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c University of Nǐs, Faculty of Sciences and Mathematics, Vǐsegradska 33, 18000 Nǐs, Ser-

bia. (vrakoc@sbb.rs)

Communicated by S. Romaguera

Abstract

In this present paper, besides other things, we introduce the concept of

Ćirić-generalized contractions via wt−distance and then we will prove
some new fixed point results for these mappings, which generalize and

improve fixed point theorems by L. B. Ćirić in [9, 8, 10] and also, B.
E. Rhoades in [23]. Some examples illustrate usefulness of the new re-
sults. At the end, we will give some applications to nonlinear fractional
differential equations.
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1. Introduction and Preliminaries

Banach contraction principle is the starting point for Fixed point theory.
This theory has been developed in many directions and we will point out some
of the fixed point theorems that we want to generalize in the context of wt-
distance.

In 1971, Ćirić [8] extended this idea in the following way:
Suppose that there exist nonnegative functions q1, q2, q3, q4 satisfying

sup{q1(x, y) + q2(x, y) + q3(x, y) + 2q4(x, y) : x, y ∈ X} = α < 1, (1.1)
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such that, for each x, y ∈ X,

M(x, y) = q1(x, y)d(x, y) + q2(x, y)d(x, fx) + q3(x, y)d(y, fy)

+ q4(x, y)[d(x, fy) + d(fx, y)]. (1.2)

The mapping f : X → X is said to be a α-generalized contraction if and only
if

d(fx, fy) ≤ αM(x, y), (1.3)

for all x, y ∈ X. Ćirić proved the following statement.

Theorem 1.1 ([8]). Let f : X → X be a α-generalized contraction of a f -
orbitally complete metric space. Then f has a unique fixed point.

Inequality (1.3) can be written in the form

d(fx, fy) ≤M(x, y)− (1− α)M(x, y). (1.4)

Now, among other things, our further work is motivated by the papers of
Alber and Guerre - Delabrieriere [1] and Rhoades [23] on weakly contractive
maps. See also [20, 21].

Since we replace the usual metric with the notions of wt-distance in our
statements, we should talk about the history of these concepts and some rela-
tions between them and the usual metric.

The history of wt-distance goes as follows:
Bakhtin in [7] and Czerwik in [11] and [12] introduced b-metric spaces (as

a generalization of metric spaces) and established the contraction principle in
this framework.

Definition 1.2. Let X be a set and let d : X ×X −→ [0,∞) be a map that
satisfies the following:

(1) d(x, y) = 0⇐⇒ x = y ∀x, y ∈ X ;
(2) d(x, y) = d(y, x) ∀x, y ∈ X;
(3) d(x, y) ≤ l[d(x, z) + d(z, y)] ∀x, y, z ∈ X for some constant l ≥ 1.

The function d is called a b-metric with coefficient l and a triplet (X, d, l) is
called a b-metric space.

Bakhtin and Czerwik gave examples of b-metric spaces that do not satisfy
the triangle inequality. Note that, as in the classical metric case, every b-metric
induces a topology. In this topology, in [6], [19] and [18] was shown by adequate
examples that b-metric is not always continuous and that an open ball is not
always an open set with respect to b-metric. We add the following example
from [18] for the convenience of reader:

Example 1.3 ([18]). Let X = {0, 1, 1/2, ..., 1/n, ...} and
d(x, y) = 0 if x = y, d(x, y) = 1 if x 6= y ∈ {0, 1}, d(x, y) =| x − y | if

x 6= y ∈ {0, 1
2n ,

1
2m} and d(x, y) = 4 otherwise.

Then it holds that:
(1): d is a b-metric on X with coefficient s = 8

3 ;
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(2): d is not a metric on X;
(3): d is not continuous in each variable because we have that
limn→∞ d(0, 1

2n ) = limn→∞
1

2n = 0 and

limn→∞ d(1, 1
2n ) = 4 6= 1 = d(1, 0).

(4): 0 ∈ B(1, 2), but B(0, r) * B(1, 2) for every r > 0, so B(1, 2) is not an
open set in topology induced by b-metric d.

The convergence in b-metric spaces is defined in [16] in the following way:

Definition 1.4. Let (X, d) be a b-metric space.

(1) The sequence {xn} converges to x ∈ X ⇐⇒ limn→∞d(xn, x) = 0;
(2) The sequence {xn} is Cauchy ⇐⇒ limn,m→∞d(xn, xm) = 0.

We say that (X, d) is complete if and only if any Cauchy sequence
in X is convergent.

Finally, Hussain et al. [14] have recently introduced the concept of wt-
distance in generalized b-metric spaces, proved that it is a generalization of
w-distance in [15] and also proved some fixed point theorems in a partially
ordered b-metric space by using wt-distance. See also [18, 22].

Definition 1.5. Let (X, d) be a b-metric space with constant l ≥ 1. Then
a function p : X × X −→ [0,∞) is called wt-distance on X if the following
conditions are satisfied:

(a) p(x, z) ≤ l[p(x, y) + p(y, z)] ∀x, y, z ∈ X;
(b) ∀x ∈ X, p(x, ·) : X −→ [0,∞) is l-lower semicontinuous;
(c) ∀ε > 0∃δ > 0 so that p(z, x) ≤ δ ∧ p(z, y) ≤ δ =⇒ d(x, y) ≤ ε.

Let us recall that a real-valued function f defined on a b-metric space X is
said to be l-lower semicontinuous at a point x0 in X if either lim infxn→x0 f(xn)
=∞ or f(x0) ≤ lim infxn→x0

lf(xn), whenever xn ∈ X and xn → x0.

In the same paper the following lemma has been proved and it is often used
as a tool in order to prove fixed point theorems in terms of wt-distance.

Lemma 1.6 ([14]). Let (X, d, l ≥ 1) be a b-metric space and p be a wt-distance
on X.

(i) If {xn} is a sequence in X such that lim
n→∞

p(xn, x) = lim
n→∞

p(xn, y) = 0.

Then x = y. In particular, if p(z, x) = p(z, y) = 0, then x = y.
(ii) If p(xn, yn) ≤ αn and p(xn, y) ≤ βn for any n ∈ N, where {αn} and
{βn} are sequences in [0,∞) converging to 0, then {yn} converges to
y.

(iii) Let {xn} be a sequence in X such that for each ε > 0, there exists Nε ∈
N such that m > n > Nε implies p(xn, xm) < ε (or lim

n,m→∞
p(xn, xm) =

0), then {xn} is a Cauchy sequence.
(iv) if p(y, xn) ≤ αn for any n ∈ N, then the sequence {xn} Cauchy.

We define now the family of functions Ψ that we will use throughout our
paper and after that we will introduce the notion of weak (ψ,Mp)-contractive
mapping.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 2 269



H. Lakzian, D. Kocev and V. Rakočević

In this present paper, we introduce the concept of Ćirić-generalized contrac-
tions via wt−distance and then we will prove some new fixed point results for
these mappings, which generalize and improve fixed point theorems by L. B.
Ćirić in [9, 8, 10] and also, B. E. Rhoades in [23]. Some examples illustrate
usefulness of the new results. At the end, we will give some applications to
nonlinear fractional differential equations. In this paper, using the concept of
weak (ψ,Mp)-contractive mappings, we will prove some new fixed point theo-

rems which generalize fixed point theorems by Ćirić [8].

2. Main results

In [13] and [5] is given the following result:

Theorem 2.1. Let (X, d, l ≥ 1) be a complete b-metric space and define the
sequence {xn} in X by the recursion

xn = Txn−1 = Tnx0.

Let T : X → X be a mapping such that

d(Tx, Ty) ≤ λ1d(x, y) + λ2d(x, Tx) + λ3d(y, Ty) + λ4[d(y, Tx) + d(x, Ty)]

for all x, y ∈ X, where λ1 +λ2 +λ3 + 2sλ4 < 1. Then there exists x∗ ∈ X such
that xn → x∗ and x∗ is a unique fixed point.

In this section we will generalize this result in the framework of wt-distance.
Let (X, d) be a b-metric space with constant l ≥ 1 and wt-distance p. Con-

sider

Mp,l(x, y) = q1(x, y)p(x, y) + q2(x, y)p(x, fx) + q3(x, y)p(y, fy)

+ q4(x, y)[p(x, fy) + p(fx, y)− p(y, y)]. (2.1)

with

sup{q1(x, y) + q2(x, y) + q3(x, y) + 2lq4(x, y) : x, y ∈ X} = k <
1

l
, (2.2)

We now introduce the notion of weak (ψ,Mp,l)-contractive mapping, where
the function ψ : [0,∞)5 → [0,∞) satisfying the condition ψ−1{0} = {(0, 0, 0, 0, 0)}.
Definition 2.2. Let p be a wt−distance on a b−metric space (X, d) with
constant l ≥ 1 and f : X → X be a given mapping. We say that f is a weak
(ψ,Mp,l)-contractive mapping if

p(fx, fy) ≤Mp,l(x, y)− ψ
(
p(x, y), p(x, fx), p(y, fy),

p(x, fy)

2
,
p(fx, y)

2

)
,

(2.3)
for all x, y ∈ X. In the case p = d, it is called (ψ,Ml)-contractive mapping.

Recently in [17] is introduced the notion of (C; k) condition based on the

well-known (C; 1) condition introduced and studied by Ćirić in [10]. It is said
that a map f : X → X on a metric space (X, d) satisfies the condition (C; k)
if there is a constant k ≥ 0 such that for every sequence xn ∈ X,
xn → x0 ∈ X ⇒ D(x0) ≤ k · limsupD(xn) where D(x) = d(x, fx), x ∈ X.
Obviously, this condition is more relaxing than continuity.
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Theorem 2.3. Let p be a wt-distance on a complete b-metric space (X, d) with
constant l ≥ 1 and let f : X → X be a weak (ψ,Mp,l)-contractive mapping.
If f satisfies the condition (C; k), or for every w ∈ X with w 6= Tw, we have
inf{p(x,w) + p(x, Tx) : x ∈ X} > 0, then f has a unique fixed point u and
moreover, p(u, u) = 0.

Proof. Define a sequence {xn} in X by xn+1 = fxn = fn+1x0, for all n ≥ 0.
If there exists n0 ∈ N such that xn0

= xn0+1, then u = xn0
is a fixed point of

f , so the proof is completed. From now on, we assume that

xn 6= xn+1 for all n. (2.4)

Step 1. We first show that lim
n→∞

p(xn, xn+1) = 0. Using (2.3) and Definition

2.2, we have

p(xn, xn+1) = p(fxn−1, fxn)

≤Mp(xn−1, xn)− ψ
(
p(xn−1, xn), p(xn−1, fxn−1), p(xn, fxn),

p(xn−1, fxn)

2
,
p(fxn−1, xn)

2

)
≤Mp(xn−1, xn)
= q1(xn−1, xn)p(xn−1, xn) + q2(xn−1, xn)p(xn−1, fxn−1)

+q3(xn−1, xn)p(xn, fxn) + q4(xn−1, xn)[
p(xn−1, fxn) + p(fxn−1, xn)− p(xn, xn)

]
= q1(xn−1, xn)p(xn−1, xn) + q2(xn−1, xn)p(xn−1, xn)

+q3(xn−1, xn)p(xn, xn+1)

+q4(xn−1, xn)
[
p(xn−1, xn+1) + p(xn, xn)− p(xn, xn)

]
≤
(
q1(xn−1, xn) + q2(xn−1, xn)

)
p(xn−1, xn)

+q3(xn−1, xn)p(xn, xn+1)

+q4(xn−1, xn) · l ·
[
p(xn−1, xn) + p(xn, xn+1)

]
,

(2.5)
for all n ≥ 1.

Thus,

p(xn, xn+1) ≤ q1(xn−1, xn) + q2(xn−1, xn) + lq4(xn−1, xn)

1− q3(xn−1, xn)− lq4(xn−1, xn)
p(xn−1, xn), (2.6)

for all n ≥ 1.
Therefore, p(xn, xn+1) ≤ kp(xn−1, xn) for all n ≥ 1; indeed, from k < 1 and

the relation (2.2), we get

q1(x, y) + q2(x, y) + lq4(x, y) + kq3(x, y) + klq4(x, y) ≤ k,
and hence

q1(x, y) + q2(x, y) + lq4(x, y)

1− q3(x, y)− lq4(x, y)
≤ k, (2.7)

for all x, y ∈ X. Now, from (2.6) and (2.2) we have

p(xn, xn+1) ≤ knp(x0, x1), (2.8)
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for all n ≥ 1, and so
lim
n→∞

p(xn, xn+1) = 0. (2.9)

Step 2. We will show that

lim
n,m→∞

p(xn, xm) = 0. (2.10)

For each m,n ∈ N with m > n, applying (1) of Definition 6 and (2.8), we get

p(xn, xm) ≤ l · [p(xn, xn+1) + p(xn+1, xm)]
≤ l · p(xn, xn+1) + l2 · [p(xn+1, xn+2) + p(xn+2, xm)]
≤ l · p(xn, xn+1) + l2 · p(xn+1, xn+2) + ...+ lm−np(xm−1, xm)
≤ l · kn · p(x0, x1) + l2 · kn+1p(x0, x1) + ...+ lm−n · km−1 · p(x0, x1)
= l · kn · p(x0, x1)[1 + lk + ...+ (lk)m−n−1]

≤ l·kn

1−lk (p(x0, x1))→ 0, as n→∞.

Therefore, by Lemma 1.6, the sequence {xn} is Cauchy in (X, d). Since X is a
complete b-metric space, there exists u ∈ X such that xn → u as n→∞.
Step 3. Now, we show that u is a fixed point of f .
Case † Suppose that f obeys the condition (C; k). It holds that

d(u, fu) ≤ k · lim sup
n→∞

d(xn, fxn) = k · lim sup
n→∞

d(xn, xn+1) = 0

since xn is a Cauchy sequence, so we conclude that u = fu.
Case ‡ Now, suppose that inf{p(x,w) + p(x, Tx) : x ∈ X} > 0 for every

w ∈ X with w 6= Tw. By (2.10), for each ε > 0 there exists an Nε ∈ N
such that n > Nε implies p(xNε , xn) < ε. But, xn → u and p(x, .) is l-lower
semi-continuous, so using Definition 2.2, we have

p(xNε
, u) ≤ lim inf

n→∞
l · p(xNε

, xn) ≤ ε.

Putting ε = 1/lk and Nε = nk, we have

lim
k→∞

p(xnk
, u) = 0. (2.11)

Assume that u 6= fu. Then

0 < inf{p(x, u) + p(x, fx) : x ∈ X} ≤ inf{p(xn, u) + p(xn, xn+1) : n ∈ N}.
Using (2.9) and (2.11), we get inf{p(xn, u) + p(xn, xn+1) : n ∈ N} = 0, which
is a contradiction. Thus, u = fu.
Step 4. Moreover, we have

p(u, u) = p(fu, fu) ≤ Mp,l(u, u)− ψ
(
p(u, u), p(u, fu), p(u, fu), p(u,fu)

2 , p(fu,u)
2

)
< Mp,l(u, u)
= q1(u, u)p(u, u) + q2(u, u)p(u, u) + q3(u, u)p(u, u)

+ lq4(u, u)
[
p(u, u) + p(u, u)− p(u, u)

]
≤

(
q1(u, u) + q2(u, u) + q3(u, u) + lq4(u, u)

)
p(u, u)

≤ k · p(u, u),

so we conclude that p(u, u) = 0.
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Step 5. we shall show that u is unique. Let v be another fixed point of f .
We shall prove that u = v.
We have

p(u, v) = p(fu, fv)

≤Mp,l(u, v)− ψ
(
p(u, v), p(u, fu), p(v, fv),

p(u, fv)

2
,
p(fu, v)

2

)
< Mp(u, v)

= q1(u, v)p(u, v) + q2(u, v)p(u, u) + q3(u, v)p(v, v)

+ lq4(u, v)
[
p(u, v) + p(u, v)− p(u, u)

]
=
(
q1(u, v) + 2q2(u, v)

)
p(u, v)

≤ kp(u, v)

< p(u, v),

which is a contradiction. Therefore, p(u, v) = 0. From Step 4, p(u, u) = 0. So
by Lemma 1.6, u = v.

�

The following example illustrates the previous statement.

Example 2.4. Let X = [0, 2] and d be a function d : X×X → [0,+∞) defined
by d(x, y) = (x − y)2. Then d is a b-metric with coefficient l = 2. We define
a function p : X ×X : [0,+∞) on (X, d) with p(x, y) = y2. Then p is a wt−
distance on (X, d).

Let f : X → X be a mapping such that f(x) = x
10 for x ∈ [0, 1] and

f(x) = x
20 for x ∈ (1, 2]. Notice that f is not continuous and f is not a

contraction with respect to b-metric d.
On the other hand, if we put q1 = q2 = q3 = q4 = 1

20 and define a function ψ :

[0,∞)5 → [0,∞) with ψ(a1, a2, a3, a4, a5) = 1
100a1 + 1

20a2 + 1
20a3 + 1

10a4 + 1
50a5,

then we obtain
Mp,l(x, y) = 1

20y
2 + 1

20 (fx)2 + 1
20 (fy)2 + 1

20 (fy)2 = 1
20y

2 + 1
20 (fx)2 + 1

10 (fy)2,

ψ(y2, (fx)2, (fy)2, (fy)2

2 , y
2

2 ) = 1
100y

2+ 1
20 (fx)2+ 1

20 (fy)2+ 1
20 (fy)2+ 1

100 (y)2,
so we have that
Mp,l(x, y)− ψ(y2, (fx)2, (fy)2, (fy)2

2 , (y)2

2 ) = 1
20y

2 − 1
50y

2 = 3
100y

2.
We conclude that
p(fx, fy) = (fy)2 ≤ 3

100y
2,

so f is a weak (ψ,Mp,l)-contractive mapping.
The condition inf{p(x,w) + p(x, fx) : x ∈ X} > 0 is satisfied for every

w 6= 0,
because p(x,w) + p(x, fx) = w2 + (fx)2, so we can apply Theorem 3.2 to

the function f .

Corollary 2.5. Let p be a wt-distance on a complete b-metric space (X, d)
with constant l ≥ 1. Let f : X → X be a self-mapping satisfying

p(fx, fy) ≤Mp,l(x, y)− φ(Mp,l(x, y)),
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for all x, y ∈ X, where φ : [0,∞) → [0,∞) is continuous, and φ−1(0) = 0.
Suppose either inf{p(x,w) + p(x, fx) : x ∈ X} > 0 for every w ∈ X with
w 6= fw, or the mapping f is continuous. Then f has a unique fixed point u
and moreover p(u, u) = 0.

Taking ψ(t1, t2, t3, t4, t5) = 1− k(
∑5

i=1 ti) in Theorem 2.3, we obtain the
following Corollary which is a generalization of Theorem 1 from [13].

Corollary 2.6. Let p be a wt-distance on a complete b-metric space (X, d)
with constant l ≥ 1. Let f : X → X be a self-mapping satisfying

p(fx, fy) ≤ kMp,l(x, y),

for all x, y ∈ X, where k ∈ (0, 1). Suppose either inf{p(x,w) + p(x, fx) : x ∈
X} > 0 for every w ∈ X with w 6= fw, or the mapping f is continuous. Then
f has a unique fixed point u and moreover p(u, u) = 0.

Remark 2.7. Let (X, d) be a complete b-metric space with constant l ≥ 1. Then,
we have inf{d(x,w) + d(x, fx) : x ∈ X} > 0 for every w ∈ X with w 6= fw.
Suppose not; i.e. there exists a w ∈ X with w 6= fw and inf{d(x,w)+d(x, fx) :
x ∈ X} = 0. Then there exists a sequence {xn} in X such that

lim
n→∞

{d(xn, w) + d(xn, fxn)} = 0.

Thus limn→∞ d(xn, w) = 0 and limn→∞ d(xn, fxn) = 0. Then, by the trian-
gular inequality, we get limn→∞ d(fxn, w) = 0, and so fxn → w as n → ∞.
Since f is a generalized (ψ,M, l)-contractive mapping, with x = xn and y = w,
we conclude that

d(fxn, fw) ≤ ψ(M(xn, w)),

and so d(w, fw) ≤ ψ(d(w, fw)) as n → ∞. From ψ(t) < t for all t > 0, we
have d(w, fw) < d(w, fw), a contradiction. Therefore fw = w. Therefore we
have the following results.

Corollary 2.8. Let (X, d) be a complete b-metric space with constant l ≥ 1
and let f : X → X be a (ψ,M, l)-contractive mapping. Then there exists a
unique u ∈ X such that fu = u.

Proof. Taking p = d in Theorem 2.3, and Remark 2.7, we can conclude the
statement. �

Taking ψ(t) = kt in Corollary 2.8, and from Remark 2.7, we obtain the

following result (The Ćirić result [9]).

Corollary 2.9. complete b-metric space with constant l ≥ 1 and let f : X → X
be a self-mapping satisfying

d(fx, fy) ≤ kM(x, y) (2.12)

for all x, y ∈ X, for some k ∈ [0, 1). Then f has a unique fixed point.

In the following two fixed point theorems, let Ψ be the family of functions
ψ : [0,∞)5 → [0,∞) satisfying the following conditions:
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(Ψ1) ψ is continuous;
(Ψ2) ψ(a1, a2, a3, a4, a5) = 0 if and only if ai = 0 for 0 ≤ i ≤ 5;
(Ψ3) if a, b ∈ [0,∞) are such that a ≤ ψ(b, b, a, 0, a+ b) or a ≤ ψ(b, a, b, a+

b, 0) or a ≤ ψ(a, a, b, a + b, 0) or a ≤ ψ(a, a, b, 0, a + b), then a ≤ λb,
where λ ∈ (0, 1);

(Ψ4) if a, b ∈ [0,∞) is such that a ≤ ψ(a, 0, 0, a, b) or a ≤ ψ(0, a, 0, a, b) or
a ≤ ψ(0, 0, a, a, b), then a = 0.

In the following, we generalize and improve fixed point theorem by B. E.
Rhoades in [23] in the setting wt-distances.

Theorem 2.10. Let p be a wt-distance on a complete b-metric space (X, d) with
constant l ≥ 1 such that p(x, x) = 0, for all x ∈ X. Suppose that f : X → X
is a self-map such that

p(fx, fy) ≤ ψ
(
p(x, y), p(x, fx), p(y, fy), p(fx, y), p(x, fy)

)
, (2.13)

for all x, y ∈ X and ψ ∈ Ψ. If f satisfies the condition (C; k), or for every
w ∈ X with w 6= Tw, we have inf{p(x,w) + p(x, Tx) : x ∈ X} > 0, then f has
a unique fixed point u.

Proof. Define a sequence {xn} in X by xn+1 = fxn = fn+1x0, for all n ≥ 0.
If there exists n0 ∈ N such that xn0

= xn0+1, then u = xn0
is a fixed point of

f . The proof is completed. From now on, we assume that

xn 6= xn+1 for all n. (2.14)

Step 1. We shall show that lim
n→∞

p(xn, xn+1) = 0. Using (2.13) and Definition

2.2, we have

p(xn, xn+1) = p(fxn−1, fxn)

≤ ψ
(
p(xn−1, xn), p(xn−1, fxn−1), p(xn, fxn), p(fxn−1, xn), p(xn−1, fxn)

)
= ψ

(
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1), p(xn, xn), p(xn−1, xn+1)

)
= ψ

(
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1), 0, p(xn−1, xn) + p(xn, xn+1)

)
,

(2.15)
for all n ≥ 1.

Now, from (ψ3), we get, p(xn, xn+1) ≤ λp(xn−1, xn), for all n ≥ 1. Thus, by
induction, we have p(xn, xn+1) ≤ λnp(x0, x1), for all n ≥ 1, and so

lim
n→∞

p(xn, xn+1) = 0. (2.16)

Step 2,3 Step2 and Step 3 are completely the same as in Theorem 2.3; so
we delete these statements.
Step 4. we shall show that u is unique. Let v be another fixed point of f .
We shall prove that u = v.
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We have

p(u, v) = p(fu, fv)

≤ ψ
(
p(u, v), p(u, fu), p(v, fv), p(fu, v), p(u, fv)

)
= ψ

(
p(u, v), 0, 0, p(u, v), p(u, v)

)
.

Now, from (ψ4), we have p(u, v) = 0. On the other hand p(u, u) = 0. So by
Lemma 1.6, u = v.

�

In the following, we generalize and improve fixed point theorem by B. E.
Rhoades in [23] in the setting wt-distances.

Theorem 2.11. Let p be a wt-distance on a complete b-metric space (X, d) with
constant l ≥ 1 such that p(x, x) = 0, for all x ∈ X. Suppose that f : X → X
is a self-map such that

p(fx, fy) ≤ ψ
(
ap(x, y), (1−a)p(x, fx), (1−a)p(y, fy), (1−a)p(x, fx)p(y, fy),

(1− a)p(fx, y)p(x, fy)
)
, (2.17)

for all x, y ∈ X, where 0 < a ≤ 1 and ψ ∈ Ψ. If f satisfies the condition (C; k),
or for every w ∈ X with w 6= Tw, we have inf{p(x,w)+p(x, Tx) : x ∈ X} > 0,
then f has a unique fixed point u.

Proof. Define a sequence {xn} in X by xn+1 = fxn = fn+1x0, for all n ≥ 0.
If there exists n0 ∈ N such that xn0

= xn0+1, then u = xn0
is a fixed point of

f . The proof is completed. From now on, we assume that

xn 6= xn+1 for all n. (2.18)

Step 1. We shall show that lim
n→∞

p(xn, xn+1) = 0. Using (2.17) and Definition

2.2, we have

p(xn, xn+1) = p(fxn−1, fxn)

≤ ψ
(
ap(xn−1, xn), (1− a)p(xn−1, fxn−1), (1− a)p(xn, fxn)

, (1− a)p(xn−1, fxn−1)p(xn, fxn), (1− a)p(fxn−1, xn)p(xn−1, fxn)
)

= ψ
(
ap(xn−1, xn), (1− a)p(xn−1, xn), (1− a)p(xn, xn+1)

, (1− a)p(xn−1, xn)p(xn, xn+1), (1− a)p(xn, xn)p(xn−1, xn+1)
)

= ψ
(
ap(xn−1, xn), (1− a)p(xn−1, xn), (1− a)p(xn, xn+1),

(1− a)p(xn−1, xn)p(xn, xn+1), 0
)
,

(2.19)
for all n ≥ 1.
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Now, from (ψ3), we get, p(xn, xn+1) ≤ λp(xn−1, xn), for all n ≥ 1. Thus, by
induction, we have p(xn, xn+1) ≤ λnp(x0, x1), for all n ≥ 1, and so

lim
n→∞

p(xn, xn+1) = 0. (2.20)

Step 2,3 Step2 and Step 3 are completely the same as in Theorem 2.3; so
we delete these statements.
Step 4. we shall show that u is unique. Let v be another fixed point of f .
We shall prove that u = v.
We have

ap(u, v) ≤ p(u, v) = p(fu, fv)

≤ ψ
(
ap(u, v), (1− a)p(u, fu), (1− a)p(v, fv),

(1− a)p(u, fu)p(v, fv), (1− a)p(fu, v)p(u, fv)
)

= ψ
(
ap(u, v), 0, 0, 0, (1− a)p(u, v)p(u, v)

)
.

Now, from (ψ4), we have p(u, v) = 0. On the other hand p(u, u) = 0. So by
Lemma 1.6, u = v.

�

3. Application

In this section, we will give an application of Theorem 2.10 to establish the
existence of solutions for a nonlinear fractional differential equation considered
in.

Theorem 3.1. Consider the nonlinear Fredholm integral equation

x(t) = g(t)−
∫ b

a

K(t, s, x(s))ds, (3.1)

where a, b ∈ R with a < b, and f : [a, b] → R and K : [a, b]2 × R → R are
given continuous mappings. Let X = C[a, b] be the set of all real continuous
functions on [a, b]. Clearly, X with the b-metric d : X ×X → [0,+∞) given by

d(x, y) = sup
t∈[a,b]

(x(t)− y(t))2

for all x, y ∈ X, is a b-metric space with coefficient l = 2.
Suppose that the following conditions hold:
(i) the mapping f : C[a, b]→ C[a, b] defined by

(fx)(t) = g(t)−
∫ b

a

K(t, u, x(u))ds, for all x ∈ C[a, b] and t ∈ [a, b]

is a continuous mapping;
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(ii) for each x, y ∈ X with x 6= y and t, u ∈ [a, b], we have

(K(t, u, fx(u)))2 + (K(t, u, fy(u)))2 ≤ 1

b− a

(
ψ
(

(x(u))2 + (y(u))2, (x(u))2 + (fx(u))2,

(y(u))2 + (fy(u))2, (fx(u))2 + (y(u))2, (x(u))2 + (fy(u))2
)
.

(3.2)

Let f be a continuous mapping.
Then the nonlinear integral equation (3.1) has a unique solution. Moreover,

for each x ∈ C[a, b], the Picard iteration (xn) defined by

xn(t) = g(t)−
∫ b

a

K(t, u, xn−1(u))ds

for all n ∈ N converges to a unique solution of the nonlinear integral equation
(3.1).

Proof. Let us define the function p : X ×X → [0,+∞) by

p(x, y) = sup
t∈[a,b]

(x(t))2 + sup
t∈[a,b]

(y(t))2

for all x, y ∈ X. Clearly, p is a wt-distance on X and a ceiling distance of d.
Here, we will show that f satisfies the contractive condition (2.13). Assume
that x, y ∈ X and t ∈ [a, b]. Then we get

((fx)(t))2 + ((fy)(t))2

=
(
g(t)−

∫ b

a

K(t, u, fx(u))du
)2

+
(
g(t)−

∫ b

a

K(t, u, fy(u))du
)2

≤ (g(t))2 +
(∫ b

a

K(t, u, fx(u))du
)2

+ (g(t))2 +
(∫ b

a

K(t, u, fy(u))du
)2

≤ 2(g(t))2 +

∫ b

a

(K(t, u, fx(u)))2du+

∫ b

a

(K(t, u, fy(u)))2du

= 2(g(t))2 +

∫ b

a

(
(K(t, u, fx(u)))2 + (K(t, u, fy(u)))2

)
du

≤ 2(g(t))2 +

∫ b

a

(
A(u)− 2(g(t))2

b− a

)
du

≤ 2(g(t))2 +
1

b− a

∫ b

a

(A(u)− 2(g(t))2)du

= A,

where

A(u) = ψ
(

(x(u))2 + (y(u))2, (x(u))2 + (fx(u))2, (y(u))2 + (fy(u))2, (fx(u))2

+ (y(u))2, (x(u))2 + (fy(u))2
)
.
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This implies

sup
t∈[a,b]

((fx)(t))2 + sup
t∈[a,b]

((fy)(t))2 ≤ A,

and so

p(fx, fy) ≤ A
for all x, y ∈ X. It follows that f satisfies condition (2.13). Therefore, all the
conditions of Theorem 2.10 are satisfied, and thus f has a unique fixed point.
This implies that there exists a unique solution of the nonlinear Fredholm
integral equation (3.1). �

By using the similar method in the proof of Theorem 3.1, we can get the
following result.

Theorem 3.2. Consider the nonlinear Volterra integral equation

x(t) = g(t)−
∫ t

a

K(t, u, x(u))du, (3.3)

where a, b ∈ R with a < b, and g : [a, b]→ R and K : [a, b]2 × R→ R are given
continuous mappings. Suppose that the following conditions hold:

(i) the mapping f : C[a, b]→ C[a, b] defined by

(fx)(t) = g(t)−
∫ t

a

K(t, u, x(u))du, for all x ∈ C[a, b] and t ∈ [a, b]

is a continuous mapping;
(ii) for each x, y ∈ X with x 6= y and t, u ∈ [a, b], we have(
K(t, u, fx(u)) +K(t, u, fy(u))

)2

≤ 1

b− a

(
ψ
(

(x(u))2 + (y(u))2, (x(u))2 + (fx(u))2,

(y(u))2 + (fy(u))2, (fx(u))2 + (y(u))2, (x(u))2 + (fy(u))2
)
− 2(g(t))2

)
.

(3.4)

Let f be a continuous mapping.
Then the nonlinear integral equation (3.3) has a unique solution. Moreover,

for each x ∈ C[a, b], the Picard iteration (xn) defined by

xn(t) = g(t)−
∫ t

a

K(t, u, xn−1(u))du

for all n ∈ N converges to a unique solution of the nonlinear integral equation
(3.3).

Remark 3.3. The theory of nonlinear fractional differential equations nowadays
is a large subject of mathematics which found numerous applications of many
branches such as physics, engineering, and other fields connected with real-
world problems. Based on this fact, many authors studied various results in
this theory (see [2, 3, 4]).
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