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a b s t r a c t 

The planting and harvesting of medicinal plants have characteristics that differentiate them 

from other crop types and complicate their planning. For example, drug processors do not 

require large quantities of product to be harvested but have a high concentration of ac- 

tive molecules. There is no evidence for any optimization tool to support the planting and 

harvesting of such plants. Given this sector’s importance and its impact on populations’ 

health, it is necessary to develop solutions to increase the sustainability of their supply 

chains. This paper aims to bridge this gap by proposing a conceptual framework to charac- 

terize a crop planting and harvesting planning problem, and a multi-objective optimization 

model for the planning of planting, harvesting, post-harvesting, distribution and storage of 

medicinal plants with variable concentrations of molecules and minimum time between 

harvests. The model optimizes three objectives aligned with sustainability: supply chain 

costs, concentration of molecules in plants, farmers’ perceived economic unfairness. It is 

validated by its application to a case study of medicinal plants in the Basilicata region 

(Italy). The ε-constraint method is used to obtain 11 non dominated solutions showing the 

possibility of eliminating farmers’ perception of economic unfairness by maintaining sim- 

ilar values for supply chain costs and concentrations of active molecules when planning 

the production of medicinal plants. Finally, the TOPSIS method is applied to select the best 

plan to be implemented into the supply chain. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

1. Introduction 

Multiple decision support models exist in the literature to support Crop Planting and Harvesting Planning (CPHP). Most 

consider that only fruit are harvested from plants, and leave aside other plant parts, such as leaves, flowers or roots, and

that fruit are consumed in their natural form and do not usually require post-harvest activities. Although these models 

address similar CPHP problems, the characterization of the CPHP problem by considering differences in these processes 
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according to the type of plant produced or the use of harvested crops is lacking. This paper bridges this gap by proposing

a conceptual framework to characterize the CPHP problem, which is then used to review the most important models in the

CPHP literature. 

The findings of this review show that models to support CPHP for medicinal plants (MPs) do not exist. MPs have been

traditionally used to treat diseases and to improve the health of both humans and animals [1] . However, their uses have

been extended to other products, such as cosmetics and food supplements. MPs have been harvested from the wild for a

long time [2] , when they have been harvested from plants that naturally grew, which increased the risk of MPs becoming

endangered [3] . To avoid this problem, and to better control MPs availability, and their organoleptic characteristics and 

prices, supply chains (SCs) began to plan their sustainable planting and harvesting. 

However, MPs present some particularities related to planting, harvesting and post-harvest processes, plant yield behav- 

ior, the organizational relationship between farmers and processors, among others, that differentiate their management from 

that of other crop types (e.g. , fresh fruit and vegetables). This confers additional complexities that, as far as we know, have

not yet been addressed in the literature. 

To bridge this gap, the present paper aims to propose a multi-objective mixed integer linear programming model to 

support sustainable CPHP for MPs from the economic, environmental and social points of view. In the MP SCs context, the

sole traditional economic objective of agri-food SCs is no longer valid for being undermined by the goal of obtaining the

maximum concentration of active molecules in harvested MPs, which will be used as raw material to produce drugs. Ful- 

filling this objective positively impacts environmental sustainability because for the same output (drugs quantity) it implies 

fewer requirements of inputs, such as natural resources (MCs, planting land areas and water), energy for plant drying and 

gas emissions from transport. Besides, due to specific organizational aspects of this type of SCs, a fair distribution of gains

among farmers should be ensured as much as possible. Therefore, the sustainability of the planting and harvesting plan is 

ensured by the joint optimization of the three pillars of sustainability: maximizing the concentration of active molecules 

in the MPs delivered to the processor (environmental); minimizing SC costs (economic); minimizing economic unfairness 

among farmers (social). 

The proposed model also considers that MPs can be harvested several times during their lifespan and the concentration 

of molecules varies when growing according to growth time, which is understood as the time between planting and first 

harvest, and between two consecutive harvests. Due to the dependence of MPs yields on the time between planting and 

first harvest, and between two consecutive harvests, the planning of planting and harvesting of this crop type should be 

modeled together. In addition, post-harvest activities like drying and sorting MPs and their transport to processing plants 

are modeled. 

The multi-objective model is validated by its application to a natural food supplement SC in the Basilicata region of 

Italy. It is solved by the ε-constraint method along with the TOPSIS method to select the non dominated solution to be

implemented. The results show the model’s usefulness for achieving optimal solutions in a reasonable time for the type of 

addressed decisions. 

The rest of the paper is structured as follows. Section 2 proposes a conceptual framework for the CPHP problem. This

framework is used in Sections 3 and 4 to review previous optimization models for CPHP, and to characterize the problem

under study, respectively. Section 5 formulates the multi-objective model to address the described CPHP problem. The model 

is validated, and the results are discussed in Section 6 . Section 7 presents interesting managerial insights. Finally, Section

8 outlines the main conclusions and future research lines. 

2. Conceptual framework for the CPHP problem 

In order to simultaneously plan the planting and harvesting of crops, not only should the possible crops to be planted

and the available planting area be considered, but also crops’ nature and the characteristics of their harvests. Fig. 1 aims

to characterize the CPHP problem along nine dimensions: crop use, plant lifespan, planting limitations, harvest dependence, 

harvest type, harvest frequency, harvest limitations, yield dependence, crop perishability. 

Traditionally, crops are classified according to their lifespan into annuals, biennials and perennials [4] . Annual crops 

ensure their perpetuation by producing seeds in less than one-year. Biennial crops produce seeds in the second year of 

growth. Perennial crops continuously and indefinitely generate them [5] . Plants’ lifespan determines their planting frequency 

and is, thus, related to farmers’ exposure to risk. For example, erroneous planting decisions about annual crops are easier to

solve than decisions made with perennials. 

The planting process may be subject to limitations like those caused by weather (e.g., crops that require a certain tem-

perature to be planted), soil composition and its suitability for each crop, or the requirement of planting a minimum area

with the same crop due to technical aspects. In addition, when several crops can be planted it may be inappropriate to plant

two varieties in adjacent areas in an attempt to preserve purity of varieties and to avoid crossbreeding (crop adjacency), or

it may be appropriate to plant one crop or another depending on which crop was planted in the same area during previous

periods (crop rotation). 

The harvest period of crops can dependent, or not, on the planting period. Harvesting frequency depends on plants’ 

nature. Some are harvested only once during their lifespan (e.g., onions), while others need to be harvested several times to

continue their growth and fruit production (e.g., tomato plants). In the latter, a distinction can be made between continuous 

and discrete harvesting. In continuous harvest, plants are checked during every period to harvest ripe fruit and to release 
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Fig. 1. Conceptual framework for the CPHP problem. 

 

 

 

 

energy from plants to produce new fruit. Conversely in discrete harvests, crops are harvested several times throughout their 

lifespan in harvests separated by non harvest period. So a minimum time between harvests must be ensured. 

The harvesting process can also be subject to limitations, such as this minimum time between consecutive harvests, or 

weather-related limitations (e.g., not possible to harvest a crop if it is raining or temperature is high). 

Five harvesting types can be distinguished according to the plant part to be collected and required by consumers; fruit 

(e.g. , strawberry), flowers (e.g., saffron), roots (e.g., ginger), leaves (e.g., tobacco), or the whole plant (e.g., green leafy vegeta-

bles). It is notable that the required plant part depends on the intended use of the harvest. For example with artichokes, the

food industry requires only the fruit, while the drugs industry requests the whole plant. This underlines the importance of 

considering the intended use of crops when planning crop planting and harvest. Accordingly, crops can be used to produce 

food, fuel, fiber, oil and drugs [4] . Their use also determines the post-harvest activities that crops must undergo. 

Plant yields can depend, or not, on planting and/or harvesting periods, on the time between planting and the first harvest,

or on the time between two consecutive harvests (plant growth time). In crops with several continuous harvests, their yields 

usually depend on planting and/or harvesting periods. In crops with several discrete harvests, they normally depend on the 

plant growth time. Additionally, plant yields can depend on other non-temporal factors like weather. 

Once harvested, crops can be classified as perishable or non-perishable. Crops are perishable when their shelf life is 

limited, decreases over time, and is shorter than the decision horizon. Perishability impacts crop management. Conversely, 

crops are non-perishable when their shelf life is longer than the decision horizon because their shelf life does not influence

the decisions to be made. 

3. Literature review 

Based on the dimensions of the previous conceptual framework, in a structured way this section reviews existing opti- 

mization models for CPHP that have been published in scientific journals. This structured analysis of papers allows us to 
Fig. 2. Number of publications per year. 
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find out any research gaps and to identify the novelties of our proposal. Twenty research works published in the last 20

years are analyzed ( Fig. 2 ). It is worth noting that 60% of these papers have been published in the last three years, which

shows the growing interest in developing tools to support CPHP. 

The 20 selected papers are studied through the proposed conceptual framework. Additionally, the main characteristics of 

their modeling are analyzed through the decision-making approach (centralized or distributed), the decision-making context 

(deterministic or uncertain), the number of SC stages, and the objectives that the models pursue. 

Note that the intention is not to provide in-depth details for all the models’ characteristics, but only those that are closely

related to the problem under study. The results of the review are shown in Table 1 , which also highlights the differences

between existing models and that proposed in this paper. The characteristics covered only by this paper, which clearly 

represent the original contributions of our work, are marked in grey. Below a description of these results is provided. 

In plant lifespan terms, most models are designed for the CPHP of annual crops, and only two models support this plan-

ning process for perennial crops, such as pome trees [26] and dragon fruit trees [23] . Therefore, no CPHP models designed

for biannual crops appear, which represents a gap in the literature covered by this paper. 

Regarding planting limitations, 50% of the papers consider a minimum area to be planted per crop during each period 

[ 12 , 23 ], or during the periods when it is decided to plant the crop [ 6 , 9–11 , 17 , 18 , 27 , 28 ], 5% consider land suitability for each

crop, and 20% contemplate crop rotation-related limits. Therefore, some limitations in planting are not modeled in models 

to simultaneously plan crop planting and harvesting, such as the dependence of planting on weather or the consideration 

of crop adjacency. 
Table 1 

Literature review on CPHP models. 

Dimension Characteristic Refs. This paper Total % 

Plant lifespan Annual [ 6 –21 ] 16 80 

Biennial X 

Perennial [ 22 , 23 ] 2 10 

Not indicated [ 24 , 25 ] 2 10 

Planting 

limitations 

Weather 

Minimum area [ 6 , 9–12 , 14 , 16–18 , 23 ] 10 50 

Soil suitability [25] 1 5 

Crop adjacency 

Crop rotation [ 12 , 13 , 15 , 19 ] 4 20 

Crop use Drug [19] X 1 5 

Food [6–25] 20 100 

Fiber 

Fuel 

Oil 

Harvest 

dependence 

Planting period [ 6–11 , 13 , 14 , 16–18 , 22 , 23 , 25 ] X 14 70 

Independent [ 12 , 15 , 19–21 , 24 ] 6 30 

Harvest type Plant [ 12 , 13 , 15 , 16 , 18 , 20 , 21 ] X 7 35 

Fruit [ 6–11 , 13–18 , 22–24 ,] 15 75 

Flowers 

Roots 

Leaves 

Harvest frequency One [ 12 , 13 , 19 , 21 , 25 ] 5 25 

Several discrete X 

Several continuous [ 6–11 , 14–18 , 20 , 22–24 ] 15 75 

Harvest limitations Minimum time between harvests X 

Weather 

Yield dependence Independent [ 13 , 19 , 21 ] 3 15 

Weather [ 17 , 18 ] 2 10 

Planting period [ 6–11 , 14 , 16–18 , 23 , 25 ] 12 60 

Harvest period [ 6–12 , 14–18 , 20 , 23 , 24 ] 15 75 

Time between harvests X 

Time between planting and harvest [ 22 , 25 ] X 2 10 

Crop perishability Short shelf life [ 6–10 , 13–16 , 20 ] X 10 50 

Long shelf life [ 13 , 15 ] X 2 10 

Not considered [ 11 , 12 , 17–19 , 21–25 ] 10 50 

Decision-making 

approach 

Distributed [9] 1 5 

Centralized [6–25] X 20 100 

SC stage Single-stage [ 8 , 15 , 19 , 22 , 25 ] 5 25 

Bi-stage [ 11 , 12 , 16 , 24 ] X 4 20 

Multi-stage [ 6 , 7 , 9 , 10 , 13 , 14 , 17 , 18 , 20 , 21 , 23 ] 12 60 

Decision-making 

context 

Deterministic [ 6–8 , 10–13 , 16–19 , 21–23 , 25 ] X 15 75 

Uncertain [ 9 , 14 , 15 , 20 , 24 ] 5 25 

Objectives Economic [6–25] X 20 100 

Environmental [ 11 , 19 , 20 ] X 3 15 

Social [ 11 , 19 , 25 ] X 3 15 
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As for crop use, the analyzed models are intended for CPHP for food use, and models for fiber, fuel, oil and drug sectors

are lacking. Only one of the analyzed models can be used in the drugs sector. However, its use is limited to cases in which

the crops used to produce medicines are fruit that do not require post-harvest activities [19] . So this model does not take

into account the nature and characteristics of MPs [19] , unlike the model herein presented. 

In terms of harvest-related dimensions, 70% of models consider that harvest depends on the period during which crops 

are planted (the harvest dependence dimension). As regards the harvest type dimension, most models consider harvesting 

fruit (75%), as in apples, dragon fruit, tomatoes or peppers, while others contemplate harvesting the whole plant (35%), as 

in green leafy vegetables, rice or sugar beet. Other harvesting types like harvesting flowers, roots and whole plants have not

been previously modeled in the literature. 

Regarding harvest frequency, harvesting is continuously carried out in cases in which fruit are harvested (75% of the 

models). This means that plants are checked during all the periods to harvest ripe fruit. The remaining models consider 

harvesting the whole plant and deal with crops harvested only once in their lifespan (e.g., wheat). However, no paper 

considers that harvesting continuously takes place, but discretely over time, which is another gap. As regards harvesting 

limitations, none of the analyzed models addresses them, and this is another area to be considered by future research. As

shown in Table 1 , our model addresses these two last gaps detected in the literature. 

In yield dependence terms, models usually consider plant yield to depend on the planting and/or harvesting period (80%), 

while others consider that this yield also depends on the weather during the harvesting period (10%), the time between 

planting and harvesting (10%), or it does not depend on any factor (14%). However, none of the analyzed papers state that

plant yield depends on the time between harvests, which is another of our contributions. 

Most papers neither model the crop perishability characteristic (50%), nor consider that crops’ shelf life is longer than 

the planning horizon (10%) and does not influence decision making. The other models consider that crops have a limited 

and shorter shelf life than the planning horizon. 

For the decision-making approach, all the papers address centralized CPHP. Only Alemany et al. [9] also propose sev- 

eral distributed models with collaborative scenarios that represent farmers’ usual planning behavior and, individually, crop 

planting and harvesting. They point out that centralized approaches are valid in those cases in which farmers have supply 

commitments with firms, which determines whether crop planning is to be implemented to balance supply and demand, 

which is the case of our paper. 

Regarding the SC stages considered in the analyzed models, 25% of them consider a single-stage SC, while 20 and 55% of

the models model two-stage and multistage SCs, respectively. In addition, most of the models contemplate a deterministic 

context for the decision-making process, while 25% of them consider the uncertainty that is inherent to the analyzed sectors, 

such as plant yields or the time required to perform agricultural activities. 

Finally, on the objectives addressed by models, they all optimize economic measures by maximizing profits (85%) or 

minimizing costs (15%), while 15% of the papers also consider environmental and/or social objectives. Environmental ob- 

jectives are related to water irrigation [19] , fertilizer and pesticide use [19] , energy use [19] , CO 2 emissions [20] , and the

waste generated along the SC [11] . The social objectives are related to laboring [19] , geographical diversification [25] and

economic unfairness among famers [11] . Only one paper simultaneously considers economic and environmental objectives 

[20] , one paper simultaneously includes socio-economic objectives [25] , and two papers simultaneously consider economic, 

environmental and social objectives [ 11 , 19 ], although these objectives are not those optimized in this article. 

The literature review reveals the existence of significant gaps in the models to support CPHP. The most relevant ones 

are related to the planning designed for biannual crops, and the consideration of either certain limitations in planting and 

harvesting processes, or the crops destined to produce fiber, oil or fuel. For modeling the crop harvesting process, gaps 

appear when considering the harvesting of flowers, roots or the whole plant for modeling of the frequency of harvesting 

when it occurs continuously and discretely, or plant yield dependence on the time between two harvests. 

This paper aims to bridge some of these gaps, such as contemplating the biennial CPHP used to produce MPs, model-

ing several discrete harvests on the planning horizon, and plant yield dependence on a plant’s growth time (time between 

planting and the first harvest, and time between two consecutive harvests). These are some of the main novelties of the

proposed model. Furthermore, the proposed model is the first in the literature to optimize maximizing the concentration of 

active molecules in crops delivered to processors and to jointly optimize three objectives aligned with the three sustainabil- 

ity pillars: SC costs (economic), concentration of active molecules in crops (environmental) and unfairness among farmers 

(social). 

4. Problem description 

This paper focuses on solving the CPHP problem to be used in the drug sector where processors are not interested in

acquiring large quantities of crops, but sufficient active molecules to be used as raw material in their production processes. 

Therefore, processors frequently and centrally plan the planting and harvesting to be implemented into SCs. This centralized 

planning reduces the crop overproduction and underproduction risk and its impact on prices. 

In order to ensure that farmers implement the plan defined by processors, they sign collaboration contracts so that 

processors are committed to purchase the entire harvest obtained by farmers to, thus, reduce the risk of economic loss for

farmers. In addition, by defining when planted crops are to be harvested, processors ensure that crops are harvested when 

the concentration of the required active molecules is at its maximum. Contracts also establish the post-harvest activities to 
140 
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be performed before deliveries are made to processors. In this case, these activities consist of drying crops during the same

harvesting period to preserve the concentration of active molecules and sorting them by selecting the crop parts required 

by processors. These contracts are renewed every time planting and harvesting are to be planned. 

The SC consists of several farmers, a central dryer, and a single producer with more than one location ( Fig. 3 ). Farmers

are responsible for planting, cultivating, and harvesting the area agreed with processors by means of a contract. Farmers 

dry crops during the same period as their harvest using their own dryer or the central dryer available to all farmers. Dried

crops can be stored on farms indefinitely because once dried, they are no longer perishable, and their concentration of 

active molecules is stabilized. Farmers sort dry crops and store or transport them to processors where they can be stored

until needed for production purposes. 

Fig. 3. SC configuration. 

The characterization of the problem under study according to the proposed conceptual framework is shown in Fig. 4 . 

Crops are biennial and have no planting limitations. Their harvest depends on their planting period and often takes place 

throughout their lifespan. At each harvest the whole plants are harvested so that they grow back from their roots. Harvest
Fig. 4. Characterization of the problem under study. 
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Fig. 5. Relation between planting and the first harvest season area. 

Fig. 6. Relation of area to be harvested during two consecutive harvesting seasons. 

 

 

 

 

 

 

 

 

 

 

 

 

is limited by a minimum plant growth time before harvest to ensure the creation of active molecules. Once harvested, crops

have a short shelf life, but their shelf life prolongs when they undergo the drying process. 

In order to clarify the harvesting process, Fig. 5 shows an example in which 100 ha of a crop are planted during period p,

and a minimum time q i must be guaranteed between the planting period and the first harvest. It is not possible to harvest

this area during the periods that belong to the first harvest season that are prior to p + q i . Moreover, the 100 planted

hectares must be harvested during one harvest or more, dated between period p + q i and the last period of the first harvest

season. 

During the following harvest seasons ( Fig. 6 ), the planted area must have also been harvested by respecting the minimum

time between consecutive harvests. Following the previous example, the 100 ha should be harvested during the second 

harvest season by respecting the minimum time between harvests. This means that the 20 ha harvested during period h 1 
of the first harvest season can be harvested again during the periods belonging to the second harvest season above h 1 + q i .

Similarly, the 50 and 30 harvested hectares during periods h 2 and h 3 of the first harvest season can be harvested during the

periods of the second harvest season above h 2 + q i and h 3 + q i , respectively. Note that the number of harvests during two

consecutive seasons does not necessarily have to be the same. 

This paper proposes a multi-objective mathematical programming model to support the described problem, which works 

according to the following assumptions: 

• CPHP is centrally defined by the processor who may have one facility or several. 
• Contracts between processors and farmers establish the area to be planted per crop and farm, as well as the planting

and harvesting periods. Processors purchase the whole harvest from farms. 
• More than one crop can be planted on each farm. The same crop can be planted during different planting periods and

on distinct areas. The same area can only be planted once along the horizon. 
• There are as many harvest seasons for each crop as the number of harvests to be performed during a plant’s lifespan.

Crops are harvested once per harvest season. 
• A minimum interval between planting and harvesting, and between consecutive harvests, must be ensured to guarantee 

plant growth and to create active molecules. 
• Crop yield and concentration of active molecules depend on the plant growth time before harvest, which is the time 

between planting and the first harvest and, after that, between two consecutive harvests. 
• Processors require harvested crops to be dried during the same harvesting period to avoid loss of active molecule con- 

centration and to not shorten the crop shelf life. When dried, crops become non-perishable and the concentration of 

active molecules stabilizes. 
• Crop weight lowers during drying because water evaporates, and also during sorting because unneeded plant parts are 

discarded. 
• The capacity of not only farmers to dry, sort and store crops, but also of the central dryer, is limited. 
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• Dried sorted crops can be stored indefinitely by both farmers and processors. 
• Farmers can transport crops to processors at any time, but a minimum amount must be transported for crops to be

accepted. Farms and processors are close, so transport time is negligible. 
• The crops SC aims to optimize three objectives aligned to sustainability: maximize the concentration of active molecules 

transported to processors (environmental); minimize SC costs (economic); minimize economic unfairness among farmers 

(social). 

Environmental sustainability is defined as “the responsibility to conserve natural resources and protect global ecosys- 

tems to support health and wellbeing, now and in the future” [29] . Maximizing the concentration of active molecules can 

be considered an environmental objective for its positive and indirect impact on several factors that promote the SC’s envi- 

ronmental sustainability, especially those related to the preservation of natural resources. 

To begin with, planning the planting area by projecting the active molecules that will be obtained in each plant, and

choosing the time when the concentration is at its highest to harvest them, will require fewer plants being planted. Conse-

quently, fewer natural resources, such as land and water, will be needed for this purpose, and it possible to use them for

other purposes, such as nature preservation or fallow periods. 

Smaller planting areas require fewer fertilizers, pesticides, among others, to plant, cultivate and harvest MPs, which im- 

proves environmental sustainability. In addition, the higher the concentration of active molecules per plant, the fewer plants 

to be dried. This reduces the energy required to perform this activity. Finally, obtaining more active molecules from fewer 

MPs means that less product must be transported from fields to processors and, thus, reduces transport, resulting CO 2 

emissions and fuel use. 

5. Mathematical programming model 

The nomenclature employed to formulate the multi-objective mathematical programming model to solve the CPHP prob- 

lem appears in Table 2 . 
Table 2 

Nomenclature. 

Indices 

c Crop. 

f Farm. 

l Processing plant. 

p Planting period. 

h , h ′ Harvest period. 

s Harvest season. 

z Plant growth interval by taking the value z = h − p during the first harvest season or z = h − h ’ during the next harvest seasons. Index h 

represents the crop harvest period, and h ’ denotes the period when the crop was harvested during the previous harvest season. 

t Period of time. 

Set of indices 

P c Set of planting periods p during which crop c can be planted. 

S c Set of harvest seasons s during which crop c should be harvested. 

H cs Set of harvest periods h during which crop c can be harvested at season s . 

Parameters 

a f Available area at farm f. 

hi c Minimum interval between two harvests of crop c . 

y sz 
c Crop c yield during season s after z growing periods. 

hd sz 
c Weight conversion factor between the harvested and dry crop c if harvested during season s after z growing periods. 

ds sz 
c Percentage of the dry crop c weight that concentrates active molecules if harvested during season s after z growing periods. Represents 

the crop part requested by processors. 

am 

sz 
c Concentration of active molecules in one kilogram of dry sorted crop c if harvested during season s after z growing periods. 

dc f Farm f’s drying capacity (kilograms). 

dcc The central dryer’s drying capacity (kilograms). 

sc f Farm f’s sorting capacity (kilograms). 

ic f Farm f’s storage capacity (kilograms). 

ip l Processing plant l’s storage capacity (kilograms). 

mt cl Minimum quantity of crop c to be transported to processor plant l if transported. 

pc c Planting cost for one hectare of crop c . 

ch c Harvest cost for one hectare of crop c . 

cd c Drying cost for one kilogram of crop c at farms. 

cdc cf Drying cost for one kilogram of crop c in the central dryer. Includes the cost of transporting the fresh crop from farm f to the central 

dryer, and the dry crop from the central dryer to farm f . 

cs c Sorting cost for one kilogram of crop c . 

( continued on next page ) 
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Table 2 ( continued ) 

Indices 

cif c Inventory cost per period for one kilogram of crop c on farms. 

t cfl Transport cost for one kilogram of crop c from farm f to processing plant l . 

cip cl Inventory cost per period for one kilogram of crop c in processing plant l . 

pm cl Price paid by processing plant l to farms for one kilogram of crop c . 

d t 
cl 

Demand for dry sorted crop c in processing plant l during period t. This demand represents the raw material requirements of 

processing plant l to produce end products. 

Decision variables 

AP p 
c f 

Area planted with crop c on farm f during planting period p . 

AH shz 
c f 

Area of crop c harvested on farm f during period h of season s after z growing periods. 

QH shz 
c f 

Quantity of crop c harvested on farm f during period h of season s after z growing periods. 

QD shz 
c f 

Quantity of crop c dried on farm f during period h of season s after z growing periods. 

QCD shz 
c f 

Quantity of crop c of farm f dried in the central dryer during period h of season s after z growing periods. 

ID shzt 
c f 

Planned inventory of dried crop c on farm f during period t that was harvested during period h of season s after z growing periods 

(where t ≥ h + hi c ). 

QS shzt 
c f 

Quantity of crop c harvested on farm f during period h of season s after z growing periods and sorted during period t (where t ≥
h + hi c ). 

IS shzt 
c f 

Planned inventory of the dry sorted crop c on farm f during period t that was harvested during period h of season s after z growing 

periods (where t ≥ h + hi c ). 

QT shzt 
c f l 

Quantity of the dry sorted crop c harvested during period h of season s after z growing periods and transported from farm f to 

processing plant l during period t (where t ≥ h + hi c ). 

Y T t 
c f l 

Binary decision variable whose value equals 1 when crop c is transported from farm f to processing plant l during period t . 

I t 
cl 

Planned inventory the dried sorted crop c at processing plant l during period t . 

U f Economic unfairness of farm f . 

Pr f Profit made by farm f . 

 

 

 

 

5.1. Objectives 

The model aims to simultaneously optimize three objectives aligned with the pillars of sustainability. The environmental 

objective ( Z A ) consists of maximizing the concentration of active molecules in the crops acquired by processors, which 

depends on the quantity of the dried sorted crops transported to processors and the concentration of molecules in plants 

according to the plant growth time ( 1 ). 

Max Z A = 

∑ 

c 

∑ 

f 

∑ 

l 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

am 

sz 
c · QT shzt 

c f l (1) 

The economic objective ( Z C ) is to minimize the SC costs associated with planting, harvesting, drying, sorting, transporting

and storing crops ( 2 ). 

Min Z C = 

∑ 

c 

∑ 

f 

∑ 

p∈ P c 
p c c · AP p 

c f 
+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

c h c · AH 

shz 
c f 

+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

c d c · QD 

shz 
c f 

+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

cd c c f · QCD 

shz 
c f 

+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

c s c · QS shzt 
c f 

+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

ci f c ·
(
I D 

shzt 
c f 

+ I S shzt 
c f 

)
+ 

∑ 

c 

∑ 

f 

∑ 

l 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

c t c f l · QT shzt 
c f l 

+ 

∑ 

c 

∑ 

l 

∑ 

z 

∑ 

t 

ci p cl · I zt 
cl 

(2) 

The social objective ( Z U ) consists in minimizing economic unfairness among farmers so that they consider it beneficial

to sign contracts with processors. It is measured as the absolute difference between the profit made per hectare of each

farmer and the average profit made per hectare of all the farmers ( 3 ). Profit includes the sale of crops to processors and the

costs of planting, harvesting, drying, sorting, storing and transporting crops ( 4 ). 

Min Z U = 

∑ 

f 

∣∣∣∣
∑ 

f ′ P r f ′ ∑ 

f ′ a f ′ 
− P r f 

a f 

∣∣∣∣ (3) 
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P r f = 

∑ 

c 

∑ 

l 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

(
p m cl − c t c f l 

)
· QT shzt 

c f l 
− ∑ 

c 

∑ 

p∈ P c 
p c c · AP p 

c f 

−∑ 

c 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

c h c · AH 

shz 
c f 

− ∑ 

c 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

c d c · QD 

shz 
c f 

−∑ 

c 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

cd c c f · QCD 

shz 
c f 

−∑ 

c 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

c s c · QS shzt 
c f 

−∑ 

c 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

ci f c ·
(
I D 

shzt 
c f 

+ I S shzt 
c f 

) ∀ f 

(4) 

5.2. Constraints 

The model is subject to the following constraints. The area to be planted with all the crops per farm is limited by the

area available on the farm ( 5 ) that can be planted only once along the horizon. 
∑ 

c 

∑ 

p∈ P c 
AP p 

c f 
≤ a f ∀ f (5) 

The entire planted area must be harvested during all the harvest seasons to ensure a minimum time between plant- 

ing and the first harvest ( 6 ), and between two consecutive harvests ( 7 ), so that active molecules develop in plants. This

requires controlling the harvesting periods of the areas during each season, which increases the complexity of formulating 

and resolving this set of constraints. 

AP p 
c f 

= 

∑ 

h ∈ H cs 

h ≥ p + h i c 

AH 

sh z= h −p 

c f 
∀ c, f, p ∈ P c , s = 1 (6) 

∑ 

z ′ 
AH 

s −1 hz ′ 
c f 

= 

∑ 

h 

′ ∈ H cs 

h 

′ ≥ h + h i c 

AH 

sh ′ z= h ′ −h 
c f 

∀ c, f, s > 1 , h ∈ H cs −1 (7) 

Harvest quantity depends on the planted area and plant yield, which varies according to the plant growth time before

harvest ( 8 ). 

QH 

shz 
c f = AH 

shz 
c f · y sz 

c ∀ c, f, s ∈ S c , h ∈ H cs , z ≥ h i c (8) 

The harvested crop must be dried during the same period of its harvest to stabilize its concentration of active molecules

and transform crops into non-perishable ones ( 9 ). Therefore, the quantity of the crop to be harvested during each period is

limited by the farmer’s own dryer’s drying capacity ( 10 ) and the central dryer’s capacity ( 11 ). 

Q H 

shz 
c f = Q D 

shz 
c f + Q CD 

shz 
c f ∀ c, f, s ∈ S c , h ∈ H cs , z ≥ h i c (9)

∑ 

c 

∑ 

s ∈ S c 

∑ 

z≥h i c 

QD 

shz 
c f ≤ d c f ∀ f, h (10) 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

z≥h i c 

QCD 

shz 
c f ≤ dcc ∀ h (11) 

Dried crops can be stored indefinitely until sorted. The inventory balance for the same harvest period is defined in ( 12 ),

while the balance for the following periods is calculated in ( 13 ). These equations consider the weight loss of the harvested

crops during the drying process due to water evaporation. 

ID 

shzt 
c f = QD 

shz 
c f · hd sz 

c + QCD 

shz 
c f · hd sz 

c − QS shzt 
c f ∀ c, f, s ∈ S c , h ∈ H cs , z ≥ h i c , t = h (12)

I D 

shzt 
c f = I D 

shzt−1 
c f 

− QS shzt 
c f ∀ c, f, s ∈ S c , h ∈ H cs , z ≥ h i c , t > h (13)

The sorting process of dried crops is limited by farmers’ capacity for this activity ( 14 ). 
∑ 

c 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

h ≤ t 

∑ 

z≥h i c 

QS shzt 
c f ≤ s c f ∀ f, t (14) 
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The dried sorted crops can be stored again indefinitely until they are transported to processors ( 15 ). This equation con-

siders the weight loss of crops because the plant parts not required by processors are discarded. 

I S shzt 
c f = I S shzt−1 

c f 
+ QS shzt 

c f · ds sz 
c −

∑ 

l 

QT shzt 
c f l ∀ c, f, s ∈ S c , h ∈ H cs , z ≥ h i c , t ≥ h (15)

The inventory of the dried crops, and the dried sorted crops, is limited by farmers’ storage capacity ( 16 ). 

∑ 

c 

∑ 

s ∈ H c 

∑ 

h ∈ H cs 

h ≤ t 

∑ 

z≥h i c 

(
I D 

shzt 
c f + I S shzt 

c f 

)
≤ i c f ∀ f, t (16) 

When transporting a crop to processors, a minimum quantity must be transported for it to be accepted ( 17 ). The set of

constraints ( 18 ) regulates the operation of the binary variable that takes a value of one when a crop is transported from a

farm to a processor. 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

h ≤ t 

∑ 

z≥h i c 

QT shzt 
c f l ≥ Y T t c f l · m t c ∀ c, f, l, t (17) 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

h ≤ t 

∑ 

z≥h i c 

QT shzt 
c f l ≤ Y T t c f l · d t cl ∀ c, f, l, t (18) 

The crop transported to a processor is either used as raw materials to produce end products or is stored until needed

for production ( 19 ). 

I t cl = I t−1 
cl 

+ 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H sc 

h ≤ t 

∑ 

z≥h i c 

QT shzt 
c f l − d t cl ∀ c, l, t (19) 

Finally, the nature of the employed decision variables is defined ( 20 ). 

AP p 
c f 

, AH 

shz 
c f 

, Q H 

shz 
c f 

, Q D 

shz 
c f 

, Q CD 

shz 
c f 

, ID 

shzt 
c f 

, Q S shzt 
c f 

, IS shzt 
c f 

, QT shzt 
c f l 

, I t 
cl 

CON T IN U OU S 

Y T t 
c f l 

BINARY 
(20) 

5.3. Resolution methodology 

In order to solve the proposed model, it is necessary to linearize objective Z U related to the minimization of economic

unfairness among farmers ( 3 ). For this purpose, the transformation proposed in [11] is applied, and Eqs. (21) –( 23 ) are ob-

tained. 

Min Z U = 

∑ 

f 

U f (21) 

U f ≥
∑ 

f ′ P r f ′ ∑ 

f ′ a f ′ 
− P r f 

a f 
∀ f (22) 

U f ≥
P r f 

a f 
−

∑ 

f ′ P r f ′ ∑ 

f ′ a f ′ 
∀ f (23) 

The ε-constraint method [30] is followed to transform the multi-objective model into a single-objective model by keeping 

the maximization of the concentration of active molecules as the model’s objective function (1a) , and transforming the other

objectives into constraints (24–25 ). The new model is formulated as follows: 

Min Z A (1a) 
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subject to: 
∑ 

c 

∑ 

f 

∑ 

p∈ P c 
p c c · AP p 

c f 
+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

c h c · AH 

shz 
c f 

+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

c d c · QD 

shz 
c f 

+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

cd c c f · QCD 

shz 
c f 

+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

c s c · QS shzt 
c f 

+ 

∑ 

c 

∑ 

f 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

ci f c ·
(
I D 

shzt 
c f 

+ I S shzt 
c f 

)
+ 

∑ 

c 

∑ 

f 

∑ 

l 

∑ 

s ∈ S c 

∑ 

h ∈ H cs 

∑ 

z≥h i c 

∑ 

t≥h 

c t c f l · QT shzt 
c f l 

+ 

∑ 

c 

∑ 

l 

∑ 

z 

∑ 

t 

ci p cl · I zt 
cl 

≤ ε C 

(24) 

∑ 

f 

U f ≤ ε U (25) 

and Eqs. (4) –( 20 ), ( 22 ), ( 23 ) 

With this model, several non-dominated solutions can be obtained by employing multiple values for parameters εC and 

εU . However, only one solution must be selected to be finally implemented into the real SC. To put this selection into

practice, the TOPSIS method [31] is employed. 

6. Computational experiments 

This section aims to validate the proposed model by applying it to the case study of MPs in Basilicata (Italy) where

a processor of natural food supplements intends to plan the planting of MPs on ten farms. The processor is interested in

planting lemon balm and sage because the rosmarinic acid extracted from them is one of its main raw materials. 

Although lemon balm and sage are perennial crops, they only provide a sufficient concentration of rosmarinic acid the 

first two years after planting. So processors consider them to be biennial. Therefore, a 2-year planning horizon with 104 

weekly periods is considered, on which lemon balm and sage plants are harvested several times. After this horizon, plants 

are pulled up and soil is prepared for the next planting season. Fig. 7 shows the planting and harvesting calendar of lemon

balm and sage in southern Italy, where they are normally planted late in April or early in May (weeks 17–20). 

These MPs are harvested by mowing plants. Subsequently, plants are regrown from roots and the small trunks remaining 

from the previous harvest. With lemon balm, harvesting is done twice the first year and up to four times in the second year

to ensure a minimum of seven weeks between harvests to guarantee plant growth and to create rosmarinic acid. Sage is

harvested once the first year and a maximum of three times the second year to ensure a minimum of nine weeks between

harvests. 

The yield of these MPs varies depending on plants’ growth time. The conversion between one kilogram of fresh MP and

one kilogram of dried MP is variable because plants have different water concentrations depending on the weather. This 

leads to the loss of different masses during the same drying process. Finally, the percentage of plant mass that concentrates

rosmarinic acid in the dried sorted plant also depends on the plant growth time and harvest season. Although the data

for these parameters are known by the processor, only the minimum and maximum values are shown for confidentiality 

reasons ( Table 3 ). It should also be noted that these values do not necessarily correspond to the same growth time or

harvest season. 

The area available for planting MPs on the 10 farms, as well as the storage capacity per farm, the cost of transporting

MPs to the processor and the cost of drying in the central dryer, are provided in Table 4 . The cost of drying in the central

dryer includes the costs of transporting products from the farm to the central dryer, and back again. All the farmers have a

drying and sorting capacity of 20 0 0 and 20 0 0 kg/week, respectively. The central dryer has a drying capacity of 20 0 0 kg per
Fig. 7. Planting and harvest calendar for medicinal plants. 

Table 3 

Information about MPs. 

MP Yield per mowing (kg/ha) Fresh to dry conversion Percentage of plant with rosmarinic acid Rosmarinic acid concentration 

Lemon balm 8665–9400 19–27% 97–99% 1.4–2.8% 

Sage 5333–10000 20–33% 97–99% 1.9–3.9% 
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Table 4 

Capacity and costs of farming resources. 

Farm Area (ha) Storage capacity (kg/week) Transport cost ( €/kg) Drying cost of the central dryer ( €/kg) 

1 1.4 2400 0.54 1.11 

2 1.8 2900 0.68 1.28 

3 0.7 2800 0.61 1.18 

4 1.4 2100 0.56 1.23 

5 1.7 2000 0.55 1.26 

6 1.5 3000 0.68 1.15 

7 0.9 2200 0.50 1.23 

8 1.2 2500 0.70 1.16 

9 0.8 2400 0.65 1.21 

10 0.6 2000 0.67 1.24 

Table 5 

Economic data. 

MP Price ( €/kg) 

Planting 

cost ( €/ha) 

Harvest 

cost ( €/ha) 

Drying cost on 

farm ( €/kg) 

Sorting cost 

( €/kg) 

Storage cost on 

farm ( €/kg ·week) 

Storage cost at the 

processor ( €/kg ·week) 

Lemon 

balm 

3.30 4000 866.25 1.00 0.05 0.015 0.015 

Sage 3.50 3150 1155 1.00 0.05 0.015 0.015 

 

 

 

 

 

 

 

 

period. In addition, a minimum of 50 kg of the same MP must be transported to the processor to be accepted. In addition,

different MPs can be transported in the same vehicle. The processor’s storage capacity is limited to 50,0 0 0 kg of the dried

sorted MPs. 

The costs related to the planting, harvesting, drying, sorting and storage of MPs are found in Table 5 . 

6.1. Results 

In order to solve the model using the ε-constraint method, it is necessary to determine ε-values. Lexicographic opti- 

mization was used for this purpose [11] , which consists of optimizing the model’s objectives one by one by fixing the value

of the previously optimized objectives ( Table 6 ). These values can be used to check that the optimized objectives are not

aligned or conflictive, which is a prerequisite for applying a multi-objective approach. 

To check whether the objectives are aligned, a partial correlation analysis is performed between the lexicographic opti- 

mization results ( Table 7 ). Two objectives are aligned when the improvement of one necessarily implies the improvement

of the other. For such situations, correlation index values higher than 0.9 are obtained for the objectives optimized in the

same direction (maximization-maximization or minimization-minimization), or lower than -0.9 for the objectives optimized 

in the opposite direction (minimization-maximization) [11] . 

Based on the previous properties, Table 7 shows that the correlation index between Z A and Z C equals one. So an increase

in the Z A value leads to an increase in the Z C . value. In this case, as Z A is maximized and Z C is minimized, the objectives are

conflictive because the improvement of one implies the other worsening. As there is no clear correlation between the other 

pairs of objectives ( Z A - Z U and Z C - Z U ), they are not aligned, and the use of the multi-objective approach is approved. 
Table 6 

Lexicographic optimization. 

Optimization order Z A Z C Z U 

Z A → Z C → Z U 1713.12 273282.25 4402.67 

Z A → Z U → Z C 1713.12 274227.66 797.61 

Z C → Z A → Z U 592.32 117589.17 12073.11 

Z C → Z U → Z A 592.30 117589.17 11598.11 

Z U → Z A → Z C 1637.65 269250.84 0.00 

Z U → Z C → Z A 592.53 117900.28 0.00 

Table 7 

Partial correlation analysis for non-dominated solutions. 

Z A Z C Z U 

Z A 1.00 1.00 - 0.57 

Z C 1.00 1.00 - 0.57 

Z U - 0.57 - 0.57 1.00 
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Fig. 8. Results for the ε-constraint resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The minimum and maximum values obtained for each objective in the lexicographic optimization are employed as the 

lowest and highest ε-values related to these objectives, respectively. Additionally, as many ε-values as desired can be ob- 

tained by dividing this range into equal intervals. 

The model is solved for 25 scenarios, obtained by combining five ε-values for the SC costs ( εC ) and economic unfairness

( εU ) objectives. One remarkable finding is that not all the ε-values combinations provide solutions because some combi- 

nations are infeasible. After solving the model, 13 non-dominated solutions (numbered from 1 to 13) are obtained and 

analyzed in terms of the concentration of active molecules, SC costs and unfairness among farmers ( Fig. 8 ). 

The results show how maximizing the concentration of active molecules in the MPs delivered to the processor implies 

considerably increasing the SC costs. In addition, different values for economic unfairness among farmers are obtained for 

similar values of the SC costs and the concentration of active molecules. For example, solutions 5–7 obtain SC costs close

to 195908 € and the concentration of active molecules ranges from 1283 to 1321, while economic unfairness among farmers 

ranges from 0 to 6036 €/ha. This means that it is possible to considerably reduce economic unfairness among farmers 

by maintaining the values of the SC costs and slightly varying the concentration of the active molecules delivered to the

company. So it would be advisable for farmers to be willing to sign contracts with processors and to form part of this

centralized planning. 

These results provide processors with several options for the CPHP to be carried out with their contracted farmers insofar 

as, depending on whether it is more important for the processor to obtain a higher concentration of active molecules or to

reduce SC costs, the processor could choose a different plan to be implemented. 

To select the solution to be implemented into the SC, this paper uses the TOPSIS method, a multicriteria decision analysis

method that aims to select the alternative with a shorter geometric distance to the positive ideal solution, and a longer

geometric distance to the negative ideal solution [31] . To apply this method, a matrix composed of the alternatives and

their values for the selection criteria is constructed. In this paper, the selection criteria correspond to the three optimized 

objectives, and the alternatives are the 13 solutions generated by the ε-constraint method. This matrix is linearly normalized 

according to [31] , and the weighted normalized matrix ( Table 8 ) is constructed by assigning to the normalized values a

weight that, in this case, is the same for all three criteria ( w A = w C = w U = 0 . ̂  33 ). The positive ( t bj ) and the negative ( t wj )

ideal solution for each criterion are identified as the best and worst values of this matrix, respectively. 

The distance of each solution to the positive ( d ib ) and negative ( d iw 

) ideal alternatives, as well as the relative proximity

of each solution to the ideal alternative ( s i ), are calculated in Table 9 as defined in [31] . 

The solution with a higher s i value has a closer proximity to the ideal alternative and is selected for the application in

the SC ( Table 9 ). In this case, planning 6 is selected, in which a high concentration of active molecules and moderate costs

are obtained in the SC, while eliminating farmers’ perceived economic unfairness. 

The planning of the planting, harvesting and distribution of the crops obtained in Solution 6 chosen for its application in

the SC is shown in more detail below. Fig. 9 shows the planning of the proportion of area to be planted with each crop on
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Table 8 

Normalized and weighted normalized matrix. 

Normalized matrix Weighted normalized matrix 

Solution Z A Z C Z U Solution Z A Z C Z U 

1 0.124 0.160 0.625 1 0.041 0.053 0.208 

2 0.207 0.213 0.000 2 0.069 0.071 0.000 

3 0.216 0.213 0.156 3 0.072 0.071 0.052 

4 0.216 0.213 0.312 4 0.072 0.071 0.104 

5 0.216 0.213 0.469 5 0.072 0.071 0.156 

6 0.269 0.266 0.000 6 0.090 0.089 0.000 

7 0.277 0.266 0.156 7 0.092 0.089 0.052 

8 0.277 0.266 0.312 8 0.092 0.089 0.104 

9 0.326 0.319 0.000 9 0.109 0.106 0.000 

10 0.334 0.319 0.156 10 0.111 0.106 0.052 

11 0.334 0.319 0.312 11 0.111 0.106 0.104 

12 0.343 0.369 0.000 12 0.114 0.123 0.000 

13 0.359 0.373 0.156 13 0.120 0.124 0.052 

t bj 0.120 0.053 0.000 

t wj 0.041 0.124 0.208 

Table 9 

Distance and proximity matrix. 

Solution d ib d iw s i 

1 0.222 0.071 0.242 

2 0.054 0.217 0.802 

3 0.073 0.168 0.697 

4 0.116 0.121 0.510 

5 0.164 0.080 0.329 

6 0.046 0.217 0.823 

7 0.069 0.168 0.710 

8 0.113 0.121 0.517 

9 0.054 0.220 0.802 

10 0.075 0.172 0.697 

11 0.117 0.127 0.519 

12 0.070 0.221 0.760 

13 0.088 0.175 0.665 

Fig. 9. Planned area to be planted on farms (Solution 6). 

 

 

each farm. According to this solution, lemon balm and sage are planned to be planted on all the farms, albeit in different

proportions. 

Fig. 10 shows the planned planting and harvesting schedule for each crop on all the farms. Planting crops is planned in

week 17 on all the farms, which is the first week when this activity is allowed for both crops. 
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Fig. 10. Planned planting and harvesting schedule per farm (Solution 6). 
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Fig. 11. Planning the post-harvest activities, inventory and transport of crops (Solution 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The harvesting schedule is different for each farm and crop. On most farms and during most seasons, the area planted

with lemon balm is planned to be harvested during several periods to, thus, balance farmers’ burden with this task. How-

ever, on some farms where the area planted with lemon balm is small (up to 0.4 ha), the whole planted area is planned to

be harvested in one week. 

For sage, the entire planted area is planned to be harvested during several periods of the same season in the first year.

In most seasons of the second year, the entire planted area is planned to be harvested in one week of each season as long

as the farm has sufficient capacity to dry all the harvested product. 

Finally, Fig. 11 displays the planning of the quantity of crop to be dried and sorted every week, the quantity of the dried

sorted crop to be stored, and the quantity of the dried sorted crop to be transported to the processor. 

It is remarkable that the weight of MPs lowers during both the drying process due to loss of water and the sorting

process because the plant parts that do not contain active molecules are discarded. 

The results show for many weeks that the same quantity of crop is dried, sorted and transported to the processor, and

the inventory of these crops on the farm remains constant. On the contrary, in the weeks when a larger quantity is planned

to be sorted than transported, the inventory increases. In the weeks when a smaller quantity is planned to be sorted than

transported, the inventory decreases. 

6.2. Computational efficiency 

The model has been implemented in the optimization program MPL Modeling System® Release 5.0.8.116 and solved with 

solver Gurobi Optimization 9.1.1. The input data are imported from a database generated in a Microsoft Access Database. The 

values obtained for the decision variables are exported to this same database. A computer with a processor Intel® Xeon®

CPU E5-2640 v2 @ 2.00 GHz 2.00 GHz (two processors) and installed capacity of 32 GB and a 64-bit operating system was

used to solve the proposed model. 

For the case study, the proposed multi-objective model resulted in 292717 constraints and 413844 decision variables, of 

which 412804 were continuous and 1040 were binary. 

The model’s resolution time was limited to three hours (180 min). Fig. 12 shows the resolution time for the 13 solutions

found. Only in five cases was the optimal solution obtained in less than three hours (solutions 5, 6, 10, 11 and 13). However,

it is worth noting that on six occasions (solutions 2, 3, 4, 6, 7 and 9), the model returned a solution when the time limit
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Fig. 12. Resolution time for optimal solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was reached, which has a gap, and was calculated as the percentage difference of the found solution in relation to the

best analyzed bound, at less than 0.05% and with an average gap of 0.02%. These results suggest that they are optimal or

near-optimal solutions. 

7. Managerial insights 

The model herein proposed was inspired in a real-life problem of an important company that produces food supplements 

in the Basilicata region of Italy, which validated the obtained results. The generalizations and abstraction made while for- 

mulating the model allowed it to be used for any SC integrated by several farmers, one central dryer and a processor with

production plants in different locations. 

The model is designed to be executed by companies that produce medicinal or non-medicinal products, where the con- 

centration of certain active molecules in the plants used as raw material is relevant, and who have sufficient power in the

SC to make centralized decisions that affect farmers. This is because the model can be used to not only plan the planting

and harvesting of MPs, but also the activities that must be performed until the processor acquires MPs, or to replan some

of these activities. 

The main advantage of this model lies in the fact that it incorporates characteristics of MPs production that have not

been considered in previous models found in the literature, such as the existence of a minimum plant growth time before

harvest, the dependence of plant yield and the concentration of active molecules in plants on the growth time, which are

of extremely relevant for the medicinal sector. In contrast, the existing models for CPHP in the literature are unsuitable 

for solving the problem under study because, by not modeling these distinctive characteristics of MPs, they can provide 

inadequate, or even infeasible, planning. 

By running the model, managers acquire very valuable information to support their decisions. Indeed the model’s results 

provide managers with a set of non-dominated solutions as regards the three sustainable objectives to decide on the CPHP 

of MPs. Having more than one satisfactory solution to be implemented is an advantage for managers, who should select 

(preferably in a collaborative way with farmers) the most satisfactory one to be implemented into the SC. Managers of pro-

cessing companies are provided with different sustainable plans for planting, harvesting and distribution plans because the 

model attempts to simultaneously optimize the concentration of active molecules in purchased MPs (environmental), mini- 

mize SC costs (economic) and minimize farmers’ perception of economic unfairness (social). Due to the model’s centralized 

nature, the non-dominated solutions with the minimal operation costs of the whole SC offer maximum cost savings. Be- 

sides, the model allows a more efficient use of natural resource (e.g., savings in planted area) and a fair solution for farmers,

which implies a win-win situation. More specifically, all the model’s solutions can recommend to managers the areas that 

should be planted by each farmer with each crop in each week, and what area should be harvested by each farmer with

each crop in each week, and what quantity would be obtained from these harvests, how much of that harvest should be

dried in the farmer’s dryer and in the central dryer per week, when and in what quantity should previously dried crops

be sorted on each farm per crop, how much of each crop should each farmer keep in stock per week, when and in what

quantity should each farmer transport each crop to the processor, and therefore, when and in what quantity will crops be

delivered to the processor. 

The model also provides managers with performance measures of the different obtained plans, such as economic returns 

per SC member (for each farmer and processor location), economic results broken down for each activity, farmers’ land and 

resource utilization, concentration of the obtained active molecules, or farmers’ perception of economic unfairness, which 

provide processors with relevant information to determine which planning has more potential to be accepted by farmers. 

Indeed to implement the model into real SCs, two main requirements should be met. One key requirement for the 

proposed model’s successful use is that all the SC members should be committed to implement the selected plan among 

all the non-dominated solutions. This could be encouraged by signing contracts in which the processor is committed to 

purchase the entire harvest obtained by farmers if they respect the selected plan as herein proposed, or adopt another 
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collaborative mechanism, such as signing non exclusivity contracts with farmers so that if there is any unused area left after

performing the planned plantation, they can also participate in producing MPs or non-medicinal crops for other processors. 

Another important requirement for implementing the model into real life is to have the necessary data to run the model.

The required data are related to the unit costs of performing the different MP production and distribution activities, rang- 

ing from MPs’ behavior (weight change with drying and sorting, plant yields, concentration of active molecules, minimum 

growth time before harvest) to available resources (available land, drying, sorting, storage capacity) and demand. 

Hence one limitation for implementing the model could be that not all processor companies could have studies into the 

input data on how the concentration of active molecules in the plants behaves according to the plant’s growth time and

season. The reason for this is that it is assumed that determining the behavior of this concentration of active molecules in

plants is externally calculated by precise agronomic functions that may consider other factors, such as temperature, humidity 

and other weather conditions. 

Even for the companies that have the necessary input information available, the model presents a limitation: assuming 

the concentration of active molecules as being deterministic when it is actually uncertain. It is uncertain because, despite 

having a very precise agronomic model to predict the concentration of active molecules based on forthcoming weather 

conditions, real future climate conditions can never certainly be known until future periods become current ones. 

To use the model despite this last limitation, the behavior of the concentration of active molecules would have to be

updated for new weather conditions with agronomic studies, and the model would have to be rerun with these updated 

values. If a decision has been made in the SC when a change in the behavior of the concentration of active molecules in

plants occurs, the model can be run by forcing the decision variables linked with the decisions already made to be input

data and by keeping those decisions that are still pending planning as variables. For example, if the planting of MPs has

already taken place, the model can be fed information about the areas that have been planted and during which periods,

and can keep the variables related to harvesting, drying, inventory transport, etc., as decisions. 

Indeed the model can be run in a rolling horizon scheme either by period (every time a predefined time period elapses)

or event (after a success). Every time the model is rerun, its input parameters should be updated and previous decisions

made about planting certain land areas with specific plants should be included in the model as constraints by fixing the

optimal value corresponding to these variables. If all the planting decisions have been made, the model can be employed 

to decide about the value of the remaining decision variables, such as when and how much to harvest, using more updated

information. 

8. Conclusions and future research lines 

This paper proposes a conceptual framework to characterize the CPHP problem that is used to review optimization mod- 

els for this problem and to characterize the problem under study. Most models in the literature are designed for those cases

in which fruit are harvested as they ripen (continuous harvest) and are employed for food use. Therefore, gaps are identi-

fied, such as modeling discrete plant harvesting or optimizing the concentration of active molecules in plants, among others, 

which this paper bridges. 

The multi-objective mathematical programming model for CPHP herein proposed is validated by its application to the 

case study of MPs in Basilicata (Italy). Its main novelties are the consideration of plants with a biennial lifes pan and for

medicinal purposes, modeling discrete harvests, a minimum time between planting and the first harvest, and also between 

two consecutive harvests, plant yield dependence and its concentration of active molecules on the plant growth time before 

harvest, post-harvest activities of MPs (drying and sorting), the transformation of perishable crops into non-perishable ones, 

the stabilization of their active molecule concentration, the optimization of active molecules in plants, as well as the joint 

optimization of active molecule concentration, SC costs and economic unfairness among farmers. 

The model is solved using the ε-constraint method after verifying that the objectives are not aligned. The analysis of the

13 obtained schedules shows that economic unfairness among farmers can be substantially reduced, while obtaining similar 

values for costs and the concentration of active molecules in the delivered plants. These results provide processors with 

relevant information because they can gain by farmers participating in the implementation of centralized planning and, if 

this unfairness is reduced, with no negative impact on both costs and the concentration of active molecules in the acquired

plants. Finally, the TOPSIS method is employed to select the centralized plan to be implemented into the SC. Finally, the

main planned decisions related to the selected plan are displayed. 

In future research, the proposed model can be extended by modeling the uncertainty that is inherent in MP production, 

such as uncertain MPs yield, MPs weight reduction when dried, or the proportion of MPs that are discarded during plant

sorting. In addition, the production processes performed by the processor can be included in future models. 

Data availability 

The data that has been used is confidential. 
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