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Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco

186, Col. Vicentina, Del. Iztapalapa, C.P. 09340, Mexico City, Mexico. (gedar100@gmail.com)

Communicated by J. Galindo

Abstract

We present a solution to the following problem: Does every countable
and non-discrete topological (Abelian) group have a countable network
with infinite elements? In fact, we show that no maximal topological
space allows for a countable network with infinite elements. As a result,
we answer the question in the negative. The article also focuses on Ma-
lykhin’s maximal topological group constructed in 1975 and establishes
some unusual properties of countable networks on this special group G.
We show, in particular, that for every countable network N for G, the
family of finite elements of N is also a network for G.
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1. Introduction

One of our goals in this work is to present a solution to the following problem:

Problem 1.1. Is it true that each countable non-discrete topological (Abelian)
group has a countable network with infinite elements?

This problem arises as a complement to [4, Lemma 2.27], which states that
if a topological Abelian group G has a countable network and satisfies |G| = κ
and cf(κ) > ω, then G has a countable network N such that |N | = κ, for each
N ∈ N .
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We will use [1, Theorem 4.5.22] and non-resolvability of maximal topological
spaces to show that under the assumption p = 2ω, there exists a countable non-
discrete topological group G that does not admit a countable network N with
infinite elements.

For this group G, we prove in Proposition 2.8 that if N is a countable
network for G and Nf is the subfamily of N consisting of finite sets, then Nf
is also a network of G. This result gives rise to the following question:

Problem 1.2. Let N be a countable network for the group G. For every n ≥ 1,
let Nn be the subfamily of N which consists of the sets N ∈ N with |N | ≤ n.
Is Nn a network of G, for some n ≥ 1?

In Examples 2.9 and 2.10 we solve Problem 1.2 in the negative.

1.1. Notation and terminology. The symbol N denotes the set of natural
numbers and N+ stands for the set of positive integers. The set of all real
numbers is R.

The cardinality of a set A is denoted by |A|. The symbols ω and c stand for
the cardinality of N and R, respectively.

A space X is called resolvable if it contains dense disjoint subsets A and B;
otherwise X is said to be irresolvable. Let X be a space without isolated points
and τ be the topology of X. The space X is called maximal if every topology
τ ′ on X strictly finer than τ has isolated points.

Given a group G, the identity element of G is eG or simply e. An Abelian
group G is called bounded if there exists a positive integer m such that mg = e,
for each g ∈ G. The least integer m ≥ 1 with this property is called the period
of G. In particular, a group G is called Boolean if G is a group of period 2.

Let us call a topological group topology τ on a group G linear if the topo-
logical group (G, τ) has a local base at the identity element e consisting of open
subgroups.

The weight, character and π-character of a space X are denoted by w(X),
χ(X) and πχ(X), respectively. Also, χ(x,X) and πχ(x,X) are the character
and π-character of X at the point x ∈ X.

In this paper, all spaces and topological groups are assumed to be Hausdorff.

2. Main results

In this section, we will start with some basic results. The following re-
sult shows that maximal spaces cannot be resolvable (see also [1, Proposi-
tion 4.5.19]).

Proposition 2.1. If X is a maximal topological space, then X is irresolvable.

Proof. Let A and B be dense subsets of X. Then A and B are open in X,
by [1, Lemma 4.5.18]. Therefore, A ∩ B 6= ∅. It follows that the space X is
irresolvable. �

The following theorem presents an interesting property of irresolvable spaces.
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Theorem 2.2. If X is an irresolvable space, then X does not admit a countable
network with infinite elements.

Proof. Assume that the space X has a countable network N = {Nk : k ∈ ω}
such that |Nk| ≥ ω, for each k ∈ ω. Take distinct elements a0, b0 ∈ N0 and put
A0 = {a0} and B0 = {b0}. Clearly, A0 and B0 are disjoint.

Suppose that for some integer m ≥ 0, we have defined finite disjoint subsets
Am = {a0, . . . , am} and Bm = {b0, . . . , bm} of X such that ak, bk ∈ Nk, for
each k ≤ m. Then the set Nm+1 \ (Am ∪Bm) is infinite, so we can choose two
distinct points am+1 and bm+1 in Nm+1\(Am∪Bm). Let Am+1 = Am∪{am+1}
and Bm+1 = Bm ∪ {bm+1}. Clearly, the sets Am+1 and Bm+1 are disjoint.

Continuing this process, we finally obtain the sets A =
⋃∞
i=0Ai and B =⋃∞

i=0Bi and, by construction, A ∩B = ∅. Finally, if U is an open non-empty
subset of X, there exists Nk ∈ N such that Nk ⊆ U . So ak ∈ A ∩ U and
bk ∈ B ∩U . We conclude that A and B are dense disjoint subsets of X. Hence
X is resolvable, which is a contradiction. This proves that the space X does
not have a countable network with infinite elements. �

To continue, we need to present a brief overview of Malykhin’s construction
of a countable infinite topological Boolean group (G, τ) such that the topology
τ is maximal, linear and Hausdorff. Our description follows the one given in
[1, Theorem 4.5.22]. However, we require a few details that are not explicitly
stated in the above-mentioned construction.

The following results are required for constructing the group (G, τ) and
their proofs can be found in [1, Proposition 4.5.19] and [1, Lemma 4.5.21],
respectively.

The first result is a characterization of maximal spaces.

Proposition 2.3. Let X be a Hausdorff space without isolated points. Then
X is maximal if and only if for every x ∈ X and every disjoint subsets A and
B of X \ {x}, the element x belongs to at most one of the sets A, B.

The second required result is as follow.

Lemma 2.4. Let K be a countable infinite Boolean group. Suppose that τ is
a topological group topology on K such that τ is non-discrete, second countable
and linear. If K \ {eK} = P1 ∪ P2 and P1 ∩ P2 = ∅, then there exists a
topological group topology τ ′ of K such that τ ⊂ τ ′, τ ′ is non-discrete, second
countable and linear and, in addition, at most one of the sets clτ ′P1 or clτ ′P2

contains the identity element eK .

Also, we will need a ‘small’ cardinal p described below. A family γ of infinite
subsets of ω is said to have a strong intersection property if the intersection
of any finite subfamily of γ is infinite. An infinite subset A of ω is called a
pseudointersection of γ if the complement A \ B is finite, for each B ∈ γ. In
other terms, the set A is almost contained in every element B ∈ γ. It is easy to
verify that every countable family γ with the strong intersection property has a
pseudointersection. Denote by p the least cardinality of a family γ of subsets of
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ω with the strong intersection property such that γ has no pseudointersection.
It is known that ℵ1 ≤ p ≤ c (see [2]).

From now on we assume that the cardinal p satisfies p = c. This assumption
is equivalent to Martin’s Axiom restricted to σ-centered partially ordered sets
(see [3]) and, therefore, is compatible with the negation of the Continuum
Hypothesis.

We also have to fix a particular Boolean group G such that |G| = ω. For
this, denote by Z(2) the discrete two-element group {0, 1}. Let σZ(2)ω be
the subgroup of the compact group Z(2)ω which consists of all elements x =
(xn)n∈ω ∈ Z(2)ω such that xn 6= 0 for at most finitely many coordinates n ∈ ω.
Then σZ(2)ω is a countable dense subgroup of Z(2)ω. Let us take G as σZ(2)ω.
Let τ0 be the topology of G inherited from the compact group Z(2)ω. Then τ0 is
a non-discrete, Hausdorff, linear, second-countable topological group topology
on G.

Let P = {(Pα,1, Pα,2) : α < c} be an enumeration of all pairs P = (P1, P2)
such that P1∩P2 = ∅, P1∪P2 = G\{e}, and (P0,1, P0,2) = (G\{e},∅), where
e is the identity element of G. Such an enumeration exists since the group G
is countable. The required topology τ on G is constructed by a recursion of
length c.

Our aim is to define a family {τα : α < c} of non-discrete, second countable
and linear topological group topologies on G satisfying the following conditions
for each α, β < c:

(i) τα ⊂ τβ if α < β;
(ii) the identity element e of G belongs to the closure in (G, τα) of at most

one of the sets Pα,1, Pα,2.

Suppose that for some α < c we have defined a sequence {τν : ν < α} of
non-discrete, second countable and linear topological group topologies on G
satisfying (i) and (ii). It follows from (i) that the topological group topology
γα on G with base

⋃
ν<α τν is linear and non-discrete. Since for each ν < α,

the topology τν has a countable base in e, (G, γα) has a base at e of cardinality
less than c. Denote by Bα a local base at the identity of the group (G, γα)
consisting of open subgroups and satisfying |Bα| < c.

The group G is countable, so there exists a bijection f : G \ {e} −→ ω. For
every U ∈ Bα, let U∗ = U \ {e} and consider the family F = {f(U∗) : U ∈ Bα}
of infinite subsets of ω. Since the group (G, γα) is non-discrete and Hausdorff,
the family F has the strong intersection property. Then, applying |F| < p = c,
we see that the family F has a pseudointersection, let’s say, A. Let X = {xn :
n ∈ ω} be a faithful enumeration of the infinite set f−1(A). Clearly, the set
X \U is finite for every U ∈ Bα. Therefore, if U ∈ Bα, then there exists m ∈ ω
such that {xk : m ≤ k ∈ ω} ⊂ U . Since U is a subgroup of G, the subgroup
Hm of G generated by the set Xm = {xk : m ≤ k ∈ ω} is contained in the open
subgroup U . If γ′α is the topology of G with base B′ which consists of the sets
g+Hn, where g ∈ G and n ∈ ω, then B′ is countable and γ′α is a non-discrete,
second countable linear topological group topology on G finer than γα.
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It follows from the definition of γ′α that W = 〈X〉 is an open subgroup of
(G, γ′α). Take an arbitrary element U ∈ Bα. There exists n ∈ ω such that the
subgroup Hn = 〈Xn〉 of G is contained in U . Hence, W \ U ⊆ W \Hn. Since
X \Xn is finite and the group G is Boolean, we see that W \Hn is finite, for
every n ∈ ω. Therefore, |W \ U | < ω. The aforementioned property will be
utilized in the proof of Lemma 2.7.

Applying Lemma 2.4, we find a non-discrete, second countable and linear
topological group topology τα on G such that γ′α ⊂ τα and the identity element
e of G belongs to the closure in (G, τα) of at most one of the sets Pα,1, Pα,2.
This completes the construction of the family {τα : α < c}.

Finally, if τ is the topology in G with base
⋃
α<c τα, then applying condition

(ii) of our construction and Proposition 2.3, we conclude that (G, τ) is a non-
discrete, maximal, linear and Hausdorff topological group. By Lemma 2.1, G
is irresolvable.

The next result follows directly from Theorem 2.2.

Proposition 2.5. The group G does not admit a countable network with infi-
nite elements.

A few properties of the maximal linear topology τ of G are listed in the
subsequent lemmas.

Lemma 2.6. Let U be an open set in (G, τ). Then there exists an ordinal
α < c such that U ∈ τα.

Proof. If U = ∅, there is nothing to prove. We assume therefore that U 6= ∅.
Then |U | = ω. Since γ =

⋃
α<c τα is a base for τ , U can be covered by countably

many open basic sets from γ. It follows from cf(c) > ω that there exists α < c
such that U ∈ τα. �

Lemma 2.7. Let x be an element of the group G and {Un : n ∈ ω} be a
countable family of open neighborhoods of x in (G, τ). Then there exists an
open neighborhood W of x in (G, τ) such that |W \ Un| < ω, for every n ∈ ω.

Proof. By the homogeneity of the group G, it suffices to prove the lemma for
the special case x = e, where e is the identity element of the group G.

Let B = {Un : n ∈ ω} be a countable family of open neighborhoods of e in
(G, τ). The group (G, τ) is linear, so we can suppose that each Un is an open
subgroup of the group (G, τ). By Lemma 2.6, for every n ∈ ω, there exists
αn < c such that Un ∈ ταn

. Take an ordinal α < c such that αn < α for each
n ∈ ω.

At the step α of our construction of the topology τ , we have defined an
infinite subset X of G such that the set W = 〈X〉 is in τα and W \ U is finite,
for each U ∈

⋃
ν<α τν with e ∈ U . Hence, W is an open neighborhood of e in

(G, τ) and |W \ Un| < ω, for every n ∈ ω. �

We now formulate the next result that complements the conclusion of The-
orem 2.2 for the group G.
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Proposition 2.8. Let N be a countable network for (G, τ) and Nf = {N ∈
N : |N | < ω}. Then Nf is a network for the group G.

Proof. By Proposition 2.5, the family Nf is not empty. Suppose, seeking a
contradiction, that Nf is not a network for the group G. Hence, we can find a
point x ∈ G and an open neighborhood U of x in (G, τ) such that N \ U 6= ∅,
for each N ∈ Nf with x ∈ N . Let

Nx = {N ∈ N : x ∈ N ⊂ U}.
Then every N ∈ Nx is infinite. Since the group G is maximal, each N ∈ Nx
has the form ON ∪DN , where ON is an open subset of (G, τ) and DN is closed
and discrete in (G, τ) (see the proof of [1, Lemma 4.5.19]).

Since G is not first countable and χ(x,G) = πχ(x,G) (see [1, Proposi-
tion 5.2.6]), πχ(x,G) is uncountable. Hence, it follows from |Nx| ≤ ω that
there exists an open neighborhood V of x satisfying N \ V 6= ∅, for every
N ∈ Nx with ON 6= ∅.

Further, denote by N ∗x the family of all elements N ∈ Nx that are closed and
discrete in (G, τ). By considering the open neighborhood V of x mentioned in
the previous paragraph, together with the fact that N is a network, we can
conclude that N ∗x is non-empty. Let {Nm : m ∈ ω} be an enumeration of N ∗x .
Since N0 is a discrete set, there exists an open neighborhood V0 of x in (G, τ)
contained in V such that V0 ∩ N0 = {x}. Suppose that for some k ≥ 0, we
have defined open neighborhoods V0, . . . , Vk of x such that Vk ∩Nk = {x} and
V0 ⊇ · · · ⊇ Vk. Since Nk+1 is discrete, there exists an open neighborhood Vk+1

of x in (G, τ) contained in Vk, such that Vk+1 ∩Nk+1 = {x}. Continuing this
process, we obtain a decreasing sequence {Vn : n ∈ ω} of open neighborhoods
of x in (G, τ).

By Lemma 2.7, there exists an open neighborhood W of x in (G, τ) such
that |W \ Vm| < ω, for every m ∈ ω. Given an element N ∈ N ∗x , there exists
k ∈ ω such that |Vk ∩N | = 1. It follows from |N | = ω and |W \ Vk| < ω that
N \W is infinite and, hence, N \W 6= ∅. So we have proved that N 6⊂ W
for every N ∈ Nx. This contradicts our assumption that N is a network for
G. �

Example 2.9 and Corollary 2.11 below provide a negative solution to Prob-
lem 1.2 because the group G has no isolated points.

Example 2.9. Let X be a countable infinite regular space that contains infin-
itely many non-isolated points. Denote by F the set of all non-isolated points in
X. Then F is closed in X. Since X is regular, there exists an infinite discrete
set A = {xn : n ∈ N+} contained in F . We can assume that the complement
F \A is infinite.

For any positive integer n, we define Yn to be the family of all subsets
{y1, . . . , yn} of X \ {xn, xn+1, . . .}, where y1, y2, . . . , yn are pairwise distinct.

We are going to build a network for X using families of finite subsets of X
defined as follows. Let N0 =

{
{x} : x ∈ X \ A

}
. In general, for every n ≥ 1,

let Nn =
{
{xn} ∪ Y : Y ∈ Yn

}
.
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We claim that N =
⋃
n∈ωNn is a network for X. Take x ∈ X and let U be

an open neighborhood of x. If x /∈ A, then {x} ∈ N0 ⊂ N and clearly {x} ⊂ U .
If x ∈ A, then x = xn for some n ∈ N+. Then there exists an open neighborhood
O of x in X such that O ⊆ U and O ∩ A = {xn}. Therefore, if y1, y2, . . . , yn
are pairwise distinct elements of O \A, then the set N = {xn, y1, y2, . . . , yn} is
contained in O and N ∈ Nn, by the definition of Nn. Since O ⊆ U , this proves
our claim.

Let n ≥ 0 be an arbitrary integer. Then An =
⋃n
i=0Ni is not a network for

X, because no element N ∈ An contains xn+1. In particular, for no n ∈ ω can
the family {N ∈ N : |N | ≤ n} be a network for X.

In a topological space X, an element x ∈ X is called P -point if any count-
able intersection of open neighborhoods of x is again a (not necessarily open)
neighborhood of x. We also say that X is a P -space if every element x ∈ X is
a P -point. Clearly, X is a P -space if and only if every Gδ-set in X is open.

In the following example, the spaceX is not necessarily countable. Assuming
that X is not a P -space, we construct a network N of finite sets for X such
that for every integer n ≥ 1, the subfamily Nn = {N ∈ N : |N | ≤ n} of N is
not a network for X.

Example 2.10. Let X be an infinite Hausdorff space. Suppose that the el-
ement y∗ ∈ X is not a P -point in the space X. Consequently, there is a
decreasing sequence {Un : n ∈ N+} of open neighborhoods of y∗ in X such that⋂∞
n=1 Un is not a neighborhood of y∗. Consider the following families of sets:

• N0 = {{x} : x 6= y∗};
• N1 = {{y∗, x} : x /∈ U1};
• N2 = {{y∗, x1, x2} : either x1 /∈ U2 or x2 /∈ U2}.

In general, let Nn be the family of sets of the form {y∗, x1, x2 . . . , xn}
such that xj /∈ Un for some j ∈ {1, 2, . . . , n}. Let N =

⋃
n∈ωNn and V

be an open neighborhood of y∗ in X. Then there exists n ∈ N+ such that
V \ Un 6= ∅. Take xn ∈ V \ Un and elements {x1, x2, . . . , xn−1} ⊂ V , hence
{y∗, x1, x2, . . . , xn−1, xn} ∈ Nn ⊂ N and {y∗, x1, x2, . . . , xn−1, xn} ⊂ V . If
x ∈ X and x 6= y∗, then {x} ∈ N0 and, clearly, x ∈ {x} ⊂ W , for every open
neighborhood W of x. Therefore, N =

⋃
n∈ωNn is a network for the space X.

For every n ∈ ω, let Mn =
⋃
i≤nNi. Then Mn is not a network for the

space X because for every A ∈Mn with y∗ ∈ A and the open neighborhood Un
of y∗, the inclusion A ⊂ Un does not hold.

Since a non-discrete countable T1-space cannot be a P -space, Example 2.10
implies the following fact that improves upon Example 2.9.

Corollary 2.11. Every countably infinite non-discrete Hausdorff space X ad-
mits a countable network N of finite sets such that for every integer n ≥ 1, the
subfamily Nn = {N ∈ N : |N | ≤ n} is not a network for X.

This section concludes with some unresolved problems. In the first, we
weaken the requirement in Propositions 2.5 and 2.8 for a network N to be
countable.
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Problem 2.12. Are the conclusions of Propositions 2.5 and 2.8 valid for net-
works with cardinalities less than p?

In Proposition 2.8 we provided a negative solution to Problem 1.1 assuming
that the pseudointersection number p is equal to c. This naturally leads to the
following question:

Problem 2.13. Is it possible to construct in ZFC a countable, non-discrete
topological (Abelian) group G that does not admit a countable network N with
infinite elements?
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