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1 | INTRODUCTION

The concept of subdirect sum of matrices was introduced in Fallat and Johnson! motivated by the appearance of these
kind of sums in some graph-related problems (see Drew and Johnson?). In Fallat and Johnson' some properties of this
new sum are analyzed for some positive classes of matrices. Since then, these kind of studies have been extended to a
wide variety of matrix classes: inverses of M-matrices,> S-Strictly Diagonally Dominant matrices,* Doubly Diagonally
Dominant matrices,” P-matrices that are also Strictly Diagonally Dominant, H-matrices,” Accretive, Dissipative
and Benzi-Golub matrices,® Inverse-Positive matrices,”!® B-matrices and doubly B-matrices,!! generalization to linear
operators on Hilbert spaces,'? Nekrasov matrices,'* Weakly Chained Diagonally Dominant matrices,'* QN-matrices,'?
p-norm Strictly Diagonally Dominant matrices,'® Doubly Strictly Diagonally Dominant matrices,!” =-Strictly Diagonally
Dominant matrices,!® and Dashnic-Zusmanovich matrices!?; see Pedroche?° for more details on these results.
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© 2022 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons, Ltd.

Math Meth Appl Sci. 2022;1-22. wileyonlinelibrary.com/journal/mma | 1


https://doi.org/10.1002/mma.8787
https://orcid.org/0000-0001-6521-4331
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmma.8787&domain=pdf&date_stamp=2022-10-12

2 Wl LEY PEDROCHE

In this paper we introduce a generalization of the subdirect sum of matrices, which we call weighted subdirect sum,
that is motivated by two problems. One is the description of overlapping motifs?! or cliques?>~2* in complex networks (see,
e.g., previous works?2%), and the other is the analysis of the convergence of iterative methods for solving linear systems
based on the technique of overlapping blocks.?”-?8 We believe that the new concept can be applied to some other problems
in which overlapping subdomains are involved. In this paper we analyze some properties of the weighted subdirect sum
for those positive classes of matrices that were analyzed in the seminal paper.! We show that the results of Fallat and
Johnson! can be extended to the new weighted subdirect sum, and we illustrate the results with some small examples.
We also outline how this new concept can be included in the formulation of two standard lines of research: overlapping
graphs in complex networks and iterative methods with overlapping blocks for solving linear systems of equations.

The structure of the paper is the following. In Section 2 we recall some basic definitions and set the nomenclature of
the paper. In Section 3 we define the weighted subdirect sum of matrices and give immediate properties. In Section 4 we
establish the four questions that are the goal of the paper and we give some theoretical results that are the key to develop
the paper. In Section 5 we analyze the properties of the weighted subdirect sum for some positivity classes of matrices. In
Section 6 we show two applications of the weighted subdirect sum, and finally, we give some conclusions in Section 7.

2 | PRELIMINARIES

In this section we give the basic definitions and we establish the kind of matrices that we will consider.
Given two block matrices

_ Au A12 _ Bll BlZ
A= [AZI Azz] » B= [le Bzz] ’ @
with A,, and B;; of size k X k, the sum
A Ap (@)
C=|An Ax + By B 2
0] By By

is called the k-subdirect sum (or simply the subdirect sum) of A and B, and it is denoted as C = A @;B. This sum was
introduced in Fallat and Johnson.! The particular case k = 0 can be considered as the usual direct sum of matrices.
Given a matrix class S, the questions that were addressed in Fallat and Johnson! are the following.

1. If A and B belong to S, does A @B belong to the same class S, for k = 1?
2. A matrix of the form

CnCrz O
C=|Cy Cyp Cy
O Cs Cs3

that belongs to a class S can be written as A@;B with A and B in the same class as C, for k = 1?
3. Question 1 with k > 1.
4. Question 2 with k > 1.

In this paper we address these questions but referred to the weighted subdirect sum that we define in the next section.
All through the paper we focus on real matrices.

3 | WEIGHTED SUBDIRECT SUM

Definition 1. Given two square matrices A and B of size n; and n,, respectively, written by blocks as in (1), we define
the weighted subdirect sum of A and B, with weights « > 0 and § > 0 to be the matrix

wp Aq Aqp 0
A®," B:= | Ay aAxn + By B
O B21 BZZ
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where we recall that k is the size of A,, and B;;. Note that the relation with the k-subdirect sum is

af n_ |Al An pB11 By,
A Dk B= [A21 OlAzz] D [ By By

Trivial properties

o« When n; = n, = kthen A = Ay, and B = By, and therefore, when « = = 1, we have A 6911{’1 B = A + B, the usual
sum of matrices.

« When k = 0itis assumed that A = A}; and B = By,, and therefore, for any «, , we have A eag’ﬂ B = A @ B, the usual
direct sum of matrices.

« Whena = =1wehave A EB}(’I B = A @B, the usual k-subdirect sum of matrices.

Remark 1. Let A € R™*™ and B € R"*™ be two matrices partitioned as in (1), and let A, and B® be of the same size
as, and partitioned conformably to, A and B, respectively, and defined by

_|An A s _ | 6B11 Bz
4, = [AZI 71422] » B = By B ®)

with y > 0and 6 > 0. Then
y .67 s
A®B=A, & * B
foranyk=1,2, ... ,min{ny,n,}

In the next sections we study more properties and focus on positive classes of matrices. Before enter into these classes
we can state a result about the inverse of the weighted subdirect sum. We do this in the next section.

3.1 | The inverse of the weighted subdirect sum
By following a similar technique as in theorem 2.1 of Bru et al® we can prove the following result.

Proposition 1. Given two matrices A and B partitioned as in (1), let

BZl B22

A, = [An A ] B = [ﬂBn 312] @)

with « > 0 and f > 0. Let us assume that A, and B? are nonsingular matrices and let us partition their inverses
conformably to (4) and denote the blocks as

then it holds that

with I:I = Azz + BH.

Proof. Letusdenote C=A @Z’ﬂ B. Note the following equality

A" 0 | o[thm O ] _
0 Iy, o @)~
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_ @y o A, 0] [0 O]\ [Inn, ©
| O I oo|T|op 0 (B!

(I, O O | Inn, O O AnAp O [[OO O
= (@) I (@) 0] ?11 ?12 + A21 Azz (0] 0] Ik 0]
0O 00 (0] By By, O O In_nl 00 Inz—k
_Inl_k O O O Alz O
= O BiuBn|+|04,; O
O O O O O I«
Iy« An O
= H By
O O Iy«
and, since A GBZ’ﬁ B = A,®;B’, the proof follows. O

Corollary 1. The determinant of A @Z’ﬂ Bis given by

det(A ®}” B) = det(A,)det(F)det(B’)

Corollary 2. The inverse of C = A @Z’ﬂ B, when it exists, is given by

Inn —Ap(E)™ Ap(H) 1By, _
_ I 0 n—n, —412 ot At O
c'= [ n()n2 (Bﬂ)—l] (0] (H)_l —(H)_IBIZ [( O) I._
0 0 Inon, =M

Remark 2. As we have used in the above theorem, since A EBZ”’ B = A,®B’ the known properties of the subdirect
sum can be analyzed in an easy way to check whether they are also properties of the weighted subdirect sum or not.
We formalize this in the next section.

4 | METHODOLOGY

Our main goal in this paper is to answer the following questions.

Q-I If A and B belong to a class S, do exist some @ > 0 and > 0 such that A EBZ’ﬂ B belongs to the same class S, for
k=17
Q-II A matrix of the form

CuCn O
C=|Cyu Cyp C

O Cs; Cs3

that belongs to a class S can be written as A @Z’ﬂ B, for k = 1, with some « > 0 and # > 0, and with A and B in the
same class as C?

Q-IIT Question Q-I with k > 1.

Q-IV Question Q-II with k > 1.

The questions Q-1 (when k = 1) and Q-III (when k > 1) referring to k-subdirect sum can be extended in a natural way
to the weighted subdirect sum by using the next result.

Lemma 1. Let A € R"* gnd B € R™*" be two matrices of the same class S and partitioned as in (1). Let A, and
B’ be of the same size as, and partitioned conformably to, A and B, respectively, and defined by (4). Let us assume that
question Q-I (Q-III) is verified for the usual subdirect sum for matrices A and B in the class S and there exist « > 0 and
B > 0 such that A, and B? are also in the class S. Then question Q-I (Q-III) is verified for the weighted subdirect sum.
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Proof. Since question Q-I (Q-III) is verified for the usual subdirect sum we know that given A and B in the class S
then A @B is in S. Therefore, since A, and B” are also in the class S we conclude that A,@;B” is in the class S. By
noting that

An Ap 0]
A®i B’ = | Ay @Ap + B B | = A @z’ﬂ B
0] Bsz By,
with « > 0 and f > 0, we conclude that question Q-I (Q-III) is affirmative for the weighted subdirect sum. O

The questions Q-II (when k = 1) and Q-IV (when k > 1) referred to k-subdirect sum can be extended in a natural way
to the weighted subdirect sum by using the next result.

Lemma 2. Let

Co1 Gy Co3
O Cx Cs3

CnCpp O
C= e R (5)

be a matrix in some class S, with Cy; and Cs3 square matrices and with C,, a square matrix of size k. Let us assume that C
verifies question Q-II (Q-IV) for the usual subdirect sum and can be written as A’@B’, with A’ € Rm>*" gnd B’ € R"»*"
both in the class S and partitioned as in (1). LetA; and B’ 5, withy > 0and 6 > 0, be of the same size as, and partitioned
conformably to, A" and B, respectively, and defined as in (3). Let us assume that A} and B' % are in the class S. Then
question Q-II (Q-1V) is verified for the weighted subdirect sum.

Proof. Note that by Remark 1,

C=AeB =A@ B’
is in the class S. Denoting A = A/, B = B®, a =yl and # = 67! we have that C = A @Z’ﬂ B, for some « > 0 and
p > 0 with A and B in the class S. Therefore, we conclude that question Q-II (Q-IV) is affirmative for the weighted
subdirect sum. O

Some results in Fallat and Johnson® answer to questions Q-I and Q-II (or Q-III and Q-IV) for the usual subdirect sum at
the same time by writing propositions with necessary and sufficient conditions. In the present paper we are restricted by
the conditions of A, and Bf to be in the class S. Since the conditions that we manage are sufficient conditions we prefer
to answer the questions one by one, for the sake of clarity in the presentations.

Remark 3. Note that by using these two previous lemmas the key point to answer questions Q-I to Q-IV for the
weighted subdirect sum by using the results of Fallat and Johnson,! will be to give conditions such that A4,, and B?,
are in the same class as their corresponding matrices A and B.

When we have a matrix class S¢ that is closed under addition (i.e., when A, B are in the class then A + B is in the class),
we can use the following result to answer questions Q-I and Q-III

Lemma 3. Let S¢ be a matrix class that is closed under addition and such that for any matrix A and Bin S, it holds that

1. aAisin S¢ forany a > 0.
2. Any principal submatrix of A is in Sc.
3. Any matrix of the form

Opxp Opxk Opxq
Ok><p H Ok><q
Ogxp Ogxk Ogxq

isin Sc when H is in Sc.
4. A@yBisin Sc for some k.

then A EBZ’ﬂ Bis in the class S¢ for those values of k, and forany « > 1 and f > 1.
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Proof. Note that we can write the weighted subdirect sum as
O, —Iox(n,—k) O, —kyxk O, —1yxq
AB"B=A®B+| Owmb An@-1D+Bu(f-1) Owm-n
O, —tox(n,—k) O, —k)xk O, —lox(n,—k)

Now, by the Hypothesis 2, A,; and By; are in S¢ and since the class is closed under addition and by Hypothesis 1, is
clear that Ay (a — 1) + B11(f — 1) is also in S¢ when @ > 1 and g > 1. Now, by using the Hypotheses 3 and 4 and that
the class is closed under addition, the proof follows. O

When S¢ is closed under addition with the property that given any matrix A in S¢ then any principal submatrix of A is
in S¢, we can use the following result to give a restricted answer questions Q-II and Q-IV.

Lemma 4. Let

C21 C22 C23
O Cs; Cs3

CinCn O
C= e R™" (6)

be in S¢, with Cy; and Cs3 square matrices and with Cy, a square matrix of size k. Let S¢ be closed under addition, and
with the property that given any matrix A in S¢ then any principal submatrix of A is in S¢. Then it holds that we can
writeC=A EBZ’I_" Bforany 0 < a < 1 and where A and B are in Sc.

Proof. Note that we can write C as

Cu Cip O o] o o)
C=[CuaCyp O+ |0 A-a)Cs Cx

O O O (0] Cs, Cs3 7
_ | Cu Cn @ule Cr Cy3
C21 C22 k C32 C33
and therefore, C = A EBZ’I_"’ B, with A and B the matrices
C11 C12 C22 C23
A = B =
[CZI C22 ’ C32 C33
that are in S¢, since they are principal submatrices of C. O

5 | RESULTS FOR POSITIVITY CLASSES

5.1 | Positive definite (PD) and positive semidefinite (PSD) matrices

We recall (see, e.g., Meyer?® or Horn and Johnson3) that a symmetric real matrix A of size n is a positive definite matrix,
denoted as PD, if it holds that

x'Ax >0, forall x#0eR"
Analogously, a symmetric real matrix A of size n is a positive semidefinite matrix, denoted as PSD, if it holds that
xTAx >0, forall x e R"
We recall that Fallat and Johnson! give affirmative answer for the classes PD and PSD for questions Q-I to Q-IV for the
usual subdirect sum.

Our goal in this section is to answer questions Q-I to Q-IV for the weighted subdirect sum. To do this, we need to recall
some basic results, that we present as remarks, and two basic results that we present as lemmas.
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Remark 4. 3° Any principal submatrix of a PD matrix is a PD matrix.
Remark 5. 3° Any principal submatrix of a PSD matrix is a PSD matrix.

Remark 6. 3° The sum of two PD matrices of the same size is a PD matrix. Any nonnegative linear combination of
PSD matrices is a PSD matrix.

Lemma 5. Let

A= [An A12] A= [Au A ] ®)

A{Z A22 A{Z aAZZ

with A a (real symmetric) PD matrix and let « > 1. Then A, is a PD matrix.

Proof. We must show that xTA,x > 0 for all x # 0 € R". The case « = 1 is clear since A, = A. For the case a > 1, let

X # 0 and let us compute
An An
xax= [« 1] [0 2] [0
A12 A22 X2
X
= [X{All + X;A{Z X{Alz + XgAzz ] I:X; ]
=X Anxi + XJALX) + X[ AX + X1 ApX,

<xX]Anxi +x0ATX) + X[ Ax, + axl Apx,

X
_ [XTAn +30AT, XA + axTAg | [X; ]

=xTA,x
where we have used that x] A5X, < ax]ApX, since Ay, is PD, by Remark 4, and a > 1. Since x’Ax > 0 for all
x # 0 € R", the proof follows. O
Analogously, it is easy to prove the following lemmas, and we omit the proof.

Lemma 6. Let

_ A A _|Aun A
A - I:ATZ A22 ’ Aa - A{Z (XAZZ (9)

with A a (real symmetric) PSD matrix and let « > 1. Then A, is a PSD matrix.

Lemma 7. Let

B B1T1 By, B ﬂBTu By, (10)
B12 Bxn BlZ By

with B a PD (PSD) matrix and f > 1. Then B? is a PD (PSD) matrix.

Now we have all the ingredients to answer questions Q-I (i.e., when k = 1) and Q-III (when k > 1) for the matrix class
PD (and PSD).

Proposition 2. Question Q-I (and question Q-III, taking k > 1) for the classes PD and PSD have affirmative answer for
the weighted subdirect sum.

Proof. By Fallat and Johnson,' we know that Q-I and Q-III have an affirmative answer for the usual subdirect sum.
By using Lemma 5 (for PD class), Lemma 6 (for PSD), Lemma 7 (PD and PSD) and Lemma 1 we conclude that
when a« > 1and f > 1, question Q-I (and question Q-III, taking k > 1) have affirmative answer for the weighted

subdirect sum. O

Note that when 0 < @ < 10or 0 < # < 1, we cannot assure that the weighted subdirect sum is also in the PD or PSD
classes, as the following example shows.
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Example 1. The matrix
13
a3

is a PSD matrix when a = 9 and a PD matrix when a > 9. Let us take B = A and compute

| 1 3 0
A®) B=|33a+13
0 3 a

ES . ES .
Itis easy to see thatwhena =9, A®; BisnotaPSD matrix, andwhena € [9, 8+ vV 82] ,A®; Bisnota PD matrix.

Remark 7. 1t is known (see, e.g., Horn and Johnson?") that the inverse of a PD matrix is also a PD matrix. Therefore,
the inverse of A @Z’ﬁ B given by Proposition 2 does exist and it is given by Corollary 2.

Analogously, we have all the ingredients to answer questions Q-II (when k = 1) and Q-IV (when k > 1) for the matrix
classes PD and PSD.

Proposition 3. Question Q-II (and question Q-1V, taking k > 1) for the matrix classes PD and PSD have affirmative
answer for the weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-IT and Q-IV have an affirmative answer for the matrix class PD (PSD)
for the usual subdirect sum. By using Lemma 5 (for PD class) (Lemma 6 for PSD) and Lemma 7 (PD and PSD) and
Lemma 2 we conclude that when y > 1 and § > 1, that is to say, when « < 1 and # < 1 question Q-II (and question
Q-1V, taking k > 1) have affirmative answer for the weighted subdirect sum. O

Example 2.

130
C=(3193
039

is a PSD matrix. We can write C = A EBlE . B by taking the PSD matrices
13 13
A= [3 36]’ B= [3 9]

Note that taking « > 1 or # > 1, we cannot be certain of finding matrices A and B in the PSD class. For example, if
a = 2.5and f = 1, we have the equality

130 1 3 0

C=13193|=325a,+by 3 11)
039 0 3 9

that is,

13 [bu 3
A_[3a22]’ B—[3 9]

and since we want A to be in the class PSD, we need det(A) > 0 that is to say a,; > 9 but, from (11), it is needed that
19 = 2.5a,, + by1, and therefore,

b;; =19 —-2.5a,, <0

and then B is not in the PSD class.
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5.2 | Symmetric M matrices (SM)

Symmetric M matrices (SM) are the intersection of Z matrices and PD matrices.

We recall that Fallat and Johnson! give affirmative answer for the class SM for questions Q-1 to Q-IV for the usual
subdirect sum. Note that Lemma 5 and Lemma 7 applied over Z-matrices can be used to give conditions on A, and B to
be in the class SM. Therefore, we can use an analogous result to Proposition 2 to the SM class.

Proposition 4. Question Q-I (and question Q-III, taking k > 1) for the class SM have affirmative answer for the weighted

subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-1 and Q-IIT have an affirmative answer for the class SM and the usual
subdirect sum. By using Lemma 5 and Lemma 7 over Z-matrices and Lemma 1 we conclude that when « > 1 and
p > 1, question Q-I (and question Q-III, taking k > 1) have affirmative answer for the weighted subdirect sum for this
class. .

When 0 < @ < 1or0 < f < 1, we cannot assure that the weighted subdirect sum is also in the SM class, as the following
example shows.

Example 3. Consider the SM matrix
1 -3
A= [—3 10]

Let us take B = A and compute

.

A®

L ST

1 -30
B=|-310 -3
0 =31

11
that it is not an SM-matrix since det <A e, B) < 0.

To answer question Q-II (and question Q-IV, taking k > 1), we can use an analogous result to Proposition 3 applied to
the SM class.

Proposition 5. Question Q-1I (and question Q-1V, taking k > 1) for the matrix class SM have affirmative answer for the
weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-IT and Q-IV have an affirmative answer for the matrix class SM for
the usual subdirect sum. By using Lemma 5 and Lemma 7 over Z-matrices and Lemma 2, we conclude that when
y > 1land é > 1, that is to say, when « < 1 and # < 1 question Q-II (and question Q-IV, taking k > 1) have affirmative
answer for the weighted subdirect sum for this class. O

5.3 | Completely positive (CP) matrices and double nonnegative (DN) matrices

Recall (see, e.g., previous works3!32) that a square (symmetric) matrix A is called completely positive when it can be
written as A = RRT with R > 0 € R™", A square matrix A is said to be double nonnegative (DN) when it is PSD and
A > 0. It is known (see, e.g., Fallat and Johnson!) that CP is a subset of DN and that the classes CP and DN are closed
under addition.

We recall that Fallat and Johnson! give affirmative answer for the classes CP and DN for questions Q-I and Q-III when
using the usual subdirect sum.

To analyze the CP class as in the previous sections, we need to give general conditions on a and g such that A, and
B? are in the class CP. To do this, we need the following results. First, we recall (see, e.g., Fallat and Johnson') that any
principal submatrix of a CP matrix is also a CP matrix.

Lemma 8. 3 [fA is an n x n CP matrix, and H is an m X n nonnegative matrix, then HAH" is CP.

Proof. Since there exists B > 0 such that A = BB, then HAH” = HBB"H'" = (HB)(HB)". O
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Lemma9. Let

A= A;l A1z ’ Aa _ A;l A1 (12)
A12 A22 A12 (XAzz

with A an n X n CP matrix and let « > 1. Then A, is a CP matrix.

Proof. Let A, be of size k X k, and let I, the identity matrix of size r. Note that

ILixy O] [An A [Lix O 1Ay A
= o
O al| |Al, Ay O aly AT aAp

is a CP matrix, by Lemma 8. Therefore,

is also a CP matrix. Note now that

a

l1411 A EAH (0]
A= | +] @
A{Z (XA22 (0] (0]
14, 0 I
and since [ a 0 1 O] =l [ '5" ] A [In—k O] is a CP matrix and the class CP is closed under addition, the proof
follows. O

Analogously, it is easy to prove the following lemma, and we omit the proof.
Lemma 10. Let

B BlTl Bz B ﬁBTu By» (13)
B12 By B12 B2

with Ban n x n CP matrix and let § > 1. Then B? is a CP matrix.

Proposition 6. Question Q-I (and question Q-III, taking k > 1) for the class CP have affirmative answer for the weighted
subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-I and Q-III have an affirmative answer for the class CP and the usual
subdirect sum. By using Lemma 9, Lemma 10, and Lemma 1 we conclude that when « > 1 and f > 1, question Q-I
(and question Q-III, taking k > 1) have affirmative answer for the weighted subdirect sum for this class. O

To answer question Q-II (and question Q-IV, taking k > 1), we can use the same technique as in the previous sections.

Proposition 7. Question Q-II (and question Q-IV, taking k > 1) for the matrix class CP have affirmative answer for the
weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-II and Q-IV have an affirmative answer for the matrix class CP for
the usual subdirect sum. By using Lemma 9, Lemma 10, and Lemma 2 we conclude that when y > 1 and 6 > 1, that
isto say, when 0 < « < 1 and 0 < # < 1 question Q-II (and question Q-IV, taking k > 1) have affirmative answer for
the weighted subdirect sum for this class. O

Note that since the class CP is closed under addition, we could use Lemma 3 to prove Proposition 6. Now we use Lemma
4 to obtain the following result.
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Proposition 8. Let
CnCn O
C=|Cl, Cx Cos |eR™" (14)
O CJ; Cs3

be an n by n symmetric CP-matrix, with Cy; and Cs; square matrices and with Cy, a square matrix of size k. Then it holds
thatC=A EBZ’I_“ Bforany 0 < a < 1 and where A and B are CP-matrices.
Proof. 1t is a consequence of Lemma 4. O

In general terms, when 0 < @« < 1 or 0 < f < 1, we cannot assure that the weighted subdirect sum is also in the CP
class, as the following example shows.

Example 4. The matrix

is a CP matrix. Let us take B = A and compute
11 12 12

11
that is not in the CP class, since det <A CN B> < 0.
Despite the above example, we can still find subclasses of CP matrices for which the weighted subdirect sum is in the
class, for particular values of 0 < @ < 1and 0 < f < 1, as the next proposition claims.

Proposition 9. Let A € R™" and B € R™" be CP matrices of the following form

A= O(n_1)><1 An-1)x1 le(n—l) b1><1 _ aa” ab
B b b bixi | | ba” 2bb

T
A -1

B [ Cix1 Cix1 ] cix1 O1xm-1) 2¢cc cd?
On-vx1 dim-1x1 | | e1xa d1Tx<m—1) de dd”

11
for any nonnegative vectors a € R"-V*! d € R X1 and nonnegative scalars b,c € R™!. Then A®}* Bis alsoa CP
matrix.

Proof. A direct computation gives

33 o | aal ab cc cd”
A®"B= [baT bb]@l[dc ddT] (15)
and noting that
aa" ab| |a|.¢
[baT bb] = [b] [a" b]ecP
and

T
oo car]=[a]1eartecr

11
we have that A @;"* B given by (15) is in the CP class since in Fallat and Johnson' is proved that the 1-subdirect sum
of CP matrices is a CP matrix. O

Let us now focus on the class DN. Since the matrices in this class are nonnegative and PSD, it is clear that we can extend
Lemma 6 and Lemma 7 to prove the following results (and we omit the proofs).
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Lemma 11. Let

A A1T1 A1 A= A1T1 Axp 16)
A12 A22 A12 O(Azz

with A an n X n DN matrix and let « > 1. Then A, is a DN matrix.

Lemma 12. Let

B [BlTl Blz] B [ﬂBTu Blz] a7
B, Bx» B, Bx
with B an n x n DN matrix and let p > 1. Then B? is a DN matrix.

Regarding the class DN, we recall that Fallat and Johnson! give positive answer, when using the usual subdirect sum, to
questions Q-I, Q-II and Q-III, but not to question Q-IV. Now we can give a positive answer to questions Q-I (when k = 1)
and Q-III (when k > 1) for the matrix class DN following the same technique as before (we could also use Lemma 3).

Proposition 10. Question Q-I (and question Q-III, taking k > 1) for the class DN have affirmative answer for the
weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-I and Q-III have an affirmative answer for the class DN and the usual
subdirect sum. By using Lemma 11, Lemma 12, and Lemma 1 we conclude that when a > 1 and f > 1, question Q-I
(and question Q-III, taking k > 1) has affirmative answer for the weighted subdirect sum for this class. O

Regarding question II, we can use Lemma 2 to give an affirmative answer for k = 1.

Proposition 11. Question Q-II for the matrix class DN has affirmative answer for the weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-II has an affirmative answer for the matrix class DN for the usual
subdirect sum. By using Lemma 11, Lemma 12, and Lemma 2 we conclude that when y > 1 and 6 > 1, that is to say,
when 0 < a <1and 0 < f <1 question Q-II has affirmative answer for the weighted subdirect sum for this class. [J

Furthermore, since DN is closed under addition we can use Lemma 4 to give a restricted answer to questions Q-II and
Q-IV. Note that Fallat and Johnson'! did not give an affirmative answer for question Q-IV but in our case, the weighted
subdirect sum avoids the contradiction explained in Fallat and Johnson,! see Example 5 below.

Proposition 12. Let

CnCn O

C=|CL Cpn Cy |eR™ (18)
12
0 CT, Cs

be an n by n symmetric DN-matrix, with Cy; and Cs3 square matrices and with C,, a square matrix of size k. Then it
holds that C = A EBZ’I_" Bforany 0 < a < 1 and where A and B are DN-matrices.

Proof. 1t is a consequence of Lemma 4. O

Example 5. The DN matrix (taken from Fallat and Johnson')

Q

I
COoOMNN A
NOO RN
SCwWhOW
NhwWoOoO
A ONO
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1
2

Bwith

Wi

can be writtenasC =A @

DO O A
S WL O
N WO
AN ODN

where A and B are DN matrices. Note that the usual subdirect sum does not allow such decomposition since we can
write C = A'@;B’ with

42 2 0 20 02
w220 o o _|o 2320
={20 2 32" P =|03/2 2 2|

003/2 2 20 2 4

but A’ and B’ are not DN matrices (since they have negative eigenvalues).

5.4 | M,P,and P, matrices

Recall the definition of M-matrix given in Fallat and Johnson!: a square matrix A is an M-matrix if it is a matrix with
nonpositive off-diagonal entries (i.e., a Z-matrix) and with (all) positive principal minors. We also recall that an equivalent
definition is that the square matrix A is a Z-matrix and there exists a positive diagonal matrix D such that AD is strictly
diagonally dominant.3*

We recall that Fallat and Johnson! gives affirmative answer for the class M for questions Q-I, Q-II, and Q-IV when using
the usual subdirect sum, but does not give affirmative answer to question Q-III for the usual subdirect sum.

In our case, to give affirmative answer to question Q-I we need two technical Lemmas.

Lemma 13. Let

My My,

M =
[le M>,

] I= Rnxn

be an M-matrix, with M5, a square matrix of size k. Then it holds that

19)

M, M
Ma:[ 11 12]

M1 aMp;
with a > 1 is an M-matrix.

Proof. Let us denote by m;; the entries of M. Note that the entries of M, are am;; when i and j are greater than or
equalton —k+1.

Since M is an M-matrix there exists a positive diagonal matrix D, with entries d;;, such that MD is strictly diagonally
dominant. That is, foreachi =1, 2, ..., it holds

|mydi| > Z |my;d;; | (20)
J#i

Let us construct a diagonal matrix D with entries Eli ; such that 3,- ; =0wheni# jand

Aii={ d;; ifi<n-k+1 (21)

5dﬁ ifi>n—k+1

Now we show that M, D, with entries r; ;, is strictly diagonally dominant and therefore M, is an M-matrix. To do
this, we first consider the case i < n — k + 1. We have, by using (21) and (20)

|7l = Imudii| = |mud| > Z |mi;d;j;| = Z Imi;d;;| + 2 lmy;d;; |

J#I Jj<i J>i
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14 Wl LEY PEDROCHE

and, using that « > 1, and again (21), we have

> syl + Y Imgdiyl 2 Y Imydysl + Y 12yl = Y gl + Y 1

j<i i j<i j>i j<i j>i
and therefore,
Iral > Y Iy (22)

J#i
Finally, considering the case i > n — k + 1, we have, by using (21) and (20),

A 1
rii| = lam;di| = |amiiadii| = |myd;i| > Z |my;dj; |
J#i

that can be written as

|7l > Z lmi;d;;| + Z lmy;d;;| = Z |7l + Z |rij| = Z |71 (23)

J<i Jj>i j<i j>i J#i
By equations (22) and (23), we conclude that M, D is strictly diagonally dominant and the proof follows. O
Following the same technique, it is straightforward to prove the following result, and hence, we omit the proof.

Lemma 14. Let

My My,

M =
[le M;,

] e R™n (24)
be an M-matrix, with My, a square matrix of size k. Then it holds that

p _ | PMu My,
M [ M> Mzz]

with p > 1is an M-matrix.
Now we can given an affirmative answer to question Q-I for the class M for the weighted subdirect sum.

Proposition 13. Question Q-I for the class M has an affirmative answer for the weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-1 has an affirmative answer for the usual subdirect sum for this class.
By using Lemma 19, Lemma 24, and Lemma 1 we conclude that when a« > 1and # > 1, question Q-I has an affirmative
answer for the weighted subdirect sum. O

We cannot use Lemma 1 to give an affirmative answer in general terms for question Q-III for the weighted subdirect
sum since Fallat and Johnson! do not give an affirmative answer for this question. We cannot either use Lemma 3 since
the class M is not closed under addition.

Regarding questions Q-II and Q-IV for the class M, we can give an affirmative answer for the weighted subdirect sum.

Proposition 14. Question Q-II (and question Q-1V, taking k > 1) for the matrix class M have affirmative answer for the
weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-II and Q-IV have an affirmative answer for the matrix class M for the
usual subdirect sum. By using Lemma 19, Lemma 24, and Lemma 2 we conclude that when y > 1 and 6 > 1, that is
tosay, when 0 < @« < 1and 0 < f§ < 1 question Q-II (and question Q-IV, taking k > 1) have affirmative answer for the
weighted subdirect sum. O

Let us focus on P-matrices. Recall that a P-matrix has all its principal minors with positive value. We recall that Fallat
and Johnson! give affirmative answer for the class P for questions Q-I, Q-II, and Q-IV when using the usual subdirect
sum, but does not give affirmative answer to question Q-III for the usual subdirect sum.

In our case, to give affirmative answer to question Q-I we need two technical Lemmas.
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Lemma 15. Let
_ | Pn Pi2 nxn
p_[le 2| e R 25)

be a P-matrix, with p € R. Then it holds that
_ Pll P12
Pe | 5
with a > 1 is a P-matrix.

Proof. Note that p is a real number, and therefore, P and P, only have one different entry. Let us denote by P[y|é6] the
submatrix of P with rows indexed by y and columns indexed by 6. For principal submatrices we denote P[y|y] = P[y].
Since P is a P-matrix it holds that

det(P[y]) >0

for any set of indices y C {1,2, ... ,n}.
Since
det(Po[y]) = det(P[y])
fory C {1,2, ... ,n — 1}, we only need to pay attention to the cases in which some index is the index n. Denoting by

pij the entries of P, the principal minors of P, in which the nth column (and row) is included are of the form

Pi i, Piiy, -+ Pii, |Pin
Pi, i, Piyiy, =+ Piyi, |Piyn
det(P,[y]) = det :
Pii, Pii, -+ Pi.i |Pin
Pui, Puiy - Pui | QP

and calculating this determinant by using the Laplace expansion along the last column we have that it is equal to

+pi, ndet(Pli1|1]) F pi, ndet(PLL|ADE ... — pindet(P[i|2]) + apdet(P[|A]) (26)
where we have noted by P[fl 71 the principal submatrix in P with rows in {iy, iy, ... ,i;, n} except for the index i, and
columns in {iy, i, ... ,i;, n} except for the index j. Since @« > 1 we have that the quantity (26) is greater than or
equal to

> +xp; pdet(Pliy|7]) F pi, ndet(Pliz|2])x ... — p;, ndet(Pli¢|7]) + pdet(P[#|7]) (27)

and this quantity is positive since P is a P-matrix. Therefore, we have shown that any principal minor of P, is positive,
and therefore, P, is a P-matrix. O

It is clear that following a similar reasoning, but expanding the determinant along the first column, it is straightforward
to prove the following result, and we omit the details.

Lemma 16. Let

p P
P= R 2
[le Pzz] < (28)

be a P-matrix, with p € R. Then it holds that

PP = [ﬂp P”]
Py Py

with p > 1is a P-matrix.
As before, we can given an affirmative answer to question Q-I for the class P for the weighted subdirect sum.

Proposition 15. Question Q-I for the class P has an affirmative answer for the weighted subdirect sum.
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Proof. By Fallat and Johnson,! we know that Q-1 has an affirmative answer for the usual subdirect sum for this class.
By using Lemma 15, Lemma 16 and Lemma 1 we conclude that when « > 1and g > 1, question Q-I has an affirmative
answer for the weighted subdirect sum for this class. O

We cannot use Lemma 1 to give an affirmative answer in general terms for question Q-III for the weighted subdirect
sum since Fallat and Johnson! does not give an affirmative answer for this question. We cannot either use Lemma 3 since
the class P is not closed under addition.

Regarding questions Q-II and Q-IV for the class P we can give an affirmative answer for the weighted subdirect sum.

Proposition 16. Question Q-II (and question Q-1V, taking k > 1) for the matrix class P have affirmative answer for the
weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-II and Q-IV have an affirmative answer for the matrix class P for the
usual subdirect sum. By using Lemma 15, Lemma 16, and Lemma 2, we conclude that when y > 1 and § > 1, that is
tosay, when 0 < @« < 1and 0 < f§ < 1 question Q-II (and question Q-IV, taking k > 1) have affirmative answer for the
weighted subdirect sum. O

Example 6. The P matrix

1010
02 1 1
C=[_1212 1|

0 —1-1-1

can be written as C = A’@,B’ with

1 01
A=B=[0 11

-1-11

1
2

1
Then it is clear that we can also write C = A 6923 B, with the P matrices

1 01 2 01
A=|(0 3 3|, B=|0 2 1.
-1-33 -1-11

To end this section, we extend Proposition 15 and Proposition 16 to the matrix class Py. Recall that a matrix is Py when
has all its principal minors nonnegative. It is clear that following a similar reasoning as in Lemma 15 and Lemma 16
we can prove that given A and B in the class P, then the corresponding A, and B are also in Py fora > 1 and f > 1,
respectively. Therefore, it is clear that we can prove the two following results in a similar fashion as Proposition 15 and
Proposition 16, and we omit the details.

Proposition 17. Question Q-I for the class Py has an affirmative answer for the weighted subdirect sum.

Example 7. Consider the Py, matrices

Then it is easy to check that

0-100
235|119 141
ABT"B=[5 09 1 0
0-100
is a Py matrix, but
3 401
A®PB=|2 90
-100

is not a Py-matrix.
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Proposition 18. Question Q-II (and question Q-1V, taking k > 1) for the matrix class Py have affirmative answer for the
weighted subdirect sum.

5.5 | TN matrices

Recall that a totally nonnegative (TN) matrix has all its minors nonnegative.

We recall that Fallat and Johnson! give affirmative answer for the class TN for questions Q-I, Q-II, and Q-IV when using
the usual subdirect sum, but does not give affirmative answer to question Q-III for the usual subdirect sum.

As in the previous sections, in our case, to give affirmative answer to question Q-I we need two technical Lemmas.

Lemma 17. Let

[ T Ti2

e R™" 29
Ty p] (29)

be a TN matrix, with p € R. Then it holds that

T, = [Tn T12]
T21 ap

with a > 1is a TN matrix.

Proof. The proofis similar to that of Lemma 15. We have to prove that all the minors of T, are nonnegative. Note that
the majority of the minors of T, are the same as the minors of T and therefore are nonnegative. We only have to focus
on minors of T, of the form T,[y|§] with the index n included in both sets y and . To study each of these minors we
proceed as in Lemma 15 and we compute the determinant along the column n. Since ap > p it is easy to see that these
minors of T, are greater than or equal to the corresponding minors of T, and therefore, they are nonnegative. O

It is clear that following the same reasoning (but developing the determinant along the first column) it is easy to prove
the following result

Lemma 18. Let

e R™" (30)

be a TN matrix, with p € R. Then it holds that

Th — [ pp le]
Ty Ty

with p > 1is a TN matrix.

As before, we can given an affirmative answer to question Q-I for the class TN for the weighted subdirect sum.
Proposition 19. Question Q-I for the class TN has an affirmative answer for the weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-1 has an affirmative answer for the usual subdirect sum for this class.

By using Lemma 17, Lemma 18 and Lemma 1 we conclude that when « > 1 and # > 1, question Q-I has an affirmative
answer for the weighted subdirect sum for this class. O

In the same way as we commented on previous classes, we cannot use Lemma 1 to give an affirmative answer in general
terms for question Q-I1I for the weighted subdirect sum since Fallat and Johnson! does not give an affirmative answer for
this question. We cannot either use Lemma 3 since the class TN is not closed under addition.

Example 8. Consider the TN matrix

— =
=0

= oo
[E—
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By taking B = A it is easy to check that

10000

11000

A®¥B=[11500

00110

00111

is a TN matrix, but

1000

23, |1500

A®"B=[155

0111

is not a TN-matrix.
Regarding questions Q-II and Q-IV for the class TN we can give an affirmative answer for the weighted subdirect sum.

Proposition 20. Question Q-II (and question Q-1V, taking k > 1) for the matrix class TN have affirmative answer for
the weighted subdirect sum.

Proof. By Fallat and Johnson,! we know that Q-II and Q-IV have an affirmative answer for the matrix class TN for
the usual subdirect sum. By using Lemma 17, Lemma 18 and Lemma 2 we conclude that when y > 1 and é > 1, that
is to say, when 0 < @ < 1and 0 < f < 1 question Q-II (and question Q-1V, taking k > 1) have affirmative answer for
the weighted subdirect sum. O

Example 9. The TN matrix

[eNeNoNoN il S
OO O WWHE
OO ADNO
OWNOOO
N -=O OO
O OO0 Oo

T

1
can be written as A 635’ B, with

10
210 15 20
A=|13/20|, B=| 0 1
00 0 0

0

that are also TN matrices.

In the next section we comment on two applications where the concept of weighted subdirect sum can play a role.

6 | EXAMPLES OF APPLICATIONS

As we have stated in Section 1, a natural application in where the concept of subdirect sum appears can be found in
problems related with overlapping subdomains, subgraphs, motifs (a connected subgraph?!) or cliques (a complete sub-
graph?!). In this section we motivate how the new concept of weighted subdirect sum may also appear by using two
examples of applications.

6.1 | Overlapping cliques

The analysis of overlapping subgraphs in complex networks is an active line of research; see, for example, previous
works. 3337

We call G = {V, E} a simple graph. That is to say undirected, with no loops, and no multiple edges (there are no pairs
of vertices connected by more than one edge). We denote as V' = {vy,V,, ... ,v,} the set of vertices, or nodes, and its
cardinality is denoted as n = |V|. Two vertices (v;, v;) joined by an edge are said to be adjacent. Each pair (v;, v;) of adjacent
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nodes define an edge. We denote by E the set of edges, or links, with cardinality m = |E|. The weighted adjacency matrix
of the graph G is defined as the square matrix of size n denoted by A with entries a;;, i, j € {1,2, ... ,n} defined by

wy; if (v;,v;) € E with weight w;;
Y71 0 otherwise

Given two simple weighted graphs G; = {V1, E1}, G, = {V>, E,}, let us denote n; = |V3|, and n, = |V3|. Let us recall that
the union G, U G, is given by*

GLUG; = {V] UV, E; UEz}

Let us denote the number of common vertices by k = |V; N V3|. Let A; be the adjacency matrix of the graph G; and let A,

be the adjacency matrix of the graph G, and such that we have labeled the indices v;, v, ... , v, insuch a way that the last
k indices in the graph G, correspond to the vertices of V1 NV,. Thatis (Vy, —k+1, Va,—k+2> --- »Vn,—1, Vp,) aT€ COMmMoN vertices
for G; and G,. Regarding the graph G, we label the vertices such that the common vertices are in the first k positions
(with the same order taken for G,). That is, the first k vertices of G, are labeled as (v, —+1, Vi, ~k42 --- »Vn,—1,Vs,) and the
following vertices are labeled as vy, 41,V 42, --. »Vn +n,—k- The next step is to write the adjacency matrices A; and A; in
block form as
An A B;1 B
a=ndz] a=|he gz ey

with Ay, and By of size k X k. Therefore, it is clear that the (weighted) adjacency matrix of G; U G, is given by A;@®xA;.
In Figure 1 we show two weighted graphs with an overlapping clique (i.e., a complete subgraph) of four vertices. The
weighted adjacency matrices are given by

[00[20007 [0232[00]7
000003 2021[30
4= 2000516 | Af:320110
00/5073 2110/00
00[1704 0310[04
[ 03/6340] [ 0000[40 ]

and the (weighted) adjacency matrix of G; U G, is given by A;@.A,.

6.1.1 | Giving a different weight depending on the origin of the overlap

Now we want to construct the union of the previous two graphs by giving a different weight to the cliques depending
whether they come from G; (that we are going to weight by a quantity ) or from G, (that we weight with f). This would

FIGURE 1 Two graphs with an overlapping clique
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be the case, for example, when we are dealing with a multiplex composed of two layers, one representing the connections
in Facebook and the other one representing the connections in Twitter. We are interested in constructing a union that
takes into account whether the users in the overlapping clique come from one social network or the other one. In this
case the adjacency matrix of the union G; U G; is given by

00| 2 0 0 0 [007
00/ 0 0 0 3 100
200 0 5a+28 a+3f 6a+2800
00[5a+28 0 Ta+28 3a+p4|30

A8 A, =

18,7 A 00/a+38 Ta+28 0 4a+1B|10
03[6a+28 3a+p 4a+p 0 |00
0o o 3 1 0 |04
(00| 0 0 0 0 [40]

Note that, in the practice, before computing the weighted subdirect sum it is necessary to label the vertices according to
the rules explained above. Clearly, these method can be applied to some overlapping cliques by ordering in a consecutive
way the cliques. Note that the weighted subdirect sum is different from the subdirect sum of the scaled weighted adjacency
matrices A; and A; (that is to say aA; @ fA,).

Note that this example can be understood in terms of a multilayer composed by graphs G; and G,, while the graph
G1 U G, with cliques weighted by « and f, can be considered as a representation of the multilayer (when @ = # = 1 this
graph is usually called the projected graph). Note, for example, that some properties of this multilayer (like, e.g., centrality
measures) may depend on the values of @ and . The future application of this idea is an open line of research.

6.2 | Additive Schwarz iterative method

The additive Schwarz iterative method with overlapping subdomains to solve the linear system Ax = b can be written in
the form

xR = Tk ¢ k=0,1, ...

with the iteration matrix®®

p
T=1-0)RIA'RA

i=1

where p is the number of overlapping subdomains, 6 is a relaxation parameter and the restriction operators are
R =[L|Olm, i=1,2,...p

with I; the identity matrix of size i and z; is a permutation matrix of the same size as A.
Itis not difficult to see that the matrix B := Zf_lRiTAi‘lRi can be written as a matrix sum of subdirect sums of the form

AT @A (32)
where s(i) is the size of the overlapping between the subdomains i and i + 1.

It can be shown (see?®) that the convergence of the iterative method depends on the values of  (for a particular type
of the initial matrix A). Therefore, it is natural to think that the convergence properties of an iterative method based
on overlapping subdomains can be affected if we give a different weight to each subdomain. That is, if we change the
formulation given by the subdirect sums in (32) by the sums according to the weighted subdirect sums of the form

-1 pa@.p0) 4-1
A7 &) A (33)
where a(i) and (i) are the weights corresponding to the weighted subdirect sum of the subdomains i and i + 1. In this
method, it is important that matrix B is invertible (see Frommer and Szyld*!), and therefore, it is important to know when
this sum is invertible when using weighted overlapping domains; note that Corollary 1 and Corollary 2 can help to solve
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this problem, jointly with the analyzed properties of the matrix classes (i.e., if a matrix class is invertible and the weighted
subdirect sum is also in the class, then it is also invertible). As far as we know, the convergence properties of iterative
methods for solving linear systems based on weighted overlapping subdomains is an open problem.

7 | CONCLUSIONS

In this paper we have extended the concept of subdirect sum defined in 1999 in Fallat and Johnson! to the concept of
weighted subdirect sum by allowing a weight of the overlapping blocks. The paper is organized as in Fallat and Johnson,!
and therefore, we answer four natural questions on weighted subdirect sums. These questions are focused on whether the
weighted subdirect sum is in the same class as the given matrices and, the other way round, if given a matrix in a particular
class (with a structure compatible with a subdirect sum) then it can be written as a weighted subdirect sum of matrices
in the same class. We have shown that all the results on positivity classes of real matrices studied in Fallat and Johnson'
can be extended to the weighted subdirect sum. Another contribution of the paper is that we develop a methodology that
can be applied to study the properties of the weighted subdirect sum of other classes of matrices. We also remark that we
have been able to give positive answer to some of the questions that had negative answer in Fallat and Johnson.! In more
detail, we have shown that question Q-IV for the class DN has a positive answer for the weighted subdirect sum. Finally,
we have shown two applications in which the weighted subdirect sum can play a role. These applications are certainly a
motivation for the weighted subdirect sum introduced in this paper and also represent a basis for future research.
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