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1. Introduction

As stated in [5]:

The topic of fixed points in digital topology has drawn much
attention in recent papers. The quality of discussion among
these papers is uneven; while some assertions have been correct
and interesting, others have been incorrect, incorrectly proven,
or reducible to triviality.

Here, we continue the work of [9, 5, 6, 7, 8], discussing many shortcomings in
earlier papers and offering corrections and improvements.

Quoting and paraphrasing [8]:

Authors of many weak papers concerning fixed points in digital
topology seek to obtain results in a “digital metric space” (see
section 2.2 for its definition). This seems to be a bad idea. We
slightly paraphrase [7]:
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L. Boxer

• Nearly all correct nontrivial published asser-
tions concerning digital metric spaces use the
metric and do not use the adjacency. As a re-
sult, the digital metric space seems to be an
artificial notion.

• If X is finite (as in a “real world” digital image)
or the metric d is a common metric such as any
`p metric, then (X, d) is uniformly discrete as
a topological space, hence not very interesting.

• Many published assertions concerning digital
metric spaces mimic analogues for subsets of
Euclidean Rn. Often, the authors neglect im-
portant differences between the topological space
Rn and digital images, resulting in assertions
that are incorrect or incorrectly “proven,” triv-
ial, or trivial when restricted to conditions that
many regard as essential. E.g., in many cases,
functions that satisfy fixed point assertions must
be constant or fail to be digitally continuous [9,
5, 6].

Since the publication of [8], additional highly flawed papers rooted in digital
metric spaces have come to our attention. The current paper discusses short-
comings in [1, 10, 20, 21, 22, 23, 25, 26, 27, 29, 32].

2. Preliminaries

Much of the material in this section is quoted or paraphrased from [7].
We use N to represent the natural numbers, Z to represent the integers, and

R to represent the reals.
A digital image is a pair (X,κ), where X ⊂ Zn for some positive integer

n, and κ is an adjacency relation on X. Thus, a digital image is a graph. In
order to model the “real world,” we usually take X to be finite, although there
are several papers that consider infinite digital images. The points of X may
be thought of as the “black points” or foreground of a binary, monochrome
“digital picture,” and the points of Zn \X as the “white points” or background
of the digital picture.

2.1. Adjacencies, continuity, fixed point. In a digital image (X,κ), if
x, y ∈ X, we use the notation x ↔κ y to mean x and y are κ-adjacent; we
may write x↔ y when κ can be understood. We write x -κ y, or x - y when
κ can be understood, to mean x↔κ y or x = y.

The most commonly used adjacencies in the study of digital images are the
cu adjacencies. These are defined as follows.

Definition 2.1. Let X ⊂ Zn. Let u ∈ Z, 1 ≤ u ≤ n. Let x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ X. Then x↔cu y if
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• x 6= y,
• for at most u distinct indices i, |xi − yi| = 1, and
• for all indices j such that |xj − yj | 6= 1 we have xj = yj .

Definition 2.2 ([30]). A digital image (X,κ) is κ-connected, or just connected
when κ is understood, if given x, y ∈ X there is a set {xi}ni=0 ⊂ X such that
x = x0, xi ↔κ xi+1 for 0 ≤ i < n, and xn = y.

Definition 2.3 ([30, 3]). Let (X,κ) and (Y, λ) be digital images. A function
f : X → Y is (κ, λ)-continuous, or κ-continuous if (X,κ) = (Y, λ), or digitally
continuous when κ and λ are understood, if for every κ-connected subset X ′

of X, f(X ′) is a λ-connected subset of Y .

Theorem 2.4 ([3]). A function f : X → Y between digital images (X,κ) and
(Y, λ) is (κ, λ)-continuous if and only if for every x, y ∈ X, if x ↔κ y then
f(x) -λ f(y).

We use 1X to denote the identity function on X, and C(X,κ) for the set of
functions f : X → X that are κ-continuous.

A fixed point of a function f : X → X is a point x ∈ X such that f(x) = x.
We denote by Fix(f) the set of fixed points of f : X → X.

As a convenience, if x is a point in the domain of a function f , we will often
abbreviate “f(x)” as “fx”.

2.2. Digital metric spaces. A digital metric space [16] is a triple (X, d, κ),
where (X,κ) is a digital image and d is a metric on X. The metric is usually
taken to be the Euclidean metric or some other `p metric; alternately, d might
be taken to be the shortest path metric. These are defined as follows.

• Given x = (x1, . . . , xn) ∈ Zn, y = (y1, . . . , yn) ∈ Zn, p > 0, d is the `p
metric if

d(x, y) =

(
n∑
i=1

| xi − yi |p
)1/p

.

Note the special cases: if p = 1 we have the Manhattan metric; if p = 2
we have the Euclidean metric.

• [17] If (X,κ) is a connected digital image, d is the shortest path metric
if for x, y ∈ X, d(x, y) is the length of a shortest κ-path in X from x
to y.

Under conditions in which a digital image models a “real world” image, X
is finite or d is (usually) an `p metric, so that (X, d) is uniformly discrete as
a topological space, i.e., there exists ε > 0 such that for x, y ∈ X, d(x, y) < ε
implies x = y.

We say a sequence {xn}∞n=0 is eventually constant if for some m > 0, n > m
implies xn = xm. The notions of convergent sequence and complete digital
metric space are often trivial, e.g., if the digital image is uniformly discrete, as
noted in the following, a minor generalization of results of [18, 9].
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Proposition 2.5 ([7]). Let (X, d) be a metric space. If (X, d) is uniformly
discrete, then any Cauchy sequence in X is eventually constant, and (X, d) is
a complete metric space.

Let (X, d) be a metric space and f : X → X. We say f is a contraction
map [15] if for some k ∈ [0, 1) and all x, y ∈ X, d(f(x), f(y)) ≤ kd(x, y). Such a
function is not be confused with a digital contraction [2], a homotopy between
an identity map and a constant function.

3. On [1]

This paper has so many typos and unexplained symbols that it is extremely
difficult to understand. A few examples:

• In Definitions 2.1, 2.3, 3.1, and 3.7, the “→” character appears where it
seems likely that the intended character is “×” to indicate a Cartesian
product.
• In Definition 2.1, it appears the “S” (appearing twice) is intended to

be “T”, since “S” is not defined.
• In Definition 3.1, “X” is undefined. It seems likely “X” is intended

to be “X̃” or something related to the latter. If the former, then this
definition seems to duplicate Definition 2.3.

The assertions stated as Theorems 4.1 and 4.2 of [1] promise existence of
unique fixed points. The assertions and their respective arguments offered
as proofs are very difficult to follow, but one can easily see that they fail to
establish uniqueness of fixed points.

4. On [10]

4.1. “Theorem” 3.1 of [10]. The following Definition 4.1 appears in [10],
where it is incorrectly attributed to [4], where it does not appear. The inspi-
ration for Definition 4.1 may be the rather different definition of compatible
functions appearing in [24].

Definition 4.1. Suppose (X, d, ρ) is a digital metric space. Suppose P,Q :
X → X. Then P and Q are compatible if

d(PQx,QPx) ≤ d(Px,Qx) for all x ∈ X.

The following is stated as Theorem 3.1 of [10].

Assertion 4.2. Let P , Q, G, and H be quadruple mappings of a complete digital
metric space (X, d, ρ) satisfying the following.

(1) G(X) ⊂ Q(X) and H(X) ⊂ P (X).
(2) Let 0 < α < 1. For all x, y ∈ X,

d(x, y) = αmax

{
d(Gx,Hy), d(Gx,Px), d(Hy,Qy), d(Hx,Qx),

1
2 [d(Gx,Qy) + d(Hy, Px)]

}
.

(3) One of P , Q, G, and H is continuous.
(4) The pairs (P,G) and (Q,H) are compatible.
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Then P , Q, G, and H have a unique common fixed point in X.

Flaws in this argument given for this assertion in [10] include the following.

• The first line of the “proof” reverses the containments stated in item
1) of the hypotheses, stating that Q(X) ⊂ G(X) and P (X) ⊂ H(X).
• According to subsequent usage, the “=” in item 2) of the hypothesis

should be “≤”.
• Sequences {xn } and { yn } are constructed, via the rules:

– x0 is an arbitrary point of X.
– inductively, y2n = Gx2n = Qx2n+1 and y2n+1 = Hx2n+1 =
Px2n+2.

Then the following statement appears.

d(y2n, y2n+1) = d(Gx2n, Hx2n+1) ≤

αmax

{
d(Px2n, Qx2n+1), d(Px2n, Gx2n), d(Qx2n+1, Hx2n+1),

d(Gx2n, Hx2n+1), 1
2 [d(Gx2n, Qx2n+1) + d(Px2n, Hx2n+1)]

}
. (4.1)

This statement is not given a justification, and we will show that it
does not correspond to item 2) of the hypotheses. Direct substitution
into item 2) of the hypotheses (with the substitution of “≤” for “=”)
yields the following.

d(y2n, y2n+1) ≤ αmax

 d(Gy2n, Hy2n+1), d(Gy2n, Py2n),
d(Hy2n+1, Qy2n+1), d(Hy2n, Qy2n),

1
2 [d(Gy2n, Qy2n+1) + d(Hy2n+1, Py2n)]

 (4.2)

The expression Gy2n appears 3 times in (4.2). No provision occurs
in [10] for converting this expression into an expression of the sequence
{xn}, as in (4.1).

We must conclude that Assertion 4.2 is unproven.

4.2. Example 3.2 of [10]. This example is based on [0,∞), which the authors
want to consider as a digital metric space. It is not a digital metric space, as
[0,∞) is not a subset of Zn for any n. Nor is a conclusion stated for this
example.

5. On [20, 21]

The papers [20, 21] introduce, for f, g : X → X on a digital metric space
(X, d, κ), notions of compatible of type K and and compatible of type R, claim-
ing that they yield fixed point results. In section 5.1 we discuss how these
notions are related to other notions of compatibility that have appeared in the
literature. In section 5.2 we show flaws in the fixed point assertions of [20, 21].
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5.1. Variants on compatibility. In this section, we consider sequences {xn } ⊂
X such that

limn→∞fxn = limn→∞gxn = t ∈ X (5.1)

Definition 5.1 ([11]). Suppose f and g are self-functions on a metric space
(X, d). If every sequence {xn } ⊂ X satisfying (5.1) also satisfies

limn→∞d(f(gxn), g(fxn)) = 0,

then f and g are compatible.

Definition 5.2 ([20]). Let (X, d) be a metric space. Let f, g : X → X. We
say f and g are digitally compatible of type K if for every infinite sequence
{xn } ⊂ X satisfying (5.1) we have

lim
n→∞

d(ffxn, gt) = 0 and lim
n→∞

d(ggxn, ft) = 0. (5.2)

Definition 5.3 ([21]). Let (X, d) be a metric space. Let f, g : X → X. We
say f and g are digitally compatible of type R if for every infinite sequence
{xn } ⊂ X satisfying (5.1) we have

lim
n→∞

d(fgxn, gfxn) = 0 = lim
n→∞

d(ffxn, ggxn).

We have the following.

Proposition 5.4. Suppose S and T are self-functions on a metric space (X, d)
that is uniformly discrete. Then S and T are compatible of type K if and only
if S and T are compatible.

Proof. Let {xn } ⊂ X be a sequence satisfying (5.1) for the functions S, T .
The uniform discreteness hypothesis implies for almost all n

Sxn = t = Txn, SSxn = St, and TTxn = Tt.

If S and T are compatible,

d(SSxn, T t) = d(STxn, TSxn) = 0 = d(TSxn, STxn) = d(TTxn, St)

so S and T are compatible of type K.
Suppose S and T are compatible of type K. Then for almost all n,

0 = d(SSxn, T t) = d(STxn, TSxn)

so S and T are compatible. �

Proposition 5.5. Suppose S and T are self-functions on a metric space (X, d).
If S and T are compatible of type R, then S and T are compatible. The converse
is true if (X, d) is uniformly discrete.

Proof. It is clear from Definitions 5.1 and 5.3 that a type R pair is a compatible
pair.

Suppose S and T are compatible and (X, d) is uniformly discrete. Let
{xn } ⊂ X satisfy (5.1).

• By Definition 5.1, limn→∞ d(fgxn, gfxn) = 0.
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• Since (X, d) is uniformly discrete, for almost all n we have fxn = gxn =
t. Therefore, for almost all n,

ffxn = fgxn = gfxn = ggxn.

Therefore, S and T are compatible of type R. �

Several variants of compatible functions have been defined in the literature.
These include compatible of type A [11], compatible of type B [14], compatible
of type C [14], and compatible of type P [11].

Theorem 5.6. Let (X, d) be a metric space that is uniformly discrete. Let
S, T : X → X. The following are equivalent.

• S and T are compatible.
• S and T are compatible of type A.
• S and T are compatible of type B.
• S and T are compatible of type C.
• S and T are compatible of type K.
• S and T are compatible of type P.
• S and T are compatible of type R.

Proof. The equivalence of compatible, compatible of type A, compatible of type
B, compatible of type C, and compatible of type P, is shown in Theorem 3.9
of [7]. The equivalence of compatible and compatible of type K is shown in
Proposition 5.4. The equivalence of compatible and compatible of type R is
shown in Proposition 5.5. �

5.2. On the fixed point assertion of [20]. The following is stated as Theo-
rem 4.1 of [20].

Assertion 5.7. Let A,B, S, T : X → X where (X, d, κ) is a digital metric space
such that

(1) S(X) ⊂ B(X) and T (X) ⊂ A(X).
(2) For all x, y ∈ X and some α ∈ (0, 1),

d(Sx, Ty) =
αmax{ d(Ax,By), d(Ax, Sx), d(By, Ty), d(Sx,By), d(Ax, Ty) }.

[Probably, the comparison operator in the latter statement should be
“≤” rather than “=”.]

(3) Pairs (A,S) and (B, T ) are reciprocally continuous.
(4) (A,S) and (B, T ) are pairs of compatible of type K functions.

Then A,B, S, and T have a unique common fixed point in X.

We note the following flaw in the argument offered as proof of this assertion.
A sequence { yn } is constructed. It is claimed that this is a Cauchy sequence,
“From the proof of [what the current paper will refer to as [23]]”. We find
that [23] is listed in [20] as submitted to the Journal of Mathematical Imag-
ing and Vision. At the current writing, 4 years after the publication of [20],
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neither a search of the JMIV website nor a general Google search succeeds in
locating [23].

We conclude that Assertion 5.7 is unproven.

5.3. On fixed point assertions of [21].

Proposition 5.8. Let f, g : X → X be compatible of type R on a uniformly
discrete digital metric space (X, d, κ). If

ft = gt for some t ∈ X, (5.3)

then fgt = fft = ggt = gft.

Proof. We remark that this assertion is a modified version of Proposition 3.2
of [21]; the latter appeared in [21] with neither proof nor citation. The modi-
fication we have made is inclusion of the assumption of uniform discreteness.

Let xn = t for all n. From Definition 5.3, limn→∞ d(fgxn, gfxn) = 0 and
limn→∞ d(ffxn, ggxn) = 0. Since (X, d) is uniformly discrete, for almost all n,
fgxn = gfxn and ffxn = ggxn, hence fgt = gft and fft = ggt. We complete
the proof by observing that (5.3) implies fgt = fft. �

Proposition 5.9. Let f, g : X → X be compatible of type R on a uniformly dis-
crete digital metric space (X, d, κ). If {xn } is a sequence in X satisfying (5.1),
then

(1) ft = gt;
(2) limn→∞ gfxn = ft;
(3) limn→∞ fgxn = gt; and
(4) fgt = gft.

Proof. We remark that this proposition is a modified version of Proposition 3.3
of [21], which appears there with neither proof nor citation. Our modification
is to replace Jain’s assumptions of digital continuity (which Jain may have
confused with metric continuity, since it seems unlikely that one can easily show
that the desired outcome follows from digital continuity) with the assumption
of “uniformly discrete”.

(1) From (5.1) and the assumption of uniform discreteness, it follows that
for almost all n, fxn = gxn = t. From compatibility of type R, it
follows that

0 = limn→∞d(fgxn, gfxn) = d(ft, gt). (5.4)

Thus, ft = gt.
(2) By the uniform discreteness property, limn→∞ gfxn = gt = ft.
(3) Similarly, limn→∞ fgxn = ft = gt.
(4) fgt = gft by Proposition 5.8.

�

The following is stated as Theorem 4.1 of [21].

Assertion 5.10. Let (X, d, κ) be a digital metric space. Let A,B, S, T : X → X
such that
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(1) S(X) ⊂ B(X) and T (X) ⊂ A(X);
(2) for 0 < α < 1 and all x, y ∈ X,

d(Sx, Ty) ≤ αmax

{
d(Ax,By), d(Ax, Sx), d(By, Ty),

d(Sx,By), d(Ax, Ty)

}
;

(3) one of the functions A,B, S, T is continuous; and
(4) (A,S) and (B, T ) are pairs of functions that are compatible of type R.

Then A,B, S, and T have a common fixed point in X.

The argument offered in [21] as proof of Assertion 5.10 is flawed as follows.
Sequences { yn } ⊂ X and { dn = d(yn, yn+1) } are constructed, and it is shown
that for all n,

d2n ≤ αmax{ d2n−1, d2n, d2n−1 + d2n } (5.5)

and d2n ≤ d2n−1, i.e.,

d(y2n, y2n+1) ≤ d(y2n−1, y2n). (5.6)

Note for inequality (5.5) the index on the left side is even, and in (5.6), the
smaller index on the left side is even. In an apparent attempt to obtain a geo-
metric series from the inequalities (5.5) and (5.6), it is claimed these inequalities
imply that for m,n ∈ N with m > n,

d(ym, yn) ≤ αd(ym, ym−1) + . . .+ αd(yn+1, yn). (5.7)

But since there is no analogue of either of the inequalities (5.5) and (5.6) in
which the index on the left side of (5.5) is odd or the smaller index on the left
side of (5.6) is odd, it is not clear that one can obtain (5.7).

Thus, we must consider Assertion 5.10 as unproven.

6. On [22]

We will show that the assertions of [22] are, for the most part, trivial in that
their hypotheses are impossible.

6.1. Some definitions and elementary properties.

Definition 6.1 ([31]). Ψ is the set of nondecreasing functions ψ : [0,∞) →
[0,∞) such that

∑∞
n=1 ψ

n(t) <∞ for all t ≥ 0.

Remarks 6.2. Remark 2.13(1) of [22] says if ψ : [0,∞)→ [0,∞) is nondecreas-
ing such that

∑∞
n=1 ψ

n(t) <∞ for all t ≥ 0, then ψ ∈ Ψ. This turns out to be
trivial, because such a function must be constant, with value 0.

Proof. We have ψ(x) ≥ 0 for all x ∈ [0,∞). Suppose there exists t > 0 such
that ψ(t) = q > 0; let this be the base case of an induction to show ψn(t) ≥ q
for all n ∈ N.

Suppose we have ψn(t) ≥ q for n ≤ k. Since ψ is nondecreasing,

ψk+1(t) = ψ(ψk(t)) ≥ ψ(q) ≥ q,
which completes the induction.

Therefore,
∑n
i=1 ψ

n(t) ≥ nq for all n ∈ N, contrary to the assumption that∑∞
n=1 ψ

n(t) <∞. The contradiction establishes the assertion. �
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6.2. Remark 3.2 of [22].

Definition 6.3 ([22]). Let S : X → X for a digital metric space (X, d, κ). Let
α : X ×X → [0,∞) and ψ ∈ Ψ such that for all x, y ∈ X,

ψ(d(Sx, Sy)) ≥ α(x, y)d(x, y).

Then S is a digital α− ψ expansive mapping.

Definition 6.4. A self-map S on a metric space (X, d) is expansive if for all
x, y ∈ X, d(Sx, Sy) ≥ d(x, y).

Remark 3.2 of [22] claims the following.

Assertion 6.5. Any expansive mapping is a digital α − ψ expansive mapping
with α(x, y) = 1 for all x, y ∈ X and ψ(t) = kt for 0 < k < 1.

Remarks 6.6. Assertion 6.5 is not generally true. It is clear that idX is an
expansive mapping. Let S = idX . Under the assumptions of Assertion 6.5, we
would have from Definition 6.3 the inequality

kd(x, y) ≥ d(x, y), which is false for x 6= y.

6.3. “Theorems” 3.4 and 3.5 of [22].

Definition 6.7 ([22]). Let S : X → X and α : X ×X → [0,∞). We say S is
α-admissible if for all x, y ∈ X,

α(x, y) ≥ 1⇒ α(Sx, Sy) ≥ 1.

The following is stated as Theorem 3.4 of [22].

Assertion 6.8. Let (X, d, κ) be a complete digital metric space. Let S : X → X
be a bijective, digital α− ψ-expansive mapping such that

• S−1 is α-admissible;
• for some x0 ∈ X, α(x0, S

−1(x0)) ≥ 1; and
• S ∈ C(X,κ).

Then S has a fixed point in X.

The following is stated as Theorem 3.5 of [22].

Assertion 6.9. Suppose we replace the continuity assumption in Assertion 6.8
by the assumption that

if {xn } ⊂ X and limn→∞ xn = x, then α(S−1xn, S
−1x) ≥ 1 for all n.

Then S has a fixed point in X.

Remarks 6.10. Both of Assertion 6.8 and Assertion 6.9 are false, as shown by
the example

S : Z→ Z given by S(x) = x+ 1; α(x, y) = 1.
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6.4. Example 3.7. Example 3.7 of [22] wishes to consider a digital metric
space (X, d, κ) and a function T : X → X defined by

T (x) =

{
2x− 11

6 if x > 1;
x
6 if x ≤ 1.

We are not told what X is. From the definition of T , we must have X ⊂ Z.
But T does not appear to be integer-valued, e.g., if 1 ∈ X then T (1) 6∈ Z.

7. On [25]

We consider Theorems 3.1 and 3.2 of [25], stated below as Theorem 7.1 and
Assertion 7.5, respectively. We show that the former reduces to triviality and
the latter is false.

The following is stated as Theorem 3.1 of [25].

Theorem 7.1. Let (X, d, κ) be a complete digital metric space and suppose
T : (X, d, κ) → (X, d, κ) satisfies d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X,
where ψ : [0,∞)→ [0,∞) is monotone non-decreasing and satisfies

lim
n→∞

ψn(t) = 0 for all t > 0. (7.1)

Then T has a unique fixed point in (X, d, κ).

We show that Theorem 7.1 reduces to triviality.

Proposition 7.2. Let ψ be as in Theorem 7.1. Then

• ψ is the constant function with value 0.
• T is a constant function.

Proof. Suppose we have some t0 for which ψ(t0) > 0. Then a simple induction
shows that ψn+1(t0) ≥ ψ(t0) > 0 for all n ∈ N, contrary to (7.1). Thus ψ must
be the constant function with value 0.

It follows that d(Tx, Ty) = 0 for all x, y ∈ X, so T is a constant function. �

Theorem 3.2 of [25] depends on the following.

Definition 7.3 ([13]). Let (X, d, κ) be a digital metric space. Then T : X → X
is a weakly uniformly strict digital contraction if given ε > 0 there exists δ > 0
such that ε ≤ d(x, y) < ε+ δ implies d(Tx, Ty) < ε for all x, y ∈ X.

But Definition 7.3 turns out to be a triviality in many important cases, as
shown by the following.

Proposition 7.4. Let (X, d) be a finite metric space. Then every weakly uni-
formly strict digital contraction on X is a contraction map.

Proof. Let x 6= y in X. Let ε = d(x, y) > 0. Let T : X → X be a weakly
uniformly strict digital contraction on X. It follows from Definition 7.3 that
d(Tx, Ty) < ε = d(x, y).

SinceX is finite, there exists k ∈ (0, 1) such that for all x, y ∈ X, d(Tx, Ty) ≤
kd(x, y). �
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The following is stated as Theorem 3.2 of [25].
The following is stated as Theorem 3.2 of [25].

Assertion 7.5. Let (X, d, κ) be a complete digital metric space. Let T :
(X, d, κ)→ (X, d, κ) be a weakly uniformly strict digital contraction mapping.
Then T has a unique fixed point z. Moreover, for any x ∈ X, limn→∞T

nx = z.

Remarks 7.6. Assertion 7.5 is trivial if X is finite and c1-connected and d is an
`p metric or the shortest path metric.

Proof. By Proposition 7.4, T is a contraction map. Therefore [9], our hypothe-
ses imply T is a constant map. �

8. On [26]

The main result of [26] is Theorem 8.1, below. This theorem depends on
the notions of 1-chainable and uniformly local contractive mapping; it seems
unnecessary to define these here.

Theorem 8.1. Let (X, d, `) be a 1-chainable complete digital metric space. Let
T : X → X be a (1, `)-uniformly locally contractive mapping. Then T has a
unique fixed point in X.

This assertion is correct. However, its publication is unfortunate, for the
following reasons.

• The assertion turns out to be trivial, since such a map must be constant;
indeed, the latter is shown in [26].
• Theorem 8.1 duplicates Theorem 5.1 of the earlier [19] (a result later

shown to be trivial in [9]).

9. On [27, 28]

9.1. Geraghty contraction. The papers [27, 28] focus on digital Geraghty
contraction maps.

Unfortunately, these papers use the symbol S both to represent a single
function and a certain set of functions. This leads to an unfortunate simulta-
neous use of both interpretations of this symbol. We will try to unravel this
confusion by using the following, with G as the symbol for the set of functions
discussed.

Definition 9.1 ([28]). G = {β : [0,∞)→ [0, 1) | β(tn)→ 1⇒ tn → 0 }.
Definition 9.2 ([28]). Let (X, d, κ) be a digital metric space. The function
f : X → X is a digital Geraghty contraction map if there exists β ∈ G such
that

d(f(x), f(y)) ≤ β(d(x, y))d(x, y) for all x, y ∈ X.
Remark 9.3. It is observed in [28] that a digital contraction map is a digital
Geraghty contraction map, but the converse is not true. However, the converse
is true for finite X, since in this case we can replace β(d(x, y)) by

β′(d(x, y)) = max{β(d(x, y)) | x, y ∈ X } < 1,
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since
d(fx, fy) ≤ β(d(x, y))d(x, y) ≤ β′(d(x, y))d(x, y).

The following shows an important case in which Definition 9.2 reduces to
triviality.

Proposition 9.4. Suppose (X, d, κ) is a digital metric space and d is an `p
metric or the shortest path metric. If X is c1-connected (whether or not κ is
c1) then a digital Geraghty contraction map must be a constant function.

Proof. Let x↔c1 y in X. Then d(x, y) = 1. From Definition 9.2,

d(fx, fy) < β(1) < 1, so d(fx, fy) = 0.

Since (X, c1) is connected, the assertion follows. �

9.2. Theorem of [28].

Theorem 9.5 ([28]). Let (X, d, κ) be a complete digital metric space, where d
is the Euclidean metric. Let f : X → X be a digital Geraghty contraction map.
Then f has a fixed point in X.

The assertion of this theorem is correct. Here, we discuss flaws in the ar-
gument offered for its proof in [28], resulting in a much longer argument than
necessary.

• The authors seek to show a sequence {xn} is Cauchy by obtaining a
contradiction to the assumption that it isn’t, leading to a choice of ε > 0
and a subsequence of {xn = f(xn−1) } with members with arbitrarily
large indices u, v such that

ε ≤ d(xu, xv) < ε.

Rather than recognize that this gives the desired contradiction, the
authors proceed with several more paragraphs before concluding that
they have the desired contradiction.

• The authors neglect to complete the proof, failing to show the existence
of a unique fixed point. This can be done as follows. We have

u = lim
n→∞

xn = lim
n→∞

f(xn).

Since d is the Euclidean metric, (X, d) is uniformly discrete, so for
almost all n,

u = xn = xn+1 = f(xn) = f(u).

Thus, u is a fixed point.
The uniqueness of u as a fixed point of f is shown as follows. Suppose

u′ is a fixed point. Then

d(u, u′) = d(fu, fu′) ≤ β(u, u′)d(u, u′)

which implies β(u, u′)d(u, u′) = 0 and thus d(u, u′) = 0, so u = u′.

Remark 9.6. In light of Proposition 9.4, we see that there are many cases for
which Theorem 9.5 is trivial.
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9.3. On [27]. The paper [27] is concerned with pairs of Geraghty contraction
maps in digital metric spaces.

Definition 9.7 ([27]). Let (X, d, κ) be a digital metric space. Let S, T : X →
X, If there exists β ∈ G such that for all x, y ∈ X,

d(Sx, Sy) ≤ β(d(Tx, Ty))d(Tx, Ty),

then (T, S) is a pair of Geraghty contraction maps.

We note an important case in which Definition 9.7 reduces to triviality.

Proposition 9.8. Let (X, d, c1) be a digital metric space and let (T, S) be a
pair of Geraghty contraction maps on X. If

• d is any `p metric or the shortest path metric;
• T ∈ C(S, c1); and
• (X, c1) is connected,

then S is a constant function.

Proof. Let x↔c1 y in X. By Definition 9.7,

d(Sx, Sy) ≤ β(d(Tx, Ty))(d(Tx, Ty)) < d(Tx, Ty).

Since Tx -c1 Ty, we have d(Sx, Sy) < 1, so d(Sx, Sy) = 0. Since (X, c1) is
connected, S must be constant. �

The following is stated as Theorem 2.2 of [27].

Assertion 9.9 ([27]). Let (T, S) be a pair of Geraghty contraction maps on X,
where (X, d, κ) is a digital metric space. Suppose

• S(X) ⊂ T (X);
• T is continuous; and
• S and T commute.

Then T and S have a common fixed point.

The argument given as proof of this assertion is flawed as follows. A sequence
{xn } is formed in X such that { d(Txn+1, Txn) } is a decreasing sequence. It
is derived that

d(Txn+2, Txn+1)

d(Txn+1, xn)
≤ β(d(Txn+1, Txn)) < 1.

It is then claimed that the latter implies

lim
n→∞

d(Txn+2, Txn+1)

d(Txn+1, xn)
= 1.

No justification is given for this claim. Therefore, Assertion 9.9 must be re-
garded as unproven.

We note in the following that there are important cases for which Asser-
tion 9.9 reduces to triviality.

Example 9.10. Let (T, S) be a pair of Geraghty contraction maps on X,
where (X, d, c1) is a digital metric space. Suppose
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• T ∈ C(X, c1);
• d is any `p metric or the shortest path metric;
• (X, c1) is connected; and
• S and T commute.

Then S is a constant function, and S and T have a common fixed point.

Proof. By Proposition 9.8, S is constant; say, S(x) = x0 for all x ∈ X. Since
S and T commute,

Tx0 = TSx0 = STx0 = x0.

�

10. On [29]

10.1. Admissible functions.

Definition 10.1 ([33]). Consider functions T : X → X and α : X × X →
[0,∞). We say T is α-admissible if

x, y ∈ X, α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 10.2 ([29]). Let S, T : X → X, α : X ×X → [0,∞). We say S is
α − β-admissible with respect to T if for all x, y ∈ X we have α(Tx, Ty) ≥ 1
and β(Tx, Ty) ≥ 1 implies α(Sx, Sy) ≥ 1 and β(Sx, Sy) ≥ 1.

Presumably, β : X×X → [0,∞) also, but this is not stated in the definition
quoted above.

10.2. “Theorem” 3.1 of [29]. Let

Φ =

{
ϕ : [0,∞)→ [0,∞) | ϕ is increasing,
t > 0⇒ ϕ(t) < t, and ϕ(0) = 0

}
Definition 10.3 ([29]). Let (X, d, ρ) be a complete digital metric space. Let
T : X → X, α, β : [0,∞) → [0,∞). X is α − β regular if for every sequence
{xn } in X such that xn → x ∈ X and α(xn, xn+1) ≥ 1 and β(xn, xn+1) ≥ 1 for
all n, then there exists a subsequence {xnk

} of {xn } such that α(xnk
, xnk+1

) ≥
1, β(xnk

, xnk+1
) ≥ 1, α(x, Tx) ≥ 1, and β(x, Tx) ≥ 1.

The following is stated as Theorem 3.1 of [29].

Assertion 10.4. Let (X, d, ρ) be a complete connected digital metric space. Let
T : X → X and let α, β : X ×X → [0.∞) be such that

(1) T is α− β admissible;
(2) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;
(3) Either T is continuous or X is (α− β) regular; and
(4) For some ψ,ϕ ∈ Φ and all x, y ∈ X,

α(x, Tx)β(y, Ty)ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)). (10.1)

Then T has a fixed point. Further, if u and v are fixed points of T such that
α(u, Tu) ≥ 1, α(v, Tv) ≥ 1, β(u, Tu) ≥ 1, and β(v, Tv) ≥ 1, then u = v.
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Assertion 10.4 and its “proof” in [29] are flawed as follows. Some flaws listed
below are easily corrected but are possibly confusing.

• The statement of [29] labeled (1) has an “x” that should be “x0” - the
statement should be

xn+1 = Txn = Tn+1x0 for all n ≥ 0.

• There are multiple references to hypothesis (3) that should refer to
hypothesis (4).
• Statement (3) of [29] says

d(xnk
, xmk

) ≥ ε. (3) of [29]

It is then claimed that this implies

d(xnk−1, xmk
) < ε. (4) of [29]

There is no justification for this claim, although it could be justified
by choosing nk as the minimal index of a member of the subsequence
for a given mk to satisfy (3) of [29].
• Suppose (4) of [29] is valid. It leads to a 3-line chain of inequalities in

which the second line is marked “(7)”. The third line is missing “≤”
at its beginning.
• The above leads to (9) of [29]:

ψ(d(xnk
, xmk

)) ≤ ψ(d(xnk−1, xmk−1))− φ(d(xnk−1, xmk−1))

which is then taken to a limit in order to obtain the contradiction ε = 0.
But this limit depends on an unstated hypothesis that the functions ψ
and φ are continuous.
• The contradiction mentioned above resulted from assuming ε > 0.

Therefore ε = 0. It follows that {xn} is a Cauchy sequence, and since
X is complete, xn → x ∈ X. The authors spend additional paragraphs
to argue that x is a fixed point of T ; however, (X, d, ρ) is uniformly
discrete, so xn = xn+1 = Txn = x for almost all n.
• Since the authors’ argument for the existence of a fixed point as a con-

sequence of {xn} being Cauchy is their only use of hypothesis 3) (recall
other references to hypothesis 3) should be references to hypothesis 4)),
the above shows hypothesis 3) is unnecessary.

Thus, the assertion as written is unproven. By modifying [29] as discussed
above, we get a proof of the following version of the assertion.

Theorem 10.5. Let (X, d, ρ) be a complete connected digital metric space. Let
T : X → X and let α, β : X ×X → [0.∞) be such that

(1) T is α− β admissible;
(2) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1; and
(3) For some continuous functions ψ,ϕ ∈ Φ and all x, y ∈ X,

α(x, Tx)β(y, Ty)ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)). (10.2)
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Then T has a fixed point. Further, if u and v are fixed points of T such that
α(u, Tu) ≥ 1, α(v, Tv) ≥ 1, β(u, Tu) ≥ 1, and β(v, Tv) ≥ 1, then u = v.

10.3. “Theorem” 3.2 of [29].

Definition 10.6 ([29]). Let (X, d, ρ) be a complete digital metric space and
let S, T : X → X and α, β : X × X → [0,∞). The pair (S, T ) is a pair of
α− β − ψ − ϕ contractive mappings, where ψ,ϕ ∈ Φ, if

α(x, Tx)β(y, Ty)ψ(d(Sx, Sy)) ≤ ψ(d(Tx, Ty))− ϕ(d(Tx, Ty))

for all x, y ∈ X.

Remark 10.7. It seems likely that there should be further restrictions on α and
β. E.g., given any pair S, T : X → X and any ψ, φ such that ψ(t) ≥ φ(t) for all
t ≥ 0, if either of α or β is the constant function with value 0, then according
to Definition 10.6, (S, T ) is a pair of α− β − ψ − ϕ contractive mappings.

The following is stated as Theorem 3.2 of [29].

Assertion 10.8. Let (X, d, ρ) be a complete digital metric space. Let S, T :
X → X be be α− β − ψ − ϕ mappings for α, β : X ×X → [0,∞) such that

(1) S(X) ⊂ T (X);
(2) S is α− β-admissible with respect to T ;
(3) there exists x0 ∈ X such that α(Tx0, Sx0) ≥ 1 and β(Tx0, Sx0) ≥ 1,

and
(4) we have

α(x, Tx)β(y, Ty)ψ(d(Sx, Sy)) ≤ ψ(d(Tx, Ty))− ϕ(d(Tx, Ty))

(5) If {Txn } ⊂ X such that α(Txn, Txn+1) ≥ 1 and β(Txn, Txn+1) ≥ 1
for all n and Txn →n→∞ Tx, then there exists a subsequence {Txn(k) }
of {Txn } and z ∈ X such that α(Txn(k), T z) ≥ 1 and β(Txn(k), T z) ≥
1 for all k.

(6) T (X) is closed.

Then S and T have a coincidence point.

Among the flaws of Assertion 10.8 as presented in [29] are the following.

• It is assumed in 10.8 (see that paper’s Definition 2.3) that d is the Eu-
clidean metric, which is uniformly discrete on subsets of Zn. Therefore,
the assumption of a discrete metric space need not be stated; the hy-
pothesis that T (X) is closed, is unnecessary; and (X, d) may be more
generally assumed to be uniformly discrete.
• At the line marked “(11)”, there is no clear justification for the claim

xn = Sxn.

This error propagates to the lines marked “(14)”.
• At the chain of inequalities marked “(14)” and its subsequent para-

graph, the error noted at the line marked “(11)” results in the conclu-
sion that limn→∞d(Sxn, Sxn+1) is 0, i.e., that the line marked “(12)”
is valid.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 2 297



L. Boxer

Thus, the error noted at “(11)” propagates through the “proof.” We must
therefore regard Assertion 10.8 as unproven.

10.4. “Theorem” 3.3 of [29]. The following is stated as Theorem 3.3 of [29].

Assertion 10.9. Let (X, d, ρ) be a complete digital metric space and S, T : X →
X and α, β : X ×X → [0,∞) be mappings such that

(1) S(X) ⊂ T (X);
(2) S is α− β admissible with respect to T ;
(3) there exists x0 ∈ X such that α(Tx0, Sx0) ≥ 1 and β(Tx0, Sx0) ≥ 1;
(4) there exist ψ,ϕ ∈ Φ such that

α(Tx, Ty)ψ(d(Sx, Sy)) ≤ ψ(M(x, y))− ϕ(M(x, y))

for all x, y ∈ X, where

M(x, y) = max{ d(Tx, Ty), d(Tx, Sx), d(Sy, Ty), d(Sx, Ty) };
(5) If {xn } is a sequence inX such that α(xn, xn+1) ≥ 1 and β(xn, xn+1) ≥

1 for all n and Txn →n→∞ Tx ∈ T (X), then there is a subsequence
{xn(k) } of {xn } such that α(Txn(k), T z) ≥ 1 and β(Txn(k), T z) ≥ 1
for all k; and

(6) T(X) is closed.

Then S and T have a coincidence point.

The argument in [29] for Assertion 10.9 is flawed as follows. Statement (14)
of [29] is used to justify the claim that

d(Sxn, Sxn+1)→n→∞ 0.

However, as noted above, statement (14) is not correctly derived. Thus Asser-
tion 10.9 is unproven.

10.5. “Theorem” 3.4 of [29]. The following is stated as Theorem 3.4 of [29].

Assertion 10.10. Let (X, d, ρ) be a complete digital metric space and S, T :
X → X and α, β : X ×X → [0,∞) be mappings such that

(1) S(X) ⊂ T (X);
(2) S is α− β admissible with respect to T ;
(3) there exists x0 ∈ X such that α(Tx0, Sx0) ≥ 1;
(4) there exist ψ,ϕ ∈ Φ such that

α(x, Tx)β(y, Ty)ψ(d(Sx, Sy)) ≤ ψ(M(x, y))− ϕ(M(x, y))

for all x, y ∈ X, where

M(x, y) = max{ d(Sx, Sy), d(Tx, Sx), d(Sy, Ty),
d(Sx, Ty) + d(Sy, Tx)

2
};

(5) If {xn } is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and
Txn →n→∞ Tx ∈ T (X), then there is a subsequence {xn(k) } of {xn }
such that α(Txn(k), T z) ≥ 1 for all k; and

(6) T(X) is closed.
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Then S and T have a coincidence point.

The argument given in [29] as proof of Assertion 10.10 is that it follows
immediately from Assertion 10.8. As we have shown above that the latter is
unproven, it follows that Assertion 10.10 is unproven.

10.6. “Theorem” 3.5 of [29]. The following is stated as Theorem 3.5 of [29].

Assertion 10.11. In addition to the hypotheses of Theorem 3.2 [Assertion 10.8
of the current paper], suppose that for each pair x, y of common fixed points of
S and T there exists z ∈ X such that

α(Tx, Tz) ≥ 1, β(Tx, Tz) ≥ 1, α(Ty, Tz) ≥ 1, β(Ty, Tz) ≥ 1, (10.3)

and S and T commute at coincidence points. Then S and T have a unique
common fixed point.

Among the flaws of the argument offered as proof in [29] of Assertion 10.11,
we find the following. The symbol “z” is introduced with two distinct mean-
ings: as stated above among the hypotheses, and then in the claim “... there
exists z ∈ X such that limn→∞ Tzn = Tz.” No reason is given to believe that
the latter point named “z” must be the same as the point of that name in hy-
pothesis (10.3). The argument proceeds assuming the symbol represents both
the first “z” and the second “z”.

We conclude that Assertion 10.11 is unproven.

10.7. “Theorems” 4.1 and 4.2 of [29]. The following are stated as Theo-
rem 4.1 and Theorem 4.2 of [29].

Assertion 10.12. Let (X, d, ρ) be a complete digital metric space. Let A and
B be nonempty closed subsets of X. Suppose α : X × X → [0,∞) and T :
A ∪B → A ∪B are such that

(1) T (A) ⊂ B and T (B) ⊂ A;
(2) if α(x, y) ≥ 1 then α(Tx, Ty) ≥ 1;
(3) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(4) T is continuous or X is α-regular;
(5) for some ψ,ϕ ∈ Φ, α(x, y)ψ(d(Tx, Ty)) ≤ ψ(d(x, y))−φ(d(x, y)) for all

x, y ∈ X.

Then T has a fixed point in A ∩ B. Further if u and v are fixed points of T
such that α(u, Tu) ≥ 1, α(v, Tv) ≥ 1, β(u, Tu) ≥ 1, and β(v, Tv) ≥ 1, then
u = v.

Assertion 10.13. Let (X, d, ρ) be a complete digital metric space. Let A and B
be nonempty closed subsets of X. Let Y = A∪B and let S, T : Y → Y satisfy

• T (A) and T (B) are closed;
• S(A) ⊂ T (B) and S(B) ⊂ T (A);
• T is one-to-one;
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• for some ψ,ϕ ∈ Φ,

ψ(d(Sx, Sy)) ≤ ψ(M(x, y))− ϕ(M(x, y)) for all x, y ∈ A×B;

[presumably, the latter qualification is meant to be x, y ∈ A∪B], where

M(x, y) = max{ d(Tx, Ty), d(Tx, Sx), d(Sy, Ty), d(Sx, Ty) }.

Then S and T have a coincidence point in A ∩ B. Further, if S and
T commute at their coincidence point, then S and T have a unique
common fixed point in A ∩B.

It seems likely that there should be a hypothesis that A ∩ B 6= ∅ in both
Assertion 10.12 and Assertion 10.13. More definitely, the presentations of these
assertions are flawed as follows. The argument offered in [29] for Assertion 10.12
depends on Assertion 10.4, and the argument offered in [29] for Assertion 10.13
depends on Assertion 10.8. Since we have shown above that Assertions 10.4
and 10.8 are unproven, it follows that Assertions 10.12 and 10.13 are unproven.

10.8. Corollaries 4.3 and 4.4 of [29]. The following Assertions 10.14 and 10.15
are stated in [29] as Corollaries 4.3 and 4.4, respectively, as immediate conse-
quences of Assertion 10.13. Since we have shown above that Assertion 10.13 is
unproven, it follows that Assertions 10.14 and 10.15 are unproven.

Assertion 10.14. Let (X, d, ρ) be a complete digital metric space. Let A and B
be nonempty closed subsets of X. Let Y = A∪B and S, T : Y → Y , satisfying
the following.

• T (A) and T (B) are closed.
• S(A) ⊂ T (B) and S(B) ⊂ T (A).
• T is one-to-one.
• There exist ψ,ϕ ∈ Φ such that

ψ(d(Sx, Sy)) ≤ ψ(M(x, y))− φ(M(x, y)) for all x, y ∈ Y,

where

M(x, y) = max{ d(Sx, Sy), d(Tx, Sx), d(Sy, Ty),
d(Sx, Ty) + d(Sy, Tx)

2
}.

Then S and T have a coincidence point in A ∩ B. Further, if S and
T commute at their coincidence point, then S and T have a unique
common fixed point in A ∩B.

Assertion 10.15. Let (X, d, ρ) be a complete digital metric space. Let A and B
be nonempty closed subsets of X. Let Y = A∪B and S, T : Y → Y , satisfying
the following.

• T (A) and T (B) are closed.
• S(A) ⊂ T (B) and S(B) ⊂ T (A).
• T is one-to-one.
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• There exist ψ,ϕ ∈ Φ such that

ψ(d(Sx, Sy)) ≤ ψ(d(Tx, Ty))− ϕ(d(Tx, Ty)) for all x, y ∈ Y.
Then S and T have a coincidence point in A ∩ B. Further, if S and
T commute at their coincidence point, then S and T have a unique
common fixed point in A ∩B.

11. On [32]

11.1. “Theorem” 3.1. The following is stated as Theorem 3.1 of [32].

Assertion 11.1. Let (X, d, κ) be a digital metric space and S, T be self maps
on X satisfying

d(Sx, Ty) ≤ αd(x, Sx) + d(y, Ty) for all x, y ∈ X and 0 < α < 1/2.

Then S and T have a unique common fixed point in X.

That this assertion is incorrect is shown by the following.

Example 11.2. Let D be the “diamond,”

D = { (1, 0), (0, 1), (−1, 0), (0,−1) },
a c2-digital simple closed curve.

Let S = idD and let T (x) = −x. If d is the Euclidean metric, we have

d(Sx, Ty) ≤ diameter(D) = 2 = α(0) + 2 = αd(x, Sx) + d(y, Ty).

Since T has no fixed point in D, we have established that Assertion 11.1 is not
generally valid.

11.2. “Theorem” 3.2. The following is stated as Theorem 3.2 of [32].

Assertion 11.3. Let (X, d, κ) be a digital metric space and let S, T : X → X
such that

d(Sx, Ty) ≤ αd(x, Ty) + d(y, Sx)

for all x, y ∈ X and 0 < α < 1/2. Then, S and T have a unique common fixed
point in X.

There are multiple errors in the argument of [32] offered as proof of Asser-
tion 11.1. We quote one section of this argument, with labeled lines.

Begin quote:

Consider
d(x1, x2) = d(Sx0, Tx1) (11.1)

Now
d(x1, x2) ≤ αd(x0, Tx1) + d(x1, Sx0) (11.2)

d(x1, x2) ≤ αd(x0, x2) + d(x1, x1) (11.3)

d(x1, x2) ≤ αd(x0, x1) + d(x1, x2) (11.4)
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d(x1, x2)− αd(x1, x2) ≤ αd(x0, x1) (11.5)

(1− α)d(x1, x2) ≤ αd(x0, x1) (11.6)

End quote

Statement (11.4) does not appear correctly derived from (11.3), and is equiv-
alent to the unhelpful

0 ≤ αd(x0, x1)

Clearly, (11.5) is not correctly derived from (11.4).
Near the bottom of page 229 of [32], we see

. . . there is a point u ∈ X such that xn → u. Therefore,
subsequence < Sx2n >→ u . . . and < T2n+1 >→ u since S and
T are (κ, κ)-continuous ... we have, Su = u ....

This is incorrect reasoning. The author does not say if the undefined term
“map” is assumed to include a hypothesis of digital continuity; nor is continuity
proven. Further, Example 11.4, given below, provides a counterexample to the
claim that such subsequences imply the existence of a fixed point, even if S is
digitally continuous. Thus, the existence of a fixed point is not established.

In statements (1) and (2) on page 230, there are instances of “=” that should
be “≤”.

Even if we assume common fixed points u, v of S and T , the argument
provided on page 230 to show u and v coincide is incorrect. The author claims
the inequality d(u, v)− d(v, u) ≤ 0 implies d(u, v) = 0, but clearly it does not.

Thus, we conclude that Assertion 11.1 is unproven.

Example 11.4. Let S = T : N→ N be the function

S(n) = T (n) =

{
0 if n = 1;
1 if n 6= 1.

Let xn = n. S and T are both c1-continuous. Also, Sx2n → 1 and Tx2n+1 → 1
but S(1) 6= 1. Further, neither S nor T has a fixed point.

11.3. “Theorem” 3.3. The following is stated as Theorem 3.3 in [32].

Assertion 11.5. Let (X, d, κ) be a digital metric space and let S, T be self-maps
on X such that

d(Sx, Ty) ≤ ad(x, Sx) + bd(y, Ty) + cd(x, y) for all x, y ∈ X,
where a, b, c are nonnegative real numbers such that a+ b+ c < 1. Then S and
T have a unique common fixed point in X.

The argument offered in [32] as proof of this assertion is flawed as follows.

• Errors similar to above for Assertion 11.3: it is incorrectly claimed
that (unestablished digital) continuity and xn → u imply Sx2n → u
and Tx2n+1 → u. From this is wrongly (see Example 11.4) concluded
that u is a common fixed point of S and T .
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• The argument for uniqueness of any fixed point has a correctible error:

“d(u, v) = cd(u, v)” should be “d(u, v) ≤ cd(u, v)”,

which does imply the desired conclusion, d(u, v) = 0.

Due to the errors discussed in the first bullet, Assertion 11.5 is unproven.

11.4. “Theorems” 3.4 and 3.5. We discuss two assertions of [32] whose
arguments given as proofs contain the same errors.

The following is stated in [32] as Theorem 3.4.

Assertion 11.6. Let (X, d, κ) be a digital metric space and let S be a self-map
on X such that

d(Sx, Sy) ≤ [ad(y, Sy)][1 + d(x, Sx)]

1 + d(x, y)
+ bd(x, y)

for all x, y ∈ X, where a, b ≥ 0 and a+ b < 1. Then S has a unique fixed point
in X.

The following is stated in [32] as Theorem 3.5.

Assertion 11.7. Let (X, d, κ) be a digital metric space and let S be a self-map
on X such that

d(Sx, Sy) ≤ [ad(y, Sy)][1 + d(x, Sx)]

1 + d(x, y)
+ bd(x, y) + c

d(y, Sy) + d(y, Sx)

1 + d(y, Sy)d(y, Sx)

for all x, y ∈ X, where a, b, c are nonnegative and a+ b+ c < 1. Then S has a
unique fixed point in X.

The arguments offered in [32] for these assertions are both flawed as follows.

• Errors similar to above for Assertions 11.3 and 11.5: it is incorrectly
claimed that (questionable digital) continuity and xn → u imply Sx2n →
u and Sx2n+1 → u. From this is wrongly (see Example 11.4) concluded
that u is a fixed point of S.
• Despite the author’s claim, the statement d(u, u) = 0 fails to establish

uniqueness of a fixed point of S; one must show d(u, v) = 0 for u, v ∈
Fix(S).

Thus, Assertions 11.6 and 11.7 are unproven.

12. Further remarks

We have continued the work of [9, 5, 6, 7, 8] in discussing flaws in papers
rooted in the notion of a digital metric space. The papers we have considered
have many errors and assertions that turn out to be trivial.

Although authors are responsible for their errors and other shortcomings,
it is clear that many of the papers studied in the current paper were given
inadequate review.
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