
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:8124–8147
https://doi.org/10.1007/s11227-022-05003-3

1 3

Micro‑kernels for portable and efficient matrix 
multiplication in deep learning

Guillermo Alaejos1 · Adrián Castelló1 · Héctor Martínez2 · Pedro Alonso‑Jordá1 · 
Francisco D. Igual3 · Enrique S. Quintana‑Ortí1

Accepted: 4 December 2022 / Published online: 14 December 2022 
© The Author(s) 2022

Abstract
We provide a practical demonstration that it is possible to systematically generate 
a variety of high-performance micro-kernels for the general matrix multiplication 
(gemm) via generic templates which can be easily customized to different proces-
sor architectures and micro-kernel dimensions. These generic templates employ 
vector intrinsics to exploit the SIMD (single instruction, multiple data) units in 
current general-purpose processors and, for the particular type of gemm problems 
encountered in deep learning, deliver a floating-point throughput rate on par with 
or even higher than that obtained with conventional, carefully tuned implementa-
tions of gemm in current linear algebra libraries (e.g., BLIS, AMD AOCL, ARMPL). 
Our work exposes the structure of the template-based micro-kernels for ARM Neon 
(128-bit SIMD), ARM SVE (variable-length SIMD) and Intel AVX512 (512-bit 
SIMD), showing considerable performance for an NVIDIA Carmel processor (ARM 
Neon), a Fujitsu A64FX processor (ARM SVE) and on an AMD EPYC 7282 pro-
cessor (256-bit SIMD).

Keywords Matrix multiplication · Linear algebra libraries · High performance · 
Vector intrinsics · SIMD units

1 Introduction

A few decades ago, the basic linear algebra subprograms (BLAS) [1] sparked porta-
bility in scientific computing by defining a standard interface that hardware vendors 
could instantiate into their products, and researchers could then leverage from their 
codes and libraries. A significant leap forward toward combining portability with 
performance came later, in a seminal paper from Kazushige Goto and Robert A. van 
de Geijn in 2008  [2]. There, the authors define the foundations for the realization 
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of the high performance matrix multiplication (gemm) that underlies most current 
linear algebra libraries, such as GotoBLAS  [2], BLIS  [3], OpenBLAS  [4], AMD 
AOCL, and (possibly) Intel MKL and oneAPI.

The ideas behind Goto and van de Geijn’s algorithm for gemm were eventually 
extended to formulate a rich family of algorithms for this operation that comprises 
six algorithms and three types of micro-kernels  [5–7]. In  [7], we investigated the 
members of this family, manually instantiating them on an NVIDIA Carmel, ARM-
based processor, and conducting an evaluation for the type of operators that are 
encountered in convolutional neural networks  [8, 9], using a simple micro-kernel 
only.

In this paper, we continue our previous work in [7, 9] toward improving portabil-
ity (and maintainability) of gemm. The key in this paper lies in the formulation of a 
common generic micro-kernel, which can then be easily instantiated into a collec-
tion architecture-specific realizations via a few macros and two configuration vari-
ables specifying the micro-kernel dimensions. This differs from current realizations 
of gemm in libraries such as GotoBLAS2, OpenBLAS and BLIS, which integrate a 
single micro-kernel per architecture, encoded in assembly. This work thus makes the 
following specific contributions:

• We describe how to develop an ample variety of multi-platform, high perfor-
mance micro-kernels for matrix multiplication using high level vector intrinsics 
to exploit the SIMD (single instruction, multiple data) units in current general-
purpose processors.

• We integrate the intrinsics-based micro-kernels into the BLIS family of algo-
rithms for matrix multiplication, experimentally exploring the performance of 
the family members.

• We provide practical evidence of the advantages and caveats of this high-level 
approach, for deep learning (DL) applications, on two ARM-based multicore 
processors, equipped with 128-bit and 512-bit SIMD units.

The rest of the paper is structured as follows. Sect. 2 briefly reviews the family of 
BLIS algorithms for high performance matrix-matrix multiplication. Sect. 3 explains 
how to generate gemm micro-kernels using vector intrinsics. Sect. 4 is devoted to the 
experimental results. Finally, Sect.  5 summarizes the main results, presents some 
conclusions, and discusses future work.

2  The family of BLIS algorithms for GEMM

2.1  High performance implementation of gemm

Consider the gemm C = C + AB , where the operands are matrices with the following 
dimensions: A → m × k , B → k × n , and C → m × n . The BLIS framework (as well 
as other libraries, such as AMD ACML, OpenBLAS and ARMPL) follows Goto-
BLAS to encode this operation as three nested loops around two packing routines 
and a macro-kernel. In BLIS, the macro-kernel is decomposed into two additional 
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loops around a micro-kernel, with the latter comprising a single loop that performs 
an outer product per iteration. The top-left part of Fig.  1 displays the BLIS base-
line algorithm for gemm, comprising the six loops, the two packing routines, and the 
micro-kernel.

Hereafter, we will refer to the BLIS baseline algorithm as B3A2C0. In this nota-
tion, Z ∈ {A,B,C} specifies one of the three matrix operands and the subsequent 
number, i ∈ {0, 2, 3} , indicates the cache level where that operand resides (with 0 

Fig. 1  Variants of the BLIS family for gemm with C streamed from memory into the processor registers: 
B3A2C0 (left) and A3B2C0 (right)
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referring to the processor registers). The same matrix operand resides in both the L1 
and L3 caches.

The three outermost loops of the B3A2C0 algorithm, indexed by jc , pc and ic , 
respectively, traverse the n–, k– and m–dimension of the problem, partitioning the 
matrix operands conformally to the processor cache hierarchy. This nesting of the 
loops, together with the specific packing of B, A, and a selection of the cache con-
figuration parameters nc , kc mc , adjusted to the target processor architecture  [10], 
favor that Bc remains in the L3 cache and Ac in the L2 cache during the execution 
of the micro-kernel, while C is streamed from the main memory into the processor 
registers; see the bottom-left part of Fig. 1  [10]. Besides, for high performance, the 
packing routines ensure that the contents of the buffers Ac,Bc are accessed with unit 
stride from the micro-kernel (see Fig. 2), and this specific part of the code is usually 
implemented using assembly in order to exploit the SIMD floating point units in 
current processors.

2.2  Meeting other members of the BLIS family

The B3A2C0 algorithm arranges the loops (from outermost to innermost) in the 
order jc → pc → ic → jr → ir → pr , with the packing of B,  A inserted within 
loops L2, L3, respectively; see Fig. 1.

Other variants of the BLIS family of algorithms for gemm  [5–7] can be obtained 
by nesting the loops differently, so as to favor that the matrix operands are “distrib-
uted” across the levels of the memory hierarchy following a different strategy. For 
example, as A, B are both input operands and play symmetric “roles” in the matrix 
multiplication, we can aim at maintaining Ac in the L3 cache, Bc in the L2 cache, 
while the micro-tile Cr resides in the processor registers, yielding the A3B2C0 vari-
ant. This can be done by reordering the loops of the BLIS baseline algorithm as 
ic → pc → jc → ir → jr → pr (that is, by swapping the loops for ic, jc and ir, jr ) while 

Fig. 2  Packing in the BLIS algorithm. The buffer A
c
 is packed into micro-panels of m

r
 rows while the 

buffer B
c
 is packed into micro-panels of n

r
 columns. When convenient, we will refer to these micro-

panels as A
r
 and B

r
 , respectively
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placing the packing of A,  B within loops L2, L3, respectively (and choosing the 
appropriate values for mc, nc, kc ); see the right hand-side of Fig. 1.

The two variants previously described, B3A2C0 and A3B2C0, keep a micro-tile 
Cr in the processor registers, repeatedly updating its contents inside loop L6 of the 
micro-kernel. The family of BLIS algorithms for gemm can be enlarged by maintain-
ing C in the L2 cache, yielding the two alternatives in Fig. 3. In the B3C2A0 variant 
(left hand-side of the figure), the loops are ordered as jc → pc → ic → pr → ir → jr , 

Fig. 3  Variants of the BLIS family for gemm with C in the L2 cache: B3C2A0 (left) and A3C2B0 (right)
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and the two packing buffers contain blocks from B, C. With this solution, Bc resides 
in the L3 cache (and a part of it, in the L1 cache), while the micro-tile that is 
streamed from memory and remains in the processor registers, during the execution 
of the micro-kernel, corresponds to A. By swapping the roles of A and B in this vari-
ant, we obtain the A3C2B0 counterpart; see the right hand-side of Fig. 3.

Finally, the last two members of the BLIS family target the L3 cache with the 
C matrix: C3B2A0 and C3A2B0. In the first case, Bc is to remain in the L2 cache 
and a micro-tile Ar in the processor registers while in the second one, the roles of A 
and B are swapped. Again, this is attained with a specific ordering of the loops, (a 
proper selection of the cache configuration parameters, adjusted to the target proces-
sor architecture,) and the appropriate packing. For brevity, we do not provide the 
schemes of the last two algorithms, but they can be found in [7].

3  Micro‑kernels for GEMM

BLIS encodes the five outermost loops and the two packing routines in a portable, 
high level programming language such as C. In contrast, for high performance, 
BLIS integrates architecture-specific micro-kernels, encoded using assembly, for 
many processors from AMD, Intel, ARM and IBM. (Actually one micro-kernel per 
architecture.)

In this section, we depart from the BLIS conventional approach by exploring the 
use of high level micro-kernels, totally encoded in the C programming language, 
that leverage vector intrinsics to exploit the SIMD units of the processor. The goal 
is to enhance portability (and maintainability), possibly at the cost of some perfor-
mance. (However, in the next section we will show that, our solution can also pay off 
in terms of performance, especially when we have to deal with DL applications on 
processors with 128-bit SIMD units.)

For simplicity, we choose 32-bit floating point (FP32) as the basic data type for 
all the routines/codes presented in the section (in C language, float), although the 
same ideas apply to other data types.

3.1  Quick overview of the BLIS micro‑kernels

The family of BLIS algorithms for matrix multiplication relies on three types of ker-
nels: The two variants with C resident in the processor registers (in Fig. 1) update 
a micro-tile of C via kc outer products, as illustrated in Fig. 4 (top). In contrast, the 
variants that operate with A resident in the processor registers (e.g., left hand-side 
variant in Fig. 3) update a micro-tile of A via nc matrix-vector products, as displayed 
in Fig.  4 (middle). Finally, the variants with B resident in the processor registers 
(e.g., right hand-side variant in Fig. 3) perform mc vector-matrix products to update 
the micro-tile of B; see Fig. 4 (bottom). Hereafter we will refer to these three types 
of micro-kernels as C-resident, A-resident, and B-resident (to specify the matrix 
operand that stays in the processor registers).



8130 G. Alaejos et al.

1 3

Each type of micro-kernel requires a specific type of packing of two of the matrix 
operands. For the micro-kernel with C-resident, the packing schemes of A and B into 
buffers was already specified in Fig. 2; when the micro-kernel is A-resident, Cc,Bc 
are packed following the same pattern as Ac in Fig. 2 (though with Bc packed into 
blocks of kr rows); and when the micro-kernel is B-resident, the buffers for Cc,Ac are 
packed as Bc in the same figure (with Ac packed in blocks of kr columns).

3.2  An architecture‑specific micro‑kernel with C‑resident for ARM Neon

We open the description of the high level micro-kernels by providing a simple 
example, with C-resident and mr × nr = 4 × 4 (dimension of the micro-tile of C), 
that leverages ARM Neon (intrinsics). We can highlight the following aspects in the 
routine in Listing 1:

• C is assumed to be stored by columns with leading dimension (that is, number 
of entries between two elements in the same row) Clda. The routine receives a 
pointer C into the appropriate entry of C.

• The buffers Ac,Bc are stored as displayed in Fig. 2. The routine receives pointers 
two Ar, Br into the appropriate entries of the respective buffers, corresponding 
to the “top-left entries” of the mr × kc and kc × nr blocks involved in the execu-
tion of the micro-kernel.

• ARM Neon operates with 128-bit vector registers (that is, 4 FP32 numbers per 
register). For ARMv8.2, there are 32 vector registers in total.

• Prior to the loop, four columns of C, each consisting of four FP32 numbers, C 
are loaded into four vector registers: C0–C3 (Lines 15–16). After the loop, the 
contents of these vector registers are stored back into C (Lines 31–32).

Fig. 4  Micro-kernels with C-resident (top), A-resident (middle) and B-resident (bottom)
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  This scheme is associated with the column-major layout of C in memory. For 
a matrix stored in row-major order, it would be more natural to load the rows of 
the micro-tile in the four vector register.

• At each iteration, the code loads one column of Ar into a vector register ar 
(Line 20), one row of Br into a vector register br (also Line 20), and updates 
C0–C3 via four vector fused multiply-add intrinsics (Lines 23–26).

Encoding the micro-kernels with this level of abstraction, instead of using assem-
bly, paves the road toward rapidly exploring many other versions. In this line, each 
iteration of the loop in the micro-kernel loads mr + nr elements to perform 2mrnr 
floating point operations (flops). Choosing “squarish” micro-kernels (i.e., mr ≈ nr ) 
thus improves the ratio of flops to memory operations (also know as arithmetic 
intensity [11]). For the same reason, it is convenient to maximize the use of vector 
registers (without incurring into register spilling) [10]. For example, a 4 × 4 micro-
kernel employs 6 vector registers (one for Ar, one for Br, and four for C) to deliver 
an arithmetic intensity of 32∕8 = 4 . In comparison, an 8 × 12 micro-kernel employs 
29 vector registers (two for Ar, 3 for Br, and 2 ⋅ 12 vector for C) to render signifi-
cantly higher arithmetic intensity: 192∕20 = 9.6.
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The micro-kernels can be further optimized by, on the one hand, integrating soft-
ware pipelining [12] into the loop, in order to overlap computation and data trans-
fers. For example, by using two additional vector registers, say arn, brn, at each 
iteration jr, we can initially load the jr+1 column/row of Ar,Br into them but 
operate with the data in ar, br. At the end of the iteration, in preparation for the 
next one, we copy the data from arn, brn to ar, br. On the other hand, loop 
unrolling  [12] can help to reduce the overhead due to loop control. Finally, there 
exist vector intrinsics in many architectures to perform software prefetching that can 
significantly improve performance. In this work, we restrain ourselves from explor-
ing this venue to focus on portability.

3.3  Comparison to micro‑kernel with A‑resident for ARM Neon

Developing an mr × kr = 4 × 4 micro-kernel with A-resident that leverages ARM 
Neon is direct, and results in the routine in Listing 2. A careful comparison of the 
micro-kernels with C-resident and A-resident reveals the following differences 
between them:

• For the same micro-kernel dimension (that is, when mr × nr = mr × kr ), the var-
iant with C-resident presents a higher arithmetic intensity. The reason is that, 
while both types of micro-kernels perform the same number of flops and number 
of loads from memory, the variant with A-resident has to write a column of C 
back into the memory at each iteration of the loop.

• The variant with A-resident repeatedly updates the vector register. This creates a 
RAW (read-after-write) dependency between the four vector fused multiply-add 
intrinsics (vfmaq_laneq_f32) that precludes their overlapped execution. An 
option to tackle this problem is to unroll the loop by a certain factor, but this 
comes at the cost of requiring a larger number of vector registers. This option 
constrains the dimensions of the micro-tile ( mr × kr ) which do not produce regis-
ter spilling.
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3.4  A generic micro‑kernel

We next take one significant step forward toward improving portability and main-
tainability by formulating a “generic” SIMD-enabled micro-kernel that is valid for 
any dimension mr × nr . (For simplicity, we describe only the C-resident case, but 
the same ideas apply to the two other types of micro-kernels.) For this purpose, we 
rely on C macros to abstract the basic vector (data types and) intrinsics that were uti-
lized earlier in the gemm micro-kernels: load, store and axpy (scalar � times x plus y) 
update. Furthermore, we will assume vector registers of b bits, each capable of stor-
ing ��_���� = b∕32 FP32 numbers. For an mr × nr micro-kernel with C-resident, 
this implies that we need mv × nr = (mr∕��_����) × nr vector registers to store the 
micro-tile of C; mv for the column of Ar; and nv = nr∕��_���� for the row of Br. For 
simplicity, here we assume that mr, nr are both integer multiples of the vector register 
length vl_fp32.
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Listing 3 presents the generic micro-kernel, where we can highlight a couple 
of details:

• Prior to the main loop, indexed by pr (Line 24), we load the contents of the 
corresponding micro-tile of C into the array of vector registers Cr via two 
nested loops (Lines 20–22). The opposite transfer, from the vector registers 
back to memory, is carried out after the main loop (Lines 40–42).

• At each iteration of the main loop, a column of mr elements of Ar and a row of 
nr elements of Br are first loaded into the appropriate vector registers (Lines 
26–27 and 28–29, respectively). These elements then participate in the update 
of the micro-tile stored in Cr Lines 32–35).
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In practice, for high performance it is convenient to fully unroll the loops iterating 
over the mr, nr dimensions of the problem. (That is, those indexed by iv, jv, and 
j.) This can be done either with assistance from the compiler, manually, or auto-
matically with a simple script generator (as described later in this section).

3.5  Adapting the generic micro‑kernel to ARM Neon

Specializing the generic micro-kernel in Listing 3 for ARM Neon can be achieved 
using the following six C macros:

 Here, given that the vector registers in ARM Neon are 128-bit wide, we set vl_
fp32 to (128/32=) 4 (FP32 numbers).

A problem with ARM Neon is that the last argument of the intrinsic vfmaq_
laneq_f32 must be of type const int. This requires us to replace the inner-
most loop of the micro-tile update in the generic micro-kernel (Lines 34–35 in List-
ing 3) with the following fragment of code:

 This is equivalent to fully unrolling the innermost loop of the update, and it is 
straight-forward to carry out manually.

3.6  Adapting the generic micro‑kernel to Intel AVX‑512

Intel was a pioneer company to explore wide SIMD units, from 64 bits in MMX 
(Intel Pentium MMX2, 1997-1998), to 128 bits in SSE (Intel Pentium III, 1999), 
256 bits in AVX (Intel Sandy Bridge, 2011), and 512-bit in AVX-512 (Intel Xeon 
Phi and Intel Skylake, 2013).

Adapting the generic micro-kernel to Intel AVX-512 is attained via the redefini-
tion of the six C macros:
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 Here we take into account that, for AVX-512, the vector registers are 512-bit 
long, and thus can contain vl_fp32=16 FP32 numbers.

Adapting the generic micro-kernel to Intel/AMD AVX2 presents minor differ-
ences and, therefore, it is omitted for brevity.

3.7  Adapting the generic micro‑kernel to ARM SVE

ARM SVE (scalable vector extension) introduces a flexible intrinsics-based pro-
gramming interface that supports variable-length SIMD units, of up to 2,048 bits.

In order to transform the generic micro-kernel with C-resident in Listing 3 into an 
SVE routine, we can define the following C macros:

In this particular example, we set ��_���� = 512∕32 = 16 FP32 numbers to 
target an SVE-enabled processor with 512-bit vector registers. Also, we invoke the 
SVE intrinsic svwhilelt_b32_u32(0, vl_fp32) (via the macro vinit), to 
create an appropriate predicate (or mask) that operates with 512-bit vector registers.

In addition, we need to take into account the specific interface of the selected 
SVE instrinsic for the axpy-like update. In particular, zsvmla_n_f32_z multi-
plies the contents of a vector with a scalar that resides in memory and then adds 
the result to the contents of a second vector. In contrast, the generic micro-kernel 
assumed that the axpy update performs the addition of two vectors, one of them 
scaled with a specific component of a third vector register. This requires two small 
changes in the generic realization to accommodate the SVE intrinsic: 

1. The elements of B are no longer retrieved into vector registers using vector loads, 
but instead are retrieved one by one, as they are needed during the vector updates. 
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Therefore, the loop which loads B in the generic micro-kernel (Lines 28–29) 
should be removed in the ARM SVE version.

2. The vector update has to be modified to reflect the difference in the interface of 
the axpy-like intrinsics:

At this point we note that it is possible to produce a realization of the micro-kernel 
that is more similar to the original one using other SVE intrinsics. In particular, we 
can uploaded the row of B into vector registers, then broadcast each element into a 
separate vector register (via svdup_lane_f32), and finally update the micro-tile 
using svmla_f32_z. However, our experiments showed a lower performance due 
to the specific assembly instructions generated by the compiler for this option.

An additional hurdle for ARM SVE is that current compilers do not allow the 
declaration of arrays of vector registers. To avoid this, we created a Python (script) 
generator which, given a target pair (mr, nr) , automatically produces the code for the 
generic micro-kernel in C, with all loops traversing these two dimensions unrolled 
and the arrays translated into scalar variables. Listing 4 shows an example of the 
output produced by the Python generator for an mr × nr = 8 × 4 micro-kernel, with 
a vector register length vl_fp32=4.

3.8  Adapting the generic micro‑kernel to RISC‑V V

RISC-V mimics SVE to define a collection of intrinsics that can accommodate 
SIMD units with variable-length. Assuming a platform with 512-bit SIMD units 
(that is, with vl_fp32=16), the specialization of the generic micro-kernel to 
employ the RISC-V Vector Extension 1.0 (RVV 1.0), is achieved via the following 
C macros:
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4  Experimental evaluation

In this section, we assess the efficiency of the BLIS family of algorithms when com-
bined with high-level micro-kernels in the context of DL applications.

4.1  Setup

We leverage three architectures in this section:
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• An NVIDIA Carmel (ARMv8.2-based) processor embedded in the NVIDIA Jet-
son AGX Xavier board with 64 GiB of LPDDR4x memory. In order to reduce 
variability in the evaluation, the processor frequency in this platform was fixed to 
2.3 GHz. The Operating System (OS) is Ubuntu 18.04, and we also utilized gcc 
v10.3, BLIS (version v0.8.1), OpenBLAS (version v0.3.19), and ARMPL (ver-
sion v21.1).

• A Fujitsu A64FX processor (2.20 GHz) from a cluster at the Barcelona Super-
computing Center. This is equipped with 32 GiB of HBM2 memory, and runs a 
Red Hat Enterprise Linux 8 OS with the following software used for the experi-
ments: gcc v10.2.0, and BLIS v0.8.1.

• An AMD EPYC 7282 16-core Processor (2.8  GHz), sited in a cluster at UPV, 
equipped with 504 GiB of DDR4 memory, and running a Ubuntu 10.04.6 LTS OS 
(Linux Kernel 4.15.0) with the following software: gcc v8.4.0, and BLIS v0.9.0.1

A single core is employed in the three architectures, with a thread bound to it. (The 
multi-threaded, loop-level parallelism of the BLIS family of algorithms has been 
analyzed elsewhere [13, 14].) All experiments are carried out in IEEE FP32 arith-
metic, and they are repeated a large number of times, reporting the average results 
in this section. Performance is measured in terms of billions of floating point opera-
tions per second, abbreviated as GFLOPS.

Given the extreme interest in deploying DL technologies, the dataset for the 
experimentation includes matrix mutiplications with their dimensions determined by 
the application of the im2col-approach to the convolution layers in the neural net-
works ResNet-50 v1.5 [15], VGG16 [16] and GoogleLeNet [17], combined with the 
ImageNet dataset. The batch size is set to 1 sample, reflecting latency-oriented sce-
nario  [8, 9]. In the following experiments, we focus on the performance gains that 
can be obtained when leveraging specific micro-kernels for the convolution operators 
in these neural networks. The global impact of these gains on the complete inference 
process depends on external factors to our work, such as the level of optimizations 
of other components. For example, in [9] we report that the convolution layers in the 
ResNet-50 v1.5 model (combined with ImageNet) can consume between 45% and 
87% of the inference time, depending on the optimizations that were applied.

4.2  ARM Neon on NVIDIA Carmel

Figure  5 shows the performance obtained for (the matrix multiplications result-
ing from the application of im2col to) two convolution layers of Resnet-50  v1.5. 
For clarify, we only report results for the B3A2C0 algorithm for gemm, combined 
with 14 different micro-kernels, but omit the combinations for the other five vari-
ants of the BLIS family. We also refrain from evaluating the micro-kernels which 
require a number of vector registers that exceeds those available in the hardware (32 
in the NVIDIA Carmel processor). For reference, we also include the performance 

1 The AOCL library from AMD is actually a compilation of BLIS with the proper configuration flags, 
that we have used in our evaluation.
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attained with the implementations of gemm in BLIS, OpenBLAS and ARMPL spe-
cifically tuned for this processor. This experiment demonstrates the benefits of lev-
eraging different micro-kernels for the gemm operation instead of the single kernel 
approach that conventional libraries offer. (For example, BLIS only offers the base-
line algorithm combined with a micro-kernel of size 8 × 12 for the NVIDIA Carmel 
processor.) In this scenario, we can benefit from the 4 × 16 micro-kernel in layer 
#3 and from the 8 × 12 micro-kernel for the layer #16. In both layers, with the best 
micro-kernel choice, the generic implementation outperforms the other three fine-
tuned gemm implementations by a non-negligible margin.

Figure  6 reports the performance of the different implementations of gemm for 
all the convolutional layers of Resnet-50  v1.5, VGG16 and GoogleLeNet on the 
NVIDIA Carmel processor. In this experiment, the results of the generic approach 
correspond to the best algorithm and micro-kernel for each layer. For this purpose, 
we evaluated all six algorithms, combined with micro-kernels of dimensions 4 × 8 , 
4 × 12 , 4 × 16 , 4 × 20 , 4 × 24 , 8 × 12 , 12 × 4 , 12 × 8 , 16 × 4 , 20 × 4 , and 24 × 4.

For the Resnet-50 v1.5 model (top-left plot), OpenBLAS is the best option for 
three layers and BLIS for five layers. In comparison, the flexibility of the generic 
algorithm results in this being the option in 12 out of the 20 layers. For the VGG16 
model (top-right plot), the generic algorithm outperforms the other libraries in four 
out of nine cases; BLIS is the best choice for four layers; and ARMPL is optimal for 
only one layer. Finally, for GoogleLeNet (bottom two plots), the generic algorithm 
offers the best performance in 41 out of 53 layers; OpenBLAS is the best option for 
layer #1 only; ARMPL is preferable for two layers; and BLIS for six layers.

4.3  ARM SVE on Fujitsu A64FX

Figure 7 reports the results from the analysis on the Fujitsu A64FX processor. In 
this case, we compare our approach with the implementation of BLIS only as we 
have no access to optimized instances of OpenBLAS and ARMPL for this platform. 
For the generic algorithm, we have implemented and analyzed six micro-kernels: 
32 × 10 , 32 × 12 , 32 × 14 , 48 × 8 , 64 × 6 , and 80 × 4 . In this platform, the BLIS 
library is extremely hand-tuned and includes aggressive prefetching techniques 

Fig. 5  Performance of the B3A2C0 algorithm with different micro-kernels for the convolutional layers 
#3 and #16 in Resnet-50 v1.5 (left and right, respectively) on NVIDIA Carmel
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Fig. 6  Performance of the best algorithm+micro-kernel on NVIDIA Carmel
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Fig. 7  Performance of the best algorithm+micro-kernel on Fujitsu A64FX
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which result in an extra burst of performance. In comparison the micro-kernels inte-
grated in the generic implementation do not leverage this technique. As a result, in 
the Resnet-50 v1.5 and VGG16 models (top-left and top-right plots, respectively), 
the generic algorithm is only competitive in about 20% of the layers. However, this 
occurs for the very first layers, which concentrate the most time-consuming opera-
tions. In contrast, for the GoogleLeNet model (bottom two plots), the generic algo-
rithm outperforms BLIS in 32 of 53 layers. In summary, as was the case for the Car-
mel processor, the flexibility of generic micro-kernels selection benefits the overall 
performance of the gemm operations.

At this point, we note that some of the prefetching techniques featured by the BLIS 
routine can be also integrated into the intrinsics-based micro-kernel. However, this 
points in the direction of an architecture-specific solution, thus, is against the port-
ability flag raised by this work. For this reason, exploring this option is left as part of 
future work.

4.4  AMD EPYC 7282

Figure 8 shows the results from the same round of experiments, this time carried 
out on the AMD EPYC 7282 processor. For reference, in this case we only include 
in the comparison BLIS as AMD’s native library (AOCL) is just a version of BLIS 
in disguise. Given that the AMD EPYC 7282 supports AVX2 (256-bit SIMD units) 
and features 16 256-bit SIMD registers, we developed and tested micro-kernels of 
dimensions 16 × 6 , 24 × 4 . In addition, we mimicked AOCL-BLIS to develop two 
additional micro-kernels, of dimensions 6 × 16 and 4 × 6 , that operate with matrices 
stored by rows and avoid packing the entries of A into the buffer Ac for the baseline 
algorithm B3A2C0. The results in the figure show that our implementation for gemm 
delivers a GFLOPS rate that is comparable in most cases to that obtained with the 
BLIS realization, showing relevant benefits for some special layers but also loosing 
by a non-negligible margin in a few others.

4.5  Discussion

To close this section, we link the ultimate reasons which determine the perfor-
mance of the different micro-kernels with the analytical model in  [10]. For this 
purpose, we expose the relationship using as a workhorse the BLIS baseline algo-
rithm (B3A2C0), the NVIDIA Carmel processor, and layer #1 of ResNet50 v1.5. 
For that layer, the dimensions of the GEMM are given by the following tuple: 
(m, n, k) = (12544, 64, 147).

For that particular processor/layer, the analytical model in [10] reports that, due 
to the reduced k-dimension of the problem, the micro-panel of Bc that targets the 
L1 cache only occupies 10.8% of that memory level on the NVIDIA Carmel for 
the mr × nr = 8 × 12 micro-kernel that is integrated BLIS. (In theory, this micro-
kernel should have occupied up to 50% with that micro-panel of Bc , reserving the 
rest of the L1 cache for entries from the A,  B operands). An additional problem 
arises for the L2 cache: With the cache configuration parameters fixed in BLIS to 
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Fig. 8  Performance of the best algorithm+micro-kernel on AMD EPYC 7282
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mc = 896, kc = 512 for the NVIDIA Carmel, the small m-dimension of the problem 
yields that the buffer Ac only occupies 25.1% of the L2 cache. (In theory, for the 
8 × 12 micro-kernel, the buffer Ac should have occupied up to 81.2% of that memory 
level leaving the rest for entries of C, B.)

Let us next consider a micro-kernel of dimension mr × nr = 4 × 24 . (The optimal 
micro-kernel among those that we evaluated for this layer.) In this case, the occu-
pancy of the L1 cache by the micro-panel of Bc grows to 21.5%, which is clearly 
superior to that observed for the (BLIS) 8 × 12 micro-kernel. In addition, for the 
4 × 24 micro-kernel, the utilization of the L2 cache by the buffer Ac is 75.0% which, 
according to the analytical model, is the maximum that should be dedicated to this 
operand (in each case).

In summary, there is a clear theoretical benefit from adopting an mr × nr = 4 × 24 
micro-kernel for this particular case, which is conformal with the performance 
advantage that is reported in Fig. 6 when using the “Generic” ( 4 × 24 ) micro-kernel 
versus BLIS.

5  Concluding remarks and future work

Building efficient code for a given computational kernel with minimal effort has 
been always a great challenge. With each new architecture, it becomes necessary to 
revisit the kernel in order to obtain an optimized version. This is the case, for exam-
ple, of numerical linear algebra libraries in general, and of matrix multiplication in 
particular.

The advent of deep neural networks together with an explosion in the variety of 
computing devices to run DL applications, especially for the inference phase, require 
a significant step aimed at finding optimal methodologies to produce efficient matrix 
multiplication codes. In particular, depending on the target neural model layer, the 
dimensions of the intervening matrices are in general different; consequently, so is 
the performance of a general matrix multiplication kernel. Therefore, it is necessary 
to design a collection of computational kernels optimized for the matrix product, not 
only for the underlying architecture, but also for each dimension of the operands.

The use of intrinsics greatly facilitates vector programming since it allows to 
work at a high level, leaving in the hands of the compiler the translation-to-assem-
bler and other optimization tasks which are difficult for the programmer. However, 
the different ISAs (instruction set architectures) still complicate optimizing the code 
for the wide range of processors within reach.

Given all of the above, combining all the necessary optimizations specific to each 
architecture and computational kernel in a single code is a difficult challenge. To 
tackle with this issue, in this work we have proposed a unique generic code for sev-
eral (very different) architectures which are spread use nowadays. This generic rou-
tine, implemented in C together with a reduced set of particular macros for each pro-
cessor type, allows generating optimized code based on vector intrinsics, to obtain a 
varied set of micro-kernels on which a matrix multiplication operation is based.

The experimental results, obtained with two ARM-based processor architectures, 
offer some optimism about the future of the proposed solution. Although we have 
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not achieved the best performance with the generic kernel in all cases, the reduced 
implementation effort required for this purpose leads us to conclude that the trade-
off is favorable to the proposed solution.
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