: if (cost(newS ol) < cost(bestS ol)) then
12: bestS ol← newS ol
13: end if
14: else . Avoid local optimal
15: u← generateU()
16: if (u < exp(−rpd)) then
17: baseS ol← newS ol
18: end if
19: end if
20: end while
21: return bestS ol
22: end procedure

4.2. Generation of solutions

The generation of the initial solution and the re-construction of the solutions, rely on
the Biased Randomised (BR) heuristic. BR heuristic is built on the concept of ’savings’.
This heuristic starts with a ‘dummy’ solution, where a vehicle has to visit only one
customer and return to depot until all the customers have been visited. A savings list is
stored which is computed following the process below.

• Two customers are merged in a vehicle and for each pair of customers, there is an
associated savings resulting from visiting these customers together.

• The next step is to sort the savings in descending order, from the highest saving to
the lowest one.

• The list is then traversed iteratively, applying feasible merges to generate a feasible
solution.

The classic savings heuristic is deterministic, however, the novelty of BR heuristic relies
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in the introduction of randomness in the savings arrangement. This is done by assigning
a given probability of being selected to each potential merge. The higher the saving, the
higher the assigned probability. Typically, an empirical distribution such as the geomet-
ric one (with a parameter β) is employed to assign the probability (Grasas et al., 2017).
Thus, this enhanced procedure allows us to get a potentially different solution at each
run and, as a consequence, to explore a more extensive and promising search space. In
both the classic savings heuristic and the randomised heuristic proposed by Grasas et al.
(2017), savings are based on distances. In contrast, we propose a richer ‘sustainable’
savings function, considering route operation costs, CO2 emissions costs, and accident
risk costs.

4.3. Destruction-Construction procedure

This procedure (Algorithm 3) starts removing a p percentage of routes from a solution.
As a result, we get the remaining routes (partialS ol) and a list of unserved customers
(nodeList). The construction stage applies the BR routing algorithm for these customers,
which results in new routes. Finally, a new solution combining the existing and the new
routes is returned.

Algorithm 3 Destruction and Construction Procedure
1: procedure DestructionConstruction(sol, p, inputs, β)
2: partialS ol← removeRoutes(sol, p)
3: nodeList ← getFreeNodes(sol, partialS ol)
4: subS ol← BR-CWS(nodeList, inputs, β)
5: newS ol← add(subS ol, partialS ol)
6: return newS ol
7: end procedure

4.4. Local search procedure

Algorithm 4 describes the local search used, which is based on random swaps. This
process is repeated iteratively until the following two conditions are met: (i) the number
of trials is greater than the number of routes; and (ii) the last swap did not lead to an
improvement. For each iteration of the loop, a route (route), and two different nodes
(node1, node2) of this route are randomly selected. Then, a potential swap is assessed.
The solution introduces this change if the cost is improved.

5. Computational experiments

The proposed optimisation models and BRIG-LS approach have been implemented on
a standard personal computer as a Java application. In particular, an Intel QuadCore i5
CPU at 3.2 GHz and 4 GB RAM has been employed to execute all tests. The aim of the
experiments are as follows: (i) Evaluate the performance of the optimisation models the
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Algorithm 4 Local Search Procedure
1: procedure localSearch(solution)
2: improvement ← TRUE
3: numTrials← 0
4: while (improvement is TRUE or numTrials <numRoutes(sol)) do
5: route← getRandomRoute(solution)
6: node1← getRandomNode(route)
7: node2← getRandomNode(route)
8: while (node1 is equal node2) do
9: node2← getRandomNode(route)

10: end while
11: newRoute← swap(route, node1, node2)
12: if (cost(newRoute) < cost(route)) then
13: improvement ← TRUE
14: solution← update(solution, newRoute, route)
15: end if
16: numTrials← numTrials + 1
17: end while
18: return newS ol
19: end procedure

and BRIG-LS algorithm in terms of solution quality against the best-known solutions
(BKS) in the VRP literature; (ii); Compare the performance of the weighted sum model
(WM) and the ε-constraint model (ECM); and (iii) Conduct a sensitivity analysis using
different weights on the sustainability dimensions to measure the trade-offs between the
dimensions. Regarding ECM and WM, we use BRIG-LS to find a set of non-dominated
solutions. For ECM, we convert the other objectives into constraints by imposing an
upper bound ε. At first, the range of the objective functions zi, i = 1, 2, 3 is determined
using lexicographic optimisation. Then, each Pareto solution is generated within the
ranges by ECM. For WM, the objective is to minimise the sum of the weighted objec-
tive function where αs is set to 1 for each dimension. Table 2 presents the algorithm
parameters used for all the computational experiments.

Table 2: Parameters of the algorithm.

Parameter Value
maxTime 100 sec
Number of seeds 5
β U(0.7,0.8)
p U(0,100)
ε U(0.01,0.10)

The run-time limit has been set to 100 seconds, which seems a reasonable time. We
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used 10 runs (each with a different seed for the pseudo-random number generator), and
only the best results are stored. The distributions of β and p have been set after running
a few experiments, based on the methodology described in Calvet et al. (2016). These
parameters take stochastic values following the aforementioned distributions (β and p).
The remainder of this section describes the SU-VRP instances, the assessment of the
performance of the proposed BRIG-LS and the best known solutions in the literature
and the numerical results of the computational experiments.

5.1. SU-VRP instances
To the best of our knowledge, there are no benchmark instances for the SU-VRP with
three sustainability dimensions. The only benchmark similar to this work with 5 in-
stances is due to Reyes-Rubiano et al. (2017). Therefore, we propose and consider a
wider range of instances by adapting VRP instances from the literature http://vrp.

atd-lab.inf.puc-rio.br/index.php/en/. We selected 43 classical VRP instances
from Augerat et al. (1995) based on the following criteria: (i) instances for which the op-
timal solution is known; and (ii) instances with coordinates generated randomly within
a square of side 100, in order to ensure feasible solutions when considering travelling
times. The number of nodes ranges from 31 to 80. Figure 1 describes four types of
instances belonging to sets A and B. Customers in set A are randomly located, and the
depot may be in an outlying spot or in an intermediate spot (Figure 1(a)).In set B, the
customers are clustered, and the depot is among clusters or outside (Figure 1(b)). Clus-
tered instances are characterised as a set of clusters that integrate a number of nodes. In
a cluster, the nodes have a distance measure similar to each other. Then, the solution
for this kind of instances is defined by the insertion of nodes considering the vehicle
payload. Similarly, the routes are limited by a maximum travelling distance. For the
solution design, the customers’ demand could be the most important item because of its
variability in the cluster. In instances with randomly located customers, the distance and
demand provide more flexibility in the search process of a solution.

Travelling times are simulated by generating speeds. As suggested by Zhang et al.
(2015), three speed levels are considered: high, moderate, and low. While high speed
can be viewed as the transportation speed on a freeway, low speed may be related to
urban transportation speed, and moderate speed represents an intermediate case. A uni-
form probability distribution is associated with each speed type. This is achieved by
using the following parameters for each uniform distribution: (90, 110), (50, 70), and
(25, 45) (km/h), respectively. We set the speed of a vehicle as the mean speed assuming
the following proportions of vehicles driving at a high, moderate, and low speed: 20%,
20%, and 60%, respectively.

Table 3 gathers the parameters needed to quantify the impacts, including units and ref-
erences. The percentage gap for the experiments is computed as:

%Gap = Tc−Tc∗
Tc∗ × 100.
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(a) Set A. Depot in an outlying spot. (b) Set B. Depot in an intermediate spot.

Figure 1: Different network configurations in sets A and B.

Table 3: Parameters that quantify and monetise impacts.

Input Value Converted to Reference

kpl 0.052/km
Muñoz-Villamizar et al.
(2017)

γ 0.75 kg of CO2/l (rigid ≥ 7.5t - 17t) Piecyk et al. (2015)
DW 0.0022 £/s 9.91 e/h
FC 59.90 £/day 67.62 e/day Koç et al. (2014)
C f 1.4 £/l 1.58 e/l

Ce 22 US D/ton of CO2 0.02 e/kg of CO2

Kossoy, Alexandre and
Peszko, Grzegorz and
Oppermann, Klaus and
Prytz, Nicolai and Klein,
Noemie and Blok, Ko-
rnelis and Lam, Long
and Wong, Lindee and
Borkent, Bram (2015)

a [0.1-2] US D/ton-mile 0.0005 e/kg-km
Delucchi & McCubbin
(2010)

Tc is the average solution obtained by BRIG-LS, and Tc∗ is the value of the Best Known
Solutions (BKS).

5.2. Performance evaluation of BRIG-LS
In order to validate the performance of BRIG-LS, we tested 40 instances with a dis-
tance minimisation objective. Firstly, the solutions provided by BRIG-LS are compared
against the BKS from the literature. This comparison is conducted to evaluate the perfor-
mance of the BRIG-LS approach on classical VRP instances with symmetric distances,
and, also, to investigate the efficiency of the best solutions found by our metaheuristic
against BKS in the literature. The results are summarised in Table 4. The first column
shows the instance name, BKS distance is shown in the second column, and the BRIG-
LS best solutions are given in the third column. The CPU time of BRIG-LS and the
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percentage gaps between the solutions are presented in the last column. Regarding the
best found solutions obtained by BRIG-LS, 31 out of 40 instances offer a gap lower than
1%. This means that some of our solutions are slightly worse than BKS. On the aver-
age, BRIG-LS achieves a gap of 0.69% when compared to BKS, and achieves the best
solution in 36.47 seconds.

Table 4: Validation of the BRIG-LS with the BKS when minimising distance.

Instance
BKS BRIG-LS Run time Gap
(Km) (Km) (s.) (%)

A-n32-k5 784 787.08 6.02 0.39
A-n33-k5 661 662.11 0.11 0.17
A-n33-k6 742 742.69 65.69 0.09
A-n34-k5 778 780.94 0.08 0.38
A-n36-k5 799 809.71 56.39 1.34
A-n37-k5 669 672.47 0.22 0.52
A-n37-k6 949 950.85 0.51 0.19
A-n38-k5 730 733.95 0.96 0.54
A-n39-k5 822 828.99 8.16 0.85
A-n39-k6 831 833.20 1.91 0.26
A-n44-k6 937 938.18 0.40 0.13
A-n45-k6 944 957.88 6.55 1.47
A-n45-k7 1146 1146.91 15.30 0.08
A-n46-k7 914 917.72 35.73 0.41
A-n48-k7 1073 1074.34 1.26 0.12
A-n53-k7 1010 1012.33 76.45 0.23
A-n54-k7 1167 1171.68 15.80 0.40
A-n55-k9 1073 1074.96 1.68 0.18
A-n60-k9 1354 1360.59 31.67 0.49
A-n61-k9 1034 1047.74 4.74 1.33
A-n62-k8 1288 1319.59 90.29 2.45
A-n63-k9 1616 1622.14 199.99 0.38
A-n63-k10 1314 1319.93 76.60 0.45
A-n65-k9 1174 1190.52 3.74 1.41
A-n69-k9 1159 1179.76 86.61 1.79
B-n31-k5 672 676.09 2.36 0.61
B-n34-k5 788 789.84 5.06 0.23
B-n38-k6 805 807.88 38.35 0.36
B-n41-k6 829 833.66 26.54 0.56
B-n43-k6 742 746.98 0.10 0.67
B-n44-k7 909 914.96 21.71 0.66
B-n45-k5 751 753.96 0.43 0.39
B-n50-k7 741 744.23 0.25 0.44
B-n50-k8 1312 1324.61 99.59 0.96
B-n57-k9 1598 1609.26 98.65 0.70
B-n63-k10 1496 1507.59 95.06 0.77
B-n64-k9 861 869.08 6.04 0.94
B-n66-k9 1316 1329.21 98.79 1.00
B-n67-k10 1032 1044.46 85.40 1.21
B-n68-k9 1272 1298.70 93.52 2.10

Average 36.47 0.69
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5.3. Comparative analysis of WM and ECM

For the purpose of the computational experiments, the weights for WM are simply trans-
lated as importance levels where for each dimension, solutions found when only one
dimension is considered. This means, α = 1 for the economic dimension, environmental
dimension, or social dimension. For ECM, the ε values are set according to Table 2. To
conduct a fair comparative analysis, ECM and WM are run for 100 seconds. A detailed
description of the parameters for the algorithm are provided in Section 5.
Table 5 summarises the results obtained for all the 43 instances obtained with ECM. The
first column shows the instance name, and for for each dimension, total costs and %gaps
between ECM and WM are shown in the corresponding column under each dimension.
According to Table 5, WM outperforms ECM for the economic and environmental so-
lutions by 0.14% and 1.33%, respectively. Interestingly, the solutions provided by ECM
outperform the WM solutions for the social dimension by 7.11%. This indicates that
the social dimension is most sensitive to ECM as this also minimises the cost of the
economic and environmental dimensions by constraining them. In terms of the compu-
tation time, the average CPU time for ECM when minimising the social dimension is 91
seconds while WM has an average time of 31 seconds. When minimising the economic
dimension, ECM has an average CPU time of 29 seconds and 7 seconds for WM. As
for the environmental dimension, ECM and WM find solutions in an average time of 46
seconds and 16 seconds, respectively. Overall, the results of the experiments indicate
that WM and ECM are competitive. However, ECM is not suitable for the evaluation
of the trade-offs between the three dimensions when considering different importance
weights.

5.4. Weight sensitivity analysis

The sensitivity analysis is used to analyse the multi-objective optimisation model be-
haviour and trade-offs that can be obtained from the different conflicting decisions (Chen
et al., 2010). Hence, we propose a weight sensitivity analysis to show the impacts and
trade-offs between the sustainability dimensions. This could offer valuable information
to make informed decisions that allow to improve the quality of the operations in terms
of both costs and impacts. For the purpose of computational experiments, these weights
are simply translated as importance levels. This simply means that an importance weight
of 100% = 1.

5.4.1. Iterative optimised weight sensitivity analysis
We propose to carry out further weight sensitivity analysis in order to investigate the
behaviour of the solution when we assign a combination of different weights to the di-
mensions. These weights are determined following an iterative process, where a different
combination of weights is assessed in each experiment. According to Kadziński et al.
(2017), some multi-objective optimisation approaches use random initial weights. In
contrast, we propose the configurations described in Equations (24) and (25) to generate
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Table 5: Total cost and %gaps between the ECM and WM for all 43 instances

Economic Dimension Environmental Dimension Social Dimension

Instance Total Cost
(a)

Total Cost
(b)

%gap
(a)-(b)

Total Cost
(a)

Total Cost
(b)

%gap
(a)-(b)

Total Cost
(a)

Total Cost
(b)

%gap
(a)-(b)

A-n32-k5 518.58 521.11 0.49 520.35 523.41 0.58 529.37 550.89 3.91
A-n33-k5 491.87 491.55 -0.07 492.60 493.56 0.19 566.31 590.35 4.07
A-n33-k6 578.18 577.06 -0.19 647.64 578.57 -11.94 583.28 661.73 11.86
A-n34-k5 519.32 519.54 0.04 519.35 520.43 0.21 598.11 599.09 0.16
A-n36-k5 528.30 526.65 -0.31 525.24 528.13 0.55 545.96 646.49 15.55
A-n37-k5 495.99 494.35 -0.33 495.70 498.34 0.53 579.22 510.38 -13.49
A-n37-k6 629.05 626.98 -0.33 695.85 626.37 -11.09 706.27 793.87 11.04
A-n38-k5 510.91 508.94 -0.39 580.63 510.97 -13.63 589.68 596.05 1.07
A-n39-k5 530.18 531.56 0.26 530.85 533.06 0.41 551.51 694.37 20.57
A-n39-k6 598.50 600.16 0.28 669.08 599.43 -11.62 676.65 700.86 3.45
A-n44-k6 627.25 624.76 -0.40 627.82 696.73 9.89 715.73 726.71 1.51
A-n45-k6 633.69 626.53 -1.14 697.54 697.65 0.02 699.75 736.78 5.03
A-n45-k7 744.27 740.56 -0.50 745.77 751.66 0.78 749.36 839.36 10.72
A-n46-k7 688.39 687.45 -0.14 697.53 688.20 -1.36 693.02 795.97 12.93
A-n48-k7 721.43 723.72 0.32 722.34 722.74 0.06 738.86 841.80 12.23
A-n53-k7 712.76 709.80 -0.42 711.69 710.46 -0.17 796.68 825.54 3.50
A-n54-k7 749.57 748.09 -0.20 750.68 746.67 -0.54 822.78 855.28 3.80
A-n55-k9 860.39 860.66 0.03 929.52 929.43 -0.01 873.93 1035.17 15.58
A-n60-k9 930.17 932.94 0.30 928.45 931.60 0.34 959.20 1143.73 16.13
A-n61-k9 860.11 858.55 -0.18 920.51 919.06 -0.16 1001.84 1254.73 20.16
A-n62-k8 846.83 845.98 -0.10 848.05 846.55 -0.18 871.54 960.24 9.24
A-n63-k10 986.26 985.71 -0.06 988.78 988.16 -0.06 1089.86 1081.57 -0.77
A-n63-k9 994.08 985.81 -0.84 1061.42 1060.68 -0.07 1066.49 1123.36 5.06
A-n64-k9 945.75 941.98 -0.40 1019.02 949.16 -7.36 1132.44 1106.40 -2.35
A-n65-k9 884.13 883.76 -0.04 955.04 956.19 0.12 974.34 986.43 1.23
A-n69-k9 883.22 883.23 0.00 880.05 880.84 0.09 958.70 981.64 2.34
A-n80-k10 1118.38 1111.50 -0.62 1113.65 1118.93 0.47 1140.96 1249.15 8.66
B-n31-k5 492.15 492.13 0.00 493.58 493.17 -0.08 502.19 588.08 14.61
B-n34-k5 518.84 520.07 0.24 523.71 524.18 0.09 521.73 693.45 24.76
B-n38-k6 593.39 593.39 0.00 595.09 593.81 -0.21 609.18 611.63 0.40
B-n41-k6 602.06 598.96 -0.52 599.34 601.84 0.41 609.07 684.68 11.04
B-n43-k6 581.83 580.02 -0.31 582.37 582.93 0.10 672.08 677.06 0.73
B-n44-k7 683.30 685.62 0.34 684.00 684.12 0.02 694.71 862.93 19.49
B-n45-k5 516.10 514.67 -0.28 581.91 583.19 0.22 589.97 595.66 0.96
B-n45-k6 564.17 565.79 0.29 640.17 641.34 0.18 717.43 731.56 1.93
B-n50-k7 645.10 645.91 0.13 645.75 647.05 0.20 660.44 738.89 10.62
B-n50-k8 849.93 848.57 -0.16 847.75 850.62 0.34 854.32 1047.62 18.45
B-n57-k9 986.64 984.89 -0.18 980.80 987.65 0.69 1000.61 1100.39 9.07
B-n63-k10 1034.39 1036.05 0.16 1104.85 1037.36 -6.51 1124.85 1142.42 1.54
B-n64-k9 813.51 811.66 -0.23 881.78 882.19 0.05 962.53 964.29 0.18
B-n66-k9 918.46 918.69 0.02 994.90 921.67 -7.94 996.65 1005.29 0.86
B-n67-k10 917.38 917.25 -0.01 929.45 927.26 -0.24 941.73 1010.84 6.84
B-n68-k9 915.27 910.13 -0.56 909.09 909.36 0.03 1001.75 1012.46 1.06
Average 726.05 724.95 -0.14 750.46 741.27 -1.32 783.05 845.47 7.11

Total cost (a): ECM total cost of minimising one dimension with the other dimensions as
constraints; Total cost (b): WM total cost minimising the one dimension.

7 scenarios. In each iteration, the weights (α1, α2, α3) may take different values, while
the parameters θ and δ take random values in the range [0, 1]. We limit the experiment
up to 100 seconds for each weight combination. α1, α2, α3 are the importance weights
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for z1, z2 and z3 respectively.

α1 = 50 + 10 · θ; α2 = 20 + 10 · θ; α3 = 30 − 20 · θ (24)

α1 = 40 − 20 · δ; α2 = 10 + 20 · δ; α3 = 50 − 10 · δ (25)

Table 6 provides the selected scenarios generated using Equations (24) and (25).

Table 6: Table of scenarios with weight combinations

Scenario Weights (%)
α1 α2 α3

S1 52.0 30.0 18.0
S2 53.4 23.2 23.2
S3 55.8 25.8 18.4
S4 47.2 19.2 33.5
S5 40.3 30.3 29.3
S6 22.9 34.9 42.2
S7 49.0 21.0 30.0

According to Table 6, most scenarios assign more importance to z1 than the other dimen-
sions. However, this does not mean that further experiments may not yield scenarios as-
signing greater importance to z2 or z3 as presented in Table 6. Nonetheless, for the sake
of this research, we have kept the generated scenarios and discuss the findings based on
these scenarios. Recall that z1, z2 and z3 represent the economic, environmental, and
social dimensions costs and z∗ represents the total cost. Table 7 summarises the quality
of the solutions under different scenarios. The first four columns represent the different
scenarios and weights according to Table 6. Each row shows the scenario, the combi-
nation of weights assigned to the dimensions, and the cost obtained for each dimension
with the assigned weight.

Figure 2 shows the solution behaviour with respect to total cost. The best economic cost
achieved is reached when z1 is assigned an importance weight of 40%, while there is
a trade-off between the environmental and social costs. However, notice that the best
environmental cost is found when z1 is assigned an importance weight of 52%, while
maintaining similar weight for z2 and decreasing the importance weight of z3. This
behaviour may be attributed to the the fact that since z1 is impacted by travelling distance
and travelling time, higher weights amplify the effect on z2 since it is also measured in
the travelling distance. In contrast, the least social cost is found when z3 is the most
important in scenario S 6. This can be attributed to the impact of the load factor in z3.
Also, notice that if z3 is considered as the most important, this increases the impact on z1
and leads to the overall most expensive solution. Hence, based on the above scenarios,
it can be concluded that the lowest total cost we achieved is in scenario S 2, where the
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Figure 2: Average total cost for different scenarios.

importance weights are set to: α1 = 53.4%, α2= 23.2%, and α3=23.2%. Certainly, the
total cost increases when α1 is higher or lower than 53.4%.

Table 7: Performance under different scenarios.

Weights (%) cost(e)
Scenario α1 α2 α3 z1 z2 z3 z∗

S1 52.0 30.0 18.0 687.32 15.29 22.72 725.33
S2 53.4 23.2 23.2 687.18 15.30 22.69 725.16
S3 55.8 25.8 18.4 687.66 15.33 23.03 726.02
S4 47.2 19.2 33.5 687.67 15.33 22.49 725.49
S5 40.3 30.3 29.3 687.13 15.28 22.94 725.35
S6 22.9 34.9 42.2 689.85 15.47 22.32 727.64
S7 49.0 21.0 30.0 687.84 15.33 22.56 725.73

Table 7 analyses the solutions for all tested instances and scenarios, a closer analysis of
the performance of z1, z2, z3, and z∗ is shown in Figure 3, which uses instance A-n37-k6.
In this instance, the customer nodes are randomly scattered within a square of side 100,
and the depot is located in the bottom corner of the square.

Each polygon represents the solution for a scenario generated based on the preference
weight assigned to each dimension. For the economic, environmental, and social solu-
tions, a 100% importance weight is assigned separately. For the sustainable solution, we
refer to scenario S 2. The four angles of the plot represent the total cost and the cost of
the dimensions that make up the total cost.
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Figure 3: Radar plot comparing the performance of dimensions corresponding to the
A-n37-k6 instance.

According to Figure 3, minimising the economic cost leads to an increase in the social
and environmental costs. While the economic solution yields the lowest economic and
environmental costs when compared to both the environmental and social solutions, it
reaches the most expensive social cost. It can be observed that, overall, the sustainable
solution reaches the lowest overall total cost.

In Figure 4, the average cost percentage for all instances, with respect to the total cost
for each solution is presented. This also describes the trade-off between the cost of the
different dimensions based on the previously described scenarios.
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Figure 4: Average cost percentage according to economic, environmental and social
dimensions.

For the sustainable solution, the economic, environmental, and social cost percentages
are 94.83%, 2.10%, and 3.07%, respectively. However, when considering the economic
solution, the economic, environmental, and social cost percentages are 94.77%, 2.03%,
and 3.20%, respectively. Nevertheless, notice that the economic solution is less expen-
sive in terms of the economic cost compared to the environmental and social solutions.
In a similar manner, when the environmental or social dimensions costs are assigned a
100% importance, a trade-off can be observed between the economic, environmental,
and social solutions. Also, notice that the social solution conflicts most sharply with the
economic and environmental solutions, and the weight combination in scenario S 2 may
serve as a standard reference for the sustainability concerned decision-maker. In con-
trast, the decision-maker who is more profit chasing may use the weight combination
in scenario S 5 as a reference weight choice. For an environmentalist, the scenario S 1
combination will be preferable as it softly trade-offs profitability and safety for environ-
mental benefits. Lastly, for an accident risk-averse decision maker, scenario S 6 may be
the preferred weight choice, as it offers the cheapest accident risk cost, while being more
expensive in terms of economic and environmental costs.

5.4.2. Practical weight sensitivity analysis
Although the weighted approach is typically applied for many multi-objective combina-
torial optimisation problems, it is still not obvious how the weights should be selected.
Nevertheless, some authors have proposed to use different weight selection methods.
Thus, we have implemented the Practical Weight Sensitivity (PWS) method introduced
by Jones (2011). This method allows the exploration of the whole weight space as many
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decision makers have a priority for some data besides their initial weighting estimate. A
sensitivity analysis is performed for different importance weights on the sustainability
dimensions proposed in the optimisation model.

By applying the PWS method in this paper, a set of 12 different scenarios with the weight
combination (α1,α2,α3) is generated to evaluate the performance of the proposed model.
These weights represent the relative importance of each dimension in the weighted ob-
jective function (Equation 21). A three-dimensional weight space is generated in Fig-
ure 5 and Table 8 shows these weights.

Figure 5: PWS 3D weight space.

In this Table, the sets of weights are defined as scenarios which are represented by S i,
with i ∈ {1, 2, . . . , 12}. The weights (1, 0, 0), (0, 1, 0), and (0, 0, 1) are assigned in order
to obtain the lower bounds for the cost of each dimension.

Table 8: Scenarios generated using the PWS method.

Scenario Weights
α1 α2 α3

S1 1.00 0.00 0.00
S2 0.00 1.00 0.00
S3 0.00 0.00 1.00
S4 0.33 0.33 0.33
S5 0.50 0.25 0.25
S6 0.25 0.50 0.25
S7 0.375 0.375 0.25
S8 0.25 0.375 0.375
S9 0.375 0.275 0.375
S10 0.42 0.29 0.29
S11 0.29 0.42 0.29
S12 0.29 0.29 0.42

In order to analyse the trade-offs between the cost of the dimensions, we evaluate the
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impact of the weight assigned to the cost of the dimensions on the overall total cost.
Two large instances with different customer outlay (A-n63-k10 and B-n63-k10) have
been selected. The reasons for the choice of these test instances are: (i) the node size
and the number of available vehicles are the same; (ii) the outlay of nodes differs in both
instances, which we presume may influence the behaviour of the solution.

The results of the experiments shown in Figure 6 are the average of 10 runs. Notice
that minimising the total cost to obtain lower bounds for each dimension with a 100%
importance, does not provide the cheapest solution, as can be seen from Figure 6 in
scenarios S 1, S 2, and S 3.

(a) A-n63-k10 scenarios total costs.

(b) B-n63-k10 scenarios total costs.

Figure 6: A-n63-k10 and B-n63-k10 total cost

On the one hand, for instance A-n63-k10 with a scattered outlay, scenario S 1 provides
a solution which is up to 0.04% more expensive than the solution provided by scenario
S 5. A similar behaviour can be observed for the solutions obtained in scenario S 2 and
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scenario S 3. Lastly, notice that scenario S 10 provides the cheapest total cost with total
cost saving of 0.24% in comparison to scenario S 5. S 10 scenario is when z1, z2 and z3
are assigned α1 = 42%, α2 = 29%, and α3 = 29%, respectively.

When the nodes are clustered in B-n63-k10, the weight assigned to the dimensions in-
fluences the overall cost. In this type of node configuration, the vehicle payload will
have a strong impact on the assignment of nodes to routes. Despite this influence, the
most expensive solution is provided in scenario S 3, when z3 is the most important, al-
though it is important to highlight that this is load-related. Moreover, when z1, z2 and
z3 are given equal importance with α1 = 33.33%, α2 = 33.33%, and α3 = 33.33%, this
scenario achieves a cost-saving of 9.4%. This indicates that balancing between distance,
travelling time, and load minimisation may lead to an overall cost saving, especially
when nodes are clustered together.

6. Conclusions and future research

The primary goal of this paper is to contribute to the sustainable VRP literature by incor-
porating three key sustainability dimensions and the evaluation of the trade-offs among
the dimensions. To the best of our knowledge, this is the first study that investigates the
trade-off between these sustainability dimensions in the context of the VRP. We have
developed a novel multi-objective optimisation model to integrate the three sustainabil-
ity dimensions and a metaheuristic that hybridises a biased randomised savings heuristic
and an iterated greedy local search method. The proposed hybrid metaheuristic extends
the classic savings heuristic by building a probabilistic savings list based on the cost of
three sustainability dimensions. The impacts of the three dimensions are measured in
terms of vehicle distribution costs, CO2 emissions costs, and accident risk costs. While
the economic dimension is based on travelling distances and times, the environmental
and social dimensions rely on carbon emissions based on travelling distance and risk
of accidents, which are based on distance and vehicle load, respectively. We have con-
ducted a comparative analysis to compare the performance of the weighted sum and the
ε-constraint models. The performance of the models are compared when we optimise
the cost of a single dimension. The computational results show that the weighted sum
model outperforms the ε-constraint model in terms of the economic and environmen-
tal solutions. However, the ε-constraint model outperforms the weighted sum model in
terms of the social solutions. The results provided by the weighted sum model are very
competitive in terms of CPU time. A set of sensitivity analysis has been proposed and
implemented for the weighted sum model. Computational experiments have found that
considering all the three dimensions can offer savings of up to 0.4% of the total costs
as opposed to considering only a single dimension. Additionally, we have observed
that irrespective of the network configuration (scattered or clustered), the social dimen-
sion conflicts sharply with the economic and environmental dimensions. This proves
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the value of a multi-objective approach, since it shows the trade-offs between the three
sustainability dimensions.

Several lines of future work are identified from this work. Firstly, the introduction of sus-
tainability dimensions in richer vehicle routing problems can be explored (e.g., consid-
ering electric vehicles and heterogeneous fleets). Similarly, uncertainty in real-life oper-
ations could be taken into account by modelling travelling times or customers’ demands
as stochastic variables. In addition, more research on social dimensions is needed. For
instance, other social impacts of transport activity such as fairness and balanced routes
may be considered. Likewise, more realistic formulations of policy-driven models that
highlight the importance of considering the economic, environmental, and social sus-
tainability dimensions are necessary for generating more practical insights and engaging
stakeholders, which could lead to sustainability policy making.
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