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Abstract
Recent advances in Handwritten Text Recognition and Document Layout Analysis have made it possible to convert digital

images of manuscripts into electronic text. However, providing this text with the correct structure and context is still an

open problem that needs to be solved to actually enable extracting the relevant information conveyed by the text. The most

important structure needed for a set of text elements is their reading order. Most of the studies on the reading order problem

are rule-based approaches and focus on printed documents. Much less attention has been paid so far to handwritten text

documents, where the problem becomes particularly important—and challenging. In this work, we propose a new approach

to automatically determine the reading order of text regions and lines in handwritten text documents. The task is

approached as a sorting problem where the order-relation operator is automatically learned from examples. We experi-

mentally demonstrate the effectiveness of our method on three different datasets at different hierarchical levels.

Keywords Document layout analysis � Reading order � Handwritten text recognition

1 Introduction

Automatic Text Recognition (ATR) systems, such as

Optical Character Recognition (OCR), Handwritten Text

Recognition (HTR) and Keyword Spotting (KWS), have

received much attention in the past decades. Thanks to

these advances, it is now possible convert digital images of

handwritten text documents into electronic text and/or find

relevant text elements in collections of these images.

Handwritten (or printed) document images are com-

monly analyzed through two main processes: Text

Recognition [2, 4, 6, 13, 20, 22] and Document Layout

Analysis (DLA) [1, 7, 18]. The first process deals with raw

image-to-text conversion, typically at text-line level. The

second process guides the first one to the parts of the

document where text is present. It also helps to assemble

the recognized text elements to provide a meaningful

structure to the information conveyed by the text. Both

process are complementary; for instance, a line-level

transcript could be meaningless unless the lines are sorted

in the correct order, or in the case of a table, the rela-

tionship between cells must be established in order to build

a database from the transcripts. In these cases, the reading

order of the text elements becomes essential to convert

transcripts into useful information.

Of course, the reading order does not have to be unique

or linear (e.g., a footnote can be read before a main para-

graph, or after it, or we can stop in the middle of a para-

graph, read a footnote and return to the main text).

However, the reading order can be just assumed to be the

most common way a user will sequentially read one text

element after the other in order to gather the underlying

information. Therefore, for the sake of simplicity, in this

work, the reading order is assumed to be unique and linear.

Although DLA is a very broad and complex field, most

works on DLA focus only on automatic page segmentation

and classification, either at text-line level (e.g., baseline

detection) [7, 15] or including region level segmenta-

tion [1, 18]. For these subproblems, satisfactory results are

currently achieved in most cases. However, the reading

order problem is generally overlooked and handled over to

a heuristic mapping of the layout elements. A very

important drawback of this idea is the large amount of

specific domain knowledge required to deal with each
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document collection. Moreover, most of the reading order

approaches proposed so far are developed for printed

documents.

Very little attention has been paid to handwritten text,

where the problem is much more difficult. However, it is

for handwritten documents in particular where a general

solution to this problem is most needed.

For the sake of illustration, consider the small, yet

complex, example shown in Fig. 1. In this example, a crop

of a handwritten document with five text lines are depicted

(represented by their baseline).

A naive order is to consider that a text-line s is before

another text-line s0, just if the vertical or horizontal coor-

dinate of the gravity center of s is smaller than the one of s0;
i.e., ys\ys0 _ xs\xs0 . Such a simple, top-to-bottom-left-to-

right (TBLR) order would lead to read A–B–C–D–

E. However, the correct reading order in this example is A–

C–E–B–D.1

TBLR is in fact the most traditional way to automati-

cally determine the reading order of a document, and it is

generally adequate for most printed text images and also

for handwritten images with a simple and uniform layout

(commonly after applying several geometrical corrections

to the image). However, as illustrated in the simple

example above, the correct, or desired reading order does

not only depend on the (typically delicate) geometric

positions of the text lines. In many handwritten text doc-

uments, like those shown in Figs. 3, 4, 5, 6, 7, 8, 9 the

correct reading order also depends on the type of region

each text line belongs to (paragraph, page-number,

marginalia, etc.), its content and maybe other criteria which

are heavily dependent on the types of documents consid-

ered. Clearly, in such cases, the naive approach fails.

Indeed, any automatic system that aims to obtain the

reading order of such kind of documents should be able to

handle the intrinsic uncertainly of the problem and it must

be flexible enough to generalize to several variations in the

documents of the same collection and variations between

different collections. On the other hand, it worth noting that

any manual attempt on the problem will require lots of

human resources because most manuscript collections are

huge.

In our work, we adopt a novel viewpoint for this prob-

lem: To automatically sort layout elements of handwritten

documents into reading order, first, an order-relation

operator is learned from examples, then this operator is

used to decode the unknown reading order of new

documents.

This viewpoint was introduced in [19], along with basic

techniques to approach the decoding problem and prelim-

inary experiments. Here, we extend our previous work

through the following main contributions. First, we propose

two new reading-order decoding algorithms with different

computational costs. Then, we provide a theoretical back-

ground to these algorithms, as well as to the algorithm used

in our previous work without formal deduction. Further-

more, we extend our previous experiments to the new

decoding algorithms. Finally, we provide new experimen-

tal results for reading order extraction at different hierar-

chical levels, which proves to reduce computational costs

and generally improves the quality of results.

The paper is organized as follows. Related work is

discussed in Sect. 2. Section 3 describes the problem and

the proposed approach. Afterward, experimental setup and

results are presented in Sects. 4 and 5, respectively.

Finally, in Sect. 6, we draw some conclusions and outline

possible extensions for future work.

2 Relation with previous work on reading
order

Research in the document reading order task has a rela-

tively long tradition for printed documents [3, 11, 12, 14].

Details of how these works have influenced our proposal is

detailed in [19]. In short, we follow the idea of assuming a

pairwise partial order at element level from [3] and that

using training data to automatically acquire the required

domain knowledge from [12].

A

B

D
C

E

Fig. 1 Example of text lines

where a naive top-to-bottom-

left-to-right order would result

in reading A–B–C–D–E, while

the correct reading order is A–

C–E–B–D

1 The correct reading order is defined by an expert. Notice that, the

lines C, E and B, D contain two-column tabular data (this happens

frequently in this manuscript collection, where two or three groups of

person names are listed columns-wise, while most of the other text lay

in a single column across the page or in marginalia).
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In contrast with printed text, only few works can be

found in the literature that address the reading order

problem for handwritten documents, where the layout does

not generally or consistently follow a standard structure but

typically just the art of the writer.

An interesting work is described in [16]. It focuses on

table analysis, but it can be foreseen that the reading order

could be obtained as a byproduct of the proposed process.

The relations between table cells (or, in general, between

any other type of layout elements) is modeled as a graph.

The nodes represent layout elements (text lines only in

their experimentation) and the edges represent the geo-

metrical and logical relations between them. Conceptually

speaking, an initial graph is built and then it is refined by

means of a Graph Neural Network edge classifier, trained

on examples of ground-truth graphs. While the graph rep-

resentation is very attractive for this task, it suffers from

the complexity associated with the analysis and computa-

tion of a fully connected graph. To render the problem

tractable, they use a set of heuristic assumptions to reduce

the number of initial edges. Clearly, these assumptions

need to be revised and updated for each kind of document,

which becomes a practical drawback of this approach.

In comparison with other techniques, the method we

propose has the advantage of its simplicity and applica-

bility to many kinds of documents without requiring

specific domain knowledge. Equally important, the com-

putational cost of most of the proposed decoding algo-

rithms is reasonable for modern computers, as

demonstrated here by experiments involving hundreds of

elements per page.

3 Reading order through estimated binary
order relations

Many handwritten text document have complex, hetero-

geneous and even erratic layout structures. To determine

the reading order of this kind of documents, properties of

the document beyond raw geometry are needed (as illus-

trated in Fig. 1). To circumvent this brittle and expensive

expert knowledge dependency, we aim to learn the desired

order directly from annotated training data. Notice that this

training data is normally available as part of the ground-

truth generated to train an automatic text recognition

system.

The input of our proposed approach is not the document

itself but a set of previously extracted layout elements

(baselines, text regions, illustrations, etc.). Normally, a

piece-wise linear curve is used to represent the baseline of

a text line and a polygon to represent a region of interest.2

In either case, several geometrical and typological features

can be easily extracted from these representations, which

can be used as input for the proposed statistical modeling.

More details about these features are provided in Sect. 4.

3.1 Problem formulation

Let S ¼ fs1; s2; . . .; sng be a set of n adequately represented

layout elements of a page image. As discussed in Sec. 1, in

this work, a given reading order in S is assumed to be

unique and linear . Therefore, it can be defined as a per-

mutation, usually denoted by a set z of n pairs fðs; mÞ : s 2
S; m 2 N� ng where m, called ‘‘index,’’ also satisfies

mi 6¼mj; 1� i; j� n8j 6¼ i.

For instance, for the document in Fig. 1, the permutation

z0 ¼ fðA; 1Þ; ðB; 2Þ; ðC; 3Þ; ðD; 4Þ; ðE; 5Þg represents a

naive TBLR order in S, while the correct reading order is

represented by ẑ ¼ fðA; 1Þ; ðB; 4Þ; ðC; 2Þ; ðD; 5Þ; ðE; 3Þg.

Our problem can be now be stated as follows: Given a

set of layout elements S, obtain a permutation of S that

renders its elements in reading order.

An order in S can alternatively be specified by means of

a binary order relation ‘‘�’’ on S� S which fulfills the

properties of a strict total order [5]. Thus, 8s; s0 2S, s � s0 is

assumed to mean that s is placed before s0. For instance, for

the permutation ẑ ¼ fðA; 1Þ; ðB; 4Þ; ðC; 2Þ; ðD; 5Þ; ðE; 3Þg,

we can state: A�C; C�E; E�B; B�D and also,

A�E; A�B; A�D; C�B; C �D; E�D

. Hence, this binary order relation can be represented in

matrix form as shown in this example:

ð1Þ

Note the rows and columns of this matrix can be arranged

in many ways, leading to multiple matrix representations of

the same permutation. Among these representations, there

is one in which all the elements above the diagonal are 1

and those below the diagonal are 0:

ð2Þ

2 Modern techniques to obtain these elements from raw handwritten

text images can yield very accurate results and are fairly robust to

image degradation and other typical difficulties of handwritten

documents [1, 7, 15, 18].
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This matrix is said to be in ‘‘canonical form’’ and obviously

corresponds to the very same permutation ẑ, which can also

be written as: ẑ ¼ fðA; 1Þ; ðC; 2Þ; ðE; 3Þ; ðB; 4Þ; ðD; 5Þg.

While assuming canonical representation might simplify

notation in some cases, the ensuing formulation does not

need such an assumption.

In general, any permutation z can be represented by a

Boolean matrix Hz ¼ ½hzi;j�
n�n

, where each hzi;j is defined in

terms of the indexes of z as:

hzi;j ¼
1 if mi\mj ; mi; mj 2 z

0 otherwise

�
ð3Þ

If z represents a strict total order, Hz fulfills the following

properties:

hzi;i ¼ 0; 1� i� n

hzi;j ¼ 1 � hzj;i; 1� i; j� n; i 6¼ j

hzi;j�
ð4Þ

Conversely, for any matrix which represents a strict total

order, the indexes defining the corresponding permutation z

can be straightforwardly computed by just counting the

number of zeros of each matrix row. We will capitalize on

this observation later to propose a very fast decoding

algorithm to determine the reading order using the results

of learning � from training examples.

Note, however, that not any arbitrary Boolean matrix

represents a proper permutation; only if it fulfills the con-

ditions (4), it can represent a strict total order.

Now, the approach we propose can be split into two

main steps. First, a probabilistic order-relation operator is

learned from samples (see Sect. 3.2). Then, the most

probable reading order is decoded from the set of all

probabilistic order relationships between all layout ele-

ments in the same page document (or hierarchical region),

as given in detail in Sect. 3.3. A general diagram of this

process is shown in Fig. 2.

3.2 Learning the order relation

The binary order relation � defined in Sec. 3.1 can be

explicitly rewritten as a function R : S� S ! f0; 1g.

Therefore, learning to sort layout elements into a correct

reading order corresponds to learn R from training exam-

ples of its input pairs and binary outputs. To this end,

training examples of correctly sorted layout elements are

required.

Let z ¼ fðs1; m1Þ; . . .; ðsn; mnÞg be the permutation cor-

responding to a correctly sorted set of layout elements of a

Fig. 2 General diagram of the proposed approach at training and inference or decoding stages
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page image. From this permutation, we construct the

training samples for R for all the possible pairs si; sj as:

ð½si; sj�; yÞ; y ¼
1 if mi\mj ; 1� i; j� n; i 6¼ j

0 otherwise

�
ð5Þ

A demonstration of how Eq. (5) is applied for the correct

reading order of the example in Fig. 1 can be seen in [19].

This process is applied to the correctly sorted layout

elements of all available training images, resulting in a

training set which will be referred to as D.

From D, a model is trained to estimate the conditional

distribution PðY ¼ y j s; s0Þ, where Y is a Boolean random

variable such that Y ¼ 1 iff s � s0, and s; s0 is the value of a

random variable corresponding to an ordered pair of layout

elements. Therefore, note that s and s0 are not inter-

changeable in Pðy j s; s0Þ, that is, s; s0 should not be seen as

a conventional conjunction of two individual conditions

but as a single condition by itself.

Pðy j s;s0Þ can be estimated by means of any binary

classifier. As discussed in Sect. 4.3, in this work, we esti-

mate Pðy j s;s0Þ using the well-known multilayer percep-

tron (MLP) method [21] for binary classification. To train

the model, the layout elements of each training sample in D

are represented as feature vectors composed of a few

geometric and layout-related attributes. Details of the

model used to estimate Pðy j s;s0Þ is given in Sect. 4.

Due to the estimation process, it is possible that the

estimated distribution fails to cover all the properties of the

real distribution. Consequently, it may happen that this

distribution lacks some properties which would be desired

for a proper order-relation probabilistic model. For

instance, it may come about that PðY ¼ 1 j s;s0Þ[ 0:5

(from which we may infer that s � s0), and also PðY ¼ 0 j
s0;sÞ\0:5 (which suggests just the opposite, s0 � s). This

problem is most likely caused by the fact that Pðy j s;s0Þ is

only conditioned by two specific layout elements, ignoring

the rest of the layout elements of the image. Ideally, for any

pair si; sj 2 S, PðY ¼ 1 j s1; . . .; si; sj; . . .; snÞ should be

identical to PðY ¼ 0 j s1; . . .; sj; si; . . .; snÞ. In our experi-

ments, we have rather seldom found that PðY ¼ 1 j s;s0Þ
and PðY ¼ 0 j s0;sÞ are different. However, better overall

performance can be achieved if we enforce strict equality

by heuristically re-estimating the pairwise order probability

as the average of PðY ¼ 1 j s;s0Þ and PðY ¼ 0 j s0;sÞ:

~Pðy j s;s0Þ ¼ Pðy j s;s0Þ þ 1� Pðy j s0;sÞ
2

; y2f0;1g; s 6¼ s0

ð6Þ

And, of course, ~PðY ¼ 1 j s; sÞ ¼ 0, ~PðY ¼ 0 js; sÞ ¼ 1,

8s 2 S. Since ~PðY¼1 j s;s0Þ þ ~PðY¼0 j s;s0Þ ¼ 1

8s; s0 2 S, ~Pðy j s; s0Þ can still be properly interpreted

probabilistically.

The values of ~PðY ¼ 1 j s;s0Þ can be arranged in matrix

form, exactly as in the examples of Eq. (1) or Eq. (2). In

fact, those matrices can be seen as the values of

PðY ¼ 1 j s;s0Þ, where probabilities only have the extreme

values 0 or 1. A few illustrative examples of possible

pairwise order-relation probability matrices for the five

lines example of Fig. 1 are given in Appendix A.

3.3 Decoding a best reading order

Once the pairwise binary order-relation model is estimated,

we discuss how to obtain the reading order of the set of

layout elements of any new, unseen, text image. In general,

the best reading order zH is a solution to the following

optimization problem:

zH ¼ arg max z2ZPðzÞ ¼ arg max z2ZPðHzÞ ð7Þ

where a permutation z is described in terms of the matrix

Hz (see Eq. (3)) and Z is the set of all possible permuta-

tions of S. We can express PðHzÞ as the joint probability of

all its elements, and apply the chain rule, to obtain:

PðHzÞ ¼ Pðhz1;1ÞPðhz1;2 j hz1;1Þ � � �Pðhzn;n j hz1;1; . . .; hzn;n�1Þ
ð8Þ

The values of the diagonal elements of Hz are deterministic

(their value is 0 since they refer to the position of an ele-

ment respect to itself). Hence, Pðhi;i j . . .Þ ¼ 1; 1� i� n.

On the other hand, according to Eq. (3), the other elements

of Hz satisfy hi;j ¼ 1 � hj;i;1� i; j� n; i 6¼ j. Therefore, the

conditional probability Pðhi;j j . . .Þ is completely defined

for those elements conditioned by hj;i, i.e.,

Pðhi;j j . . .; hj;i; . . .Þ ¼ 1. Consequently, Hz is completely

defined by its strictly upper triangular part.

Using these properties of Hz a more compact version of

Eq. (8) can be written. Moreover, assuming that the

remaining elements of Hz are independent of each other3,

Eq. (8) can be written as:

PðHzÞ �
Yn�1

i¼1

Yn
j¼iþ1

Pðhzi;jÞ ð9Þ

Now, using the pairwise order-relation estimates discussed

in Sect. 3.2 (Eq. (6)), Eq. (9) can be expressed as:

PðHzÞ �
Yn�1

i¼1

Yn
j¼iþ1

~PðY ¼ hi;j j si;sjÞ ð10Þ

Numerical examples of this computation for the five lines

example of Fig. 1 are provided in Appendix A.

3 A stricter assumption were made in our previous work [19], where

we assume independence of all elements in Hz. In that case, the same

optimization problem is defined, but the magnitude of the probability

is scaled by a square term. We refer the reader to [19] for details.
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Finally, form Eq. (7) and Eq. (10):

zH � arg max z2Z
Yn�1

i¼1

Yn
j¼iþ1

~PðY ¼ hi;j j si;sjÞ ð11Þ

The most straightforward decoding method is by exhaus-

tive search or ‘‘brute force,’’ that is, by checking all the n!

permutations of S. Clearly, this approach generally

becomes intractable on handwritten documents, where a

common page could range from few elements (e.g.,

n ¼ 20, n! ¼ 2:4 � 1018) to hundreds of elements (e.g.,

n ¼ 200, n! ¼ 7:8 � 10374). Nonetheless, in this work, we

use this approach as reference when the number of ele-

ments is sufficiently small (see Sect. 5.2.2). Furthermore,

numerical results of the Brute Force approach for the five

lines example of Fig. 1 are provided in Appendix A.

In the following subsection, two efficient decoding

methods are proposed to circumvent the huge complexity

of exhaustive search.

3.3.1 Greedy decoding

The brute force approach guarantees a global optimal

solution to Eq. (7), but it is computationally unfeasible for

most real cases of interest. To overcome this impediment,

we can resort to local optimization. A good approximation

can be obtained by a greedy selection of the most probable

layout element at each position t; 1� t� n, using Algor-

thim 1.

By construction, Alg.1 ensures the resulting permuta-

tion, ~zH, is proper. However, this greedy method is obvi-

ously sub-optimal and therefore the probability of ~zH is just

a lower bound of the probability of the optimal permuta-

tion, that is,

Pð~zHÞ�PðzHÞ ð12Þ

Nevertheless, according to our observations and results

reported in Sect. 4, the bound is fairly tight. Therefore, if
~PðY ¼ y j s;s0Þ is well-estimated, good approximations to

the global optimum are generally achieved.

Numerical results obtained with this method for the five

lines example of Fig. 1 are provided in Appendix A.

3.3.2 First decide then decode (FDTD) decoding

Greedy decoding proves useful to overcome the computa-

tional complexity of searching for the global optimal

solution. However, an even simpler and also more accurate

solution can be achieved as explained here.

Following Eq. (10), an equation similar to Eq. (11) can

be written without explicit permutation notation as follows:

HH � arg max H

Yn�1

i¼1

Yn
j¼iþ1

~PðY ¼ hi;j j si;sjÞ ð13Þ

where H ¼ ½hi;j 2 f0; 1g�n�n
, with hi;i ¼ 0; 1� i� n.

Notice that without any restriction of the relative values

of the elements of H, a straightforward solution to the

optimization problem (13) is achieved for a matrix such

that each individual factor of the product is maximum. This

allows us to solve Eq. (13) by simply setting for

1� i; j� n:

hHi;j ¼ arg max y¼f0;1g ~PðY ¼ y j si;sjÞ

	 1 if ~PðY ¼ 1 j si;sjÞ[ 0:5

0 otherwise

(
ð14Þ

That is, instead of decoding the best solution directly from

Eq. (13), we first decide which element in S is to be placed

before the other. Then, as mentioned in Sect. 3.1, given

HH, the indexes (mHi ) of the corresponding permutation can

be obtained by just counting the number of zeros in the i-th

row of H, that is:

mHi ¼
Xn
j¼1

ð1 � hHi;jÞ; 1� i� n ð15Þ

It is important to realize that while the matrix HH com-

puted according to Eq. (14) is an optimal solution to

Eq. (13), the permutation extracted from HH using

Eq. (15) may be improper.

From Eq. (6), ~Pðy j s;s0Þ ¼ 1 � ~Pðy j s0;sÞ and for all s,
~PðY ¼ 1 j s;sÞ ¼ 0. Therefore, from Eq.(15), hHi;i ¼ 0,

1� i� n and hHi;j ¼ 1 � hHj;i, 1� i; j� n; i 6¼ j. So the two

first conditions in (4) required for HH to represent a proper

permutation are fulfilled. Yet, HH may still fail to satisfy

the last condition in (4). For instance, since ~PðY ¼ y j si;sjÞ
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does not take into account the complete context of S, the

following cases can arise:

• ~PðY ¼ 1 j si;sjÞ [ 0:5,

• ~PðY ¼ 1 j sj;skÞ [ 0:5,

• ~PðY ¼ 1 j sk;siÞ [ 0:5 .

Consequently, Eq. (14) leads to obtain hHi;j ¼ 1; hHj;k ¼ 1

and hHk;i ¼ 1, which contradicts the last condition in (4)

(i.e., given the first two values, hHk;i is expected to be 0). As

a result, we obtain ties in the number of zeros per row in

HH, and Eq. (15) yields repeated values of elements of mH.

Clearly, if HH does not have ties, the corresponding

permutation is an optimal solution to Eq. (11). Otherwise,

note that the optimization problem (13) is equivalent to a

relaxed version of the problem (11) where one of the

restrictions has been dropped. Therefore, the probability of

Eq. (10) computed for HH is an upper bound of the max-

imum probability associated with the optimal zH of

Eq. (11), that is,

PðHHÞ
PðHzHÞ ð16Þ

Moreover, according to our observations and results

reported in Sec. 4, the bound is fairly tight. This suggests

that even in the cases where HH does not correspond to a

proper permutation, we can still obtain a close to optimal

(proper) permutation by adequately breaking the ties in the

number of zeros per row in HH. While several heuristics can

be used for this purpose, in the present work, we just solve

the few ties observed arbitrarily by assigning the first ele-

ment in the detected tie to the position mi under analysis and

the other element to the next position.

This approach is illustrated in Appendix A for the five

lines example of Fig. 1.

3.4 Hierarchical approach

Although the proposed model has been described at the

page level, it can be also used within any smaller layout

element previously detected in the page. In general, this

leads to a hierarchical approach, where Eq. (6) and any

suitable decoder is applied in each hierarchical level

independently.

Nevertheless, beware that any error in a higher level will

place all its sub-elements in the wrong position, increasing

the risk of obtaining an highly incorrect reading order.

However, a hierarchical approach can also simplify a

process of manual correction, since a single fix in a given

level may lead to correctly sort all the corresponding sub-

elements in the lower level.

4 Experiments

In order to evaluate the applicability and capability of the

proposed methods to solve the reading order problem, we

consider three datasets with different degrees of complex-

ity and training data availability.

In contrast with our previous work [19], where the

reading order problem was only considered for text-lines at

the page image level, here we obtain the reading order for

three tasks associated with basic hierarchical layout levels

and elements, namely text lines at page level, regions at

page level and text lines at region level. More specifically,

we will present experiments corresponding to a) sorting the

raw text lines of a page image (ignoring possible text

regions of the page, as in [19]), b) sorting the text regions

of a page image and c) sorting the text lines within each

text region. In addition, we also report results, comparable

to some extent with those of task a), of a hierarchical

combination of tasks b) and c).

Along with the proposed approach we use the top-bot-

tom-left-right approach (TBLR) as a basic benchmark in all

the experiments. This simple technique has been chosen

because it is perhaps the only one known so far which can

be consistently and uniformly applied to the several types

of page layouts exhibited by the handwritten images used

in the experiments here presented. Other more complex

methods depend on very specific domain knowledge and

heuristics that should be updated for each kind of docu-

ment, which prevents a homogeneous application to vari-

ous types of layouts.

As commented in Sec. 3, the input data for each of these

tasks is not the page image itself, but a set layout elements

previously determined through layout analysis. For each

element we use a set of features extracted from its layout

analysis description, including both geometric and cate-

gorical attributes. Specifically:

• Text line (defined by its baseline piece-wise linear

curve):

Region type the text line belongs to, one-hot encoded

Normalized coordinates of the center of the baseline

Normalized coordinates of the leftmost baseline end

Normalized coordinates of the rightmost baseline end

• Text Region (defined by its bounding polygon):

Region type

Normalized area of the polygon

Normalized center of mass of the polygon

Extreme left, right, top and bottom normalized

coordinates of the polygon.
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Note that in all experiments, we assume that the layout

elements are previously revised and amended if necessary.

Therefore, the input can be assumed to be ground-truth.4

Note also that the features described above do not

include any information about the text possibly included in

each layout element (line). An explanation for this choice

is in order.

Clearly, as stated in Sec. 1, in many cases, it can be

difficult or impossible to tell a correct reading order

without taking into account the content of the layout ele-

ments (the transcript in the case of text lines).

However, there are also many other cases where textual

content is not an adequate cue to determine reading order.

For example, the cells in a table should be ordered

according to the table structure, as given by column and/or

raw headers, and the raw cell contents provides little or no

information about which cell is to be considered before

another. Similarly, the order of fields in many structured

documents such as forms can often be better estimated

more from visual than from textual features. In these cases,

visual layout features become more important than the

content itself.

Therefore, estimating the reading order should be seen

as a twofold problem, where both visual and textual cues

can be important or not depending on the task. The results

presented in the next section show that using only simple

visual or geometric features can already provide enough

accuracy to allow the use of the proposed approaches in

many real applications. And for the most difficult types of

layouts, such as tables, it is unclear that textual features

might actually help to improve the results.

Nevertheless, of course, our results do still leave sig-

nificant room for improvement, and we do think that in

many cases it might actually come from the use of textual

features which, in future works we plan extract using a

recent methodology known as ‘‘probabilistic

indexing’’ [17, 23].

4.1 Datasets

We consider three datasets with complex reading order:

‘‘Oficio de Hipotecas de Girona’’ (OHG),5 ‘‘Finnish Court

Records’’ (FCR)6 and ‘‘READ ABP Table dataset’’

(ABP).7

Table 1 summarizes the main features of these datasets

and the corresponding splits into training, validation and

test parts. Details are provided in the following

subsections.

4.1.1 Oficio de Hipotecas de Girona

This collection, composed of hundreds of thousands of

notarial deeds from 1768–1862, is provided by the Centre

de Recerca d’Història Rural from Universitat de Gir-

ona(CRHR).8 Sales, redemption of censuses, inheritance

and matrimonial chapters are among the most common

documentary typologies in this collection. Digital page

images are accompanied by their respective ground-truth

layout in PAGE-XML format, compiled by the Handwrit-

ten Text Recognition group of the Pattern Recognition and

Human Language Technologies9 center and CRHR. OHG

pages exhibit a relatively complex layout composed of six

region types, namely pag, tip, par, pac, not, nop. An

example is shown in Fig. 3.

A main complexity of this dataset is the diversity of

region types and the fact that the number of regions in a

page image varies widely (from just a single pac region, to

up to nine regions of diverse types).

In this work, we use a publicly available portion of 596

pages from the collection, with the same data splits defined

in [19] which are also summarized in Table 1. More details

are provided in Table 3 of Appendix B. Splits are avail-

able online along with the source code used in the present

experiments (see Sect. 4.4).

4.1.2 Finnish court records

The FCR dataset is a selection of 500 pages from the

Renovated District Court Records (19th century),10 a large

collection of the National Archives of Finland. The docu-

ments consist of records of deeds, mortgages, traditional

life-annuity, among others.

This dataset contains images with one or two document

pages,11 annotated with text lines and six different region

types, namely pageNum, marg, textRegion, textRegion2,

table and table2. A double-page example is shown in

Fig. 4. The blend of single- and double-page images is a

common complexity added to the DLA problem and the

reading order problem itself. We select this dataset not only

because of that complexity but also by the number of dif-

ferent regions as well.

4 This assumption allows us to use standard metrics to assess the

obtained results in a clearly understandable manner. Obviously, the

proposed methods can straightforwardly be applied to automatically

extracted (unsupervised) layout elements, but assessing the results

with respect to unaligned references would make the evaluation

protocol more obscure.
5 https://zenodo.org/record/1322666.
6 https://zenodo.org/record/3945088.
7 https://zenodo.org/record/1243098.

8 http://www2.udg.edu/tabid/11296/Default.aspx.
9 https://prhlt.upv.es.
10 https://arkisto.fi/en/records-3/copy-of-kansallisarkiston-aineistot.
11 Nevertheless, the word ‘‘page’’ will be used in the rest of this paper

to refer to each single or double-page image of a collection.
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In this work, we use the same data splits defined in [19]

which are also summarized in Table 1. More details are

provided in Table 4 of Appendix B. Splits are available

online along with the source code used in these experi-

ments (see Sect. 4.4).

4.1.3 READ ABP table

It is a subset of the ABP_S_1847-1878 dataset, which

contains information about the parishioners who died

within the geographic boundaries of the various parishes of

the Diocese of Passau between the years 1847 and 1878.

The ABP dataset contains a very heterogeneous set of

pages where the main element is a table. It is composed of

111 manually annotated pages which amount to 29 752

text lines or 15 231 cells. Only two different regions are

defined, namely: textRegion for normal text regions and

tableRegion for tables.

Since no reading order was explicitly defined in the

dataset, we defined it as follows (see an example in Fig. 5):

1. textRegion elements are sorted in TBLR order

2. Then, tableRegion cells are ordered row by row from

top-to-bottom

3. Finally, text lines in each cell are sorted in TBLR order

In this work, we use the same data splits defined in [19]

which are also summarized in Table 1. More details are

provided in Table 5 of Appendix B. On average, each ABP

page contains 7.7 regions and 268 text lines. The number of

lines is so large because each cell in a table may contain

several small text lines. Splits are available online along

with the source code to replicate the defined reading order

and the experiments (see Sect. 4.4).

4.2 Metrics

Evaluating the reading order is a challenging task that

requires measuring not only how many elements are placed

in the correct position within the order, but also how far

those elements are paced with respect to the correct posi-

tion. Hence, basic metrics such as precision–recall or the

number of misplaced elements are not enough, as they do

not take into account the distance between the predicted

placement of an element and the correct position.

Therefore, we resort to metrics used in information

retrieval specifically for this purpose, such as Spearman’s

footrule distance and the Kendall’s Tau rank distance.

Moreover, as those metrics will take into account how

many elements are misplaced and how far the elements are

from the correct position, they give us and idea not only of

the performance of the proposed methods but also an

estimation of the effort needed to manually correct any

error, as will be explained in the following paragraphs.

Normalized Spearman’s footrule distance [10] is the

normalized cumulative sum of distances between pairs in

two ordering indexes, computed as:

qðt; mÞ ¼
Pn

i¼1 j ti � mi j
b1

2
n2c ð17Þ

where t; m are the ground-truth and the hypothesis ordering

indexes for S, b1
2
n2c is the maximum cumulative distance

possible between all pairs ðti; miÞ, and 0� qð�Þ � 1.

The normalized Spearman’s footrule distance gives us

the insight into not only how many elements are misplaced,

but also how far are those elements from their correct

position.

Kendall’s Tau rank distance [8] is a metric also called

bubble-sort distance, since it is equivalent to the number of

swaps the bubble-sort algorithm would need to transform

the order defined by m into the reference order defined by t.

Table 1 Main characteristics of the datasets

Dataset OHG FCR ABP

Pages (total) 596 500 111

Training 149 125 28

Validation 149 125 28

Test 298 250 55

Average lines per page 40 64 268

Average regions per page 4.9 3.8 7.7

Average lines per region 8.2 16.8 34.8

Fig. 3 An example of the OHG dataset. The text line reading order is

depicted in green over the baseline centers, and text regions are

depicted as pac in brown, tip in red, par in violet, nop in yellow and

not in blue. Better seen in color
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Hence, it can be interpreted as an upper-bound to the

number of edit steps an expert user will need to make in

order to edit the hypothesis into the correct reading order.

Formally, it is defined as the number of discordant pairs

between t and m:

Kðt; mÞ ¼ jfði; jÞ : i\j ^ ððti\tj ^ mi[mjÞ _ ðti[tj ^ mi\mjÞÞgj
ð18Þ

Hierarchical evaluation, in a hierarchical approach, the

previously discussed metrics can be straightforwardly used

to assess the results obtained at each level of the hierarchy.

The resulting values will help to understand the effective-

ness of the method at each level individually.

Furthermore, to compare a hierarchical approach to its

flat full-page counterpart, the results obtained for the

hierarchical ordering can be flattened into an order of the

lowest hierarchy elements (lines in our experiments) at the

full-page level. Then, the normalized Spearman’s footrule

distance can be directly computed as in the non-hierar-

chical case.

On the other hand, since any editing step (swap) in a

higher level will update its sub-elements in a lower level as

well, the Kendall’s Tau rank distance should be simply

computed as the sum of the swaps needed at each hierar-

chical level.

4.3 Experimental setup

One of the key points of the proposed method is to obtain a

good estimate of Pðy j s;s0Þ —and ~Pðy j s;s0Þ, Eq. (6).

In a previous work [19]we estimated this probability

using different classifiers, and we found the Multilayer

Perceptron (MLP) [21] model to be the most adequate for

the problem. Consequently, we have also adopted this

model in the present work, whose parameters are selected

using the validation set of each dataset: three layers, with

the number of neurons in the hidden layer set to twice the

number of input features for each dataset; ReLU activation

function in the input and hidden layers and sigmoid in the

output layer. The ADAM optimizer [9] has been used for

training, with a learning rate of 0.001.

Notice that the memory demands during training could

be huge since the number of pairs generated per page is

n2 � n, where n is the number of layout elements. In order

to reduce the memory footprint, instead of using all pos-

sible pairs of the training set, a random set of pairs is

generated on the fly directly from the training samples

(layout elements) in each epoch. The pairs are composed of

the i-th layout element in the training set and another

element selected randomly from the same page or region.

In this way all the training samples are visited in each

epoch, but the memory required is linear with the number

of samples.

We perform three main types of experiments. First, the

proposed decoding methods are compared. Second, the

reading order of text lines at page level is extracted. Third,

we split the process into two hierarchical reading orders,

i.e., we sort the regions of each page, then the lines in each

region are sorted too. Finally, we flatten the two hierar-

chical results into a text line order at page level.

To allow easy comparisons, we report the macro-aver-

age of each metric, relative to the number of test pages or

Fig. 4 A double-page example of the FCR dataset. The text line

reading order is depicted in green over the baseline centers, and

regions are depicted as pageNum in red, marg in yellow, textRegion in

violet and textRegion2 in brown

Fig. 5 An example of the ABP dataset. The text line reading order is

depicted in green over the baseline centers, and the textRegions and

tableRegion in red and violet, respectively
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regions of interest of each dataset. In addition, to reduce

variance, all the values have been obtained as the average

over ten experiments with different random initialization of

the model parameters. Furthermore, qðs; tÞ values are

reported as a percentage (%) to avoid very small numbers.

4.4 Reproducibility

The lack of available datasets and tools is one of the main

bottlenecks toward a reproducible research. For this reason,

the source code used to carried out the experiments pre-

sented in this paper is freely available12, along with the

subsets used as training, validation and test for each data-

set13. Similarly, the images and ground-truth files of all the

datasets are available through the channels specified in

Sect. 4.1.

We hope open-source code and datasets will help to

boost research on document reading order and related

areas.

5 Results

First, in Sect. 5.1, we evaluate how the size of the input

sample influence the behavior of the proposed decoding

algorithms. Then, in Sect. 5.2, we analyze the performance

of the proposed method in different datasets.

5.1 Analysis of the decoding algorithms

In this experiment, we compare the three different decod-

ing algorithms, presented in Sect. 3.3, for an increasing

number of input layout elements. To this end, we build

subsets of m text lines per page, from m ¼ 2 to the maxi-

mum number of lines available (i.e., 2�m� n). The text

lines were selected randomly from the OHG dataset (where

n ¼ 40 on average).

We compute the time each algorithm needs to obtain the

hypothesis for m increasing from 2 to 60. In each case, the

Spearman’s footrule distance is computed as well in order

to analyze the relative effectiveness of each decoding

method. The results are summarized in Fig. 6.

As expected, the Brute Force computing time grows

exponentially and only results for m� 9 could be obtained

under a reasonable amount of time. By comparison, the

computing times of both proposed decoders grow slowly,

the Greedy method typically taking an order of magnitude

longer than the FDTD decoder.

With respect to the accuracy of each decoder, for m� 9

all of them provide the same (optimal) response. Then after

m ¼ 15 , the results are very similar for Greedy and FDTD,

but toward m[ 38 the latter starts behaving slightly better.

In the light of these results, the FDTD method exhibits

better overall performance, taking into account both com-

plexity and accuracy. Nevertheless, for the sake of com-

pleteness, in the following experiments, we report results

for both the Greedy and the FDTD decoders (and also for

the Brute Force, whenever possible).

5.2 Performance results

Results for the different datasets, tasks, decoding methods

and metrics considered are reported in Table 2. Detailed

discussion on these results follows in the coming

subsections.

In general, both proposed decoding methods, Greedy

and FDTD, achieve very similar performance in all data-

sets, tasks and metrics. Also, both methods significantly

outperform the trivial TBLR approach, in most cases

dramatically.

Fig. 6 Computing time and effectiveness (qðs; tÞ) of each decoding

method for increasing input sizes. Better in color

12 https://github.com/lquirosd/Order_Relation_Operator
13 https://github.com/lquirosd/Order_Relation_Operator/tree/master/

data.
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5.2.1 Text lines at page level

In this task, abbreviated as LP in Table 2, we obtain the

reading order of all text lines present in each page for all

three datasets. In general, both proposed decoding methods

(Greedy and FDTD) perform very similarly in all datasets.

Results obtained for the OHG dataset are very encour-

aging. For the qðt; mÞ metric, values below 0:7% are

reported for both proposed decoders. This means that even

though a few order errors exist, the text lines involved are

placed near the correct relative position.

Also, given that each page in the dataset contains an

average of 40 text lines, the expected effort to fix any error

is very low, according to the Kðt; mÞ metric, on average less

than 4 swaps per page would be needed by a user to

achieve the correct reading order. As compared with the

approximately 13 swaps required by TBLR, the improve-

ment according to this metric is 74%.

Two representative examples of real OHG results are

shown in Fig. 7. In the first one (left), the result provided

by the proposed decoder is fully correct. This is achieved in

spite of complexities like lines that are very close to each

other at the top and the middle of the image. In the second

example (right), the proposed method produces only one

error, when a text line belonging to a side note (nop) is

misplaced in the middle of a paragraph. In comparison,

TBLR results are much worse, particularly in the second

example.

It is important to notice that even the single error in the

reading order of the second example inserts a text from a

text region into another region. Such an apparently minor

error may dramatically change the meaning of the

corresponding paragraphs. This is a clear indicator of the

difficulty and sensitivity of the reading order problem.

The FCR dataset has 64 text lines per image on average,

with the complexity that an image can contain one or two

document pages. A good quality reading order is also

obtained by the proposed methods for this dataset. Values

of qðt; mÞ fall below 1% of the maximum displacement the

elements can have. And an average of 16.1 swaps would be

needed to correct the reading order, which is 97% lower

than with the TBLR approach.

The largest performance differences between the two

proposed decoders are observed in this dataset, with FDTD

performing better than Greedy by 0:34% in the qðt; mÞ
metric and by more than 6 swaps per page according to

Kðt; mÞ.
Two representative examples of results are shown in

Fig. 8. FDTD provides great results (only minor errors in

the marginalia regions) In contrast, the results of the simple

TBLR approach are hardly usable, particularly (as expec-

ted), those of the double-page example.

In contrast with OHG and FCR, the ABP dataset is very

heterogeneous and only a few samples of each type of

table are available for training. Moreover, it has as many as

268 average text lines per page. Figure 9 shows two

examples of results for images that have a sufficiently

small number of elements to allow visualization and

readability.

Despite the difficulties, the proposed methods are able to

obtain reasonably good qualitative results between rows in

the same table, while the intra-row results are far insuffi-

cient for a useful reading order. Moreover, the average

number of swaps needed to fix the errors is very large.

Table 2 Layout element

ordering results for different

metrics, tasks and decoders

Metric qðt; mÞð%Þ Kðt; mÞ

Dataset Decoder LP RP LR LHP LP RP LR LHP

OHG TBLR 2.91 9.34 0.06 3.51 12.971 0.614 0.012 0.67

Greedy 0.70 0.22 0.05 0.06 3.449 0.019 0.010 0.07

FDTD 0.69 0.21 0.05 0.06 3.400 0.020 0.011 0.07

BF – 0.20 – – – 0.017 – –

FCR TBLR 31.84 28.43 0.65 31.38 606.972 1.860 1.859 8.32

Greedy 1.28 1.73 0.39 1.07 22.472 1.158 1.179 4.24

FDTD 0.94 1.79 0.39 1.11 16.113 1.144 1.185 4.28

ABP TBLR 10.93 16.59 0.92 8.77 3953.000 5.054 219.805 1707.54

Greedy 7.97 6.26 0.60 5.03 2968.230 1.530 111.220 863.64

FDTD 7.83 6.30 0.60 5.06 2936.150 1.589 111.305 963.04

Reported figures are page or region averages of values of qðt; mÞ (in %) and Kðt; mÞ (absolute numbers of

swaps). Tasks correspond to: ordering Lines at Page level (LP), Regions at Page level (RP), Lines at Region

level (LR) and Lines obtained through Hierarchical processing via RP, but evaluated at Page level (LHP).

The decoders are: Top Bottom Left Right (TBLR), Greedy, First Decide Then Decode (FDTD) and Brute

Force (BF). Order-relation probabilities are learned using a multilayer perceptron. Each result is the

average over ten randomly initialized experiments. In both metrics, the lower the better.
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Nevertheless, the proposed methods still perform around

47% better than TBLR according to the qðt; mÞ metric.

The problems with this dataset are most probably caused

by the scarce training samples along with the heteroge-

neous data in the dataset.

5.2.2 Hierarchical reading order

In these experiments all the regions of interest in the

document are sorted according to the reading order, then

the text lines inside each region are sorted as well. We

consider each of these two tasks individually, followed by a

hierarchical composition of the individual results at page

level. Notice that this experiments, in contraposition to the

plain approach (Sect. 5.2.1), requires a DLA system to

previously segment the documents into regions of interest.

5.2.3 Region reading order at page level

In this task, abbreviated as RP in Table 2, we obtain the

reading order of the text regions of each document page.

The number of regions of interest in any page of the

OHG dataset is sufficiently small to allow using the Brute

Force method. This way all the decoders can be empirically

compared using reasonable computing resources.

As in the case of text lines at page level, in this exper-

iment, all the proposed decoding methods perform simi-

larly well and significantly better than TBLR. The very

small difference between the Brute Force method (which

guarantees optimal solutions) and the other two proposed

methods is particularly worth noting. As already observed

in the results reported in Sect. 5.1, this proves that the

prohibitive optimal solutions are very well-approximated

by the inexpensive proposed methods.

Using these methods, the average number of required

region swaps (Kðt; mÞ / RP, in Table 2) is less than 1 every

5 pages for OHG, about 1 per page for FCR and less than 2

per page for ABP. Equally important is to notice that qðt; mÞ
is very small for OHG and FCR, which means that the very

few misplaced elements are very near the correct positions.

Fig. 7 Two examples (left-right) of results obtained for the OHG

dataset where ground-truth is depicted in green and system results in

blue (for the TBLR approach) and violet (for FDTD). The center of

each element is slightly shifted to improve readability. Better seen in

color

Fig. 8 Two examples (left–right) of results obtained for the FCR

dataset where ground-truth is depicted in green and system results in

blue (for the TBLR approach) and violet (for FDTD). The center of

each element is slightly shifted to improve readability. Better seen in

color
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5.2.4 Text lines reading order at region level

In this task, abbreviated as LR in Table 2, text lines within

each text region are sorted in reading order. Accordingly, the

results presented in the LR columns of Table 2 are region

averages instead of page averages as in the other columns.

In the OHG dataset, writing inside the text regions is

very consistent. For this reason, even the results provided

by the simple TBLR approach are reasonably good. Yet,

the proposed methods still perform slightly better.

Likewise, in the FCR dataset the text line reading order

produced by TBLR at region level is fairly good, but the

proposed methods achieve 40% better results for qðt; mÞ and

36% for Kðt; mÞ (number of swaps).

With respect to the ABP dataset, the proposed methods

are able to reduce the average number of swaps to less than

112 (which is about half of those required by TBLR).

However, the number of misplaced elements is still

exceedingly large to be useful for real applications.

5.2.5 Hierarchical consolidation

In this task, abbreviated as LHP in Table 2, text lines are

ordered through hierarchical processing. First text regions

are sorted at page level, then text lines within each region

are sorted. As discussed before, the performance of this

task is assessed by evaluating the flattened text line order at

page level. This allows us to compare this approach with

the task of directly sorting text lines at page level (LP in

Table 2).

In general, the hierarchical approach significantly

overcomes the LP results, in some cases by more than one

order of magnitude. For instance, in OHG, Kðt; mÞ is

reduced from 3.4 swaps to 0.07 swaps, using either the

FDTD decoder or the Greedy approach. Important reduc-

tions are also achieved for FCR (from more than 16 to 4

swaps) and for ABP (from more than 2935 to 864 swaps).

Regarding the qðt; mÞ metric, results also improve dramat-

ically in the OHG dataset (from 0:7% down to 0:06%) and

less so for FCR.

The simple TBLR results are also improved, but the

proposed methods still outperform TBLR by large margins.

In summary, the hierarchical treatment of the data proves

to be very important both to reduce the problem complexity

and to increase the effectiveness of the proposed methods.

Although these improvements come at the price of requiring

a richer layout analysis where the text regions are accurately

recognized, while in the LP task (text lines at page level),

only plain text line detection is strictly required.

Examples of hierarchical results are shown in Figs. 10,

11 ,12 for the same pages for which the direct LP results

are shown in Figs. 7, 8, 9.

In the OHG examples, both TBLR and the proposed

FDTD method are able to obtain the correct reading order

within the text regions, but only FDTD achieves the correct

region reading order as well. As compared with the results of

direct line ordering at page level, hierarchically using FDTD

allows fixing the error shown in the right example of Fig. 7.

In the FCR examples, single page samples are well

handled by both TBLR and FDTD, but for complex sam-

ples, such as double-page, including several marginalia, the

simple TBLR approach still falls short, while the proposed

method does achieve perfect results. As compared with

direct FDTD line ordering at page level, using FDTD

hierarchically allows fixing the subtle errors shown in

Fig. 8.

In the ABP examples, finally, results for both methods

are still so messy that probably will be easier for a human

to establish the reading order from scratch than to fix

errors.

6 Conclusions

We propose a new general approach to extract the reading

order of handwritten documents based on learning a pair-

wise relation operator. Also, two different decoding

Fig. 9 Two examples (left-right) of results obtained for the ABP

dataset where ground-truth is depicted in green and system results in

blue (for the TBLR approach) and violet (for FDTD). The center of

each element is slightly shifted to improve readability. Better seen in

color
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methods are presented, which provide much better ordering

accuracy than a classical approach (TBLR) which sorts

layout elements according to their geometric positions in

the image. In general, the accuracy of the two proposed

decoders is very similar, while the main difference is the

computational complexity of each one. Experiments sup-

port that the FDTD algorithm is faster and slightly more

accurate.

We report very good results in moderately homogeneous

datasets such as OHG and FCR, while results in the very

heterogeneous ABP dataset are still far away from being

useful to recover the information present in the documents.

Furthermore, we study a hierarchical application of the

proposed methods and show that such a hierarchically

processing further reduces the complexity of the problem

and increases the accuracy of the results.

Nevertheless, the method still exhibits some limitations

that should be taken into account in any production

scenario. In particular, the method depends on a good

estimation of Pðy j s; s0Þ, which is proven to be hard in very

heterogeneous datasets. Also, the computational cost of

samples with a large number of elements (e.g., maritime

navigation charts with thousands of elements) should be

carefully analyzed. Moreover, errors in automatically

detected layout elements (e.g., merged elements, misla-

beled elements) could directly impact the proposed

method.

In the future, we would like to address the problem of

heterogeneous datasets by exploring more powerful clas-

sifiers, as well as more complex features to represent layout

elements, including textual content features obtained by

means of probabilistic indexing [17, 23]. Equally important

to this end is to extend the proposed methods to take into

account a more complete context of each layout element.

We expect this will lead to more robust ordering models.

Finally, we aim at further exploring the algorithmics of

the order decoding problem. According to Eq. (12), the

probability of a solution obtained by the proposed Greedy

method is a lower bound of the probability of a globally

optimal solution. On the other hand, according to Eq. (16),

the probability of a solution yield by the FDTD method is

Fig. 10 Two examples (left-right) of hierarchical results obtained in

the OHG dataset. The ground-truth is depicted in green and the

hypothesis in blue for the TBLR approach, and violet for FDTD. The

center of each element is slightly shifted to improve readability.

Better seen in color

Fig. 11 Two examples (left-right) of hierarchical results obtained in

the FCR dataset. The ground-truth is depicted in green and the

hypothesis in blue for the TBLR approach, and violet for FDTD. The

center of each element is slightly shifted to improve readability.

Better seen in color
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an upper bound of the optimal probability. Moreover, as

discussed before, both bounds are fairly tight. These results

pave the way for the development of Branch and Bound

methods that provide globally optimal solutions, as the

Brute Force method considered in this work does, but

requiring only moderate computation resources.

A Numerical examples

This appendix covers illustrative examples of possible

learned values of ~PðY ¼ 1 j si;sjÞ; 1� i; j� n for the five

lines example in Fig.1 and how Eq. (10) is computed using

these values. These examples also aim to help to under-

stand important aspects of the decoding methods proposed

in Sect. 3.3 and the effect of some corner cases on these

methods.

Case 1

Here, we present an example of the most common case,

where PðY ¼ 1 j si;sjÞ is well-estimated:

Fig. 12 Two examples (left-right) of hierarchical results obtained in

the ABP dataset. The ground-truth is depicted in green and the

hypothesis in blue for the TBLR approach and violet for FDTD. The

center of each element is slightly shifted to improve readability.

Better seen in color

ð19Þ

We can now use these values to apply Eq. (10) to the

matrix in Eq. (2), corresponding to the canonical form of

the permutation ẑ ¼ fðA; 1Þ; ðB; 4Þ; ðC; 2Þ; ðD; 5Þ; ðE; 3Þg:

PðH ẑÞ � ~PðY ¼ 1 j A;CÞ ~PðY ¼ 1 j A;EÞ
~PðY ¼ 1 j A;BÞ ~PðY ¼ 1 j A;DÞ
~PðY ¼ 1 j C;EÞ ~PðY ¼ 1 j C;BÞ
~PðY ¼ 1 j C;DÞ ~PðY ¼ 1 j E;BÞ
~PðY ¼ 1 j E;DÞ ~PðY ¼ 1 j B;DÞ

¼0:6 � 0:9 � 0:8 � 0:7�

0:8 � 0:6 � 0:9�

0:7 � 0:9

0:8

�0:0658

The same result is obtained for the matrix in Eq. (1), but

using the corresponding values of ~PðY ¼ hi;j j si; sjÞ as:

PðH ẑÞ �0:8 � 0:6 � 0:7 � 0:9�

ð1 � 0:4Þ � 0:8 � ð1 � 0:3Þ�

0:9 � 0:8�

ð1 � 0:1Þ

�0:0658

And now for the naive TBLR order

z0 ¼ fðA; 1Þ; ðB; 2Þ; ðC; 3Þ; ðD; 4Þ; ðE; 5Þg:

PðHz0 Þ �0:8 � 0:6 � 0:7 � 0:9�

0:4 � 0:8 � 0:3�

0:9 � 0:8�

0:1

�0:00209

The Brute Force decoding goes over the 120 different

permutations to obtain that the most probable permutation

is zH ¼ ẑ, with PðHzHÞ ¼ 0:0658. The Greedy and FDTD

decoders also predict the same permutation.
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Case 2

Another possible case, where ~PðY ¼ 1 j si;sjÞ is properly

estimated (in the sense discussed in Sect. 3.3), could be:

ð20Þ

Following Alg.1, the most probable element to be placed in

the first position is C with b ¼ 0:2916 (see lines 6 � 11 in

Alg.1). Upon termination, Alg.1 finally predicts the reading

order as ~zH ¼ fðC; 1Þ; ðA; 2Þ; ðE; 3Þ; ðB; 4Þ; ðD; 5Þg with

PðH~zHÞ ¼ 0:0576 (which in fact is the second best per-

mutation), while the global optimum permutation is zH ¼
fðA; 1Þ; ðC; 2Þ; ðE; 3Þ; ðB; 4Þ; ðD; 5Þg with a higher proba-

bility, PðHzHÞ ¼ 0:0864. The same optimal results is also

obtained by the FDTD decoder in this case.

This is a representative example of the limitations of the

Greedy decoder, where a local maximum corresponds to a

sub-optimal result.

Case 3

As discussed in Sect. 3.3.2, it is possible that Eq. (14) leads

to ties in the number of zeros per row in HH, resulting in an

improper permutation. This may happen, for instance, in

the following case, where ~PðY ¼ 1 j B;CÞ[ 0:5, ~PðY ¼
1 j C;EÞ[ 0:5 and ~PðY ¼ 1 j E;BÞ[ 0:5:

ð21Þ

This combination contradicts the transitivity property of a

total order and, using Eq. (14) and Eq. (15), FDTD yields

an improper permutation, namely: z ¼ fðA; 1Þ; ðC; 3Þ;
ðE; 3Þ; ðB; 3Þ; ðD; 5Þg, with PðHHÞ ¼ 0:0658 obtained

using Eq. (10). The optimal solution provided by Brute

Force (and in this case also by the Greedy method) is zH ¼
fðA; 1Þ; ðC; 2Þ; (E, 3), ðB; 4Þ; ðD; 5Þg, with PðHzHÞ ¼
0:0438\ 0:0658 ¼ PðHHÞ. Depending on how the ties for

C, E, B are resolved, different proper permutations can be

obtained. Only if they are resolved in favor of C � E � B,

the optimal permutation, zH, is obtained.

B Details of the datasets

See Tables 3, 4 and 5.

Table 3 Main characteristics of

the OHG dataset, which is

divided into 149 pages for

training, 149 for validation and

298 for test

Region Name #Regions #Lines

Train Val Test Total Train Val Test Total

par 228 210 431 869 4051 3721 7597 15369

pac 111 123 228 462 1501 1815 3300 6616

tip 224 206 424 854 240 218 458 916

pag 79 77 135 291 79 77 135 231

nop 97 112 192 401 102 112 189 403

not 10 7 17 34 70 26 101 197

On average, each page contains 4.9 regions and 40 text lines

Table 4 Main characteristics of

the FCR dataset, which is

divided into 125 pages for

training, 125 for validation and

250 for test

Region Name #Regions #Lines

Train Val Test Total Train Val Test Total

pageNum 86 87 168 341 92 87 169 348

marg 132 142 308 582 637 729 1659 3025

textRegion 183 195 381 714 4731 4707 9326 18764

textRegion2 59 70 129 258 2216 2525 4740 9481

table 2 5 12 19 55 95 261 411

table2 1 2 4 7 9 52 87 148

On average, each image contains 3.8 regions and 64 text lines
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