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A  B  S  T  R  A  C  T  

The interaction formulae for the plastic resistance of channel sections under combination of 4 internal forces:  the 
bending moment about strong axis My,Ed,  the bending moment about weak  axis Mz,Ed,  the bimoment BEd  and  the 

axial force NEd were  created and analyzed. The exact interaction curves  obtained by the linear programming for 4 

internal forces  have  enabled to create and  to verify  the  proposed approximate interaction formula for 3 internal 
forces. 

The approximate interaction formula for the design  plastic resistance of channel sections under combination of 
3 internal forces:  the  bending moment about strong axis My,Ed,  the  bending moment about weak  axis Mz,Ed  and 

the  bimoment BEd  was  analyzed and  verified. The  explicit interaction formula that  takes  into  account these  3 

internal forces  is missing in Eurocodes. A large  parametrical study  was performed for the rolled channel profiles 
within the  size  range UPE 80  UPE 400.  The  differences between the  results of  the  approximate interaction 
formula and  the  exact  interaction curves  were  analyzed and  summarized. 

Till today nobody presented results of the parametrical study  of the channel sections under the combination of 
4 internal forces. 

1. Introduction

1.1.   Overview of the former investigations 

The theory  in the fundamental Vlasov’s books [1–3]  relating to the 
elastic  behaviour of the thin walled  beams  was known  to the rest of the 
world only after translations of Vlasov’s books in the period  1961–1965 
[4].  Consequently Streľbickaja [5–7]  immediately started the  investi- 
gation  of the thin walled structures in the elastic–plastic state [5].  Some 
of Streľbickaja’s  results  were  later  published by Mrázik  in  the  books 
[8,9]. In  [5]  may  be  found  the  interaction  formulae for  the  plastic 

to biaxial bending, c) 18 cantilevers subjected to bending and torsion  (9 
with  I-sections,  9 with  U-sections),  d) 4 cantilevers subjected to biaxial 
bending and torsion (1 with I-section, 3 with U-sections).  In the book [6] 
Streľbickaja investigated also the members subjected to the combination 
of the  internal forces including the  axial force N. The relevant interac- 
tion formulae may be found also in [8,9]. For example  her formula  for I- 
section  subjected to N, My, Mz, B is in [8]  on the page 123. 

For channel section Streľbickaja investigated combination My, B only 
for the case of the negative bimoment B (Fig. 1). She derived  formulae 
(38.26) in [5]  on page 251 (the formulae (40) in [11]). These formulae 
were rearranged in the formula  (45) in [11], here  the formulae (1) and 
(2): 

resistance of I-sections  and U-sections  subjected to the combination of: 
a) 5 internal forces My, Vz, B, Tw, and Tt valid for the plastic  limit state

|BEd 
 
= K1

 

( 
My,Ed 

)2
 
 
+ K2

My,Ed 
 
+ 1 (1) 

without strengthening and b) 2 internal forces My, B valid for the plastic 
limit  state  with  strengthening. In the  bi-linear stress–strain diagram in 
the  case a) E1 = 0 MPa and  in the  case b) E1 > 0 MPa (details  see in 

Bpl,Rk

where 

Mpl,y,Rk 

2 
/
(

Mpl,y,Rk

) ( )
[10,11]).  Streľbickaja verified  her  theoretical results  within  her  large

 
K1  =   

(
4awf  + 1

)
16a2 2

 

experimental project   published in  Strel’bickaja  [7].   She  tested   alto- 
gether  33 cantilevers with  I- or U- sections:  a) 3 cantilevers with  I-sec- 
tions subjected to the torsion, b) 8 cantilevers with  I-sections  subjected 

 
= Af /Aw  = 

 

(
bf tf 

wf  + 8awf    1  K2  = 2/  16awf + 8awf    1  awf

)/(
hf tw 

)
(2) 
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Nomenclature 

γM0 is the partial safety factor for the resistance of cross section 
whatever the class is 

fy yield stress 
b      width  of a cross-section 
h depth  of a cross-section 
hw depth  of a web 
tf flange thickness 
tw web thickness 
y, z      section  coordinates along y and z axes 
ω          warping function 
My,Ed design  value  of the bending moment about  the y axis 
Mz,Ed design  value  of the bending moment about  the z axis 
BEd design  value  of the bimoment 
Mpl,y,Rd  Mpl,Rd design value of the plastic  moment resistance about 

the y axis 
Mw,pl,y,Rd   design  value  of the plastic  moment resistance of the web 

about  the y axis 
Mpl,z,Rd      design  value  of the plastic  moment resistance about  the z 

axis 
Bpl,Rd           design  value  of the plastic  bimoment resistance 

NTfl,Ed design  value  of the axial force of the top flange 
NBfl,Ed design  value  of the axial force of the bottom flange 
Nw,Ed design  value  of the axial force of the web 
MTfl,z,Ed     design value of the bending moment of the top flange about 

z axis 
MBfl,z,Ed     design  value  of the bending moment of the bottom flange 

about  z axis 
Mw,y,Ed design  value  of the bending moment of the web about  y 

axis 
NTfl,Rd design value  of the plastic  axial force resistance of the top 

flange 
NBfl,Rd design  value  of the plastic  axial force resistance of the 

bottom flange 
Nw,Rd design value of the plastic axial force resistance of the web 
MTfl,z,Rd design  value  of the plastic  bending moment resistance of 

the top flange about  z axis 
MBfl,z,Rd design  value  of the plastic  bending moment resistance of 

the bottom flange about  z axis 
Mfl,z,Rd design  value  of the plastic  bending moment resistance of 

the flange about  z axis 
Mw,y,Rd design  value  of the plastic  bending moment resistance of 

the web about  y axis 

For  the  positive   bimoment B according to  [11]   the  approximate 
linear  equation (3) may be used. 

[11]. Fig. 2 shows the comparisons of the results  of various  calculations 
for  the  case  Mz,Ed/MN,pl,z,Rd = 0.  The  influence of the  values  of the 

My,Ed BEd ⩽1.0 (3)
 

relative bending moment Mz,Ed/Mpl,z,Rd  = 0; 0.2;  0.4;  0.6;  0.8  on the 
plastic  resistance of UPE 360  obtained for fy  = 235  MPa is shown  in

 
Mpl,y,Rd 

+ 
Bpl,Rd

where  the  value  Mpl,y,Rd   < Mpl,y,Rd,max may  be  calculated e.g.  by the 
program QST-TSV-3Blech [12]  for B = 0. The value  Mpl,y,Rd,max may be 
achieved only together with relevant value of a bimoment. In the newer 
statical tables  or databases of some computer programs the both values 
Mpl,y,Rd  and  Mpl,y,Rd,max may  be found.  In older  statical tables  there  is 
only  Mpl,y,Rd,max value.  If the  Mpl,y,Rd  value  is not  available, it may  be 
replaced in the equation (3) by Mel,y,Rd  value  being  slightly  on the safe 
side (formula (47) in [11]). For example  for UPE 360 section  (DIN1026- 
2: October  2002)  the value  Mpl,y,Rd  = 199.52 kNm may be replaced by 
Mel,y,Rd  = 197.81 kNm (Fig. 2). 

The channel section UPE 360 was investigated in Baláž and Koleková 

 
Fig. 2 too. 

Streľbickaja in [5] derived  the general  interaction formula  for both I- 
and  U- sections  subjected to the combination of the internal forces My, 
Vz, B, Tw  and  Tt  (formula (31.25) on p.212). She published in [5]  also 
several partial cases of the general formula (31.25) e.g. the formula valid 
for combination of My and B (the  formula  in Table 50 on page 216). 

The fundamental book by Kindmann  and Frickel [13]  contains a lot 
of solutions including the investigation of the channel profiles.  They 
developed the  original TSV method called  Teilschnittgröβenverfahren 
(Partial-Internal-Forces-Method) which  is basis for several  efficient 
computer programs, e.g. [12]. The experimental and theoretical in- 
vestigations of the channels were published by Höss et al. [14]  and by La 

Fig. 1.  UPE section. Sign convention. Distribution of sectorial coordinate ω(s). Positive external forces and  moment Fx, Fy, Fz, Txs  and  internal force and  moments N, 
My, Mz, B. 



A. Agüero  et al.

596

=

The channel profiles were investigated also by Beyer et al in [19–21]. 
Beyer [19]  proposed: - for the interaction between Mz,Ed and BEd: 

MB,pl,z,Rd  = Mpl,z,Rd

(
1.1 

BEd 
)

Bpl,Rd
≤ Mpl,z,Rd  (4) 

- for the interaction between My,Ed and BEd:

MB,pl,y,Rd = Mpl,y,Rd , ifBEd ≤ BMpl,y,Rd (5) 

MB,pl,y,Rd   = Mpl,y,Rd

(
Mpl,y,Rd      2MBmax,y 

)(  BEd    BMpl,y,Rd 

)1.5 

otherwise. (6).B  ,        B     , ,
 

1.2.   Calculation of the factor ξ 

pl Rd Mpl y Rd 

ξ  is  the  factor   by  which   internal forces  and  moments  must   be 
multiplied to reach the plastic resistance of the cross-sections. In order to 
find the factor  ξ {ξNEd, ξMy,Ed, ξMz,Ed, ξBEd}, the lower  bound  theorem 
can be used. 

Fig. 2.  UPE 360 [25,26]. S235. Relative plastic resistances. Mpl.y.Rd = 199.52 
kNm for BEd = 0, Mpl.y.Rd.max = 225.45 kNm, for BEd = -1.0144 kNm2, Bpl.
Rd = 6.7920 kNm2. Results of: a) authors proposal for Mz,Ed/MN.pl.
z.Rd = 0; 0,2; 0,4; 0,6; 0,8; compared for Mz,Ed/MN.pl.z.Rd = 0 with
results of: b) QST-TSV-3Blech [12] – empty circles; c) formula (1)

1.2.1.   Method  A (according to Osterrieder et al. [22,23]) 
In the Method  A the factor  ξ and the associated normal stresses  σ at 

each element are calculated. It consists  of several  steps. 
Step 1. Dividing  section  into elements. 
Step 2. Considering linear  constraints by Eqs. (7 to 11): 
Limitation of the normal stresses: 

for BEd < 0 – full  red  circles; d) formula (3) for BEd > 0 – red solid
fy ⩽σi ⩽fy (7) 

straight line; e) elastic resistance –  blue dot- and dashed
straight line. The exact results of b) are drawn only in the 1st
and 4th quadrants. The approximate results of c), d), e) are
only in the 1st quadrant.

Equilibrium equations: 
 

n ∑ 
σi Ai  = ξNEd (8) 

i=1 

Poutré et al. [15–17]. n ∑
σ A y ξM

 
(9)

 
The large research project  (Table 1) of three  universities (RWTH 

Aachen,  TU Berlin,  RU Bochum)  [18]  deals  with  the  effects  of torsion 
and  their  influence on  the  cross-sectional and  member  resistance  of 

i=1 

 
n∑

i  i  i = z,Ed 

n∑
rolled   steel  profiles.   The  ultimate  resistances were  analysed experi- 
mentally and theoretically. The experimental part comprised tests on the 
cross-sectional resistance of  profiles  subject  to  bending and  torsion. 

i=1 

 
n 

σi Ai ωi   = ξBEd
i=1 

σi Ai ωi  = ξBEd

Other   tests  concerned the  member  resistance of  profiles   subject   to 
bending and torsion with and without axial compression. The specimens 
were made of profiles commonly used from the series IPE 200, UPE 200 
and  HEB 200  (Table  1).  Suitable   design  models  were  developed to 
determine the  cross-sectional resistance and  the  member resistance of 
steel  profiles  taking  into  account of  torsion. Their  applicability was 
verified  by comparison with  the experimental and numerical data.  The 
feasibility of the  Partial-Internal-Forces-Method (PIM) for the  verifica- 
tion of the cross-sectional resistance with elastically determined internal 
forces and moments were verified. 

The comparisons of the  experimental results  [18]  with  the  theoret- 
ical results  obtained with  the own and Kindmann’s computer programs 
show good agreement, which  will be published in the next paper. 

Table  1 
Overview of the  tests  performed in the  frame  of the  large  project [18]. 

∑ 
σi Ai ωi  = ξBEd (10) 

i=1 

 
n ∑ 

σi Ai zi  = ξMy,Ed (11) 
i=1 

Step 3. Calculation of the maximum value  of the factorξ: 

max(ξ)  (12) 

1.2.2.   Method  B (similar method was used by rubin [24] and Kindmann 
and Frickel [25]) 

Computer programs [12]  and [26]  give similar  results. 
The channel section  consists  of three  parts:  top  flange  – index  Tfl, 

bottom flange – index Bfl and web – index  w. 
The steps of the Method  B are as follows: 
Step 1. Dividing  section  into three  parts. 
Calculation of the axial and bending resistances of all three  parts: 

Cross-section resistance. S355 

RWTH Aachen 

Member resistance. S355 

TU Berlin. [RU Bochum] NTfl,pl,Rd = NBfl,pl,Rd = b⋅tf ⋅fy ; Nwpl,Rd = hw ⋅tw ⋅fy

mAction IPE 200  UPE 200  HEB 200  IPE 200  UPE 200  HEB 200  MTfl,pl,z,Rd  = MBfl,pl,z,Rd  =
 

Fz 1  1  1  –  –  – 

; Mw,pl,y,Rd 
w 

4 4 

Fz. Fy 2  2  1  –  –  – 
Fz. Tx 2  3  2  2  2  6 

Fz. Fy. Tx 2  2  3  3  6  – 

Step 2. Considering constraints: 
Nonlinear interaction top flange: 

N. Fz –  –  –  –  – [5] ( 
NTfl,Ed 

)2 ⃒
MTfl,z,Ed

⃒
N. Fz. Tx –  –  –  –  [8  + 5]  –

⃒ 
⩽⃒1 (14)

 
NTfl,pl,Rd

+ ⃒
MTfl,pl,z,Rd 

⃒ 
N. Fy. Tx –  –  –  –  – [4]

⃒ ⃒
N. Mz. My  – –  –  –  –  [8]

Nonlinear interaction bottom flange:
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(

M
m z  =

M
ω =

B

)

( 
NBfl,Ed 

)2 ⃒
MBfl,z,Ed  

⃒ ⃒ 
⩽⃒1 (15) fy ⩽σi ⩽fy (27) 

NBfl,pl,Rd
 + ⃒

MBfl,pl,z,Rd

⃒ ⃒ ⃒ 
n 

Nonlinear interaction web: 
∑ 

σi Ai  = NEd = α⋅A⋅fy (28) 
i=1(

Nw,Ed 

)2 ⃒
Mw,y,Ed 

⃒ ⃒ ⃒
⩽1 (16)

 
Nw,pl,Rd

+ ⃒
Mw,pl,y,Rd 

⃒ 
n
 ⃒ ⃒ ∑ 
σ A z M 0.0 (29)

 

Equilibrium equations: 

NTfl,Ed + NBfl,Ed + Nw,Ed = ξNEd (17) 

 
i=1

 
n∑

i  i i = y,Ed = 

(
b 

) ( )
d ξM (18)

 
i=1 

σi Ai yi = Mz,Ed = γ⋅Mpl,z,Rd (30) 

MTfl,z,Ed + MBfl,z,Ed       Nw,Ed   2     
dg + NTfl,Ed + NBfl,Ed     g = z.Ed

Calculation of the maximum value  of B : 

(
h   tf 

)(
M

 

M 
)  (

 

b
)(

h   tf 
) 

N N B 
(
N   ; M

 
( ) 

= max
 n 

)∑ 
σ A ω

 

pl,Rd,γ 

(31)ds Mw,y,Ed + 
2 

Tfl,z,Ed 

Bfl,z,Ed  ds 2 2 

Tfl,Ed Bfl,Ed pl,Rd,α,γ      Ed z,Ed 
i=1 

i  i   i 

= ξBEd
Step 3. Calculation of My,Ed,γ,η to achieve  the  plastic  resistance for 

Mw,y,Ed + 

(
h    tf 

)(
N 

2 
 
Bfl,z,Ed NTfl,z,Ed

) 

(19) 

= ξMy,Ed (20) 

the given NEd = 0, BEd = ηBpl,Rd,γ, Mz,Ed = γMpl,z,Rd; γ [0 to 1] and η [0 to 
1]. 

Considering constraints by Eqs. (32 to 35): 

fy ⩽σi ⩽fy (32) 
where: 
ds is the distance of the shear  center  to the web midline, 
dg  is the  horizontal distance between the  centroid and  the  flange’s 

centroid. 
Step 3. Calculation of the maximum value  of the factorξ: 

max(ξ)  (21) 

1.3.   Research significance 

The Steps to obtain  the exact curves  are described. 

n ∑ 
σi Ai  = NEd = α⋅A⋅fy (33) 

i=1 

 
n ∑ 

σi Ai yi  = Mz,Ed  = γMpl,z,Rd (34) 
i=1 

 
n ∑ 

σi Ai ωi  = BEd = ηBpl,Rd,γ (35) 
i=1 

Calculation of maximum MyEd,α,γ,η: 
For the beams with channel sections  the interaction formulae for the 

calculation of the plastic  resistance of cross-sections under  bending 
moment about strong axis My,Ed, bending moment about weak axis Mz,Ed

( 
My,Ed,α,γ,η 

(
NEd ; Mz,Ed ; BEd 

) 
= max

n 
)∑ 

σi Ai zi 

i=1 

(36) 

and  bimoment BEd, are  proposed. They  are  derived  and  presented in 
Section  3. 

2. Calculation of the  exact  interaction curves  for combinations
of four internal forces

The Method  A is applied to obtain  the  interaction curves  with  the 
parameter Mz,Ed

Step 1. Calculation of Mpl,z,Rd for the given NEd = αAfy, My,Ed = 0 and 
BEd = 0. 

Considering constraints by Eqs. ((22)  to (25)): 

Interaction of the  axial  force,  bending moments about  strong  and 
weak axes and bimoment. 

3. Interaction formulae of the  authors‘  proposal (approximate
curves)

In the following  part an approximate interaction formula  for channel 
section plastic resistance taking into account three internal forces: My,Ed, 
Mz,Ed  and BEd is presented. 

The definitions of the  dimensionless design  bending moments and 
bimoment are as follows. 

fy ⩽σi ⩽fy (22) 

n 

My,Ed 
y = 

pl,y,Rd 

, m 
Mz,Ed

pl,z,Rd 
, m 

BEd 

pl,Rd 
(37) 

∑ 
σi Ai  = NEd = α⋅A⋅fy (23) 

i=1 
The  interaction  diagrams  with   axes {m , m }, assume   m as  a 

y ω z 

n ∑ 
σi Ai zi  = My,Ed = 0.0 (24) 

i=1 

n ∑ 
σi Ai ωi  = BEd = 0.0 (25) 

i=1 

Calculation of the maximum value  of Mz,Ed: 

parameter and  zero axial force Nx,Ed   = 0. The family of the interaction 
diagrams, after varying  the third  parameter mz  in the range  0 ≤ mz  < 1, 
are shown in Fig. 3(it is ≤ 0.98) , where 50 curves are plotted for the UPE 
220 section. 

For the  each  value  of mz   a closed  antisymmetric interaction curve 
arises.  Each  diagram is formed  by two  branches which  start  and  end 
from  a separation line,  represented by the  curve  defined  by circles  in 
Fig. 3 and which is named supporting curve. The graph of this curve lies in 
general  in the 2nd and the 4th quadrant. The points  of the 4th quadrant ( 

Mpl,z,Rd,α (NEd ) = max 
n 

)∑ 
σi Ai yi 

i=1 

(26)
have  the  form  (+my0 ,   mω0 ),  while  those  of  the  2nd  quadrant are
pointsymmetric respect  to the  origin,  therefore they  can be written as
(   my0 , + mω0 ). For channel-type sections, both parameters my0  and mω0

Step 2. Calculation of BEd,γ  to achieve  the  plastic  resistance for the 
given NEd = 0, My,Ed  = 0, Mz,Ed = γMpl,z,Rd; γ [0 to 1]. 

Constraints Eqs. (27 to 30): 



A. Agüero  et al.

598

are  positive   and  depend on  the  ratio  r and  on  the  relative bending 
moment mz . The parameter r is defined  as follows. 
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my0

2

EdBProposa

diagram (top-curve) can be written using the following  terms. 

Ψ
(
r, my , mz 

) 
= mω0 N ω (ξ) + my0 [N α1 (ξ)⋅α1  + N α2 (ξ)⋅α2 ] (42) 

where the parameter ξ = 
my  . In practice, the internal forces combination 

(my , mz , mω ) lies inside  of the interaction diagram if. 

Ψ
(
r,   my , mz 

)
⩽mω ⩽Ψ

(
r, my , mz 

)
(43) 

In  the  Eq. (44),(45) and  (46)  the  shape  functions N ω (ξ), N α1 (ξ), 
N α2 (ξ) are defined  in the range     1 ≤ ξ ≤ 1 as follows. 

N ω (ξ) = 
1  ξ

(
ξ2        3

)
(44) 

N α1 (ξ) = 
1 2 

4 
(1    ξ)(1 + ξ)

 
(45) 

1 2

Fig.  3.  Exact  interaction diagrams (my,mω)  for  50  different values  of mz   be- 
tween 0  and   0.98.   Points   on  the  red  curve   are  named (my0,mω0)  for  each 
channel. Such curve  will be represented as my0  = f(mω0). The results correspond 
to the  UPE 220  [25,26]. 

N α2 (ξ) = + 
4

(1     ξ) (1 + ξ)  (46)
 

Finally, the parameters α1 and α2 can be obtained from the following 
expressions. 

α1 = P (r, mz ), α2 = Q (r, mz )  (47) 

where 

r  
Aw= 
Af

hw tw 
= 

2btf
(38) P (r, η) = p0 (r) + p1 (r)η + p2 (r)η2  + p3 (r)η3 (48) 

where   hw  = h   2tf    is  the  depth   of  the  web.  For  given  value  of  the Q (r, η) = q0 (r) + q1 (r)η + q2 (r)η2  + q3 (r)η3 (49) 

bending moment mz  and given a channel section  by its parameter r, the 
analytic definition of the supporting curve must be constructed such that 
the resulting points  (  my0 , mω0 ) and (my0 ,   mω0 ) lie on the exact curve 
(obtained by  optimization-based procedures) with  a  minimum error. 
The  proposed model  for  the  determination of  my0  > 0  and  mω0  > 0 
consists  of the following  r and mz  dependent functions. 

my0 = A (r, mz ), mω0  = B (r,   my0 )  (39) 

where  the two-variable functions A (r, η) and B (r, η) are defined  as 

The η-coefficients pj (r), qj (r) j = 0, 1, 2, 3 are third-order polynomials 
in  the  parameter  r,  whose   r-coefficients   have   been   fitted   using  as 
reference the opitimization-based interaction curves.  Fitting  results  are 
shown  in Table 2 and  in Fig. 4. The validity range  of the areas  ratio  is 
approximately.0.35 ≤ r ≤ 1.20 

Some illustrative examples are in Figs. 5, 6. To quantify the accuracy 
of the proposed approach, the errors  in BEd values leading  to the plastic 
resistance of the cross-section for the given My,Ed and Mz,Ed are computed 
for the investigated sections UPE 220 and UPE 360 in Table 3. The mean 
values and standard deviations are shown in Table 3 for each profile, and 

A (r, η) =
√̅

a̅̅̅̅̅̅r̅̅̅̅̅̅̅̅̅a̅̅̅̅̅̅r̅̅̅̅η̅̅̅̅̅̅̅̅a̅̅̅̅̅̅̅r̅̅̅η̅̅̅2̅
 

for five different values  of the  parameter M  /M = 0.0,  0.2,  0.4, 
0 ( ) + 1 ( )  + 2 ( ) (40) 

z,Ed pl,z,Rd 

B (r, η) = b0 (r) + b1 (r)η + b2 (r)η2  + b3 (r)η3 (41) 
0.6 and 0.8. The absolute error  are defined  as follows. 

  Ed  BExact 

Coefficients  aj (r), bj (r) where  j = 0, 1, 2, 3 are  polynomials in the 
variable r given  in Table  2 and  in  Fig. 4. Our  proposed approximate 
interaction curve has been constructed using the support curve points as 

Error = 
Bpl,Rd

(50) 

starting and end points  and using certain shape functions which  will be 
described below.  The  general  expression of the  proposed interaction 

Table  2 

3.1.   Interaction of internal forces My, Mz, B, N 

In the  following  parametric study  the  special  UPE 160  section  pro- 
duced  in  the  past  by  the  company Salzgitter AG, Peine,  Germany  is 
analysed because  such profile  was investigated in [13], [14]  and  [15]. 

Coefficients  of  polynomials  aj (r)  = 
∑ (n)  n (n)  n

 
The input  values are h = 160 mm, b = 70 mm, tf = 10 mm, tw = 6.5 mm.

n≥0 aj    r .  bj (r)  = 
∑ b    r ,  p(r)  = 

∑ (n)  n ∑ (n)  n

n≥0  j 
The results of the study obtained for fy = 240 MPa, γM0 = 1 are presented 

p    r , qj(r)  = n≥0qj    r . in Figs. 7 to 15. Diagrams  based on relative dimesionless quantities may 
1  r  r2 r3

A (r, η)    a0 (r)    1.067646      0.160046   0        0 

a1 (r)            0.777362       0.481218      0.639469      0 

a2 (r)            0.235722      0.081018    0.441733   0 
B (r, η) b0 (r)  0.002528 0.019823 0  0 

b1 (r)            0.885348   3.076211      1.135336        0 

b2 (r)            3.059028   5.033789      1.856962        0 

b3 (r)       2.110460      2.303023      0.815989     0 
P (r, η) p0 (r)  2.165417 0.510201 0  0 

p1 (r)       8.872098       29.559197      33.980863     11.481748 
p2 (r)          35.619142         119.850166    134.134977      46.855384 
p3 (r)          32.406269         105.962456      114.711123       39.969293 

Q (r, η) q0 (r)  1.688882 0.244785 0  0 
q1 (r)            6.038917       17.606250      18.609629     6.435804 
q2 (r)          27.269861       75.982452     81.465216     29.131783 
q3 (r)          22.998906       71.242492      76.108743     27.436445 

be used for any value  of yield stress fy. 
The interaction curves for My, B for different values of Mz are given in 

each plot for the given value  of N. Each diagram consists  of five curves 
for constant axial  force and  several  values  of the  relative bending mo- 
ments  about  the weak axis ratio  in steps of 0.2 values. 

In order to see the influence of the cross section geometry on the plot 
shape,  an additional plot for partial case NEd = 0 is shown in Fig. 16 for 
UPE sections with dimensions according to DIN 1026:2002 [27] and DIN 
EN 10279:2000 [28]  for section  sizes from the interval UPE 80 to UPE 
400. 

4. Conclusions

Previous  research done  by  the  authors was  focused  on  I- and  H- 
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Fig.  4.  Left column: Data  and  fitting coefficients of parameters aj(r),  j = 0, 1, 2 (fitting model  of my0)  and  bj(r),  j = 0, 1, 2, 3 (fitting model  of mω0).  Fig. 4 right 
column: fitting coefficients in r of r-polynomials pj(r),  qj(r). 

Fig. 5.  The interaction diagrams for channel section UPE 220  [25,26] with 
concomitant forces  mz  = 0.0,  0.2,  0.4,  0.6,  0.8  and  nx  = 0. Exact  result: solid 

lines,  proposed approximation: dashed lines. 

Fig. 6.T.  he interaction diagrams for UPE 360 [25,26] with  concomitant forces 
mz   = 0.0,  0.2,  0.4,  0.6,  0.8  and  nx   = 0.  Exact  result: solid  lines,  proposed 

approximation: dashed lines. 
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Profile UPE 220 UPE 360 

Mz,Ed /Mpl,z,Rd μ σ μ σ 

0.00 0.0119 0.0166 0.0117 0.0237 

0.20 0.0043 0.0180 0.0043 0.0194 

0.40 0.0052 0.0105 0.0007 0.0125 

0.60 0.0022 0.0052 0.0035 0.0120 

0.80 0.0022 0.0026 0.0101 0.0149 

M

Table  3 
The mean value  μ and  the standard deviation σ of the absolute error divided by 

MZ,EdBpl,Rd  for UPE 220  and  UPE 360  profiles and 
pl,z,Rd 

= {0.0; 0.2; 0.4; 0.6; 0.8}. 

Fig.  9.  UPE 160  Salzgitter AG section. NEd   = 0.4Npl,Rd, MN,pl,z,Rd/Mpl,z,Rd   = 
0.6471, MN,pl,y,Rd,max/Mpl,y,Rd  = 0.7927, BN,pl,Rd,max/Bpl,Rd  = 0.8435. 

Fig. 7.  UPE 160  Salzgitter AG section. NEd  = 0, MN,pl,z,Rd/Mpl,z,Rd  = 1, Npl,Rd = 
542.8500kN, Mpl,z,Rd   =  10.1003kNm, Mpl,y,Rd   =  29.4089kNm, Bpl,Rd   = 
0.6539kNm2, MN,pl,y,Rd,max/Mpl,y,Rd  = 1.0900, BN,pl,Rd,max/Bpl,Rd  = 1.0131. 

Fig.  8.  UPE 160  Salzgitter AG section. NEd   = 0.2Npl,Rd, MN,pl,z,Rd/Mpl,z,Rd   = 
0.8363, MN,pl,y,Rd,max/Mpl,y,Rd  = 0.9763, BN,pl,Rd,max/Bpl,Rd  = 0.9689. 

sections  [29]. The proposed paper  deals with  channel sections.  The so- 
lution  of  the  Z-sections  is in  the  preparation. The  paper  devoted to 
channel sections [30] was accepted by reviewers and it will be published 
in the conference proceedings. It shows in some points  comparisons of 
exact solutions with the analytical expressions offered  for the designers 
in practice. 

The reasons  why  the  channel sections  are  investigated in the  pro- 
posed  paper  are as follows: 

Fig.  10.   UPE 160  Salzgitter AG section. NEd   = 0.6Npl,Rd, MN,pl,z,Rd/Mpl,z,Rd  = 
0.4486, MN,pl,y,Rd,max/Mpl,y,Rd  = 0.5522, BN,pl,Rd,max/Bpl,Rd  = 0.6395. 

Fig.  11.   UPE 160  Salzgitter AG section. NEd   = 0.8Npl,Rd, MN,pl,z,Rd/Mpl,z,Rd  = 
0.2243, MN,pl,y,Rd,max/Mpl,y,Rd  = 0.2847, BN,pl,Rd,max/Bpl,Rd  = 0.3593. 
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Fig. 12.   UPE 160  Salzgitter AG section. NEd  =    0.2Npl,Rd, MN,pl,z,Rd/Mpl,z,Rd  = 
1.0485, MN,pl,y,Rd,max/Mpl,y,Rd  = 1.0252, BN,pl,Rd,max/Bpl,Rd  = 0.9689. 

Fig. 13.   UPE 160  Salzgitter AG section. NEd  =    0.4Npl,Rd, MN,pl,z,Rd/Mpl,z,Rd  = 
0.9728, MN,pl,y,Rd,max/Mpl,y,Rd  = 0.8289, BN,pl,Rd,max/Bpl,Rd  = 0.8436. 

Fig.  14.   UPE 160  Salzgitter AG section. NEd  = -0.6Npl,Rd, MN,pl,z,Rd/Mpl,z,Rd  = 
0.7717, MN,pl,y,Rd,max/Mpl,y,Rd  = 0.5633, BN,pl,Rd,max/Bpl,Rd  = 0.6596. 

Fig. 15.   UPE 160  Salzgitter AG section. NEd  =    0.8Npl,Rd, MN,pl,z,Rd/Mpl,z,Rd  = 
0.4474, MN,pl,y,Rd,max/Mpl,y,Rd  = 0.2860, BN,pl,Rd,max/Bpl,Rd  = 0.3834. 

Fig. 16.   UPE sections [25,26] from  UPE 80 to UPE 400.  NEd  = 0. 

a) for the  channel sections  there  are in the  both  current and  future
metal  Eurocodes  (for steel  and  aluminum structures) only  basic  prop- 
erties,  e.g. the shear area; the plastic shear resistance reduced from Vpl, 
Rd  to  Vpl,T,Rd;  b)  only  conservative approximation  for  the  various 
shapes of profiles of all cross-sectional classes, a linear summation of the 
utilization ratios  for each  stress  resultant is available; c) in the  metal 
Eurocodes   there  are  formulae for  the  plastic  resistance of the  cross- 
section  under  various  combinations of the internal forces,  but they  are 
not valid for the channel sections;  d) even in the scientific  publications 
there are no explicit formulae for any shape of rolled sections under 3 or 
more  internal forces. 

Till today  nobody  presented results  of the parametrical study  of the 
channel sections  under  combination of 4 internal forces.  The authors 
present own exact solution of the plastic resistant of the channel section 
under 4 internal forces NEd, My,Ed, Mz,Ed, BEd in the form of diagrams and 

compare the results  with the results of other  procedures valid for partial 
cases. Moreover  also the procedure using (42) is given to obtain  the 
approximate values  of the  plastic  channel sections  resistances under  3 
internal forces My,Ed, Mz,Ed, BEd. It is realized in approximate way using 

the  third  order  polynomials. The numerical values  may  be  easily  ob- 
tained with  the  help  of some mathematical program (e.g. MATHCAD). 
The accuracy of the proposed approach is quantified in the illustrative 
examples in Figs. 5 and 6. The mean  values and standard deviations are 
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shown  in Table  3 for each  profile,  and  for five different values  of the 
parameter Mz,Ed /Mpl,z,Rd   = 0.0,  0.2,  0.4,  0.6  and  0.8.  The  large  para- 
metric  study  shows that  the approximate values  fit very well the exact 
values  given in diagrams. 

In the future  an attempt will be performed to simplify proposed 
approximate procedure with  acceptable loss of accuracy. 
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rundkantigem U-Stahl (DIN 1026) nach dem  Traglastverfahren. Forschungsbericht
P 174, Studiengesellschaft Stahlanwendungen e.V.,  Düsseldorf 1991. 

[15] La Poutré DB. Lateral torsional buckling of channel shaped sections. (Reprint ed.)
(TUE BCO rapporten; Vol. 99/06). Technische Universiteit Eindhoven. April  1999,
reprinted October 2000, pp.1-119. 
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