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c Instituto Español de Oceanografía (IEO-CSIC), 30740, San Pedro del Pinatar, Murcia, Spain   

A R T I C L E  I N F O   

Keywords: 
Underwater stereo vision 
Computer vision 
Fishery management 
Automatic fish sizing 
Biomass estimation 
Convolutional neural networks 

A B S T R A C T   

This paper evaluates the impact of using deep learning techniques in an automatic fish sizing process. Automatic 
fish sizing with a non-invasive approach involves working with different views of the fish’s body and changing 
environments, being the stage of extraction of individuals in the image and the quality of the segmentation 
essential to obtain good sizing measurements. The goal of this work is to improve the results and functionality 
achieved in our previous studies with conventional segmentation methods based on local thresholding, where 
different limitations were observed, mainly the necessity of parameters tuning and a high computational cost. 
The number of detections must also increase significantly to increase the reliability of the statistical results. An 
approach using convolutional neural networks is proposed for fish detection and segmentation in videos acquired 
under real conditions, which eliminates the engineering procedure of parameter adjustment and generalises the 
solution for fish segmentation to deal with different environmental conditions (illumination and water turbidity) 
and background variability. The results show that the fish sizing procedure is enhanced thanks to the 
improvement in fish image instance segmentation. In particular, the number of fish measurements increases by 
up to 2.45 times when using Mask R-CNN and the PointRend module, thus increasing the accuracy of the fish 
length estimation, and the number of measurements per minute of computing time increases by up to 3.5 times. 
Our proposal obtains highly accurate fish length estimations in juvenile bluefin tuna based on a stereoscopic 
vision system and a deformable model of the fish’s silhouette, both from the ventral and dorsal perspectives. An 
important improvement is achieved by applying CNN, as demonstrated by the number of segmented instances, 
the time required to segment an instance, and the accuracy of the fish sizing achieved.   

1. Introduction 

The huge size of the oceans and seas make observing and monitoring 
the marine environment a titanic task. Even so, many countries are 
proposing sustainability policies and doing work related to specific 
ecosystems that require great human and technological effort. Recently, 
fish farmers, ecologists and governments have also expressed an urgent 
need to accurately estimate the biomass of both schools and individual 
fish in their natural environment (Føre et al., 2018; Zhang et al., 2020). 
To do so, collecting a large amount of accurate data on size or age 
without the need to physically handle live fish has been identified as an 

essential requirement. Indeed, traditional methods based on manual 
measurements are invasive, expensive and stressful for animals, which 
entails a limitation on the amount of data collected, reducing the vali-
dation of the tests performed. Nevertheless, a quantitative estimation of 
fish biomass forms the basis of scientific fishery management and con-
servation strategies (Saberioon and Císař, 2018). Indeed, biomass esti-
mations provide an important input to design adequate models to assess 
fisheries, explore growth stages, define growth models and evaluate the 
state of health of the fish. Biologists could also define growth models for 
different species of fish, but periodic systematic monitoring is required 
(Li et al., 2021). Fortunately, aquaculture farms could be a good 
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environment for such monitoring, where species such as tuna and 
salmon are the most commonly farmed species due to their market 
acceptance and rapid growth (Shortis, 2015). In fact, Bluefin tuna (BFT) 
is one of the most in-demand fish species in the world. Currently, the 
need to strengthen management of it has increased research on BFT 
aquaculture production in many countries (Abe et al., 2021). 

Computer vision is a non-invasive technique and stereoscopic sys-
tems (two cameras in a side-by-side arrangement providing depth in-
formation) have been considered a good tool to obtain biometric 
measurements of individuals, which has attracted the interest of re-
searchers. In this sense, some specific applications have been reported: 
fish sizing (Álvarez-Ellacuría et al., 2020; Fernandes et al., 2020; Vos-
kakis et al., 2021; Williams and Lauffenburger, 2016); fish counting and 
sizing (Costa et al., 2009; Rosen et al., 2013); and fish sizing in combi-
nation with acoustic techniques (Espinosa et al., 2011; Kloser et al., 
2011). Although such contributions are significant, many challenges still 
exist and their authors combine different technologies and methods with 
the aim of providing a semi-automatic or fully automatic tool that allows 
them to estimate fish sizing. Working with stereoscopic video requires 
the joint processing of two frames for each instant of time acquired. In 
addition, the fish, our subject to be detected and measured, are swim-
ming freely, which means it is not known when they are in front of the 
acquisition system. Furthermore, it is obviously unknown if it is ac-
quired in the best pose to estimate their size, either. Therefore, 
long-term continuous monitoring of fish is necessary to obtain an 
adequate number of frames to take measurements. The above aspects 
highlight the need to develop fully automatic processing tools for un-
derwater video processing. 

An arduous sequence of steps and essential procedures such as 
camera calibration, acquisition of hours of video, video pre-processing, 
object detection, instance segmentation, stereoscopic correspondence in 
pairs of images and 3D triangulation must usually be performed to es-
timate individual measurements (Muñoz-Benavent et al., 2018; 
Puig-Pons et al., 2019). However, the detection of individuals, which is 
directly related to the segmentation of instances in the image, is one of 
the most relevant steps to provide accurate biometric estimates and an 
important factor in developing automated systems. Traditional ap-
proaches are based on searching for good hand-designed features and 
sophisticated descriptors. The resulting feature set is subject to a selec-
tion process that allows redundant and non-useful information to be 
eliminated (Guyon and Elisseeff, 2003), and then a learning or identi-
fication algorithm is used in these feature spaces. Developments in this 
field include local descriptors such as HOG (Histogram of Oriented 
Gradients) and SIFT (Scale Invariant Characteristics Transformation), 
which are later grouped with approximations such as 
bag-of-visual-words and the Fisher Vector to obtain the identification of 
objects (Sánchez et al., 2013). In general, feature engineering is a 
complex and tedious process that must be reviewed each time the 
problem or the associated image dataset changes. Applications based on 
these techniques have great limitations in adapting to change and are 
very much geared towards solving a narrow problem with a strict image 
dataset. 

An unrestricted natural environment makes the segmentation step a 
very difficult task. Processing underwater images throws up numerous 
challenges, and classic image processing methods are adversely affected 
by them. Underwater scene frames often have complex backgrounds, 
changes in illuminance, limited visibility, low resolution and low 
contrast caused by attenuated light and turbidity. Furthermore, the fish 
swim freely, causing occlusions, overlapping and even distortions. Fish 
segmentation underwater requires the correct detection of all the objects 
in an image, as well as accurate segmentation of each instance (He et al., 
2020). Instance segmentation combines object detection (where the goal 
is to classify individual objects and localise each one using a bounding 
box) and semantic segmentation (where the goal is to classify each pixel 
into a fixed set of categories without differentiating object instances). 
Hence, instance segmentation may be defined as the technique of 

simultaneously solving the problem of object detection as well as that of 
semantic segmentation (Hafiz and Bhat, 2020). 

The need to process a large volume of data with the requirement of 
getting fully automatic tools is a motivation to work using methods 
based on deep learning (DL). Of course, another motivation is the 
considerable progress shown in computer vision tasks related to iden-
tification and recognition in different environments using DL (Krizhev-
sky et al., 2017). Moreover, the variability and challenging conditions of 
underwater images suggest the need to work with tools equipped with a 
great capacity for adaptation and learning. DL methods are composed of 
multiple layers to learn features of data with multiple levels of 
abstraction (Lecun et al., 2015). These models can learn visual fish 
features, are insensitive to environmental changes and variations, and 
could be used to extract fish from images collected in an unconstrained 
underwater environment. One of the most important advantages of 
using DL is the removal of the need for feature engineering, because 
these models find the significant features by themselves through 
training. However, the extremely high training times and the need for 
large datasets with thousands of labelled images representative of all the 
classes and variations to identify are two of the main disadvantages of 
these methods. Nevertheless, the combination of current technologies 
makes it easier to work with DL: the high performance of parallel 
computing with GPUs accelerates the training process, whereas transfer 
learning saves a significant amount of labelling effort, while data 
augmentation techniques artificially enlarge the number of training 
images (Liu et al., 2019). Convolutional neural networks (CNNs) play an 
important role in DL. Classic CNNs are composed of two main parts: the 
first one includes the convolutional process and the max pooling oper-
ation, whereas in the second part a fully connected layer takes the input 
from the output of the previous layers and performs the classification 
task. CNNs use automatic feature extractors hierarchically to map the 
value of the visual features into the vector space. 

In this study, the most up-to-date CNN proposals—Faster R-CNN 
(Ren et al., 2017), YOLO in its v5 version (Jocher et al., 2020), Mask 
R-CNN (He et al., 2020) and the PointRend module (Kirillov et al., 
2019)—have been applied for fish detection and segmentation in videos 
acquired under real conditions. The results in Section 3 show that the 
fish sizing procedure is enhanced thanks to the improvement in fish 
detection and segmentation. The main contributions of this work 
include the following:  

(1) Generation of a new ground truth dataset containing 1000 
labelled stereoscopic images of BFT acquired in real conditions. 

(2) Application of different CNN proposals in a challenging under-
water environment for fish detection and segmentation using 
data augmentation and transfer learning.  

(3) Evaluation of the impact of the improved fish segmentation in the 
fish sizing procedure, both from ventral and dorsal perspectives, 
and the variability associated with the measurements. 

2. Materials and methods 

This study focuses on improving the segmentation of fish instances 
by using DL techniques, in particular CNNs, to increase the number and 
accuracy of fish measurements. The proposed DL techniques for image 
segmentation attempt to substitute the image segmentation and blob- 
filtering steps used in our previous research (Muñoz-Benavent et al., 
2018) with the aim of obtaining an efficient procedure able to adapt to 
different environmental conditions automatically. Fig. 1 summarizes the 
processing algorithms involved in the procedure of BFT sizing and the 
place where the new procedure could be carried out. 

2.1. Data acquisition 

The recordings were taken at the Infrastructure for Atlantic Bluefin 
Tuna Aquaculture (ICAR), belonging to the IEO (Spanish Oceanographic 
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Institute). The ICAR is a unique scientific and technical infrastructure 
(ICTS) devoted to studying the complete aquaculture of BFT. The 
equipment used to record the fish is shown in Fig. 2. 

A sensor platform (Fig. 2a) was placed in different months in a tank 
with sea water measuring 20 m in diameter, 10 m in depth and 3500 m3 

in volume, and containing 77 BFT juveniles ranging from 40 to 140 cm 
in Snout Fork Length (SFL). The platform was equipped with sensors 
including a stereoscopic camera comprised of two Gigabit Ethernet 
cameras with a 2048 × 1536-pixel resolution and framerate of 35 fps. 
The cameras were mounted in an underwater housing, with a baseline of 
85 cm and inward convergence of 5◦. Camera synchronisation was 
achieved using the IEEE 1588 Precision Time Protocol (PTP). The system 
is rated for a depth of 40 m and has an umbilical cable that supplies 
Power over Ethernet to the cameras and transfers images to a logging 
computer (Fig. 2b), which encodes left and right videos using GPU 
encoding. The stereoscopic system was previously calibrated using a 
check pattern and the MATLAB® Stereo Calibration Application. 

The camera was placed in the tank to record the fish from two 
different perspectives, dorsal and ventral: firstly, floating on the water 
surface and looking towards the floor of the tank to have a dorsal 
perspective of the fish; and secondly, lying on the bottom of the tank and 
looking towards the water surface in order to have a ventral perspective 
of them. This work is part of an ambitious project whose main goal is to 
monitor the tuna population and estimate growth models, but the paper 
itself focuses on analysing the influence of the image background on the 
segmentation procedure and hence on the number of measurements and 
accuracy of the fish sizing. For this purpose, four videos of 10 min each 
(a total of 40 min) were selected, each of them with different image 
backgrounds. In the case of the dorsal perspective, the floor of the tank 
constitutes the image background, but its original colour uniformity was 
altered due to an accumulation of sediments. To overcome this problem, 
different approaches were tested. In the first video, artificial back panels 
(background #1, Fig. 3a) were placed on the floor of the tank, but they 
were discarded since they altered the fish’s behaviour, which stopped 
eating and became stressed, possibly increasing their mortality. In the 
second video, the floor was cleaned slightly with a cleaning robot 
(background #2, Fig. 3b) and then cleaned deeply with a diver for the 
third video (background #3, Fig. 3c). In the case of the ventral 
perspective (fourth video), white artificial back panels (background #4, 
Fig. 3d) were added, since the building’s ceiling had poor illumination 
and the fish were almost impossible to distinguish from the ceiling.  

Table 1 summarizes the recordings, the month of acquisition and the 
description of the different image backgrounds. 

2.2. Image segmentation using deep learning 

Fish are not clearly visible in underwater images due to low contrast, 
light scattering and high noise in the environment. In general, it is 
difficult to segment objects in underwater images without losing their 
details. In a previous study (Muñoz-Benavent et al., 2018), where it was 
necessary to segment tuna in images while they swam freely, the image 
segmentation was accomplished using local thresholding, a 
region-based technique for extracting compact regions (blobs) in each 
video frame, followed by morphological operations. The segmented 
blobs were then geometrically characterised and filtered using shape 
(aspect ratio), pixel density and dimensional filters. Although these 
conventional image processing techniques worked well in the reported 
experiments, one main limitation was observed: the accuracy of the 
resulting segmentation is strongly dependent on the block size and local 
threshold parameters, which had to be adapted to the different envi-
ronmental conditions (image backgrounds, illumination, water turbidity 
and others). The variability and adverse conditions of underwater im-
ages suggested the need to work with tools equipped with a great ca-
pacity for adaptation and learning. DL models have such an ability to 
learn the characteristics of objects, which could provide robustness to 
segment these objects, even in images where changes and variations 
appear in their backgrounds (Yang et al., 2021). These models must be 
trained with a large number of images that represent all the possible 
variabilities of the problem to be solved. Thus, in this study we devel-
oped and evaluated two approaches based on DL to segment fish in 
underwater images. 

The first approach used neural networks for object detection and a 
clustering algorithm for segmentation. Object detection involves 
detecting instances of semantic objects of certain classes (fish in our 
case) and drawing a bounding box around each object of interest in the 
image. The most up-to-date CNN proposals have been tested: Faster R- 
CNN (Ren et al., 2017) (with ResNet-50 as backbone), YOLO in its v5 
version (Jocher et al., 2020) and Mask R-CNN (He et al., 2020) (with 
ResNet-50 as backbone). When the fish are framed inside their bounding 
boxes, their silhouettes are segmented using a k-means clustering al-
gorithm (Arthur and Vassilvitskii, 2006), with k = 2 clusters, the fore-
ground (fish) and the background. Finally, the contour definition of the 

Fig. 1. Sequence of stereo video processing algorithms involved in the process of Bluefin Tuna sizing. The proposed procedure for image segmentation using deep 
learning replaces the previous image segmentation and blob-filtering steps. 

Fig. 2. (a) Sensor platform equipped with a stereoscopic camera and other sensors. (b) Logging computer used to encode stereoscopic videos.  
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fish’s silhouette is enhanced by applying an active contours algorithm 
(Chan and Vese, 2001), an iterative region-growing technique. 

The second approach used neural networks for object instance seg-
mentation, directly segmenting fish from the background. In this case, 
the most up-to-date CNN proposals have been tested, including Mask R- 
CNN (with ResNet-50 as backbone) and the PointRend module (Kirillov 
et al., 2019). 

2.3. A brief description of the CNN models explored 

Next, a brief description of each CNN model mentioned above is 
introduced, while the experiments and results are described in Section 3. 

Region-based convolutional neural networks (R-CNN) were pro-
posed (Girshick et al., 2013) to address the problem of object detection 
in images, i.e. the problem of classifying individual objects and local-
ising each object in the image using a bounding box. With this method, 
region proposals are generated with the selective search algorithm, and 
convolutional networks are evaluated independently on each region. 
The same author proposed an improvement of the R-CNN called Fast 

R-CNN (Girshick, 2015), consisting of generating a feature map from the 
convolution operation applied to each image, instead of applying the 
convolutional network to each region proposal. In Faster R-CNN (Ren 
et al., 2017), instead of using a selective search algorithm on the feature 
map to identify the region proposals, a separate network was proposed 
to predict them. Finally, Mask R-CNN (He et al., 2020) extended Faster 
R-CNN by adding a branch for predicting segmentation masks on each 
region proposal, in parallel with the existing branch for classification 
and bounding box regression. The PointRend module, added on top of 
mask segmentation networks, such as Mask R-CNN, is able to detect 
uncertain points that require higher definition and refine the segmen-
tation in those points by means of bilinear interpolation and a multilayer 
perception. This allows segmentations to be obtained with higher res-
olution than those obtained with Mask-RCNN. YOLO or You Only Look 
Once (Redmon et al., 2015) is an object detection algorithm different 
from the region-based algorithms. In YOLO, a single convolutional 
network predicts the bounding boxes and the class probabilities for these 
boxes. It is faster than the R-CNN, but its main limitation is that it 
struggles with small objects. 

2.4. Evaluation metrics 

The metric proposed in order to evaluate the performance of the 
neural networks is the Average Precision (AP) used in the well-known 
Pascal VOC challenge (Everingham et al., 2010) and in Microsoft 
COCO (Lin et al., 2014), which is defined as the area under the 
precision-recall curve: 

AP =

∫ 1

0
p(r)dr 

Precision (p) is defined as the number of true positives (TP) divided 
by the sum of true positives and false positives (FP). Recall (r) is defined 
as the number of true positives divided by the sum of true positives and 
false negatives (FN), i.e. the number of labelled ground truth objects. 

Fig. 3. Snapshots of the videos of Bluefin Tuna juveniles with different image backgrounds. Dorsal perspective: a) artificial background panels, b) slightly cleaned 
floor, c) deeply cleaned floor. Ventral perspective: d) white artificial background panels. 

Table 1 
Dataset of recordings in ICAR tanks with a description of the different image 
backgrounds.  

Video View Month of 
acquisition 

Image background 

Video 
#1 

Dorsal view. 
Cameras looking 
towards floor of the 
tank. 

April 2019 Background #1 (Fig. 3a): 
artificial back panels placed on 
the floor of the tank. 

Video 
#2 

May 2019 Background #2 (Fig. 3b): floor 
of the tank slightly cleaned. 

Video 
#3 

December 
2019 

Background #3 (Fig. 3c): floor 
of the tank deeply cleaned. 

Video 
#4 

Ventral view. 
Cameras looking 
towards water 
surface. 

December 
2019 

Background #4 (Fig. 3d): 
artificial white back panels 
placed above the tank.  
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p =
TP

TP + FP
; r =

TP
TP + FN

;

Detections are considered positive when the Intersection over Union 
(IoU) is above a threshold, which is typically greater than 0.5. IoU is 
defined as the area of the intersection divided by the area of the union of 
a predicted bounding box (BboxP) and ground truth label (BboxT). A 
perfect match occurs when IoU = 1, whereas IoU = 0 if the bounding 
boxes do not intercept each other. 

IoU =
area(BboxPՈBboxT)
area(BboxPՍBboxT)

; IoU > 0.5,…, 0.75,…, 0.9, 0.95;

AP can be calculated for different IoU thresholds, usually indicated 
with a subscript: AP50 represents the AP for an IoU accuracy greater than 
0.50; AP75 for IoU accuracy greater than 0.75; and AP90 for IoU accuracy 
greater than 0.90. The final AP, which matches with the mAP (mean 
Average Precision) in one-class detections, is calculated by taking the 
mean AP over all IoU thresholds between 0.50 and 0.95 in increments of 
0.05. 

mAP =

∑
IoUAPIoU

n
; IoU ∈ [0.5, 0.95];ΔIoU = 0.05  

where n is the total number of IoU thresholds. 
In the proposed procedure, the detection and segmentation must be 

as accurate as possible to then apply the fitting of the deformable model 
of the fish’s silhouette and have an accurate sizing, so AP90 will be used 
as the evaluation metrics together with the commonly used AP. 

In the case of object detection, IoU is calculated comparing the 
bounding boxes, whereas in object instance segmentation it is calculated 
comparing segmentation masks in a pixel-to-pixel manner. These 
methods are denoted as “bb” and “mask” in the AP’s superscript, 
respectively. See (Padilla et al., 2021) for further details in metrics. 

The proposed methods will only work when the entire fish is 
observed in the image, without any occlusion or overlapping. This 
would be a limitation in environments with a high density of fish, but 
that is not the case for the fish in the ICAR tanks, as can be seen in Fig. 3. 
Further improvements will be made to tackle the problem in other 
environments. 

2.5. Dataset generation for deep learning 

The training and test datasets are generated using samples of the four 
different image backgrounds. Samples are extracted from setup videos 
and manually labelled using VGG Image Annotator (Dutta and Zisser-
man, 2019). The setup videos have a duration of 2 min and were ac-
quired prior to the 10-minute video made up of the recordings described 
in Table 1 and in the same scenario. The fact that samples are selected 
for network training in the same scenario where the networks would be 
evaluated may limit their applicability. If these trained networks were to 
be used in new scenarios, new samples should be manually labelled to 
increase the training dataset in order to get satisfactory and accurate 
results. However, in this study, the recordings are made in an indoor 
facility and, despite working with four different backgrounds, the vari-
ability associated with this scenario is limited, so we consider that the 
same trained networks would serve for future recordings without 
needing to retrain them. 

Apart from the manual labelling, we developed a semi-automatic 
tool to considerably increase the number of samples without having to 
manually label them. The semi-automatic labelling uses a method 
similar to the first approach described in Section 2.2, but instead of using 
a neural network to detect objects, the bounding box is manually drawn 
by an operator. Then, the fish are automatically segmented using a k- 
means clustering algorithm and active contours. The operator supervises 
the segmentation, discarding samples if the resulting segmentation is not 
accurate. Thus, this semi-automatic labelling method achieves a large 
number of labelled samples easily and in a short time. 

As a result, we have 250 labelled samples for each image back-
ground, made up of training and test datasets of 900 and 100 images 
respectively, as summarized in Table 2. 

2.6. Stereo vision data processing for fish sizing 

When the fish have been segmented in the image, an edge detection 
algorithm is then applied and a minimisation algorithm is used to fit a 
deformable model of the tuna’s silhouette. A Fitting Error Index (FEI) 
based on the quadratic distance between the model points and target 
edge points is used to quantify how well the model fits. Samples with 
poor FEIs are discarded, since the index reveals wrong segmentations, 
occlusions of significant parts of the fish, poor model fittings and more. 
Fish are deformable due to the swimming motion and, consequently, 
measurements taken from a single frame may not be reliable (Shortis 
et al., 2013). Two main options are used in the literature to reduce the 
effect of swimming motion on length measurement: i) take measure-
ments in all frames and deduce straight body length from a sinusoid-like 
pattern (Shortis et al., 2013); ii) account for body bending by adding 
contiguous linear segments (Williams and Lauffenburger, 2016). In our 
case, the swimming length problem is resolved using the tuna model 
bending angle, by identifying as valid samples the ones whose vertebral 
points form a straight line and discarding the others. The tracking al-
gorithm presented in (Muñoz-Benavent et al., 2020), allows us to obtain 
reliable size measurements based on the repetition of several measure-
ments of the same fish. Fig. 4 illustrates the segmentation, model fitting 
and tracking procedures applied to a sample image. 

The results for left and right videos, obtained separately, are merged 
to calculate fish sizes. The stereoscopic system is previously calibrated 
using a checkerboard pattern of known size to estimate the intrinsic and 
extrinsic camera parameters. The image plane information, i.e. snout 
and fork pixel coordinates, is transformed into 3D measurements using 
the calibration parameters of the stereoscopic vision system and 3D 
triangulation. Fish lengths are computed as the 3D Euclidean distances 
between snout and fork. Samples are discarded if the stereo correspon-
dence is not met for the first and last model vertebrae, that is, if the 
distance from the points to the epipolar lines is greater than a threshold. 
See Muñoz-Benavent et al. (2018), for further details on the computer 
vision algorithms. 

Note that the proposed tracking, based on overlapping fish silhou-
ettes in subsequent video frames, is a basic procedure used to measure 
the same fish several times in order to obtain more accurate measure-
ments. However, more advanced tracking procedures are needed to deal 
with occlusions and fish counting, especially in environments with 
higher density of fish. In this sense, the emergence of deep learning has 
created new approaches for object tracking. For example, DeepSORT 
algorithm (Wojke et al., 2018), which combines Kalman filter, Maha-
lanobis distance, Hungarian algorithm, and appearance feature vector 
could be evaluated to track the fish. 

3. Results 

Many of the fully automated processes that involve underwater im-
aging, such as biometric measurements, species identification, biomass 

Table 2 
Ground truth dataset for CNN model training. Contains 1000 labelled images 
divided into training and test datasets, with the different image backgrounds 
equally represented.  

Ground truth  Image background #1 #2 #3 #4 

dataset of  Training (90%)  225  225  225  225 

1000 images Test (10%)  25  25  25  25  
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estimation or fish counting, require segmentation of individual and 
whole fish. The number of segmented fish, as well as the accuracy of the 
segmentation, are very relevant for the subsequent processes and for 
reaching the ultimate objective successfully. In this section, techniques 
based on deep learning are compared with conventional segmentation 
techniques from the points of view of segmentation accuracy, computing 
time, number of measurements and fish sizing accuracy. Moreover, the 
variability associated with the measurement by the automatic system is 
presented, to emphasise the importance of having as many measure-
ments as possible of each fish to increase the accuracy of the fish sizing. 

3.1. Deep Learning models for fish detection and segmentation 

The dataset described in Section 2.5 is used to train, validate and test 
the different deep learning models explained in Sections 2.2 and 2.3: 
Faster R-CNN, YOLO v5 and Mask R-CNN networks for object detection, 
and Mask R-CNN and PointRend for instance segmentation. 

A 5-fold cross-validation technique was applied to train the models. 
As a result, the validation set size for each iteration of the validation 
process consists of 200 images. The training hyperparameters are shown 
in Table 3. Note that hyperparameters for YOLO v5 are different from 
the rest of the models due to the different frameworks used for training. 
Detectron2 framework, used for Faster R-CNN, Mask R-CNN and Poin-
tRend, is bsaed on iteration-based schedules, while YOLO v5′s frame-
work uses epoch-based schedules. For both frameworks, the best set of 
hyperparamaters has been studied. Image augmentation techniques 
have been applied to training data in both frameworks. The augmen-
tations applied and their probabilities are shown in Table 4. 

The comparison of the different models and the attained inference is 
presented in Table 5 in terms of accuracy (with the metrics presented in 
Section 2.4) and inference time (measured in 2048 × 1536 pixel inputs 
using a single NVIDIA RTX 3090 with 24 GB of VRAM and an AMD 

Ryzen 9 3900X @3.8 GHz CPU). As shown in Table 5, Faster R-CNN, 
YOLO v5 and Mask R-CNN fish detection networks have good and 
similar accuracy (APbb), slightly better for Mask R-CNN in the high ac-
curacy index (APbb

90). As regards the inference time, YOLO v5 is 
approximately 5 times faster than the others. However, in the current 
implementation, the computing time devoted to segmenting the fish 
inside the bounding box using k-means clustering and active contours 
(100 ms/fish) is bigger than the inference time devoted to finding the 
bounding box (7.4–36.9 ms/image). For all object detection networks, 
bounding boxes are accepted as true positives when the confidence ex-
ceeds a threshold of 0.8. For the case of fish instance segmentation, 
PointRend gives better results, especially in the high accuracy index 
AP90, with a little increase of 5 ms per image with respect to Mask R- 
CNN. Since the CNN models in instance segmentation directly segment 
fish from the background, no further segmentation steps are needed. 

The conventional image processing techniques based on local 
thresholding have also been analysed with the test dataset and the 
proposed metrics. The results show that the segmentation of instances 
using Mask R-CNN and PointRend reaches higher AP metrics than using 
conventional image processing techniques, whereas the segmentation 
time per image is approximately 5 times faster when these DL techniques 
are applied. The improvement can be seen in Fig. 5, which shows four 
snapshots and the different fish segmentations achieved when applying 
conventional image processing techniques and PointRend. One can see 
both an increase in segmented individuals and a better definition of the 
fish’s silhouette, which is very important when trying to estimate sizes. 

When the objective is to estimate the fish’s size, after the fish seg-
mentation it is necessary to detect their silhouette and fit a deformable 
geometric model of tuna. The results for left and right videos are merged 
to compute 3D sizing using the calibration parameters of the stereo-
scopic vision system and 3D triangulation, as mentioned in Section 2.6. 
It is important to note that, although there should be a direct corre-
spondence between the number of segmented instances and the number 
of sizing measurements achieved, it is necessary to detect the instances 
of the same fish in the images of both stereoscopic videos to estimate its 
length. In addition, sizing consecutive samples of the same fish reduces 
the error and increases the precision, as will be demonstrated in Section 
3.3. 

Fig. 4. Image processing algorithms involved in the process of Bluefin Tuna sizing. (a) original image, (b) segmented image using deep learning, (c) tuna model 
fitting and visual tracking. 

Table 3 
Training hyperparameters used for Faster R-CNN, Mask R-CNN, PointRend and 
YOLO v5 models. (*) Steps for learning rate scheduler specifies in which itera-
tions the learning rate is modified, being reduced by a factor of 10. The rest of 
hyperparameters are well known in networks training.  

Faster R-CNN, Mask R-CNN and PointRend YOLO v5 

Number of iterations 9000 Number of 
epochs 

50 

Initial learning rate 0005 Initial learning 
rate 

0,02 

Steps for learning rate 
scheduler(*) 

(6000, 8000) Batch size 16 

Images per batch 10 
Optimizer SGD Optimizer SGD 
Pre-training weights ImageNet Pre-training 

weights 
ImageNet 

Image augmentation Custom (see 
Table 4) 

Image 
augmentation 

Custom (see 
Table 4)  

Table 4 
Image augmentations applied during training.  

Augmentation Probability (%) 

Horizontal flip  30 
Rotation  50 
Contrast  50 
Brightness  50 
Saturation  50 
Colour Temperature  20 
Mosaic (only YOLO v5)  100  
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3.2. Fish sizing 

After applying the different models to the test dataset and according 
to the results obtained in Section 3.1, the methods and models with 
higher APs were selected to size the fish in the videos of Table 1: Mask R- 
CNN for object detection (followed by k-means clustering algorithm and 
active contours for segmentation) and PointRend for instance segmen-
tation. The resulting fish sizing was compared with the previous auto-
matic procedure based on conventional image processing techniques in 
terms of the number of sizing measurements (NM) and computing time 
(CT). As can be seen in Fig. 6, the improvement in NM when using 
segmentation based on DL is substantial. More than double the NMs are 
achieved in pooled data for all the considered DL methods, and the NM/ 
CT relationship increases 1.7 times with Mask R-CNN and 3.5 times with 
PointRend. 

Our videos were recorded on different days and with the fish 
swimming freely, so it is impossible to know, for each of the videos, the 

number of individuals that passed through the camera’s field of view 
and the occlusions and overlapping produced. In short, we cannot know 
a priori how many individuals could have been segmented and therefore 
measured in each video, so a conclusive comparison between the results 
obtained with different backgrounds does not seem adequate. However, 
it is important to note that the behaviour of the different methods with 
respect to each of the image backgrounds is similar, i.e. all of the 
methods reach higher NM by processing images with background #4 
and their lowest NM with background #1. This similar behaviour helps 
us to ensure that the conditions of the experiments for the different 
methods are comparable and means that the results obtained are 
worthy. 

For the dorsal perspective, background #2 is the one preferred by the 
ICAR managers, since the installation of artificial back panels (back-
ground #1) is avoided, which can stress and alter the behaviour of the 
fish in the tanks, and costly cleaning is not needed (background #3). In 
the particular case of background #2, the NM is multiplied by 5.3 using 

Table 5 
Comparison of accuracy and inference time for the different networks and conventional image processing techniques. AP (Average Precision) metrics, with the 
Intersection over Union (IoU) threshold in the subscript and the method (bb for bounding boxes in object detection and mask for segmentation masks in instance 
segmentation) in the superscript.   

Fish detection  

APbb APbb
90 Inference time (ms/image) 

Faster R-CNN 0.806  
0.445 

36.9 

YOLOv5x 0.850  
0.529 

7.4 

Mask R-CNN 0.855  
0.663 

36.4  

Fish instance segmentation  
APmask APmask

90 Inference time (ms/image) 
Conventional image processing techniques 0.62 0.4182 185 
Mask R-CNN 0.856 0.708 36.4 
PointRend 0.870 0.792 41.6  

Fig. 5. Comparison of instance segmentation methods: Top row: original image; middle row: instance segmentation using conventional image processing techniques; 
bottom row: instance segmentation with PointRend. 
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PointRend, and by 3.4 when Mask R-CNN is used. Differences are also 
observed in the NM/CT relationship, since the conventional techniques 
produce 0.7 measurements per minute, Mask R-CNN reaches 2.1 and 
PointRend reaches 6.9. A periodic cleaning has to be done to achieve 
background #2, so the floor of the tank does not get very dark along 
time. 

Ground truth of fish distribution is impossible to obtain, since fish in 
ICAR tanks were not harvested immediately after the study and have 
never been physically sized, since they are extremely sensitive to 
handling and manipulation to compare the fish sizing with the different 
techniques in terms of accuracy, a new dataset was created with 396 fish 
from the pooled data, comprising the fish measured with all the tech-
niques. As the fish sizing procedure with conventional techniques was 
validated in Muñoz-Benavent et al. (2018), with data from harvests, we 
assumed that the techniques based on DL would be equally validated if 
there is no statistically significant difference between the length fre-
quency distributions shown in Fig. 7. The differences in distributions 
were analysed with the two-sample Kolmogorov-Smirnov test (Massey, 
1951). As Table 6 shows, the test gives p-values higher than the 5% 
significance level, thereby validating the measurements obtained with 
DL techniques. Furthermore, these techniques obtain approximately 
twice as many measurements as conventional ones. Using the tracking 
techniques, we can deduce that conventional techniques measure 6.8 
times the same fish on average, whereas DL techniques manage to 
measure each one 12.9–13.6 times on average. 

Another interesting result is the application of our deformable tuna 
model to recordings from the dorsal view (cameras looking towards the 
bottom of the cage or tank). In our previous studies (Muñoz-Benavent 
et al., 2018; Puig-Pons et al., 2019), the tuna model was always applied 
to fish recorded from the ventral view (cameras looking towards the 

surface). In this study, recordings of the same growth tank from both the 
dorsal and ventral views were made (backgrounds #3 and #4 respec-
tively) in December 2019, in order to compare the results from the two 
views. As Fig. 8 shows, the two distributions are very similar and the 
Kolmogorov-Smirnov test gives p-value = 0.389584 (higher than the 5% 
significance level), thereby validating the measurements from the dorsal 
view. Discrepancies between histograms occur because the fish popu-
lation is randomly swimming through the cameras’ field of view. To 
overcome this issue, we are currently working on a tagging system able 
to identify each individual. 

3.3. Variability of the measurement error 

The visual tracking described in Section 2.6 allows us to carry out a 
study on the variability associated with our automatic measurements. 
For fish measured more than once, the relative error e can be defined as 
the error of each individual measurement with respect to the median of 
all the measurements of the same fish in consecutive frames (S̃FL): 

Fig. 6. Comparison of the number of sizing measurements (NM) and computing time (CT, in minutes) for the different deep learning models and the conventional 
image processing techniques in the different recordings and pooled data. 

Fig. 7. Snout Fork Length (SFL) frequency histograms comparing conventional 
and deep learning techniques using a 396-fish dataset. 

Table 6 
Statistical comparison of fish sizing measurements between conventional and 
deep learning techniques using a 396-fish dataset.   

Conventional Mask R- 
CNN 

PointRend 

Total number of measurements  2677  5381  5128 
Average number of measurements of 

each fish  
6.8  13.6  12.9 

Kolmogorov-Smirnov test 
p-value    

0.7422  0.9999  

Fig. 8. Snout Fork Length (SFL) frequency histograms for recordings of the fish 
population in the growth tank from both dorsal and ventral views. 
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ei(%) =
(SFLi − S̃FL)

S̃FL
⋅100  

and the mean relative error ̃e is defined as follows: 

ẽ(%) =

∑n

i=1
|ei|

n  

where n is the number of times a fish is measured. 
As Fig. 9 shows, the mean relative error ̃e decreases with the number 

of measurements per fish. For each box in the boxplot, the bottom of the 
central rectangle represents the 25th percentile, whereas the top rep-
resents the 75th percentile. The red segment inside the rectangle shows 
the median error. The whiskers represent the minimum and maximum 
mean relative error ̃e. Therefore, it can be seen that for n = 2, i.e., for fish 
measured two times in consecutive frames, the median of the mean 
relative error is around 0.2%, 75% of the fish are measured with a mean 
relative error lower than 0.6% and the maximum error is 1.3%. How-
ever, for n = 8 i.e., for fish measured eight times in consecutive frames, 
75% of the fish are measured with a mean relative error lower than 0.3% 
and the maximum error is 0.5%. From these results, it can be concluded 
that it is important to have as many measurements as possible of each 
fish to increase the accuracy of the fish sizing. 

4. Conclusions and further work 

Conventional methods based on local thresholds enable automatic 
segmentation of fish but require a prior engineering process to deal with 
the adjustment of a series of parameters to adapt to the environment of 
each moment, as well as models of their silhouettes designed depending 
on the perspective from which the images are obtained. Although highly 
satisfactory results have been achieved with these methods, it is difficult 
to get rid of this parameter adjustment when, for example, the turbidity 
of the water blurs the image or the perspective of the silhouette changes 
from dorsal to ventral. 

A new approach based on DL has been proposed for fish detection 
and segmentation in videos acquired under real conditions. One of the 
most important advantages is the elimination of the adaptive engi-
neering process, because these models find the significant features by 
themselves through training. The results show that the fish sizing pro-
cedure is enhanced thanks to the improvement in segmentation of fish 
instances. In particular, the number of fish measurements increases up to 
2.45 times when using the PointRend module. This increase in the 
number of measurements allows the accuracy of the fish sizing to be 
improved, since having as many measurements as possible of each fish 
reduces the variability and the error associated with each measurement, 
as demonstrated in Section 3.3. Looking at Fig. 5, an improvement in the 
definition of the silhouette of the fish can also be seen, which leads to a 
better estimation of measurements. Moreover, the number of measure-
ments per minute of computing time increases up to 3.5 times with 
PointRend. 

The proposed procedure could be a significant contribution towards 
a commercial system for fully automatic fish sizing using stereoscopic 
vision, since it increases the number of measurements and decreases the 
computing time compared to our previous developments. The automatic 
system has been used for fish sizing on juvenile BFT, but the procedure 
could be applied to other species, retraining the neural networks for 
instance segmentation with new images and adapting the geometric 
model. We intend to replicate the study to other environments with a 
higher density of fish (such as in-shore aquaculture facilities). 

The International Commission for the Conservation of Atlantic Tunas 
(ICCAT) establishes a catch reporting system which covers the full chain 
of the Atlantic Bluefin Tuna fishery process from capture to sale. The use 
of a stereoscopic system to estimate catch quotas is estabAlished in 
2015. To control fishing quotas, the authorities carry out a biomass 

assessment during fish transfers, counting transferred tuna and sizing at 
least 20% of the stock. The improvement in segmentation of fish in-
stances and thus in the number of fish measurements could lead us to 
reach an accurate sizing of at least 20% of the fish in a wider range of 
conditions. We are currently working on optimising the implementation 
to reduce the computing time and have a system able to operate effec-
tively in real time in a commercial operating environment. We plan to 
apply long short-term memory (LSTM) neural networks and DeepSort 
for fish tracking and counting. Moreover, we will focus on semantic 
segmentation methods using, for example, U-Net (Weng and Zhu, 2015) 
or DeepLab (Chen et al., 2018), which provide better performance in 
most applications compared to deep learning methods based on R-CNN. 
The use of night cameras to avoid interfering in the aquariums will also 
be studied. 
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