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ABSTRACT

Mobility solutions like ride-sharing and carpooling are becoming popular in many

urban and metropolitan areas around the globe. These solutions, however, create

many operational challenges that need to be solved in order to make them more effi-

cient and sustainable in time, e.g.: determining the number and location of parking

slots, finding the optimal routes in terms of time or emissions, or developing synchro-

nized schedules among ride-sharing users. This paper provides an updated review on

car-sharing optimization studies (including ride-sharing and carpooling), compares

different analytical approaches in this research area, and discusses the emerging con-

cept of ‘agile’ algorithms as one of the approaches that might contribute to deal with

the requirements of large-scale and dynamic car-sharing optimization problems.
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1. Introduction

Transport and logistics (T&L) activities represent a key sector in modern societies,

and they significantly contribute to their social and economic progress. At the same

time, the raise of the on-demand economy (services) and the e-commerce activity

(products) has boosted the number of pick-ups and deliveries in urban, metropoli-

tan, and peri-urban areas. Thus, there is a need for increasing the effectiveness and

sustainability of T&L activities and policies (Cui et al., 2020). Due to the increasing

number of people who live in urban areas, many local and regional governments realize

that T&L activities will play a major role in the development of the so-called smart

sustainable cities (Bibri and Krogstie, 2019). Large quantities of data are gathered in

real-time via electronic devices located inside vehicles and infrastructures (computer

chips, sensors, traffic cameras, drones, etc.), transmitted over the Internet, and an-

alyzed through information and expert systems (Mehmood et al., 2017). Monetary,

environmental, and social costs associated with single occupancy vehicles could be re-

duced by more efficient utilization of empty seats in personal transportation vehicles.

This is the goal of carpooling and ride-sharing strategies, which, apart from generating

substantial economic impact to users, aim at reducing the number of vehicles on the

road and, as a consequence, contribute to diminishing traffic and pollution (Bistaffa

et al., 2019). According to Schrank et al. (2019), the annual cost of congestion in the

United States (U.S.) achieved $ 166 billion in 2017, which caused Americans to lose

around 8.8 billion hours on sitting in traffic and purchase an extra 3.3 billion gallons

of fuel. Environmentally speaking, transportation counted for about 28% of total car-

bon dioxide-equivalent emissions (CO2e) in the U.S. in 2018, being light-duty vehicles

responsible for 59% of them (United States Environmental Protection Agency, 2020).

In Europe, on the other hand, transportation was responsible for almost 30% of CO2e

in 2016, of which 72% comes from road transportation. Particularly, cars are respon-

sible for almost 61% of these 72% of gas emissions (European Environment Agency,

2019). In an effort to minimize related problems, such as greenhouse effects and global

warming, the European Union developed a strategic plan for low-emission mobility.

As stated in European Commission (2016), one of the main elements on which this
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strategy relies on refers to increasing the efficiency of the transport system by benefit-

ing from digital technologies, smart pricing, and further encouraging the shift to lower

emission sustainable transportation modes. Therefore, the need for smarter and sus-

tainable transportation modes is clear, whose development has been possible thanks

to recent advances in communication and information technologies.

Carpooling and ride-sharing are two of the main peer-to-peer (P2P) services in

car-sharing. PSP services followed the diffusion of smart-phone technology and social

networking websites (Prieto et al., 2017), transforming car-sharing services into an in-

ternational transportation trend. Such services rely on sharing privately owned vehicles

for a particular trip in the surrounding area on an hourly or daily basis (Ballús-Armet

et al., 2014).

The seminal studies regarding the use of ride-sharing systems are dated to 70s.

According to Kornhauser et al. (1977), the first motivation for adopting a ride-sharing

system was the fuel crisis of 1973 in the U.S., and the scarcity of federal funds for

implementing new urban transport facilities. At the time, the increase of vehicles’

utilization in private transport represented the most obvious target for improving

the systems’ efficiency without constructing new physical facilities. Since the work

of Kornhauser et al. (1977), the use of ride-sharing systems has been studied and

gained considerable attention from researchers. Different types of ride-sharing can be

identified in the literature: (i) ride-sharing with static requests –in which all requests

are known before the trip starts (Yu et al., 2019); (ii) ride-sharing with dynamic

requests –where new requests can be added during the execution of the transport

service (Simonetto et al., 2019); and (iii) ride-sharing with either deterministic or

stochastic requests (Long et al., 2018). Researchers around the world have studied

many variants and real-life applications in cities such as New York (Schaller, 2017),

Atlanta (Agatz et al., 2011), Rome (Naoum-Sawaya et al., 2015), Beijing (Ma et al.,

2013), or Tokyo (Do et al., 2016). Several optimization techniques have been used

to solve ride-sharing problems, including exact and approximate methods, as well

as agent-based and dynamic simulation. Also, surveys on the different variants and

applications of ride-sharing problems can be found in Furuhata et al. (2013a) and,

more recently, in Mourad et al. (2019). Because real-world problems are often dynamic
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and large-scale, car-sharing related problems are challenging. According to Borcuch

(2016), a challenging task in developing car-sharing systems in real-world is the scaling

of the shared-transportation problem-solving approach, in order to solve large-scale

problems, like those required in real-life, where over thousands or millions of requests

should be assigned.

Considering the aforementioned, the main contributions of this paper can be sum-

marized as follows: (i) we provide a review of recent works on optimization problems

related to ride-sharing and carpooling, classifying them according to the employed

solving methodology (i.e., either exact, approximate or simulation methods); (ii) from

the previous review, the main challenges are identified, specially in the context of

smart and sustainable cities –including the increasing trend in considering self-driving

and electric vehicles; and (iii) the concept of ‘agile’ optimization is discussed. Ag-

ile optimization algorithms are able to provide high-quality solutions in real-time by

combining biased-randomized algorithms (Grasas et al., 2017) with parallel computing

(Malapert et al., 2016). By taking advantage of these two approaches, the resulting

methodology is capable of efficiently responding to every piece of new information that

is being continuously incorporated into the system.

The remainder of this paper is structured as follows: Section 2 defines the car-sharing

activities addressed in this work. Section 3 describes the main research questions as

well as the review methodology employed in this study. Section 4 reviews the use of

exact methods in ride-sharing optimization problems. Sections 5 and 6 complete a

similar review for the case of metaheuristics and simulation approaches, respectively.

Section 7 provides a performance analysis of ride-sharing systems by analyzing differ-

ent case studies. Section 8 discusses challenges, identified in the car-sharing literature,

that are related to synchronization and coordination. Section 9 do the same for those

challenges related to the use of self-driving and electric vehicles. Section 10 present

some research opportunities related to ride-sharing logistics and the consideration of

uncertainty scenarios, while Section 11 performs a similar analysis for vehicle technical

characteristics and sustainability issues. Section 12 discusses how the combination of

metaheuristics with other methodologies (x-heuristics), such as simulation or machine

learning, can be useful to deal with ride-sharing problems under uncertainty and dy-
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namic conditions. It also discusses the concept of ‘agile’ optimization in the context of

ride-sharing problems. Finally, Section 13 highlights the main findings of this work.

2. Car Sharing Activities

With the rise of mobile technology, car-sharing services have become an international

transportation trend that holds the capability of significantly reducing congestion on

the roads, diminishing traffic and pollution, and other externalities caused by the indi-

vidual transportation. At the same time, these P2P systems allow users to accomplish

several transportation goals, which include economic (e.g., costs reduction) and conve-

nience interests (e.g., flexibility and speed), by allowing drivers and riders to share the

associated costs (e.g., fuel, tolls, parking fees) so that each benefits from the shared

ride (Stiglic et al., 2015). Although both systems allow users to travel together and

share transportation costs, carpooling often limits users to consistent schedules. It

also fixes riders to the same place at the same time. Consequently, the full potential

of prearranged carpooling is often constrained by these operational limitations (Korn-

hauser et al., 1977). Ride-sharing, on the other hand, allows for more flexible schedules

and locations. In both carpooling and ride-sharing services, users share rides provided

by drivers, who are participating individuals that operate with their private vehicles.

Both services charge passengers with a fee to share the ride. the following two sections

discuss ride-sharing and carpooling services in more detail.

2.1. Ride-sharing

By being an automated process in which a service provider matches travelers with

similar itineraries and time schedules to share a ride on short-notice in a personal

vehicle, ride-sharing systems are naturally dynamic (Prieto et al., 2017). Their com-

plexity relies mainly on matching individuals subject to spatiotemporal constraints,

which must be specified from both parties –i.e., drivers and users– before the desired

ride is established and executed. On the one hand, passengers request a ride at a spe-

cific time, from a specific origin to a specific destination. On the other hand, drivers

have a fixed trajectory and departure time. Consequently, ride-sharing systems require
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certain sort of flexibility since deviations might be needed at different points on the

trajectory in order to pick up and drop off passengers, as long as these detour distances

do not exceed the driver’s distance tolerance (Cici et al., 2015).

Figure 1 presents an illustration of a ride-sharing trip. In Figure 1a, solid lines rep-

resent the fixed trajectory of the driver, in which passenger 1 walks to driver’s origin,

and passengers 2 and 3 are picked up during the driver’s trajectory to destination.

Figure 1b represents an extension of the previous one, where dashed lines represent

possible detour deviations that might occur, for instance, in order to: (i) pick up a

passenger (the passenger a); and/or (ii) drop off a boarded passenger (the passenger

1) at a location which is different from the driver destination (location b). These two

detours are done by considering a maximum threshold of locomotion. From the pas-

sengers’ point of view, this process implies a wait until the driver’s latest departure

time.

3

1

2

Origin

Destination

Passenger

Passenger

Passenger

(a) Driver trajectory with no extra detours to pick up
and/or drop off passengers.

3

1

2

a

b

Origin

Destination

Potential
passenger

Passenger

Passenger

Passenger

Passenger 1
drop-off

(b) Driver trajectory with possible deviations to pick
up and/or drop off passengers.

Figure 1.: A visual representation of two possible ride-sharing rides.
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2.2. Carpooling

Unlike ride-sharing activities, carpooling rides are less flexible activities that aim to

transport simultaneously several people from a common starting point to a common

end point (Nechita et al., 2016), with the main goal of saving money. These services

encourage commuters who are moving in the same direction to share private vehicles

(Duan et al., 2018). According to Nechita et al. (2016), the most usual situation of

carpooling occurs when neighbors work at the same facility and agree to travel using

only one car in order to share the travel expenses. Two variants of such carpooling

exist: (a) the pools sharing a ride to work also share the same ride returning from

work back home, and (b) both to-work and return-from-work are treated as different

problems, and, hence, must be solved independently (Baldacci et al., 2004).

In carpooling systems, by fixing both the origin and destination locations that

define the trajectories, riders are fixed to be at the same place at the same time before

starting the ride. Therefore, users are limited to consistent schedules. In these systems,

the origin and destination are announced by the drivers, and no deviations, pick-ups, or

drop-offs are allowed during the execution of a ride. According to Stiglic et al. (2015),

the use of meeting points in car-sharing, such as those from carpooling activities,

increases the feasible matches between drivers and riders, apart from allowing the

driver to be matched with multiple riders without increasing the number of stops

the driver needs to make. In Figure 2, a carpooling ride is presented, where three

passengers move to the origin, where the trip is started (i.e., the start point), and they

get to the destination together with the driver.

3. Research Questions & Initial Classification

In the context of ride-sharing activities inside smart sustainable cities, this section

describes the methodology adopted in carrying out a systematic literature review

(Tranfield et al., 2003). Following Thornhill et al. (2009), our review is conducted

using an iterative method, which consists of the definition of appropriate keywords,

the search within the current literature, and its analysis. This systematic approach

helps to reduce any bias and ensures the reproducibility of the process (Cook et al.,
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Destination

Passenger Passenger Passenger

...

Figure 2.: A visual representation of a possible carpooling ride.

1995).

The first step includes defining the main research goals and objectives, selecting the

database and the keywords, and designing the search process. We aim to answer the

following research questions: (i) which are the main optimization challenges related

to ride-sharing activities in smart and sustainable cities? and (ii) what optimization

and simulation techniques have been employed so far in ride-sharing and carpooling

optimization problems? The following keywords were proposed: ride-sharing, smart

sustainable cities, carpooling, and optimization problems. We have analyzed publica-

tions included in journals indexed within the Science Citation Index (SCI) and the

Social Science Citation Index (SSCI), both part of the Web of Science (WoS), which

is considered to be one of the main sources of information in the academia (Newbert,

2007). Through the analysis of the literature presented in the Sections 4, 5, and 6, an-

swers will be depicted to these questions. According to Rodŕıguez Boĺıvar et al. (2010),

books (including reviews), editorials, brief communications, letters to the editor, sym-

posiums, and articles of a professional nature, provide a limited view of the subject,

and therefore, must be excluded from the analysis. However, our review does take into

consideration articles published in special issues of journals, since those actually reflect

a great interest in the study of any issue.

A set of inclusion/exclusion criteria have also been implemented. The first one

makes reference to the inclusion of those papers related to car-sharing, ride-sharing
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and carpooling in smart cities. The second one deals with the consideration of works

that actually apply optimization techniques and/or metaheuristics. The last criterion

was based on the inclusion of those articles that explore agile optimization to solve

transportation problems. From the results of the first step, a total of 1,355 papers were

found. In fact, the analysis of citations of the original elements in the Web of Science

collection related to “ride-sharing”, “car-sharing” and “carpooling” terms, shows a

growing interest (see Figure 3). Similarly, Figure 4 shows, for the terms ‘ride-sharing’,

‘carpooling’, and ‘car-sharing’, the time evolution of the number of articles indexed in

the WoS.

Figure 3.: Number of citations per year indexed in WoS.

The second step consists of classifying the references gathered from the performed

search (Hartley and Kostoff, 2003). All in all, a total of 86 papers were selected to

be analyzed. Regarding the journals in which the selected papers were published, the

research reveals that the most common journals comprise a total of 32.94% (29 pa-

pers): Transportation Research Part B: Methodological (13 papers); Transportation

Research Part C: Emerging Technologies (6 papers); Computers & Industrial Engi-

neering (5 papers); and European Journal of Operational Research (4 papers). The

dominant research areas are directly connected with the topics assessed in Section 2:

Transportation (53.2%), Engineering (46%), Computer Science (43.2%), Business Eco-

nomics (22.2%), Mathematics (15.6%), and Environmental Sciences Ecology (13.4%).
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Figure 4.: Number of scientific articles per year indexed in WoS.

In the third and last step, the selected works were classified according to the an-

alytical method used, i.e., exact, approximate or simulation approaches. Also, these

works were examined to identify the addressed main challenges.

From an analytical perspective, most of the works on ride-sharing and carpooling op-

timization are identified as NP-hard problems. These problems are usually formulated

as mixed-integer/integer linear programming (MILP/MIP) models, and small-sized

instances are solved using exact methods. However, due to the complexity of the ride-

sharing problems, approximate methodologies have been used in the literature to solve

large-sized instances as well. The next sections provide a review based on the solv-

ing approach employed. Another important aspect identified in the literature refers to

whether the ride-sharing system is static or dynamic. In dynamic ride-sharing systems,

trip information –which includes users’ origin, destination, and time schedule– is sent

to the platform. Then, the solving methodology must match up drivers and riders on

a very short notice, or even en-route (Agatz et al., 2012). Many studies are focused

on developing algorithms for dynamic ride-sharing systems. Table 1 presents a clas-

sification of the reviewed articles by problem variant (static or dynamic) and solving

methodology (exact or approximate). The following sections discuss in detail each of
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these works. In each section, we first introduce the related literature in the field of

ride-sharing problems, followed by the related literature in carpooling problems.

Table 1.: Classification of ride-sharing articles by version (static or dynamic) and
solution methodology.

Study

Car-Sharing Problem Methodology

Static Dynamic Exact
Heuristic or

Metaheuristic
Other

Kornhauser et al. (1977) • •
Baldacci et al. (2004) • • •

Agatz et al. (2011) • •
Yan and Chen (2011) • • •

Herbawi and Weber (2012) • •
Hosni et al. (2014) • • • •

He et al. (2014) • •
Lee and Savelsbergh (2015) • • •

Fagnant and Kockelman (2015) • • •
Santos and Xavier (2015) • • •

Huang et al. (2015) • • •
Naoum-Sawaya et al. (2015) • •

Stiglic et al. (2015) • •
Schreieck et al. (2016) • •

Jung et al. (2016) • •
Alonso-Mora et al. (2017) • • •

Levin et al. (2017) • • •
Masoud and Jayakrishnan (2017) • •

Najmi et al. (2017) • • •
Wang et al. (2017) • • •

Li et al. (2018b) • • •
Long et al. (2018) • •

Ma et al. (2018) • •
Lokhandwala and Cai (2018) • • •

Yu et al. (2019) • •
Chen et al. (2019) • • •

Simonetto et al. (2019) • •
Li and Chung (2020) • • •

Cheikh-Graiet et al. (2020) • •

4. Exact Methods for Car Sharing Optimization

Despite their limitations for solving large-sized NP-hard optimization problems in

short computing times, the use of exact methods is still relevant since they can be

utilized to validate approximate methods in small-sized instances, as well as to provide

lower and upper bounds to optimal solutions.
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4.1. Ride-sharing

Ride-sharing systems are naturally dynamic because they require matching of travelers

with similar itineraries and time schedules on short-notice (Prieto et al., 2017). Con-

sequently, exact approaches for solving this class of problems must be flexible enough

to deal with such particularities, since most of them require solutions in real-time.

Considering a dynamic single-trip ride-sharing problem, Agatz et al. (2011) proposed

an optimization procedure to match up drivers and riders on a very short notice and to

determine the best set of proposed ride-share matches. In the addressed environment,

new drivers and riders continuously enter and leave the system. The objective is to

minimize the total-wide vehicles-miles and the total travel cost, i.e., to maximize the

total revenues of the provider. The proposed methodology is based on a rolling-horizon

strategy, which incorporates an optimization procedure to determine the best set of

ride-sharing matches by using the CPLEX commercial optimization software. To test

their methodology, the authors performed a simulation based on travel demand data

for the Atlanta metropolitan area. For cases in which the instances cannot be solved

to optimality quickly, the authors defined a maximum solution time limit or an op-

timality gap which guarantees the finding of high-quality solutions. As expected, the

simulation results improved basic greedy matching rules and suggested that the use of

dynamic ride-sharing systems is able to reduce the overall travel cost of the system, as

well as travel times of passengers. Likewise, Hosni et al. (2014) proposed a Lagrangian

decomposition approach to maximize the total profit in a ride-sharing problem –i.e.,

their goal was to minimize the vacant seats, taxi fares to passenger, and number of

vehicles. In this problem, customers request rides from specific pick-up locations to spe-

cific drop-off locations. Therefore, the optimal assignment of passengers to taxis must

be determined, as well as the optimal route for each taxi. The Lagrangian approach

decomposes the problem into sub-problems that are independently solved. Recently,

Li and Chung (2020) introduced a novel deterministic model for the ride-sharing under

travel time uncertainty, which addresses different origins and destinations of drivers

and riders. Similar to the previous study, the objective aims to find optimal matches

between riders and drivers, besides finding the optimal routes for drivers in which mul-

tiple drivers and multiple riders are considered. The model was solved through a MIP

12



model using the Gurobi solver (Optimization, 2014). Apart from being able to find

optimal solutions, several hours to several days were needed to solve problems of up

to 44 nodes. In order to overcome this shortcoming, same authors have proposed a hy-

brid method. Similarly, Naoum-Sawaya et al. (2015) studied a stochastic ride-sharing

scenario by considering the unforeseen event of the car unavailability. They proposed

an exact integer programming (IP) model to solve the problem. Lee and Savelsbergh

(2015) focused on understanding the required budget to achieve a certain service level,

in terms of serving a minimum percentage of riders, in a dynamic ride-sharing system.

This budget is related to the cost of employing dedicated drivers, who are only ad-

dressed when the number of passengers increases to a certain level. Similar to previous

authors, they formulated the problem as an IP model, which was solved by commercial

IP solvers in order to validate a proposed metaheuristic approach. Li et al. (2018b)

also proposed a mixed-integer linear program (MILP) to solve a ride-sharing problem,

resolved by the CPLEX, and to validate a metaheuristic approach. Another example

of dynamic ride-sharing can be found in Wang et al. (2017), in which the passenger has

the option of accepting or declining the assigned vehicle. They also proposed different

mathematical programming approaches to find the best stable solution.

In the context of autonomous vehicles, Alonso-Mora et al. (2017) presented a math-

ematical model for solving, in real-time, high-capacity ride-sharing problems via dy-

namic trip-to-vehicle assignments. The authors proposed a reactive-anytime-optimal

algorithm. Based on a greedy assignment, this algorithm returns a valid assignment

of travel requests to vehicles. Then, refines it over time, converging to an optimal

solution. The optimal routes are dynamically generated with respect to online de-

mands and vehicle locations by solving an ILP model. Later stages aim to balance

the remaining idle vehicles, which are in areas far away from the one with an active

request. The authors concluded that the using the ride-sharing concept can provide

a substantial improvement in urban transportation systems by reducing the fleet size

substantially. They also conclude that system parameters –such as vehicle capacity

and fleet size– have a direct influence on the service quality and demand. Masoud and

Jayakrishnan (2017) proposed an exact method, based on a decomposition algorithm,

to solve a multi-hop ride-sharing problem. The objective is to minimize the total trav-
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eling cost, which also includes the fixed cost of the vehicles and the penalty cost of

the non-serviced passengers. Chen et al. (2019) proposed an ILP formulation to solve

the ride-sharing problem considering return restrictions to satisfy the business needs,

meeting points, and the option for riders to transfer between drivers. However, the ef-

ficiency of this method was limited by the size of the instances, which were optimally

solved just for cases with up to 80 participants –the computational time was set to

a maximum of two hours. Finally, Yu et al. (2019) investigated a green ride-sharing

problem whose multi-objective function consists in maximizing the average ride profit

of the drivers and minimizing the carbon emissions. An exact method –based on cut-

ting the non-Pareto-optimal solutions using a decomposition approach– was developed

to solve this problem. The method was tested on benchmark instances for the pick-up

and delivery problem with time windows, which were initially proposed by Li and Lim

(2003).

4.2. Carpooling

Baldacci et al. (2004) proposed both an exact and heuristic method for solving a sin-

gle way, referred to as a to-work, carpooling problem. The exact approach is based

on a bounding procedure that combines three lower bounds derived from different

relaxations of the problem. Two different problem formulations were presented. The

first one is based on three-index decision variables specifying the arcs traversed by

each car while the second one uses a set-partitioning (SP) formulation whose variables

correspond to feasible paths for the cars. The paths were generated by dynamic pro-

gramming, and for solving the formulations, the CPLEX solver was employed as the

integer programming solver in the exact method. The authors tested the approaches

to VRP derived instances, where the majority of the problems could be solved by the

exact approach in reasonable computing times. Moreover, the proposed bounding pro-

cedure showed to be competitive with other column generation methods. Years later,

Stiglic et al. (2015) introduced an IP formulation to formulate a single driver, multi-

ple riders ride-share matching problem, in order to maximize the number of matched

participants in large-scale ride-sharing systems with meeting points. The authors de-

signed and implemented an algorithm that optimally matches drivers and riders, in
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which each driver has the possibility of having at most only one place to pick-up pas-

sengers, and one place to drop-off them, which characterizes a carpooling service. In

other words, passengers will be taken at the same time in a common node, and they

will also be dropped off at the same time in another common node. The pick-up and

drop-off nodes are set at strategic locations or transit points –such as bus stops, re-

fueling stations, etc. This allows passengers to be picked up by other drivers on their

way to their final destination. The CPLEX was shown to solve the integer programs

–i.e., the matching process– in a few seconds in all tested settings, which suggests that

the algorithm is appropriate for use in practice. This concept has been also studied by

other researchers, such as Li et al. (2018b), Stiglic et al. (2018), and Khademi Zareh

et al. (2019).

5. Metaheuristic Methods for Car Sharing Optimization

Regarding the use of approximate methods, both metaheuristics (Duarte et al., 2018;

Glover and Kochenberger, 2006) as well as modeling and simulation methods (Law

and Kelton, 2000; Macal, 2016) have been employed to deal with ride-sharing and

carpooling problems. Among the former, different metaheuristic frameworks have been

tested, including: genetic algorithms (GAs), tabu search (TS) local search (LS), greedy

randomized adaptive search procedures (GRASP), and hybrid methods that aim to

combine a few heuristics.

5.1. Ride-sharing

Genetic Algorithms (GAs): The GAs consist of one of the main approximate meth-

ods to solve ride-sharing problems. For example, Herbawi and Weber (2012) studied

the dynamic ride-sharing problem. Their objective function includes several dimen-

sions, such as total travel time, distances of the drivers’ journeys, total travel time

of the passengers, and number of matches. Schreieck et al. (2016) proposed an au-

tomated matching algorithm in order to minimize the time to matching rides in a

dynamic ride-sharing problem. The proposed methodology is based on matching ride

offers and requests. It also uses a smart data structure to increase the calculation
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speed of matches. The shortest path between request points is created by utilizing the

GraphHopper open source library (https://www.graphhopper.com/).

Local Search Algorithms (LS): Regarding the use of LS, Simonetto et al. (2019)

studied the dynamic ride-sharing in order to minimize the duration time of trips.

In their work, they recast the ride-sharing problem into a succession of batch pro-

cesses that combine a linear assignment algorithm, a context-mapping algorithm, and

a capacitated vehicle routing problem with pick-up, delivery, and time-windows. The

authors used an insertion heuristic to insert new passengers into live rides and devel-

oped a local neighborhood search (LNS) to solve this complex variant. Two real-life

data-sets are used in order to test their LNS: the New York City taxi data-set and

the Melbourne metropolitan area data-set. Apart from proposing an exact approach

for solving the ride-sharing problem, Hosni et al. (2014) also introduced an incremen-

tal cost heuristic to solve the dynamic version of the problem. In this version, the

location of the seekers appears in real-time. For each taxi vehicle, whenever a new

request arrives, a minimization problem is solved. This allows to compute the addi-

tional cost when including it into the route. The objective is to maximize the total

profit –i.e., minimizing the vacant seats, taxi fares to passengers, and the number of

vehicles. For solving large instances, Chen et al. (2019) also proposed a savings-based

constructive heuristic, which combines the use of ride-sharing with external mobility

service providers. Among the positive conclusions regarding the reduced number of

trips and vehicle miles, the authors showed that ride-sharing creates more benefits

when the participation is high and when the origins and the destinations of the trips

are more spatially concentrated. They achieve up to 31.3% savings in distance-based

cost and up to 28.7% reduction in the number of vehicles needed to fulfill the users’

travel schedules. Apart from solving a dynamic ride-sharing problem exactly, Lee and

Savelsbergh (2015) also proposed a metaheuristic based on neighborhood search and

shaking procedures, in order to solve the large-scale instances that the IP model was

not able to. Similarly, Naoum-Sawaya et al. (2015) also developed a heuristic to solve

real-life instances related to the city of Rome.

Hybrid Methods: Hybridization of metaheuristics has also been employed in the ride-

sharing literature. For example, Jung et al. (2016) proposed three different algorithms
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to solve the dynamic shared-taxi-dispatch problem: a nearest vehicle dispatch (NVD)

algorithm, an insertion heuristic (IS), and a hybrid-simulated annealing (HSA). In this

problem, passengers on demand are dynamically assigned to empty seats in passenger

cars. The NVD simply assigns a passenger to its nearest geographically available vehi-

cle, which is the most commonly used in real-life applications given the need for quick

response times. The IS handles real-time passenger requests by considering all feasi-

ble vehicles and finds the best available vehicle to assign to a new passenger (which

does not have to be the nearest one). Finally, the HSA assigns efficiently and dy-

namically passengers on-demand to available vehicles. This is done by systematically

re-optimizing the assignment of new requests, as well as updating existing schedules

in real-time. Two objectives were addressed: (i) minimizing total travel time of pas-

sengers, and (ii) maximizing system profit from selectively accepting passengers based

on the current schedule. Simulations were conducted to investigate how a shared-taxi

system can improve passenger travel –compared to conventional taxi services– by uti-

lizing vehicle resources more efficiently. Apart from proposing an exact approach for

solving a ride-sharing problem under travel time uncertainty, Li and Chung (2020) also

proposed a hybrid algorithm that combines an extended insertion algorithm with a

TS method. The insertion algorithm finds initial feasible routes, which are iteratively

improved by the TS. The hybrid TS was able to find near-optimal solutions in shorter

computational time, when compared with the exact approach, and to overcome other

heuristics’ solutions.

Other heuristic methods: Wang et al. (2017) studied a dynamic ride-sharing problem

in which the passenger has the option of accepting or declining the assigned vehicle.

They proposed a heuristic algorithm to find stable matches –i.e., those in which no rider

and driver, currently matched to others or unmatched, would prefer to be matched

together. Similar to Agatz et al. (2011), they used the rolling horizon strategy for

dealing with cases in which new trip announcements continuously arrive. Similarly,

Najmi et al. (2017) also developed a clustering heuristic to solve a static and dynamic

ride-sharing problem to minimize the total traveling distance. They presented a novel

clustering heuristic based on both the origin and the destination of users, to solve a

large-scale dynamic ride-sharing problem. This algorithm was previously introduced in

17



a static context, being then posteriorly embedded within the rolling horizon strategy,

to periodically solve the matching problem as new announcements enter the system.

A year later, Li et al. (2018b) have proposed a TS algorithm for solving an enhanced

ride-sharing system with meet points and users’ preferable time windows.

5.2. Carpooling

Genetic Algorithms (GA): Huang et al. (2015) proposed a genetic-based carpooling

matching and routing algorithm to solve a carpooling problem for online systems. In

this version of the problem, the driver may pick-up more than one passenger during

the trip, respecting capacity constraints, i.e., the number of seats. Then, an efficient

matching of drivers and passengers should be provided by the online system. Each

passenger is taken by a single driver. The algorithm determines carpooling matches

and it is divided into two modules: evolution initialization and genetic evolution. The

former transforms the solutions into chromosomes, and the initial population is gener-

ated by a distance-based greedy heuristic. The chromosomes are made up of segments,

which represent the passengers assigned to each driver. The latter aims to find the op-

timum carpool route and matching results. In the crossover operator, the segments

are combined. The mutation is based on insertions (applied at the segment with the

worst sub-fitness) and multiple swaps. A chromosome repair is called when an invalid

chromosome is generated. Another use of a GA for solving a taxi carpooling path opti-

mization model was proposed by Ma et al. (2018), where a single objective model was

extended to a model with multiple objectives. Apart from minimizing the taxi travel

distance, the proposed models aimed to reduce detour distance and cost of passengers,

as well to increase the passengers’ satisfaction and taxi drivers’ income.

GRASP Algorithms: Using a GRASP framework, Santos and Xavier (2015) studied

the problem of taxi-sharing combined with carpooling. Carpooling drivers specify their

departure point, destination, time departure, and the maximum delay tolerated by the

latter. As for taxi drivers, they indicate their current locations as well as the start and

end time of their service. The drivers must also fix the price per kilometer, as well

as the maximum capacity of their vehicles. Each passenger has a maximum cost that

he/she is willing to pay for the trip. The authors’ strategy is to solve this dynamic
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problem by transforming it into a series of static problems.

Tabu Search Algorithms (TS): Recently, Cheikh-Graiet et al. (2020) proposed a TS

algorithm for solving a dynamic carpooling problem. This dynamic system supports

the automatic and optimal ride-matching process between users on very short no-

tice or even en-route, and includes the possibility to drop off passengers at a given

walking distance from his destination, in order to increase users’ satisfaction. For do-

ing that, the proposed TS employs several original searching strategies developed to

make optimal decisions automatically, while allowing transfers and detours. A simu-

lation environment was developed based on actual carpooling demand data from the

metropolitan area of Lille, in France. The proposed methodology was able to satisfy

a maximum of carpool requests by involving a minimum number of vehicles. This

satisfactory performance was achieved by allowing detour and transfer processes.

Other heuristic methods: Yan and Chen (2011) addressed a carpooling problem

with pre-matching information (PMI), modeled as an integer multiple commodity

network flow problem (IMCNFP), and solved by a solution method, based on La-

grangian relaxation and a heuristic for generating the upper bound solution, since the

IMCNFP is characterized as NP-hard. The authors were the first to consider the PIM

into this problem, which is obtained from previous matching results and can include

valuable information, such as carpool partners, the remaining vehicle capacity, and

the route/schedule for each previously participating vehicle. The use of PIM aims to

reduce inconveniences among commuters since most of the previous users from the

same matching would expect similar carpool partners, and drivers would expect any

change of their schedule/route to fall within a tolerable range. To test the proposed

methodologies, the authors generated a set of 30 instances, based upon data reported

from a past study carried out in Taiwan, and they concluded that both the model and

solution algorithm were efficient on solving the problem. With the goal of minimizing

CO2 emissions, Bruck et al. (2017) studied the static carpooling and provided two

mathematical models and two heuristic-based methods to solve a real application. Su

et al. (2019) developed a new hybrid method that combines an artificial bee colony

algorithm (Karaboga et al., 2014) with a variable neighborhood search (Hansen and

Mladenović, 2014) and a tabu list (Gendreau and Potvin, 2005) to minimize the total
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distances of all passengers.

6. Simulation Methods for Car Sharing Management

The use of simulation for car-sharing management dates back to 70s. For example,

motivated by the fuel crisis of 1973 in the U.S., and the scarcity of federal funds for

implementing new urban transport facilities, Kornhauser et al. (1977) developed a

simulation for assessing the productivity potential of dynamic ride-sharing systems

on a hypothetical automated guideway transit network designed for Trenton, New

Jersey. Different policies were tested, based on the number of specific origins and

destinations that can be served by a vehicle at any one time. For the single-origin to

single-destination, the daily average vehicle occupancy improved by 60-120% over the

purely non-shared-ride operation. Since then, simulation approaches have been used

widely to study car-sharing problems. Among simulation approaches, agent-based and

dynamic simulation have been the most frequently used methods to deal with car-

sharing issues.

6.1. Ridesharing

Agent-based modeling : Regarding agent-based modeling, the taxi ride-sharing problem

was addressed in Lokhandwala and Cai (2018) using the New York city fleet as a case

study. These authors employed the following implicit objectives: decrease the fleet

size, increase the occupancy rate, decrease the total travel distance, and reduce the

carbon emissions. The main findings of the paper are that ride-sharing may reduce

the service level in suburban areas and that the ride-sharing combining autonomous

driving with autonomous vehicles can potentially decrease the fleet size by up to 59%.

In their simulations, the total travel distance was decreased by up to 55%. Due to the

possibility of full-day operations and the absence of drivers, the use of autonomous

vehicles in a ride-sharing system has received increasing attention during the last years.

Fagnant and Kockelman (2015) dealt with using shared autonomous vehicles (SAVs)

in urban areas. In their work, dynamic ride-sharing opportunities were included in

order to optimize fleet sizing, improve the model’s capabilities, and deliver a benefit-
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cost analysis for fleet operators. These opportunities allow two or more independent

travelers to share a single SAV. An agent-based micro-simulation model was proposed

to build an SAV fleet to transport those trip-makers from their origins to destinations

over a day, which was then modified to allow travelers to access SAVs that are currently

occupied or claimed by other trip-makers –i.e., the dynamic ride-sharing system. The

proposed model is composed of four modules: (i) the SAV location and trip assignment

module; (ii) the SAV fleet generation module; (iii) the SAV movement module; and

(iv) the SAV relocation module. The first module assigns waiting travelers to the

nearest SAV, prioritizing those who have been waiting longest. In the second module,

SAV paths are computed using a Dijkstra-based algorithm to determine the shortest

time-dependent route for a SAV to reach each assigned traveler –and his/her final

destination. The third module tracks SAV movements of picking-up and dropping-off

travelers. Finally, the last module is used to balance the supply-demand over space

and time. As expected, the use of ride-sharing mobility is able to improve the model

capabilities, hence reducing the average total service time.

The approach by Levin et al. (2017) applied shared autonomous vehicles to ride-

sharing and dynamic ride-sharing. There are two main objectives to be minimized:

the travel time and the number of SAVs. They also consider a constraint on waiting

times. Despite this work does not propose an optimization model itself, a heuristic

was created together with an event-based simulator using existing traffic models. The

proposed heuristic for dynamic ride-sharing was applied in downtown Austin city, and

compared with personal vehicles results from dynamic traffic assignment. A central

SAV dispatcher was used to make routes and passenger assignments using centroids

as destinations of AVs. The paper concludes that some SAV scenarios also increased

congestion because there are additional trips made to reach travelers’ origins, but the

total number of vehicles on the road may be reduced.

Dynamic simulation: Long et al. (2018) were the first authors to propose a stochastic

ride-sharing model that addresses stochastic travel times following a time-independent

distribution with a positive lower bound. This model was then extended to formu-

late a stochastic ride-sharing model with time-dependent travel time uncertainty. The

model aims to maximize both the total generalized trip cost-saving and the number
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of matches between drivers and riders. The authors employed Monte Carlo simulation

in order to estimate the departure time and the minimum trip cost associated with

each driving-alone trip and ride-sharing trip. In their work, the time interval is divided

into smaller sub-intervals (discredited into many planning horizons), which transforms

the dynamic ride-sharing problem into a sequence of static ride-sharing problems. The

authors concluded that the travelers’ values of time, the unit variable cost of driving,

the travel time uncertainty, and the selection of the weights in the objective function

have a significant impact on the performance of the ride-sharing systems. Also, a fea-

sible ride-sharing match, based on deterministic travel times, can become infeasible in

a stochastic ride-sharing system. Interest readers are referred to the recent survey by

Narayanan et al. (2020) for more SAVs applications.

6.2. Carpooling

An intelligent route scheme, based on mining GPS trajectories from shared riders

to support a carpool service in heavy urban traffic conditions, was proposed by

He et al. (2014). In this case, riders with similar preferred routes are grouped by

using a GPS-assisted mining approach in order to minimize the driving distance,

reduce commute costs, protect the environment, and alleviate urban traffic problems.

Drivers’ preferences (such as minimizing the total travel costs, the walking distance

to make connections, the detour distance to pick-up riders, the social distance,

etc.), and the dynamic join-and-leave policy are taken into account. The proposed

approach consists of two major subsystems: trajectory mining and carpool routing.

The first subsystem processes each user’s trajectory log recorded at a rider’s GPS

device, while the second one runs on the database of extracted (mined) frequent

routes. The final route is generated by a pairwise merging process. The authors

concluded that increasing walking and detour distance leads to a higher success

rate, while excessive detouring will lose carpooling service efficiency. Moreover, the

efficiency of the ride-sharing increases with the carpooling size and the response time

of finding a candidate driver is unrelated to the total distance of the route, although

the decision time of searching qualified passengers is quite related to the route distance.
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As we could notice, since the first motivation for adopting a ride-sharing system,

addressed by Kornhauser et al. (1977), this problem has become even more complex

thanks to new advances in telecommunication and the emergence of mobile technology.

Consequently, several solving approaches have been proposed in the literature for

solving different variants of these car-sharing problems, which are often enriched by

new constraints and objectives. In conjunction with Table 1, Figure 5 depicts the rate

of used solving approaches for each car-sharing activity, according to the previous

classification.

(a) Ride-sharing.

(b) Carpooling.

Figure 5.: The percentage of reviewed papers per solving methodology classification.

When analyzing Figure 5, it is noticeable the use of approximated methodologies to

solve both the problems related to ride-sharing and carpooling systems. Specifically,

for ride-sharing activities, the use of exact approaches is also substantial. However, as
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mentioned, their use is often limited due to the size of the problem instances, whose

particularity transforms its employment unsuitable for solving real-life and large prob-

lem instances. On the other hand, the use of heuristics and metaheuristics approaches

is the most significant in both cases, being them able to provide high-quality solutions

in short computational time as required by such systems.

Apart from the prior classification provided in Table 1 and Figure 5, we have per-

formed, in Figure 6, a new categorization of these studies, including a deeper analysis

regarding the addressed optimization objectives for each car-sharing activity.

(a) Ride-sharing.

(b) Carpooling.

Figure 6.: The percentage of reviewed papers regarding the addressed optimization
objectives.

Among the objectives highlighted in Figure 5, minimizing the travel time and/or

distance represents the main objective when solving these models. For ride-sharing
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activities, it is also noticeable the interest in increasing the provider’s profit and re-

ducing their respective travel costs. From an operational perspective, several papers

aim to reduce the fleet size, which is directly related to other objectives, such as re-

ducing the number of vacant seats and CO2e. Regarding the latter objective, reducing

CO2e has been considerably established as one of the model objectives in carpooling

studies, followed by the minimization of the match-up process between drivers and

riders, which is frequently required dynamically and in real-time.

7. Performance Analysis of Ride-Sharing Systems

The use of shared transportation systems has led to the improvement of several as-

sociated activities in the context of urban transportation. Despite the practical chal-

lenges associated with their implementation in real life (such as coordination and

synchronization of users, uncertainty, and dynamism of the real-world), ride-sharing

and carpooling systems showed to hold the capability of reducing several problems

caused by the individual transportation. Among them, we can highlight the reduction

of congestion on the roads, reduction of vehicle miles traveled, increase of occupancy

on vehicles, diminishing both traffic and pollution, reduction of operating costs and

fares, and so on.

In the literature, there exist several studies that address real-cases of ride-sharing

and carpooling activities around the world. Some recent studies show how efficient

car-sharing systems are able to achieve the goals previously introduced. Most of them

depict gains on fleet reduction and its related attainments. For instance, Li et al.

(2018a) studied the effects on traffic conditions in the city of Langfang, China, by

considering a carpooling system for the existing traffic demand. The proposed system

was able to achieve 49% of trip reduction rate and it alleviated the traffic condition in

82.5% of the congested road segments. Moreover, by reducing and alleviating conges-

tion of roads, the carpooling was able to increase the travel speed during peak-hours on

most road segments by 5–40%. By analyzing this work, it can be noticed the potential

of this system on reducing congestion and, consequently, on improving the locomotion

on the roads.
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Another example was conducted by Lokhandwala and Cai (2018), for New York

City, U.S. This study revealed that autonomous driving in ride-sharing can poten-

tially decrease the fleet size by up to 59%, without a significant increase in waiting

time and additional travel distance. The total travel distance can be decreased by up

to 55%, and about 725 metric tonnes of carbon emissions can be reduced per day.

Apart from reinforcing previous conclusions about alleviating congestion and reducing

vehicles’ travel distance, this study further shows how shared-transportation modes

can be environmentally beneficial to the population. Similarly, Cai et al. (2019) pre-

sented a real case study for quantifying the environmental benefits of ride-sharing

taxis in Beijing, China, where the trip information from 12,083 taxis in Beijing was

used to identify shareable trips and quantify the potential energy savings and emission

reduction. Like previous studies, the use of taxi-sharing throughout the entire day can

reduce, annually, fleet vehicle miles-traveled by 33%, save approximately 28.3 million

gallons of gasoline and reduce 2,392 tons of CO2e, among other emissions. However,

according to Simonetto et al. (2019), the total number of vehicles employed for ride-

sharing services must be limited as a function of the demand, in order to achieve both

the traffic and environmental benefits. The latter authors showed how real-time ride-

sharing offers clear benefits in terms of the service level, compared to traditional taxi

fleets, even considering a partial adoption of the system. In their study, they concluded

that approximately only 10% of the current taxi fleet would be needed to meet 96%

of the demand in the Melbourne Metropolitan Area, Australia. Accordingly, we can

notice how this work supports the efficient use of vacant seats of conventional taxis,

being, consequently, able to substantially decrease the number of operating vehicles

in metropolitan areas.

In another recent study, Zhang et al. (2020) analyzed the taxi data of Lanzhou

City, China. Similar to the previous examples, the use of ride-sharing strategies could

reduce the number of taxis by 57% and the travel distance by 44%. Another valuable

conclusion is related to the total revenue of each taxi, which is significantly improved

when compared to the driving efficiency of the non-sharing mode. Therefore, apart

from improving the taxi operation efficiency and save drivers’ travel distance, the

use of ride-sharing strategies can reduce the passengers’ travel expenses and, hence,
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increase the drivers’ travel efficiency. Another example of travel distance reduction is

depicted by Wang et al. (2018), which addressed a taxi-sharing case study in Singapore

City, Singapore. In their work, the proposed framework was able to achieve not only

a reduction in time but also a reduction in travel distance from 20% to 30%.

Based on these studies, we can conclude noticeable environmental benefits, economic

impacts, and, especially, transportation issues that can be partially solved when car-

sharing activities are employed in big cities. As stated in Simonetto et al. (2019), such

shared-transportation modes are also useful in the case of non-monopolistic economies

and partial adoption of vehicles, which allows start-ups, small-medium enterprises, and

city authorities to embrace their employment for potentially improving transportation

and life quality of citizens.

8. Challenges Related to Synchronization & Coordination

The following sections will review the main challenges and research opportunities

related to the optimization of ride-sharing operations in smart sustainable cities. Fig-

ure 7 offers a conceptual map including some of the main keywords that will be further

analyzed in Sections 8–11.

When dealing with ride-sharing systems, one of the most challenging tasks is how

to efficiently match-up a driver offer and a demand from a rider. In a dynamic en-

vironment, this matching has to be done in real-time. In general, besides minimizing

the driver-passenger matching processing time, the objectives when solving the ride-

sharing problem are: (i) to minimize the driving distance, detour distance, commute

costs, vacant seats, taxi fares to passengers, and the number of vehicles; and (ii) to

maximize the total profit obtained from serving the involved riders –possibly including

parcel requests (e.g., Li et al. (2014))– while indirectly protecting the environment and

reducing fuel consumption as well as traffic in urban areas.

As stated by Agatz et al. (2011), this driver-passenger matching process should

be largely automated in a dynamic setting. This would allow establishing ride shares

in a way that requires minimal effort from the participants. Usually, this process

is supported by predetermined conditions from both the system itself and its users
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Figure 7.: Main challenges and research opportunities related to ride-sharing opera-
tions.

in order to ensure their convenience and satisfaction. It includes, for instance, the

consideration of a maximum detour distance, number of available seats, departure

time-range, etc. (Schreieck et al., 2016). Accordingly, several papers regarding the use

of ride-sharing systems are focused on proposing a solving methodology to match-up

drivers and riders on very short notice, or even en-route. Most of these methodologies

are based on approximate techniques, which are suitable in the considered application

context for being able to provide high-quality solutions in a short computational time.

However, some of the studies break the overall problem into sub-problems, which can

be exactly solved in a reasonable amount of time. This is the case, for instance, of Hosni

et al. (2014). Others make use of simulation approaches for dealing with the dynamism

and uncertainty involved in the process (Long et al., 2018). Finally, some works are

focused on proposing efficient data structures that allow increasing the matching-up

speed (Schreieck et al., 2016).

Once an efficient matching procedure is generated for solving the drivers and riders

matching, the resulting routing stage, which considers the newly updated schedules
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must be resolved. Consequently, when dealing with coordination and synchronization

of riders’ requests and drivers’ offers, the routing stage is transformed into a fully

riders-dependent process. Hence, this stage consists in designing optimized routes for

attending different riders’ demands, expectations, and objectives without causing any

disturbances or interruptions to the drivers who are already on board. Besides the

general goal of minimizing the overall transportation costs, this process includes the

minimization of waiting times and walking distance for riders, as well as the detour

distance for drivers (and, indirectly, for riders who are already on the trip). Since the

related routing problem can be seen not only as a vehicle routing problem but also

as the dynamic pickup-and-delivery problem (Alonso-Mora et al., 2017), the routing

process incorporates different constraints beyond those traditionally considered in the

classical vehicle routing problem. Therefore, a significant challenge when addressing

the routing stage in ride-sharing systems is the need to generate good solutions fast

enough to provide the users with a quality service. In this context, the proposing

methodology must be able to incorporate information on trips provided by new users

during the planning execution and then maintain the quality service by generating

high-quality routes for both the passengers previously assigned in the vehicle and the

ones to be incorporated.

From the users’ perspective, the challenges vary, for instance, from how to com-

bine ride-sharing with other types of transportation, when ride-sharing is only a part

of the users’ full trip (Furuhata et al., 2013b), to data privacy and trust between

drivers and passengers (Svangren et al., 2018). According to the latter study, 80% of

the participants had trust issues towards drivers that were materialized as concerns

about reliability and privacy. Despite being interested in having some earlier infor-

mation concerning the other passengers and drivers, most users are still unwilling to

give much information about themselves while sharing rides. Therefore, this trade-off

between the need for prior information and the reluctant behavior of users to provide

them is one additional particularity that makes the use of such systems challenging

nowadays. One way to overcome this difficulty is to understand people’s attitudes,

beliefs, and travel behavior, which can be gathered thanks to the emergence of social

media. According to Tang et al. (2019), this valuable information can be used for im-
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proving the ride-sharing decisions taken by participants, e.g., by generating dynamic

shared-ride plans, improving group queries, optimizing ride matches, and for up to

date information notices or other purposes involved in ride-sharing. However, this is

one more challenging task due to the need of gathering techniques to extract specific

types of travel-related information.

9. Challenges Related to Self-Driving and Electric Vehicles

Figure 7 identifies some key challenges in regards to self-driving and electric vehicles.

The first challenge is related to the real applicability of AVs. Although the use of

AVs represents a breakthrough with the power of changing the modern transportation

by transforming it into a more sustainable, safer, and convenient one, self-driving

vehicles also bring issues of safety, congestion, fuel, efficiency, and equity (Howard and

Dai, 2014). From the human point of view, the use of AVs in public spaces remains an

unconvincing way of safe transportation, due to its incapability of dealing and reacting

to unexpected or unusual events as a human driver. When considering a real-world

application, AVs-related issues are affected by a lot of external factors that change

the standard and expected behavior of the involved variables (Levin et al., 2017). For

instance, when immersed in a realistic scenario, such as the city centers –in which

pedestrians and vehicles share a shared space– decisions must be taken in real-time

and dynamically. It might be the case when a pedestrian crosses the road at the wrong

time, or when a traffic accident happens. Another example can be described as a road

that is blocked off, or even when obstacles are found in the roads. Therefore, in order

to solve the resulting problem dynamically and efficiently, the solving methodology

must be able to deal with uncertainty, dynamism, and unexpected events during the

execution of the planning routes.

When combining the use of autonomous vehicles with an electric-based engine, the

ride-sharing problem results in an even more complex scenario to deal with. As pointed

out by Juan et al. (2016), the use of electric vehicles (EVs) in smart cities is somehow

limited by different strategic and operational challenges. Hence, the second challenge

is associated with their ability to cope with the strategic planning point of view.
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The incorporation and use of EVs in logistics and transportation problems require

the consideration of several limitations. For instance, EVs have limited driving-range

capabilities, which brings the necessity of installing recharging stations in order to

ensure their operation and then to provide an efficient operational plan (Bongiovanni

et al., 2019). Consequently, questions such as how many recharging stations and where

they should be installed are raised and must be taken into account.

The last challenge is related to the inclusion of decisions within the operational level.

Another implication related to the introduction of EVs in the operational plan is the

definition of the best fleet size and their combination (mixed fleet) with conventional

vehicles to provide a compelling experience to the market. From the operational plan-

ning point of view, we can cite economic (Mourad et al., 2019), charging network (Levin

et al., 2017); and (Corlu et al., 2020). Regarding economic aspects, the replacement

of conventional vehicles with electric ones is an investment that should be carefully

studied by the companies. Subsidies are becoming a usual effort from the government

to reduce the acquisition cost of these zero-emission vehicles (Ma et al., 2017; Rudolph,

2016). Moreover, the installation of recharging stations is another costly investment

needed to enable their operation. Regarding charging network issues, they are mainly

related to the installation of refueling stations, including how many of them and in

which locations. Finally, routing plays a vital role in transportation. In this way, an

efficient route-planning, which takes into account the specific mentioned features of

EVs, should be provided. This includes the incorporation of recharging stations in the

working plan of the routes. Therefore, it is notable that, apart from the advantages of

using EVs, their use in smart sustainable cities brings the necessity of redesigning the

whole transportation system in order to get its benefits properly.

10. Logistics Issues and Uncertainty Scenarios

Figure 7 presents some key challenges in relation to logistics and uncertainty scenar-

ios. The majority of ride-sharing studies assume only one mode of transportation,

which is based on a homogeneous fleet of vehicles. However, transportation of people

or freight is generally carried out by a heterogeneous fleet of vehicles –e.g., vehicles
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with different capacities, sizes, or energy sources, such as EVs or internal combustion

engine vehicles (ICEVs). As indicated by Masmoudi et al. (2020), some alternative

fuel vehicles (AFVs), such as flexible fuel vehicles or fuel cell vehicles, use different

types of alternative combustibles (e.g., hydrogen propane, ethanol, bio-diesel, liquid

natural gas, etc.). Therefore, one crucial feature research in ride-sharing consists of

using a heterogeneous fleet of both autonomous and non-autonomous vehicles (EVs,

ICEVs, AFVs, etc.), either under static, dynamic, or stochastic scenarios.

It is also possible to use mixed-mode operations, such as the combination of a pri-

vate transportation fleet with a public one (buses, metro, etc.). In fact, operations that

use mixed modes of transportation are quite usual in ride-sharing practices (Macrina

et al., 2019). Again, a major challenge of the mixed operations mode is the synchro-

nization of ride-sharing systems with public transit. Cooperation among public and

private transportation modes is necessary to complete the requests of users in urban,

peri-urban, and metropolitan areas. Thus, for example, when travel times are stochas-

tic a user may be left behind at the transfer point due to a delay in the drop-off time.

This will be even more common and critical for an integrated ride-sharing service

with the use of public transit that has infrequent service (Ho et al., 2018). Hence, the

schedule planner needs to develop robust plans. This can be achieved, for example, by

reserving sufficient waiting times at the transfer points. In case of transfers not being

realized as planned, it is essential to recover the plan by deploying additional vehicles

or making adjustments in the plans of other vehicles. Therefore, several challenges can

be found regarding the use of AVs: (i) how to design robust plans involving AVs; (ii)

how AVs will interact with the existing modes of transportation; (iii) to what extent

will AVs improve transportation efficiency; and (iv) how AVs will benefit from the

public/private transportation modes. An interesting research direction is to develop

and analyze the impact of using mixed transport modes in a dynamic and stochastic

environment. The main challenge is to plan a set of routes by providing the best fleet

composed of two different modes of transport (private and public transit) to satisfy

the requests of passengers, where these requests are dynamic and stochastic –including

the risk of suffering service disruptions. Some passengers may be transferred from a

vehicle to another one on the way to their destination. The main challenge here is that
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the arrival and departure vehicles should be synchronized A few papers have consid-

ered synchronization aspects (Aissat and Oulamara, 2014; Stiglic et al., 2015). More

research could be developed to extend the ride-sharing models by introducing other

synchronization aspects, for instance: load synchronization, resource synchronization,

and operation synchronization (Drexl, 2012). Another example is to provide flexible

driver-to-vehicle systems and multi-depot settings in which the vehicles and the drivers

should be synchronized (Ho et al., 2018).

Based on the earlier analysis of the literature, we have observed that only very few

studies have been reported for the stochastic ride-sharing problems. More specifically,

out of the 29 papers reported in Table 1, only a few including Naoum-Sawaya et al.

(2015) and Long et al. (2018) consider stochastic elements. The most studied travel

times of ride-sharing passengers are assumed to be deterministic (Xu et al., 2015). In

real cases, however, there is usually some uncertain information related to travel time.

Note that real-world ride-sharing activities are mostly stochastic because the processes

are often unpredictable due to changing circumstances, which remain unknown until

the process is under execution (Agatz et al., 2012). Similarly, most traditional ride-

sharing papers consider only new user requests under a dynamic environment. These

studies do not consider other types of events (e.g., accidents, traffic conditions, etc.),

which require modifications of existing plans or affect the synchronization of vehicles.

As suggested by Ho et al. (2018), disruption management is an important and realistic

aspect that should be taken into consideration for any company while planning a set of

routes to service its users. In such cases, the already existing routes should be modified

to manage the disruption. Hence, the need for developing new models and frameworks

to capture these factors of disruption management in the field of ride-sharing. Further-

more, SAVs could set up an interesting mobility option for the passengers (Farhan and

Chen, 2018), i.e., SAVs essentially provide a ride-sharing service to travelers. Study-

ing how the SAVs can be managed in such disruption situations can be considered a

promising research direction.
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11. Vehicle Technical Characteristics and Sustainability Issues

Figure 7 identifies some key challenges related to vehicle characteristics and sustain-

ability issues. For example, traditional ride-sharing models assume that the service of

people is performed by a fleet of ICEVs (Yu et al., 2019) or SAVs/AVs with similar

characteristics (Levin et al., 2017): engine speeds, engine displacement, curb weight,

frontal surface area, etc. As discussed in Masmoudi et al. (2018), the special charac-

teristics of the vehicle may affect the fuel consumption as well as the CO2 emissions.

Also, the vehicle identification varies according to many physical features, such as

curb-weight and vehicle size. Adding to these specifications, we also find variations

based on combustion technology. These include engine speed, engine displacement,

aerodynamic drag, and engine friction aspects. If these vehicle aspects are modified

or transformed, this may have a remarkable impact on fleet emissions. Additionally,

one of the critical aspects that might affect fuel consumption is vehicle aerodynamic

durability (Fontaras et al., 2017). Therefore, different vehicle characteristics should be

incorporated into the optimization models.

Using a fleet of AVs has received a great deal of attention by researchers until now,

due to the importance of this new technology. However, there are some variations in

which AV-based systems need to be considered differently. For instance, some privately-

owned AVs might be used while their owners do not use them. Therefore, these AVs

can be employed on a specific road, which can help to minimize their traffic-related

issues compared to ICVEs. In addition, planning recharging stations and maintenance

services may need different strategies and techniques, especially as they have multiple

charging technologies (Keskin and Çatay, 2016) and the battery may need several hours

to be recharged. This can be time-consuming at some re-charging stations (Mourad

et al., 2019). Future research considerations in this area include the identification of

using a fleet of AVs for people transportation, how AVs respond to passenger mobility

needs, and how shared AVs could affect existing routes.

One challenge that arises in most realistic applications of electric AVs in routing

problems is that a vehicle of this type may need to frequently recharge its battery to be

able to continue the service route, due to their limited battery capacity (Bongiovanni
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et al., 2019). In addition, the inadequate infrastructure for recharging AVs makes it

very difficult to plan the routes of these vehicles. There is a scarcity of recharging

stations needed for these vehicles. Also, they are usually not evenly distributed across

a certain region, especially when compared to the widely available gas stations on the

roads to refuel the ICEVs (Levin et al., 2017). In this regard, effective transportation

planning should take into consideration the visits of users, as well as stops in these sta-

tions. The need to recharge the battery is frequently encountered during the customary

working day. In the context of the ride-sharing problem, not taking the recharging re-

quirements beforehand in planning the service route may cause service disruption due

to a shortage in energy, and possible violation of the problem constraints –e.g., the

visiting time windows and/or the maximum ride time of users. Such violations can

largely lead to the dissatisfaction of customers, which impacts on the overall service

quality and breaks one of the main conditions of the ride-sharing. Moreover, to decide

when the AVs should be recharged during the planning of routes it is necessary to

develop a new realistic energy-consumption function that takes into consideration the

characteristics of these vehicles (Corlu et al., 2020). This can be based on the con-

sumption model function developed for the ICEVs or EVs with drivers developed in

several works (Masmoudi et al., 2020).

A recent trend in vehicle routing and green logistics is considering environmentally

friendly processes in all aspects of the transportation process. Specifically, the reduc-

tion of CO2e is a major concern. In this context, a relevant challenge in the field

of green vehicle routing problem (GVRP) is the pollution routing problem (PRP),

in which the minimization of energy and CO2e emissions are widely studied (Demir

et al., 2012, 2014). Unlike the traditional objective function for ride-sharing that tries

to minimize the total traveling distance (Wang et al., 2019), operational cost (Alonso-

Mora et al., 2017), travel time (Jung et al., 2016), or maximizing the total profit

(Yu et al., 2018), future research can consider minimizing the total required energy

based on the vehicle characteristics, the environment, the speed of the vehicle, and

the traveling distance. In addition, existing ride-sharing models can be extended into

multiple-objective ones by introducing dimensions related to profit, operational costs,

environmental impacts, etc. So far, the most studied ride-sharing problems consider
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a single objective function (Wang et al., 2019), while only a few multi-objective ride-

sharing studies have been reported (Yu et al., 2019).

12. Hybrid x-Heuristics and Agile Algorithms for Ride-Sharing Problems

Regarding the existing approaches for solving ride-sharing problems, we observed that

the choice of metaheuristics is becoming increasingly popular. For example, out of

the 29 studies presented in Table 1, only 5 of them focus on proposing only an exact

approach, whereas 9 of them propose a heuristic method in conjunction with an exact

method, and 14 of them provide a heuristic/metaheuristic method and/or other solv-

ing approaches (e.g., simulation techniques). Despite the importance of using exact

solution methods for solving these problems to optimality, the use of such methodolo-

gies is often limited by the size of the problem instances or proposed only for validation

purposes. This is due to the fact that most ride-sharing problems are NP-hard, large-

scale, and contain difficult constraints imposed by real-life operations. In our view,

future strategies for ride-sharing optimization should consider the following aspects:

(i) the development of solving methods that use updated information to cope with

stochastic and dynamic ride-sharing variants; (ii) the development of new dynamic

and stochastic frameworks and techniques to capture different events (e.g., accidents,

failures, etc.) that can happen in the existing route planning; (iii) the development of

agile optimization (AO) algorithms able to provide real-time solutions.

Regarding stochastic variants of the ride-sharing problem, the combination of meta-

heuristics with simulation, also known as simheuristics (Juan et al., 2018), can be an

effective methodology. Some recent applications of simheuristics can be found in areas

as diverse as waste collection management under uncertainty (Gruler et al., 2017),

arc routing problems with random demands (Gonzalez-Martin et al., 2018), flow-shop

scheduling problems with stochastic processing times (Gonzalez-Neira et al., 2017),

project portfolio management under uncertainty (Panadero et al., 2018), or inventory

routing problems with stochastic demands (Gruler et al., 2020). Similarly, when deal-

ing with ride-sharing variants under dynamic conditions (e.g., traffic conditions that

evolve over time), one promising approach is the hybridization of metaheuristics with
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machine learning methods, also called learnheuristics (Calvet et al., 2017). Recent

applications of learnheuristics to different vehicle routing problems under dynamic

conditions can be found in Calvet et al. (2016) and Arnau et al. (2018).

Despite being able to generate high-quality solutions for a range of optimization

problems, traditional solving methodologies, such as exact methods, metaheuristics,

and simulation techniques, might not represent the most suitable approach when a

real-time solving limit is imposed as a hard operational constraint of the associated NP-

hard problem. In order to deal with this limitation, the concept of agile optimization

has arisen as a new optimization and decision-making tool for solving optimization

problems in real-time. As mentioned, dynamic ride-sharing requires the dealing of

new information dynamically in real-time, often during the plan in execution, i.e.,

en-route. This information includes the trip information, which leads to the necessity

for several taking real-time decision making. Hence, due to these likely continuous

changes, a re-optimization of the system is required each time new data should be

incorporated into the model.

AO refers to the massive parallelization of biased-randomized (BR) algorithms,

which are extremely fast in execution, easily parallelizable, flexible, and require the

fine-tuning of a few, or even just a single parameter. In the BR techniques, a bi-

ased (non-symmetric) randomization effect is introduced into a heuristic procedure by

using a skewed probability distribution. This simple mechanism extends a determin-

istic heuristic –which is extremely fast in execution, even for large-scale optimization

problems– into a probabilistic algorithm without losing the logic behind the origi-

nal heuristic (Ferone et al., 2019). The core idea of AO is to run several hundred or

even thousands of threads in a concurrent way, being each one an execution of a BR

heuristic. As a result, many alternative solutions are generated in the same wall-clock

time as the one employed by the original heuristic –some of them outperforming the

one generated by the original heuristic– and the best solution is chosen. Therefore, in

addition to the advantage of finding reasonably good solutions in real-time, the use of

AO algorithms for solving (dynamic) ride-sharing problems can be seen as a useful ap-

proach for solving this type of problems in which new information arrives all the time.

In summary, AO algorithms represent a new paradigm in the design of optimization
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algorithms, which follows the following principles: (i) extremely fast execution, thus

providing real-time decision support; (ii) easy to implement and run using paralleliza-

tion techniques; (iii) flexibility to deal with different T&L problems and variants; (iv)

parameter-less, hence avoiding complex and time-costly fine-tuning processes; and (v)

specifically designed to run iteratively every few seconds or minutes –hence allowing

for high-frequency re-optimization– as new streams of data arrive in a dynamic and

connected environment. This novel AO approach represents a breakthrough with re-

spect to traditional optimization, simulation, and machine learning methods, which

typically require long computation times –and, therefore, cannot deal with present and

future T&L scenarios using unmanned and self-driving vehicles, which are character-

ized by their dynamism and uncertainty. Notice that AO works in an environment of

dynamic (constantly changing) conditions, whereas traditional optimization tends to

oversimplify these important aspects of the real world. Traditional optimization frame-

works are limited when dealing with real-time coordination and optimization needs

in current and future T&L applications in smart sustainable cities. This is especially

the case when electric, unmanned, and connected/self-driving vehicles are considered

in ride-sharing and carpooling activities. Using a scale from 1 (low performance) to

5 (high performance), Figure 8 shows a comparison of multiple analytical method-

ologies in terms of dimensions such as: (i) capacity to provide optimal values (exact

methods excel here); (ii) computational time required (both heuristics and agile al-

gorithms show the highest speed levels, offering real-time solutions); (iii) flexibility

to model real-life situations (simulation excels here); (iv) capacity to deal with un-

certainty scenarios (simulation and simheuristics show a superior performance here);

(v) capacity to deal with large-scale problems (heuristics, metaheuristics, and agile

algorithms surpass the others); and (vi) capacity to deal with dynamic environments

(learnheuristics, heuristics, and agile algorithms excel in this one).

13. Conclusions

From the trends analyzed in this work, ride-sharing operations in smart and sustainable

cities are expected to continue growing over the next few years. Therefore, policy-
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Figure 8.: Multi-dimensional comparison of different analytical approaches.
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makers should consider how to optimize these operations to provide timely and efficient

service to citizens and, at the same time, minimize important aspects such as the

impact of the mobility of people in the environment and social activity inside the city.

In this regard, our review confirms the existence of studies that show clear benefits of

ride-sharing and carpooling practices in urban areas, such as: (i) a reduction in the

overall cost of mobility systems, measured in travel time and in energy consumption;

and (ii) a notable reduction in the volume of vehicles circulating in the city, which

could also lead to lower levels of CO2e.

However, there are still several aspects that must be taken into account by au-

thorities when designing, developing, and, especially, implementing these systems for

real-life applications. In this regard, we hope that this article sheds light on these issues.

For this purpose, a review of the existing literature on the ride-sharing and carpooling

optimization problems has been presented. We expect to facilitate the identification of

problems and the analysis of alternatives based on experiences in other urban areas.

Likewise, the most relevant studies in the field have been classified according to the

analytical methodology used, that is, exact methods, metaheuristics, or simulation,

which can help with the decision-making process considering different environments

(including uncertainty). The particularity and dynamism in real-time of these prob-

lems make them especially difficult to adapt to real cases. In this case, some authors,

for example, Borcuch (2016), point out that, from a government point of view, the

biggest challenge for any city in adopting these shared modes of transport is how to

find a balance between adopting these platforms and regulating them in the name of

safety and responsibility.

In order to reinforce the analysis of alternatives and the decision-making process,

our study has also identified the main challenges and research opportunities related

to the optimization of shared trips. In this way, it is also expected to serve as a

handbook for policy-makers that helps navigate towards a more sustainable (environ-

mentally, socially, and economically) city paradigm. This may include the analysis

of the vehicles’ capacity, the boosting of multiple charging technologies, the creation

of charging stations, or the design and planning of more sustainable routes, among

others. In terms of main challenges, this paper illustrates those challenges related to
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synchronization and coordination issues, as well as the increasing inclusion of electric

and autonomous vehicles in our modern urban, peri-urban, and metropolitan areas. In

terms of research opportunities, the paper analyzes the research opportunities associ-

ated with the inclusion of heterogeneous vehicle fleets, dynamic scenarios, conditions

of uncertainty, technical characteristics of the vehicle, and energy and sustainability

issues (for example, type of fuel required and level of emissions carbon), etc. With all

this, it is intended that the managers of these areas are aware of the changes that the

incorporation of these practices in their cities implies, the improvements it will bring,

as well as the resources that will be necessary for their implementation.

Finally, the document goes a step further and presents new approaches to deal

with resource optimization problems in carpooling in real life, which must take into

account random events and dynamic traffic conditions. To address these issues, the

need to develop new hybrid approaches that combine metaheuristics with simulation

and/or machine learning methods is analyzed. Also, the article highlights the concept

of agile optimization algorithms, which allow generating good quality solutions in real-

time (even less than a second) and recalculating them every few minutes as new data

becomes available.
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Hansen, P. and Mladenović, N. (2014). Variable neighborhood search. In Search methodologies,

pages 313–337. Springer.

44



Hartley, J. and Kostoff, R. N. (2003). How useful arekey words’ in scientific journals? Journal

of Information Science, 29(5):433–438.

He, W., Hwang, K., and Li, D. (2014). Intelligent carpool routing for urban ridesharing by min-

ing gps trajectories. IEEE Transactions on Intelligent Transportation Systems, 15(5):2286–

2296.

Herbawi, W. and Weber, M. (2012). The ridematching problem with time windows in dynamic

ridesharing: A model and a genetic algorithm. In 2012 IEEE Congress on Evolutionary

Computation, pages 1–8. IEEE.

Ho, S. C., Szeto, W., Kuo, Y.-H., Leung, J. M., Petering, M., and Tou, T. W. (2018). A

survey of dial-a-ride problems: Literature review and recent developments. Transportation

Research Part B: Methodological, 111:395–421.

Hosni, H., Naoum-Sawaya, J., and Artail, H. (2014). The shared-taxi problem: Formulation

and solution methods. Transportation Research Part B: Methodological, 70:303–318.

Howard, D. and Dai, D. (2014). Public perceptions of self-driving cars: The case of berkeley,

california. Transportation Research Board, 14(4502):1–16.

Huang, S. C., Jiau, M. K., and Lin, C. H. (2015). A genetic-algorithm-based approach to solve

carpool service problems in cloud computing. IEEE Transactions on Intelligent Transporta-

tion Systems, 16(1):352–364.

Juan, A. A., Kelton, W. D., Currie, C. S., and Faulin, J. (2018). Simheuristics applications:

dealing with uncertainty in logistics, transportation, and other supply chain areas. In 2018

Winter Simulation Conference (WSC), pages 3048–3059. IEEE.

Juan, A. A., Mendez, C., Faulin, J., de Armas, J., and Grasman, S. (2016). Electric vehicles in

logistics and transportation: A survey on emerging environmental, strategic, and operational

challenges. Energies, 9(2):86.

Jung, J., Jayakrishnan, R., and Park, J. Y. (2016). Dynamic Shared-Taxi Dispatch Algorithm

with Hybrid-Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering,

31(4):275–291.

Karaboga, D., Gorkemli, B., Ozturk, C., and Karaboga, N. (2014). A comprehensive sur-

vey: artificial bee colony (abc) algorithm and applications. Artificial Intelligence Review,

42(1):21–57.
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