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Abstract
A dual-rate control system is a hybrid system composed of continuous-time
and discrete-time elements with two sampling frequencies. In this work, a
new frequency domain analysis and design approach, based on the quanti-
tative feedback theory is developed, to cope with robust stability and robust
tracking specifications. Tracking specifications are considered not only in the
discrete-time but also in continuous-time, that allow a precise description of the
intersample behavior (ripples), and characterization of frequencies below and
beyond the Nyquist frequencies. Several illustrative examples and a case study
has been developed.
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1 INTRODUCTION

A multirate (MR) control system is defined as a hybrid system composed of continuous-time and discrete-time elements
(plant, controllers, and filters), where two or more variables are sampled or updated at different frequencies.1-3 Since
many years ago these systems have been considered in industrial environments where chemical analyzers are needed,4,5

or in visual feedback applications in robotics;6,7 in all these cases post-processing requirements need a time interval that
for a real-time process control request could be long. With these restrictions is not viable to keep and ideal single frequency
in the control loop. In the last years, remote trajectory control of autonomous vehicles8,9 and efficient energy saving in
networked based control systems10-12 also required the use of MR systems. In every these cases, the control problem is
that with the mentioned restricted frequency of measurement, far away from the ideal one, is not possible to assure the
correct performance of the system. MR control systems allow to achieve a performance close to the projected one with no
frequency restrictions. A dual-rate (DR) system is a MR system where there are only two sampling frequencies. The case
with slow output and fast input called MRIC (multirate input control) is especially important. In a DR system it is usual to
consider an integer relation between the sampling periods and without jitter between both sequences. Different control
design methods have been introduced for these kind of systems.13-15 A big number of these contributions were inspired
in classical time-domain or state-space approach single rate methods. It was also introduced the optimal H∞ design in
frequency domain16,17 for MR systems but an iterative problem was the ripple of the system response. Some authors faced
the robust control problem for MR systems.18,19 Nevertheless there was not a frequency-based analysis or design method

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.

1026 wileyonlinelibrary.com/journal/rnc Int J Robust Nonlinear Control. 2022;32:1026–1054.

 10991239, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5861 by U

niversitat Politecnica de V
alencia, W

iley O
nline L

ibrary on [22/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-2711-4385
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frnc.5861&domain=pdf&date_stamp=2021-11-02


BAÑOS et al. 1027

inspired in classical techniques and, even more, assuming robust control. There was an inherent difficulty due to the
complexity of the MR frequency response. In recent years, some contributions allow to make easier those purposes.20-23

In this work, the quantitative feedback theory (QFT)24 is postulated as an efficient technique for analysis and design
of DR control systems, including system with potentially large uncertainty. Being a sound and well-developed frequency
domain technique, it is believed that QFT will be a unique framework for understanding how slow and fast sampling
from the DR controller interact with the plant continuous dynamics, being a goal the efficient characterization of rip-
ples and their removal with a proper controller design. QFT dates back to the seminal works of Isaac Horowitz25 in the
late fifties of the past century, that pioneered the analysis and design of linear and time-invariant systems with large
uncertainty.26 Although somehow aside of the mainstream robust control research, over the years QFT has been extended
to cope with uncertainty in linear and time-varying systems,27 nonlinear systems,28-30 systems with multiple-input
multiple-outputs,31,32 multiloop,24,33 and so forth, and has been also successfully applied in practice.34 Specifically regard-
ing (single-rate) sampled-data control systems, several QFT approaches have been developed. The classical approach is
based on the application of continuous-time QFT through the use of the w-domain with the bilinear transformation.35 A
much more solid approach36 includes continuous-time tracking and gain and phase margin problems, in line with sev-
eral other works37,38 that focus on the continuous-time response of a continuous plant under sampled data control, and
has been a clear inspiration for this work.

The main contribution of this work is the development of a QFT framework for DR control systems having plants
with potentially large uncertainty. It is mainly focused on the problem of robust stability and continuous-time tracking,
and uses the slow-rate controller as design element. Several others performance specifications like disturbance rejection
may be considered by using the developed framework. Some specific contributions are:

• The quantification of the closed-loop continuous-time response in the frequency domain under DR control, that will
allow the efficient characterization of ripples, and in general of a desired intersample behavior.

• A Nyquist-like theorem for the robust stability of DR control systems, and the formulation of worst-case gain and phase
margins, that results in QFT boundaries for the nominal slow open-loop gain function.

• Formulation of continuous-time tracking restrictions as QFT boundaries for the nominal slow open-loop gain func-
tion, for a given fast-rate controller and prefilter, with performance specifications below and beyond the slow Nyquist
frequency.

As a result of the proposed approach, a number of new boundaries are developed that guaranty robust stabil-
ity and continuous-time tracking. The next design steps are standard in QFT and will not be developed here in
detail. Templates and boundaries computation is well-developed (note that only boundaries will be shown in the
different examples along this work). The nominal open-loop gain shaping may be manually performed in simple
cases, eventually with the aid of some computer toolbox.39-42 Additionally, automatic loop-shaping techniques are also
available.43-46

It is worthwhile to mention that the proposed QFT approach can be also applied to design single-rate controllers
with continuous-time specifications beyond the Nyquist frequency, extending previous work36 that suffered from that
limitation. Also, it is useful for analyzing and designing DR controllers for plants with small or no uncertainty, although
it is full potential is clearly obtained for the case of large uncertainty.

In Section 2, besides some basic preliminary results the DR control problem is formulated. Section 3 is about analysis
of DR control systems in the frequency domain; first, a motivational example is investigated by using several analysis
tools available in the literature, then new frequency-domain tools are proposed. As a result, a Nyquist-like theorem for
exponential and Lp-stability of the DR control system is developed. Also, properties of the continuous-time signal spectra
are derived that will be the basis for QFT approach to be developed in Section 4. Here, with the focus on robust stability
and tracking (including continuous-time tracking), a detailed QFT-based method is formulated to solve the DR control
problem, for systems with potentially large uncertainty. Finally, Section 5 is devoted to a case study for a reaction wheel
inverted pendulum.

Notation: R≥0 is the set of non-negative real numbers, Lpe(R≥0), or simply Lpe, is the extended space of Lp(R≥0) (or
simply Lp), which is the normed space of Lebesgue measurable functions f ∶ R≥0 → R with ||f || = (∫ ∞

0 |f (t)|pdt)1∕p < ∞
for 1 ≤ p < ∞, and ||f || = ess supt∈R≥0

|f (t)| for p = ∞. For a function f of bounded variation on (a, b), f (t+) =
lim𝜀→0,𝜀>0 f (t + 𝜀), and f (t−) = lim𝜀→0,𝜀>0 f (t − 𝜀), for any t ∈ (a, b). For a dual-rate system with sampling periods
Tf ,Ts ∈ R, and Tf = Ts∕N, with a integer N > 0, the complex z-variables are zf = z and zs = zN . C is the set of complex
numbers, D ⊂ C is the open unit disk, and Dc = C ⧵ D, where ⧵ stands for set difference.
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1028 BAÑOS et al.

2 PRELIMINARIES AND PROBLEM STATEMENT

For a continuous-time signal x ∶ R≥0 → R and a sampling time T, a sampler ST is a system that produces a sampled-data
signal xT = STx ∶ N≥0 → R, given by xT(n) = x(nT) for n ∈ N≥0. As it is well known,47 if x is a function of bounded vari-
ation in every finite interval of R≥0, then the spectra of the signals x and xT are related by (strictly speaking, x must also
have a Laplace transform with abcissa of convergence 𝜎 < 0):

XT(ej𝜔T) = x(0+)
2

+
∞∑

k=1

x(kT+) − x(kT−)
2

e−j𝜔kT + 1
T

∞∑
n=−∞

X
(

j
(
𝜔 + n 2𝜋

T

))
(1)

where 𝜔 ∈ (−∞,∞). Obviously, if x is a continuous function over R≥0, and x(0) = 0, then the usual expression XT(j𝜔) =
1
T

∑∞
n=−∞X

(
j
(
𝜔 + n 2𝜋

T

))
is recovered.

On the other hand, a zero-order hold HT , with sampling time T, is a system that acts over a discrete-time signal xT

and produces a continuous-time signal x = HTxT given by x(t) = xT(n) for nT ≤ t < (n + 1)T and n ∈ N≥0. In addition,
and with some abuse of notation, the zero-order hold can be characterized by the function

HT(j𝜔) =
1 − e−j𝜔T

j𝜔
(2)

and the spectra of the signals x and xT are related simply by X(j𝜔) = HT(j𝜔)XT(ej𝜔T).
Consider the DR control system of Figure 1 that will be the control setup to be investigated in this work, where all the

signals are scalar. A continuous-time system, with transfer function P(s), is controlled by a multirate controller working
with two sampling periods Ts and Tf . It is assumed that Ts ≥ Tf and Ts will be referred to as the slow sampling time, and Tf
as the fast sampling time. More specifically, the controller consists of two discrete-time controllers: a slow controller with
two-degrees of freedom, with transfer functions FL(zs) and GL(zs), acting over signals sampled every Ts time units, and a
fast controller GR(zf ), acting over signals sampled every Tf time units (note that the z-transform uses different values zs
or zf to emphasize dependence on the sampling period Ts or Tf , respectively).

This work is focused on robust stability and tracking problems considering continuous-time responses. A previous
QFT approach to sampled-data control36 will be used as reference for approaching the QFT dual-rate control problem.
More specifically the following closed-loop objectives are considered: robust stability with worst-case gain and phase
margins, robust discrete-time tracking, and robust continuous-time tracking. A generic control design problem is: given
a set of system transfer functions  , and the prefilters F(s) and FL(zs), find discrete controllers GR(zf ) and GL(zs) to meet
the above objectives. Here, this problem is approached starting with a previously designed fast controller GR(zf ), thus the
focus is on how to design the slow controller GL(zs) to satisfy the closed-loop specifications. The z-transform of the slow

uTf

Ts STs

P
y

d
u

GL GRHTs

Ts

HTf

Tf

Ts STs
Tf STf

FL

 F

r

e

r Ts

yTs

uTs

uTs/Tf

+

+

-

-

F I G U R E 1 A dual-rate control system with discrete controllers GR and (FL,GL) working at a fast/slow sampling time. The continuous
system is given by a transfer function P(s) in a set  , the slow discrete controller is a two degrees of freedom controller with a prefilter FL(zs)
and a feedback controller GL(zs), and its output is processed by a zero-order hold HTs

followed by a sampler STf
before entering the fast

discrete controller GR(zf ), being its output finally processed by a zero-order hold HTf
to obtain the control input. Solid arrows correspond to

continuous time signals, and dashed arrows to discrete time signals
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BAÑOS et al. 1029

controller output uTs is given by:

UTs (zs) = GL(zs)(FL(zs)RTs (zs) − Y Ts (zs)) (3)

where, in addition, the continuous-time error signal e has the s-transform

E(s) = F(s)R(s) − Y (s) (4)

and thus UTs (zs) = GL(zS)(ETs (zs)), once that FL(zs) = {F(s)HTs(s)}. The output of the slow controller uTs is resampled
with the fast sampling time obtaining the fast controller input uTs∕Tf . This operation is modeled by using a combination
of a zero-order hold HTs and a sampler with sampling time Tf . Finally, the output of the fast controller uTf is processed
by a zero-order hold HTf producing the system input u. Note that in contrast to other QFT approaches based on tracking
error specifications,32,48,49 here the tracking specification is based on (4) and the continuous prefilter F and it is discretiza-
tion FL are first designed,36 and then the emphasis will be on the design of the discrete feedback controller GL for the
continuous-time responses closely follow the response of the prefilter F.

It is also assumed that the exogenous signals and the system and controllers transfer functions satisfy the following
standing assumption.

Assumption 1.

• The reference signal r and disturbance d are functions in L1e(R≥0) (signals in Lp(R≥0), 1 ≤ p ≤ ∞, such as steps, ramps,
sinusoids, and so forth, are included; impulses are excluded).

• The system transfer function P(s) is rational and strictly proper.
• The prefilter F(s) is rational, strictly proper, and minimum-phase; and, in addition, the discrete prefilter FL(zs) is the

discretization of F(s) as given by FL(zs) = {F(s)HTs(s)}.
• The controllers GL(zs) and GR(zf ) are rational and proper, and in addition Tf = Ts∕N, that is zs = zN

f (N is a positive
integer). By notational simplicity z = zf and zs = zN may be used.

3 FREQUENCY DOMAIN ANALYSIS OF DUAL-RATE CONTROL SYSTEMS

Analysis of DR and in general MR sampled systems in the frequency domain has been developed since early
contributions20,22 to the field of digital control, trying to overcome the basic difficulty that multirate sampled systems are
time-varying. In particular, several seminal works introduced switch decomposition2,50 and frequency decomposition51

techniques, that has been the basis for future developments. More recently, a relevant approach has been the lifting
technique,52,53 that transforms the periodic system into a linear time invariant one considering every signal referred to
the least common multiple of all the periods of the MR system. The frequency domain analysis of multirate systems may
be performed by using singular value decomposition (SVD) of the lifted MIMO system. Also, a number of works have
extended the switch decomposition method of Kranc to very general cases obtaining which has been called a generalized
Bode diagram (GBD).54,55 By using a GBD, it is possible to analyze the several harmonic components of a DR sampled
system as interleaved fragments of the frequency response of a particular single-rate system.

In the following, the lifted system SVD technique and, with some more detail, the GBD technique are applied to a DR
control system to analyze its intersample behavior and motivate the QFT analysis and design technique to be developed
in this work.

3.1 A motivational example

Consider56,57 the system with transfer function

P(s) = 1.5
(s + 0.5)(s + 1.5)

(5)
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1030 BAÑOS et al.

and a DR controller with sampling times Ts = 0.4 s and Tf = 0.4
3

s and thus N = 3, given by the slow and fast controllers
(by simplicity a case without prefilter is analyzed, that is F(s) = FL(z3) = 1)

GL(z3) = z9 − 1.296z6 + 0.5636z3 − 0.1721
z9 − 2.131z6 + 1.365z3 − 0.2344

(6)

and

GR(z) =
26.31z4 − 85.24z3 + 102.1z2 − 53.32z + 10.21

z4 − 1.469z3 − 0.2344z2 + 1.225z − 0.5089
(7)

respectively. The goal of this DR controller is to emulate the design specifications obtained by the continuous-time PID
controller Gc(s) = 7.5

(
1 + 0.2s + 1

3s

)
, that will be used for comparison. It is desired that the DR controller achieves similar

closed-loop performance but satisfying design implementation constraints such a slow output sampling and fast input
sampling of the system (5). The reader is referred to References 56 and 57 for technical details about the DR controller
computation.

A simulation of this DR control system has been performed, and results are shown in Figure 2. Although its perfor-
mance in terms of unit step tracking seems to be correct in comparison with the PID controller, both at the slow and fast
sampling periods (see Figure 2-left), the step response of the DR controller (see Figure 2-center) exhibits a ripple that
degrades the intersample behavior and is clearly unacceptable in control practice. This ripple is obtained at a frequency
𝜔ripple = 3𝜋

0.4
≈ 23.6 Rad/s which is exactly the fast Nyquist frequency, that is 𝜔ripple = 𝜋

Tf
.

Now, the question is if some of the previously developed methods for frequency analysis is able to detect this inter-
sample behavior in a efficient way. Figure 2-right shows both the (magnitude) GBD and SVD plots corresponding to the
closed-loop system (reference to output), taking from References 56,57. Note that the oscillating intersampling behav-
ior or ripple is due to the folding of high frequencies, and this alias at 𝜔ripple ≈ 23.6 Rad/s is barely distinguishable in
the SVD diagram, that makes very difficult if not impossible to estimate the frequency and amplitude of the ripple using
SVD. However, in the GBD both the ripple amplitude and frequency are clearly depicted. This is explained in detail in the
following, discussing some limitations of the technique that has been a main motivation for this work.

The GBD technique23 allows the computation of the frequency response from rTs to yTf (see Figure 1) by using only
one Bode plot, and even for a more general case in which Nf and Ns are coprime integers (being NsTs = Nf Tf ). It is
understood that this “frequency response” does not give a single sinusoidal output for a sinusoidal input, in fact for a input
rTs(k) = ej𝜔Tsk the output is a sum of components yr(k) = ŷrej𝜔rTf k with frequencies 𝜔r = 𝜔 + r 2𝜋

Nf Tf
, r = 0, 1, … ,Nf − 1.

And the GBD plot is used to compute ŷr at the Nf frequency points 𝜔r, for r = 0, 1, … ,Nf − 1. Note that this technique
only allows to analyze the frequencies appearing in the sampling of the signal of interest (in this case the output yTf ). For
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F I G U R E 2 DR control system: (Left) Closed-loop step response of the PID controller and the DR controller at slow sampling -up- and
at fast sampling -down-; (center) Closed-loop step response of the DR controller and their slow sampling -up- and fast sampling -down-;
(right) Generalized Bode plot and maximum singular value versus frequency (closed-loop system)
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F I G U R E 3 DR control system: (Left) Closed-loop step response of the DR controller at several sampling periods Tf = Ts∕N, for N = 3,
4, and 6; (right) Generalized Bode plot for N = 3, 4, and 6 (note that the GBD plot of Figure 2-right corresponds to N = 6)

a finer intersample behavior analysis, the usual practice58,59 is to sample the output at a faster sampling period and then
to obtain the corresponding frequency components from the GBD.

For this example, and also in this work (see Assumption 1), Ns = 1 and Nf = N which are clearly coprime, and thus
the GBD can be applied. Figure 3 shows step responses and GBD plots of the DR control system example sampled at sev-
eral sampling periods with N = 3, 4, and 6. Note that for N = 3, with Nyquist frequency 𝜔Nyquist(N=3) = 3𝜋

0.4
≈ 23.56 Rad/s,

the GBP does have a relatively small value in magnitude, under −20 dB, for frequencies between approximately 1 and
23.56 Rad/s, and thus a ripple is not expected in the sampled signal as it is observed in the corresponding time response
(Figure 3). However, for the case N = 4 with a frequency range [0, 𝜔Nyquist(N=4)] ≈ [0, 31.42] Rad/s, the GBD clearly shows
one (only) peak at the ripple frequency 𝜔ripple ≈ 23.56 Rad/s, that is also observed at the time response. Finally, for N = 6
with a frequency range [0, 𝜔Nyquist(N=6)] ≈ [0, 47.12] Rad/s, the GBD only shows a significant peak at the frequency 𝜔ripple,
clearly observed also in the time response.

Although the GBD technique allows the analysis of ripples occurrence, and in general frequency domain analysis of
DR systems, a drawback is that it only allows the frequency analysis of the continuous-time signals of interest (like the
control signal and the closed-loop output) in a somehow indirect way through their samples. Obviously, this can be partly
alleviated by using a large value of N, but this is always an approximated analysis. Another more important issue that
hampered the application of GBD in control practice, is that it is not obvious how to use GBD to design DR controllers,
specially for systems with large uncertainty.

In the rest of this work, after developing a basic extension of the GBD technique to directly obtain continuous-time
signal spectra, this result will be used as basis to develop a QFT-based methodology of robust DR controller design, that
will be specially useful for systems with large uncertainty.

3.2 A Nyquist-like theorem for nominal closed-loop stability

Before analyzing the frequency response of the DR control system, it is necessary to substantiate a stability result. By sim-
plicity, the case of no uncertainty in P is considered here (robust stability is developed en Section 4.1). Also note that, by
Assumption 1, Tf = T and Ts = NT. The DR control system of Figure 1 is now modeled at different signal levels, from
the continuous-time signals to the discrete-time signals given by the sampling with the fast and slow sampling periods.
With some abuse of notation, the plant and the different controllers are now represented as time domain operators (see
Figure 4): P is the continuous-time LTI plant, PR = STPHT is its “fast” discretization (which is the zero-order hold equiva-
lent of P at the fast sampling), and K = HTKRST is a continuous-time controller, where KR is a discrete-time controller with
input and output yTf and uTf , respectively, given by KR = GRQ∗

N GLSN . Here, GR and GL are the fast and slow controllers,
respectively, and SN and Q∗

N will be defined in the following. Finally, PL = SN PRGRQ∗
N .
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F I G U R E 4 Representation of the DR control system as a feedback system interchanging different signals models: (A) Dual-rate system
(P,K,F), with continuous-time signals u and y and exogenous signals r and d; the system (P,K) is obtained by doing d = r = 0; (B)
Discrete-time system (PR,KR), with fast-sampled signals uTf and yTf , and internal signals u and y; (C) Discrete-time system (PR,KR) with
several internal signals: slow-sampled signals uTs and yTs and the upsampled signal uTs∕Tf ; (D) Discrete-time system (PL,GL) with
slow-sampled signals uTs and yTs , and internal signals uTr , yTr , and uTs∕Tf

Here SN is a sampler of a discrete-time signal x that gives the discrete-time signal (SN x)(k) = x(kN), for k ≥ 0, and in
the setup of Figure 1 yTf = STy and yTs = SN yTf = SN STy are obtained. Moreover Q∗

N represents the operation in Figure 1
corresponding to the zero-holding and resampling of uTs for obtaining uTs∕Tf . Q∗

N has been referred to as a Q-upsampler60

(with Q = [1, 1, … , 1]) in contrast to the zero padding upsampler S∗
N (corresponding to Q = [1, 0, … , 0]) used in previous

seminal works,37 which is the adjoint of SN .
As a result, the DR control system of Figure 1 corresponds to (P,K,F) in Figure 4A. If exogenous inputs are not

considered, that is r = d = 0, the autonomous DR control systems is denoted by (P,K). Moreover, (PR,KR) and (PL,KL)
correspond to discrete-time models of (P,K) with fast and slow sampling, respectively (Figure 4B–D).

For the DR system (P,K), the state x(t) = (xP, xK)(t) is sufficient information for the computation of all future values of
all signals37 in the absence of exogenous inputs. By definition, (P,K) is exponentially stable if there exist positive constants
𝛼 and 𝛽 such that for every initial time t0 and every initial state x(t0), ||x(t)|| ≤ ||x(t0)||𝛽e𝛼(t−t0). A similar definition can
be stated in discrete-time for the feedback systems (PR,KR) and (PL,KL) in Figure 4. On the other hand, the DR system
(P,K,F) is Lp-stable if the operators from d, r to e, u are bounded from Lp to Lp, for 1 ≤ p ≤ ∞.

Consider the following standing assumption:

Assumption 2.

1. (Non-pathological fast sampling of the continuous-time plant) None of the points jk 2𝜋
Tf

, k ≠ 0 is a pole of P, and if sp is

a pole of P in CRHP then sp + jk 2𝜋
Tf

is not a pole of P, for k ≠ 0.

2. (Non-pathological slow sampling of the fast discrete-time plant) If zp is a pole of PR in Dc then zpejk 2𝜋
N is not a pole of

PR, for k = 1, 2, … ,N − 1.
3. ( No unstable hidden modes with fast and slow sampling) There is not pole-zero cancellations of the products PRGR

and PLGL in Dc.
4. (stability of the fast controller) The poles of GR are in D.

Since our approach is based on the frequency domain, a Nyquist-like theorem will be developed, adapting previ-
ous results37,38,61,62 to our control setup. In the following, the full Nichols plot of PL ⋅ GL refers to the plot of ||PL

(
ej𝜔Ts

)
⋅

GL
(

ej𝜔Ts
) || in dB against ∠PL

(
ej𝜔Ts

)
⋅ GL(ej𝜔Ts) in the domain [−360,0] degrees, for 𝜔 ∈ [0, 2𝜋∕Ts]. Also the half Nichols

plot corresponds to the segment of the full Nichols plot for 𝜔 ∈ [0, 𝜋∕Ts]. The next result is based on the number of
crossings61,62 of the full Nichols plot. Afterwards, the result is adapted to the half Nichols plot in a remark. In this work,
for simplicity the half Nichols plot will be also referred to as the Nichols plot.

Proposition 1. Under Assumptions 1 and 2, if in addition the full Nichols plot of PL ⋅ GL does not intersect the point
(−180◦, 0 dB) and the net sum of crossings of the ray R0 ∶= {(−180◦, r) ∶ r > 0 dB} is equal to the number of poles of PL ⋅ GL
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BAÑOS et al. 1033

(including multiplicities) in Dc (the crossing condition), then the DR control system (P,K) is exponentially stable and (P,K,F)
is input-output Lp-stable, for 1 ≤ p ≤ ∞.

Proof. First, consider the discrete-time feedback system (PL,GL) (Figure 4D). The system PL = SN PRGRQ∗
N will be shown

to be time-invariant. Before that, some properties of the upsampler Q∗
N , the backward shift U, and forward shift U∗ need

to be elaborated. It easily follows that

Q∗
N U = UN Q∗

N (8)

and

U∗N Q∗
N = Q∗

N U∗ (9)

Some other well-known properties37 in relation with SN , besides SN S∗
N = I and U∗U = I, are

USN = SN UN (10)

and

U∗SN = SN U∗N (11)

Also, a discrete-time linear system G is time-invariant if U∗GU = G, and is N-periodic if U∗N GUN = G.
Now, from (10) to (11) it directly follows that

U∗PLU = U∗SN PRGRQ∗
N U = SN U∗N PRGRUN Q∗

N (12)

In addition, by using the fact that GR and PR are time-invariant, and the identities (8)–(9), it results

U∗PLU = SN U∗N PRGRUN Q∗
N = SN PRU∗N UN GRQ∗

N = PL (13)

that is, PL is time-invariant. Since the full Nichols plot of PL ⋅ GL satisfies the crossing condition, it is a standard result61,62

that (PL,GL) is exponentially stable.
Next, consider the stability of the discrete-time system (PR,KR) (Figure 4B,C). In contrast with the above reasoning,

now KR is not time-invariant. However, it will be shown that KR is N-periodic. This directly follows by using (8)–(9) and
the fact that GR and GL are time-invariant, that is

U∗N KRUN = U∗N GRQ∗
N GLSN UN = GRU∗N Q∗

N GLSN UN = GRQ∗
N U∗GLUSN = GRQ∗

N GLSN = KR (14)

And thus, all the conditions of Theorem 137 are satisfied (note that in this Theorem the zero padding upsampler S∗
N is

used instead of the upsampler Q∗
N , and thus it is not directly applicable), and as a result the system (PR,KR) is exponentially

stable. Finally, the exponential stability of the DR system (P,K) and the Lp-stability of the DR system (P,K,F) follows by
direct application of Theorem 437 and Theorem 7,38 respectively. ▪

Remark 1. Note that the ray crossings have a positive sign when the full Nichols plot crosses from left to right, and a
negative sign in the opposite direction.62 On the other hand, it is customary in QFT to work with the half Nichols plot
(that will be referred to as Nichols plot in the rest of this work) of PL ⋅ GL as design element. Note that one crossing of
the Nichols plot corresponds to two crossings of the full Nichols plot. In addition, some care with the crossings count is
needed in the cases in which the Nichols plot starts or ends at the ray R0; in these cases, they should be counted as half
crossings. Also, if there are poles of PL ⋅ GL in zs = 1, there is a segment of the full Nichols plot from 𝜔 = 0− to 𝜔 = 0+
(coming from the indentation of the Nyquist path at zs = 1) that may produce crossings of R0: it counts as −1 crossing of
the full Nichols plot and −1∕2 crossing of the Nichols plot (see technical details in References 61,62).

Moreover, as it is well-known,36 stability margins are conveniently depicted in the Nichols plane (see Figure 5): if
PL

(
ej𝜔Ts

)
GL

(
ej𝜔Ts

)
= le𝜆 then the gain margin is defined as GM= 1∕l at𝜆 = −180◦, and the phase margin is PM= 180◦ + 𝜆

where 𝜆 is the phase corresponding to l = 1.
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1034 BAÑOS et al.

R0

PM

GM

0- 0 +

R0

PM

GM

0- 0 +

F I G U R E 5 DR control system example of Section 3.1: Full Nichols plot (left) and Nichols plot (right) of GL ⋅ PL, showing no crossings
of the ray R0, and phase and gain margins

Example 1. Consider the example of Section 3.1. To apply the stability Nyquist result of Proposition 1, first Assumption 2
must be checked (Assumption 1 easily follows):

1. P(s), given by (5), has real poles. Thus, fast sampling is non-pathological.
2. Here PR(z) = 1.197e−05z+1.194e−05

z2−1.992z+0.992
, having zeros and poles in D. No unstable cancellation is possible.

3. Poles of PR(z) are real, and thus slow sampling is non-pathological.
4. Poles of GR(z), given by (7), are in D.

Once it is shown that the Nyquist test can be applied, it has to be checked that there are no crossing of the full Nichols
plot of PL ⋅ GL with the ray R0, since (PL ⋅ GL)(zN) has no poles in Dc. Figure 5 shows the full Nichols plot and the Nichols
plot, and the fact that there are no crossings. As a result, exponential and Lp-stability of the DR control system directly
follows.

3.3 Continuous-time signals spectra in dual-rate systems

A basic goal of this work is to analyze, if possible, the frequency responses from the control system input r to signals
of interest like the control input u and the output y. Besides stability, this work is specifically devoted to tracking prob-
lems, and thus it is consider d = 0 in the rest of this work (the case of non zero disturbances can be approached by
using a similar treatment), that is Y (s) = P(s)U(s). Thus, the key question is if it is possible to establish a frequency
response that relates the reference input r to the output y. It will be shown that indeed it is possible, although with some
limitation.

Consider the discrete sensitivity frequency response SL
(

ej𝜔Ts
)

defined as

SL
(

ej𝜔Ts
)
= 1

1 + GL
(

ej𝜔Ts
)

PL
(

ej𝜔Ts
) (15)

where PL
(

ej𝜔Ts
)

is the frequency response function corresponding to PL = SN PRGRQ∗
N , and the complementary sensitivity

frequency response T(j𝜔) defined as

T(j𝜔) = P(j𝜔)GR(ej𝜔Tf )HTs (j𝜔)GL
(

ej𝜔Ts
)

SL
(

ej𝜔Ts
)

(16)
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BAÑOS et al. 1035

Note that T(j𝜔) is not a sensitivity function in the conventional sense, here it is used to relate the spectrum of a slow
sampled reference signal (discrete time) to the spectrum of the output signal (continuous time). This notation about
sensitivity functions is common is sampled data systems36,47

The following result establishes the frequency responses from rTs to yTs and from rTs to y. The existence of the first
frequency response, establishing the frequency response at the slow sampling time, is more or less obvious once the fast
sampling time is a multiple of the slow sampling time. However, the existence of a (exact) frequency relationship between
the sampled signal rTs and the continuous-time signal y is less evident.

Proposition 2. Consider the DR control system of Figure 1, and assume that the stability conditions of Proposition 1 are
satisfied. Then, for the case Y (s) = P(s)U(s) (d = 0), the spectra of the system output y and its slow sampling yTs are given by

Y (j𝜔) = T(j𝜔)FL
(

ej𝜔Ts
)

RTs
(

ej𝜔Ts
)

(17)

and

Y Ts
(

ej𝜔Ts
)
=
(
1 − SL

(
ej𝜔Ts

))
FL

(
ej𝜔Ts

)
RTs

(
ej𝜔Ts

)
(18)

respectively.

Proof. Since, according to Assumption 1, P is a strictly proper rational function, then the spectrum of the slow sampled
output yTs is directly given by

Y Ts
(

ej𝜔Ts
)
= 1

Ts

∞∑
n=−∞

Y
(

j
(
𝜔 + n 2𝜋

Ts

))
(19)

where the spectrum of y is

Y (j𝜔) = P(j𝜔)HTf (j𝜔)U
Tf (ej𝜔Tf ) (20)

and, in addition,

UTf (ej𝜔Tf ) = GR(ej𝜔Tf )UTs∕Tf (j𝜔) (21)

Moreover, using (1), the fact that the signal HTs (u
Ts ) is a function of bounded variation (but not necessarily continu-

ous), and that the slow discrete controller is initially at rest, it follows that

UTs∕Tf (j𝜔) =
∞∑

k=1

uH(kT+
f ) − uH(kT−

f )

2
e−j𝜔kTf + 1

Tf

∞∑
n=−∞

HTs

(
j
(
𝜔 + n 2𝜋

Tf

))
UTs

(
e

j
(
𝜔+n 2𝜋

Tf

)
Ts

)
(22)

Now, since Ts = NTf , the right-hand first and second terms of (22) can be simplified considering that

∞∑
k=1

uH(kT+
f ) − uH(kT−

f )

2
e−j𝜔kTf =

∞∑
k=1

uTs (k) − uTs (k − 1)
2

e−j𝜔kTs = 1 − e−j𝜔Ts

2
UTs

(
ej𝜔Ts

)
(23)

and

UTs

(
e

j
(
𝜔+n 2𝜋

Tf

)
Ts

)
= UTs

(
ej(𝜔Ts+n2𝜋N)) = UTs

(
ej𝜔Ts

)
(24)

and also that

1 − e−j𝜔Ts

2
+ 1

Tf

∞∑
n=−∞

HTs

(
j
(
𝜔 + n 2𝜋

Tf

))
= 1 − e−j𝜔Ts

1 − e−j𝜔Tf
(25)
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1036 BAÑOS et al.

Using (23), (24), and (25), the spectrum of the signal uTs∕Tf , given by (22), is finally

UTs∕Tf
(

ej𝜔Tf
)
=
(

1 − e−j𝜔NTf

1 − e−j𝜔Tf

)
UTs

(
ej𝜔NTf

)
= HTs∕Tf

(
ej𝜔Tf

)
UTs

(
ej𝜔NTf

)
(26)

where HTs∕Tf (e
j𝜔Tf ) corresponds to the frequency response of the upsampler Q∗

N . From (19), (20), (21), and (26) it is
obtained

Y Ts
(

ej𝜔Ts
)
= 1

Ts

∞∑
n=−∞

P
(

j
(
𝜔 + n 2𝜋

Ts

))
HTf

(
j
(
𝜔 + n 2𝜋

Ts

))
GR

(
ej
(
𝜔+n 2𝜋

Ts

)
Tf

)
HTs∕Tf

(
ej
(
𝜔+n 2𝜋

Ts

)
Tf

)
UTs

(
ej
(
𝜔+n 2𝜋

Ts

)
NTf

)
(27)

This expression allows further simplification since

HTf

(
j
(
𝜔 + n 2𝜋

Ts

))
HTs∕Tf

(
ej
(
𝜔+n 2𝜋

Ts

)
Tf

)
= 1 − e−j

(
𝜔+n 2𝜋

Ts

)
Tf

j
(
𝜔 + n 2𝜋

Ts

) ⋅
1 − e−j

(
𝜔+n 2𝜋

Ts

)
NTf

1 − e−j
(
𝜔+n 2𝜋

Ts

)
Tf

= 1 − e−j𝜔Ts

j
(
𝜔 + n 2𝜋

Ts

) = HTs

(
j
(
𝜔 + n 2𝜋

Ts

))
(28)

and thus

Y Ts (ej𝜔Ts) =

(
1
Ts

∞∑
n=−∞

P
(

j
(
𝜔 + n 2𝜋

Ts

))
GR

(
ej(𝜔+n 2𝜋

Ts
)Tf
)

HTs

(
j
(
𝜔 + n 2𝜋

Ts

)))
UTs (ej𝜔Ts) (29)

Now, the expression between parenthesis is exactly PL
(

ej𝜔Ts
)
, that is

Y Ts
(

ej𝜔Ts
)
= PL

(
ej𝜔Ts

)
⋅ UTs

(
ej𝜔Ts

)
(30)

Finally, taking into account that UTs
(

ej𝜔Ts
)
= GL

(
ej𝜔Ts

) (
FL

(
ej𝜔Ts

)
RTs

(
ej𝜔Ts

)
− Y Ts

(
ej𝜔Ts

))
, substituting in (30), and

reordering to obtain Y Ts
(

ej𝜔Ts
)
, the desired result (18) is directly obtained from:

Y Ts
(

ej𝜔Ts
)
=

GL
(

ej𝜔Ts
)

PL
(

ej𝜔Ts
)

1 + GL
(

ej𝜔Ts
)

PL
(

ej𝜔Ts
)FL

(
ej𝜔Ts

)
⋅ RTs

(
ej𝜔Ts

)
(31)

In addition, from (4) and (31) the error spectrum ETs (ej𝜔Ts
)

is directly given by

ETs
(

ej𝜔Ts
)
= FL

(
ej𝜔Ts

)
RTs

(
ej𝜔Ts

)
− Y Ts

(
ej𝜔Ts

)
= SL

(
ej𝜔Ts

)
FL

(
ej𝜔Ts

)
RTs

(
ej𝜔Ts

)
(32)

Moreover, since Y (j𝜔) = P(j𝜔)U(j𝜔) then the spectrum of the continuous-time signal y is given by

Y (j𝜔) = P(j𝜔)HTf (j𝜔)GR
(

ej𝜔Tf
)

HTs∕Tf

(
ej𝜔Tf

)
GL

(
ej𝜔Ts

)
ETs

(
ej𝜔Ts

)
(33)

where, using (26), (28) (for n = 0), and (32), the desired result (17) is directly obtained. ▪

Remark 2. To compute the closed-loop response of the DR control system of Figure 1 to a harmonic reference input with
frequency 𝜔0, that is r(t) = ej𝜔0t, t ∈ (−∞,∞) and

RTs
(

ej𝜔Ts
)
= 2𝜋

Ts

k=∞∑
k=−∞

𝛿

(
𝜔 − 𝜔0 − k 2𝜋

Ts

)
(34)

Equation (17) can be directly used. The result is a multiharmonic response as expected, given by

Y (j𝜔) = 2𝜋
Ts

FL(ej𝜔0Ts )
k=∞∑

k=−∞
T
(

j𝜔0 + k 2𝜋
Ts

)
𝛿

(
𝜔 − 𝜔0 − k 2𝜋

Ts

)
(35)

 10991239, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5861 by U

niversitat Politecnica de V
alencia, W

iley O
nline L

ibrary on [22/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BAÑOS et al. 1037

from which it is directly obtained the time response

y(t) = FL(ej𝜔0Ts )
k=∞∑

k=−∞
T
(

j𝜔0 + k 2𝜋
Ts

)
ej
(
𝜔0+k 2𝜋

Ts

)
t (36)

Moreover, if the reference is r(t) = cos(𝜔0t), considering the symmetry property T(−j𝜔) = T∗(j𝜔), it easily follows that
the time response is

y(t) = FL(ej𝜔0Ts )

(|T(𝜔0)| cos(𝜔0t + ∠T(j𝜔0) +
k=∞∑
k=1

|Tk(j𝜔0)| cos(𝜔kt + ∠Tk(j𝜔0) + |Tk(−j𝜔0)| cos(−𝜔kt + ∠Tk(−j𝜔0)

)
(37)

consisting of the fundamental frequency 𝜔0 and a infinite number of harmonics at frequencies ±𝜔k = ±𝜔0 + k 2𝜋
Ts

, k =
1, 2, 3, … . Note that the exact time response can be computed by reading the Bode plot of the complementary sensitivity
function T(j𝜔) at the frequencies given by the fundamental frequency and the harmonics frequencies.

Example 2. Consider the example of Section 3.1. Figure 6 shows the Bode plot of T(j𝜔), that has been computed using
(16). Here, the time closed-loop response to a reference r(t) = cos

( 𝜋

0.4
t
)

can be obtained for a given prefilter, using (37),
by computing the magnitude and angle of T(j𝜔) for frequencies 𝜋

0.4
, 𝜋

0.4
+ k 2𝜋

0.4
= (2k+1)𝜋

0.4
, and − 𝜋

0.4
+ k 2𝜋

0.4
= (2k−1)𝜋

0.4
, for

k = 1, 2, … . Thus, the frequencies appearing at the output y are:

𝜋

0.4
,

3𝜋
0.4

,
5𝜋
0.4

, … ,
𝜋

0.4
,

3𝜋
0.4

,
5𝜋
0.4

, … (38)

Note that only for the first two frequencies 𝜋

0.4
, 3𝜋

0.4
, the magnitude Bode plot has significant values (for the rest of

frequencies the magnitude is under −40 dB). These frequencies are the input frequency 𝜋

Ts
and the frequency 3𝜋

Ts
in which

the ripple is produced. For the case FL(ej𝜔0Ts ) = 1, applying (37) the result is well approximated by

y(t) ≈ 2
||||T

(
j 𝜋

0.4

)|||| cos
(

𝜋

0.4
t + ∠T

(
j 𝜋

0.4

))
+ 2

||||T
(

j 3𝜋
0.4

)|||| cos
(

3𝜋
0.4

t + ∠T
(

j (3)𝜋
0.4

))
(39)

In Figure 6, the values T
(

j 𝜋

0.4

)
= 0.2545e−j178.5◦ , T

(
j 3𝜋

0.4

)
= 0.3166e−j265.3◦ , T

(
j 5𝜋

0.4

)
= 0.0021e−j344.3◦ , … , are explicitly

marked. A plot of the closed-loop output y as given by (39) is given in Figure 7, where in addition it is shown the time
response simulation of the DR control system (note that rTs (n) = ej𝜋n, for n ≥ 0). The response given by (39) is a very
good approximation of the steady-state simulated response (a exact value would be obtained by considering the infinite
number of harmonics).

For a unit step reference the spectra are R(j𝜔) = 1
j𝜔

+ 𝜋𝛿(𝜔) and RTs
(

ej𝜔Ts
)
= 1

1−e−j𝜔Ts
+ 𝜋

Ts

∑∞
k=−∞𝛿

(
𝜔 − k 2𝜋

Ts

)
. Now, con-

sider a first order prefilter with F(s) = 1
0.1s+1

and FL(zs) = 1−e−10Ts

zs−e−10Ts
. The spectrum of the step response is now (note that

FL(ej𝜔Ts) = 1 for 𝜔 = k 2𝜋
Ts

and any integer k)

Y (𝜔) = T(j𝜔)FL
(

ej𝜔Ts
)
.

1
1 − e−j𝜔Ts

+ 𝜋

Ts

∞∑
k=−∞

T
(

jk 2𝜋
Ts

)
𝛿

(
𝜔 − k 2𝜋

Ts

)
(40)

which has a significant component ||Y( 3𝜋
0.4

)|| ≈ 0.1527 at the ripple frequency as expected. It turns out that a simple way
to avoiding ripples and to obtain a good step tracking over the continuous-time domain is to limit the value of |T(j𝜔)| at
some design frequencies. More precisely, the continuous-time tracking specification will be related with making small|E(j𝜔)∕R(j𝜔)| over the working frequencies interval (working or design frequencies refer to the chosen set of frequencies
for which design specifications are produced), where from (4) and (17) it is obtained

|E(j𝜔)∕R(j𝜔)| = |F(j𝜔)| ⋅ |||||1 − T(j𝜔)
FL

(
ej𝜔Ts

)
F(j𝜔)

RTs
(

ej𝜔Ts
)

R(j𝜔)

||||| (41)
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1038 BAÑOS et al.

F I G U R E 6 Bode plot of the complementary sensitivity function T(j𝜔), as given by (16), of Section 3.1 example. This Bode plot contains
all the needed information to compute the continuous-time response to a reference input; and, in particular the multifrequency response to a
sinusoidal input. The asterisks show the values needed to compute the response to a sinusoidal input of frequency 𝜋

Ts
≈ 7.85 Rad/s (in theory,

an infinite number of frequencies are needed, but in practice it is enough with the first two frequencies to obtain a good estimate—see
Example 2)

This will be the approach to be developed in Section 4, jointly with several other stability and performance design
specifications. Note that E(j𝜔)∕R(j𝜔) will be referred to as continuous sensitivity function or simply sensitivity function,
and will be denoted by S(j𝜔). Note that it is not a sensitivity function or a frequency response in the usual sense, since
it depends on the ratio of the continuous-time reference and its sampling. Figure 8 shows the magnitude Bode plot of
(41) exhibiting a peak of the sensitivity function of almost 11 dB at the ripple frequency. Clearly, for avoiding the ripple,
a specification appropriately limiting the sensitivity function magnitude has to be posed in the control design problem.

4 MULTIRATE CONTROLLER DESIGN BASED ON QFT

The starting point is a uncertain plant that can be modeled as a set  of transfer functions. This set may represent physical
models with both parametric and non-parametric uncertainty, a set of frequency responses obtained from identifications
experiments, and so forth. It is only required that the plant  be represented by a set of templates 𝜔 that collects all the
frequency responses at a frequency 𝜔 ≥ 0. More specifically, 𝜔 = {P(j𝜔) ∶ P(s) ∈ }. Usually, templates are represented
in the Nichols Plane (NC), and it will be assumed that they are simply connected regions of NC and that corresponds to
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BAÑOS et al. 1039
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F I G U R E 7 (Up) A sinusoidal reference input with frequency 𝜋

Ts
≈ 7.85 Rad/s, and its sampling with sampling period Ts = 0.4 s;

(down) time simulation of the DR control system (dotted), and time response computed using the Bode plot of T(j𝜔) (see (39))

F I G U R E 8 Magnitude Bode plot of the continuous sensitivity function for the DR control system of Section 3.1 example
(for a unit step reference), see also Example 2. The ripple is clearly exhibited as a peak of approximately 11dB at the frequency 3𝜋∕Ts. This
sensitivity function is not standard in the sense that it is different for each reference signal, is this case it is related to a step reference
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1040 BAÑOS et al.

plants with the same number of unstable poles. These restrictions are not overly restrictive and will considerably simplify
the design problem, since it will be enough to work with the boundary of the templates.

Now, related with Figure 1, the DR control problem consists of designing the controllers GR and GL for an uncertain
system  , satisfying design specifications such as stability and tracking for every plant in the set  . More specifically,
in this work the design strategy is to design GL once GR has been previously design (typically for a nominal plant).
The open loop gain function is L

(
ej𝜔Ts

)
= GL

(
ej𝜔Ts

)
PL
(

ej𝜔Ts
)
, and a nominal value L0

(
ej𝜔Ts

)
= GL

(
ej𝜔Ts

)
PL0

(
ej𝜔Ts

)
is

obtained for some nominal plant transfer function P0 ∈  . Also, for GR and a given P ∈  define the discrete uncertainty
ΔL

(
ej𝜔Ts

)
as

ΔL
(

ej𝜔Ts
)
=

PL
(

ej𝜔Ts
)

PL0
(

ej𝜔Ts
) (42)

where PL = SN PRGRQ∗
N and PR = STPHT (see Section 3.2). In addition, the discrete uncertainty set is defined as L ={

ΔL
(

ej𝜔Ts
)
∶ P ∈ 

}
. Note that its nominal value is ΔL0 = 1. Moreover, the uncertainty Δ(j𝜔) is defined as

Δ(j𝜔) =
P(j𝜔)GR

(
ej𝜔Tf

)
PL0

(
ej𝜔Ts

) (43)

and the uncertainty set as  = {Δ(j𝜔) ∶ P ∈ }.
The QFT design will be based on the loop gain-phase shaping of the nominal loop gain L0

(
ej𝜔Ts

)
for the dual

control system to satisfy robust design specifications. In the following, robust stability and tracking specifications are
considered.

4.1 Robust stability

A direct application of Proposition 1 result in that the DR control system is robustly stable, that it is stable for every P ∈  ,
if it is stable for the nominal plant P0, and in addition for any 𝜔 ∈ [0, 𝜋∕Ts] and ΔL ∈ L it is satisfied that

1 + L0
(

ej𝜔Ts
)
ΔL

(
ej𝜔Ts

)
≠ 0. (44)

This follows from the fact that all the plants in  have the same number of unstable poles and thus all the open loop
gain functions must cross the ray R0 the same net number of times. A more restrictive robust stability condition, including
stability margins is that for some positive real number 𝜇 < 1

|||1 + L0
(

ej𝜔Ts
)
ΔL

(
ej𝜔Ts

)||| ≥ 𝜇 (45)

for any 𝜔 ∈ [0, 𝜋∕Ts] and any ΔL ∈ L. Note that this is equivalent for the discrete sensitivity function to satisfy|S (
ej𝜔Ts

) | ≤ 1∕𝜇.
For a given frequency 𝜔 ∈ [0, 𝜋∕Ts] and any ΔL ∈ L, (45) defines a forbidden region for L0

(
ej𝜔Ts

)
at the frequency 𝜔

around the critical point (−180◦, 0 dB) in the Nichols plane, whose boundary will be referred to as stability bound. Note
that, in particular, stability bounds guarantees worst-case phase and gain margins as given by PM = 180◦ + 2cos−1(𝜇∕2)
and GM = 1∕(1 − 𝜇), respectively. 𝜇 will be referred to as the (worst-case) stability margin.

Example 3. Consider the uncertain plant  given by

 =
{

a
(s + 0.5)(s + a)

∶ a ∈ [0.5, 2.5]
}

(46)

where the nominal plant P0 corresponds to a = 1.5. The question is if the DR controller given by (6)–(7), that has
been show to stabilize the DR control system for the nominal case (see Figure 4), is also able to guaranty stabil-
ity for any plant in the uncertain plant set  . A stability margin 𝜇 = 0.5 is chosen, corresponding to PM = 28.95◦
and GM = 2.
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BAÑOS et al. 1041

F I G U R E 9 Discrete sensitivity magnitude against frequency, for the DR control system of Example 3. The system does not satisfy the
worst-case stability margin 𝜇 = 0.5 (1∕𝜇 = 2 ≈ 6 dB) for a > 2.07

The analysis will be performed in three (equivalent) ways, for emphasizing the use of stability bounds specially for
readers not familiarized with QFT:

• (Discrete sensitivity) It is directly computed |S (
ej𝜔Ts

)| for a ∈ [0.5, 2.5]. It is not difficult to see that in fact the speci-
fication |S (

ej𝜔Ts
)| ≤ 2 is not satisfied for high frequencies close to the Nyquist frequency 𝜋

Ts
and a > 2.07 (Figure 9).

Thus the DR control system is not stable with a stability margin 𝜇 = 0.5. Note that it would be stable for a ∈ [0.5, 2].
• (Open-loop gain functions) Here stability is based on the computation of L

(
ej𝜔Ts

)
= GL

(
ej𝜔Ts

)
PL0

(
ej𝜔Ts

)
ΔL

(
ej𝜔Ts

)
, for

every ΔL ∈ L. Figure 10-left shows the Nichols plots for some values of the parameter a. Note that in this case the
stability specification |1 + L

(
ej𝜔Ts

) | ≥ 𝜇 results in a forbidden region for any L
(

ej𝜔Ts
)

in the Nichols plane (it is bound
is shown in Figure 10-left). It is clear that some L

(
ej𝜔Ts

)
enter in that forbidden region for some values of the parameter

a and thus the DR control system is not stable with the specified stability margin 𝜇.
• (Nominal open-loop gain function) The above stability analysis may be appropriate for analysis but are not well suited

for design, since in general it is not obvious how a modification of the controllers (in our case the slow controller GL)
would shape the sensitivity functions or the open-loop gain functions to satisfy the stability specification. A more con-
venient way both for analysis and design is proposed by using a QFT approach. Basically, the stability specification (45)
is translated to a set of forbidden regions of the nominal open-loop gain function L0

(
ej𝜔Ts

)
ideally for every frequency

𝜔 ∈ [0, 𝜋∕Ts] (in practice, it is enough with a finite number of working frequencies, and some iteration may be needed
if the design is not validated). Figure 10-right shows the forbidden regions bounds at several working frequencies. It
results that the nominal open-loop function enters the forbidden region for 𝜔 = 𝜋∕Ts and thus the DR control system
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1042 BAÑOS et al.

F I G U R E 10 (Left) Nichols plots of the open-loop gain functions L
(

ej𝜔Ts
)
, for some sample values of the parameter a ∈ [0.5, 2.5]

(nominal open loop gain corresponds to a = 1.5 -thick line-), and forbidden region in NP for robust stability; (right) Forbidden regions in NP
for the nominal open loop gain function, limited by boundaries at several frequencies 𝜔 ∈ {0.01, 0.1, 0.5, 1} ⋅ 𝜋∕Ts. In both cases, the plots
segment from 𝜔 = 0− to 𝜔 = 0+ (see Figure 5) has not been explicitly shown

violates the robust stability specification. To robustly stabilize the DR control system the nominal open-loop function
should be conveniently shaped to be out of the forbidden regions at any frequency.

4.2 Robust tracking

Reference tracking specifications are considered both in discrete-time and in continuous-time.

Discrete-time tracking

Tracking is specified at the slow sampling period Ts. The transfer function from rTs to eTs is SL
(

ej𝜔Ts
)

FL
(

ej𝜔Ts
)
, and

the discrete-time tracking specification is ||ETs
(

ej𝜔Ts
)
∕RTs

(
ej𝜔Ts

)|| ≤ 𝛿1(𝜔) for any reference signal RTs
(

ej𝜔Ts
)
, for any 𝜔 ∈

[0, 𝜋∕Ts] and P ∈  . Here 𝛿1 ∶ [0, 𝜋∕Ts] → R≥0 is a given function that defines the tracking specification. It easily follows
that this is equivalent to

|||1 + L0
(

ej𝜔Ts
)
ΔL

(
ej𝜔Ts

)||| ≥
|||FL

(
ej𝜔Ts

) |||
𝛿1(𝜔)

(47)

for any 𝜔 ∈ [0, 𝜋∕Ts] and ΔL ∈ L. Note that for a given prefilter FL and a tracking specification 𝛿1, (47) takes the same
form that (45), that is it defines forbidden regions in the NP for the nominal open-loop gain function L0

(
ej𝜔Ts

)
, for any

𝜔 ∈ [0, 𝜋∕Ts].

Continuous-time tracking.

Tracking may be also specified in the continuous-time domain. Here the only limitation is that a tracking specification
must be posed for some given reference. This limitation is directly related with the time-varying nature of the DR control
system, and it can be alleviated by using as much tracking specifications as needed and using the worst-case. The track-
ing specification is |E(j𝜔)∕R(j𝜔)| ≤ 𝛿2(𝜔) for a given reference R, any 𝜔 > 0, and any P ∈  . Note that the specification
will result in restrictions over the nominal open-loop function L0

(
ej𝜔Ts

)
for frequencies below and beyond the Nyquist

frequency 𝜋∕Ts, and thus continuous-time tracking specifications for 𝜔 > 𝜋∕Ts will be folded over the interval [0, 𝜋∕Ts].
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BAÑOS et al. 1043

As a consequence, and to the authors knowledge this is a previously unexplored case in QFT, for the frequencies
in which L0

(
ej𝜔Ts

)
can be designed, that is for 𝜔 ∈ [0, 𝜋∕Ts], in practice there will be a finite number of restrictions or

boundaries to be satisfied resulting from the folding of specifications for frequencies beyond 𝜋∕Ts (note that usually it is
enough with continuous-time tracking specifications for frequencies not much larger that the crossover frequency). The
following result gives a procedure for obtaining continuous-time tracking bounds; as usual, the worst-case boundary will
be used for shaping the nominal open loop gain function.

Proposition 3. Consider the DR control system of Figure 1, and assume that it is stable and that Assumption 1 holds. For a
given frequency 𝜔 > 0 and a reference R, the continuous-time tracking specification |E(j𝜔)∕R(j𝜔)| ≤ 𝛿2(𝜔) for any P ∈  , is
equivalent to the following specification: if 𝜔 ∈

[
k 2𝜋

Ts
,
(
2k + 1

) 𝜋

Ts

]
for some k = 0, 1, 2, … then

||||| 1 + L0(ej𝜔†Ts )A(j𝜔)
1 + L0(ej𝜔†Ts )ΔL(ej𝜔†Ts )

||||| ≤ 𝛿2(𝜔)|F(j𝜔)| (48)

is satisfied by L0(ej𝜔†Ts ) at a frequency 𝜔† = 𝜔 − k 2𝜋
Ts

∈ [0, 𝜋∕Ts] and any Δ ∈  and ΔL ∈ L; alternatively, if 𝜔 ∈
[(

2k +

1
) 𝜋

Ts
, (k + 1) 2𝜋

Ts

]
for some k = 0, 1, 2, … , then

|||||
1 + L∗

0(e
j𝜔†Ts )A(j𝜔)

1 + L∗
0(ej𝜔†Ts )Δ∗

L(ej𝜔†Ts )

||||| ≤ 𝛿2(𝜔)|F(j𝜔)| (49)

is satisfied by L0(ej𝜔†Ts ) at a frequency 𝜔† = −𝜔 + (k + 1) 2𝜋
Ts

∈ [0, 𝜋∕Ts] and any Δ ∈  and ΔL ∈ L. In both cases,

A(j𝜔) = ΔL
(

ej𝜔Ts
)
−

FL
(

ej𝜔Ts
)

RTs
(

ej𝜔Ts
)

F(j𝜔)R(j𝜔)
Δ(j𝜔) (50)

Proof. Using (4), (15)–(17), E(j𝜔)∕R(j𝜔) is given by

E(j𝜔)
R(j𝜔)

= F(j𝜔) −
Y (j𝜔)
R(j𝜔)

= F(j𝜔) −
P(j𝜔)GR(ej𝜔Tf )HTs (j𝜔)GL

(
ej𝜔Ts

)
1 + PL

(
ej𝜔Ts

)
GL

(
ej𝜔Ts

) FL
(

ej𝜔Ts
) RL

(
ej𝜔Ts

)
R(j𝜔)

(51)

Moreover, from (42) and (43), (51) is equal to

E(j𝜔)
R(j𝜔)

= F(j𝜔) −
Δ(j𝜔)L0

(
ej𝜔Ts

)
1 + ΔL

(
ej𝜔Ts

)
L0

(
ej𝜔Ts

)FL
(

ej𝜔Ts
) RL

(
ej𝜔Ts

)
R(j𝜔)

(52)

Now, to obtain (48), E(j𝜔)∕R(j𝜔) must be expressed in the form

E(j𝜔)
R(j𝜔)

=
1 + L0

(
ej𝜔Ts

)
A(j𝜔)

1 + L0
(

ej𝜔Ts
)
ΔL

(
ej𝜔Ts

)F(j𝜔) (53)

and thus equalizing the right-hands of (52) and (53) it easily follows that (the frequency arguments are removed by
simplicity)

(1 + L0A)F = F(1 + ΔLL0) − HGLFL
RL

R
=
(

1 + ΔLL0 − ΔL0
FLRL

FR

)
F (54)

and (50) directly follows. Note that is has been proved that the continuous-time tracking specification is equivalent to the
nominal open-loop function L0

(
ej𝜔Ts

)
to satisfy the inequality

|||||
1 + L0

(
ej𝜔Ts

)
A(j𝜔)

1 + L0
(

ej𝜔Ts
)
ΔL

(
ej𝜔Ts

) ||||| ≤ 𝛿2(𝜔)|F(j𝜔)| (55)

for any 𝜔 ≥ 0, any ΔL ∈ L, and any Δ ∈ .
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1044 BAÑOS et al.

Bound at 0.01

Bound at 0.03

Bound at 0.1

Bound at 0.3

F I G U R E 11 (Left) Discrete-time tracking boundaries at the design frequencies set {0.01, 0.03, 0.1, 0.3, 0.5, 0.7, 1} ⋅ 𝜋∕Ts, and nominal
open loop gain function L

(
ej𝜔Ts

)
-asterisks denote its value at the design frequencies-. (Right) Discrete-time tracking specification as upper

bound over |SL
(

ej𝜔Ts
)| (dotted line), and magnitude Bode plot (solid line) of the resulting SL

(
ej𝜔Ts

)
for the DR control system -asterisks also

denote its values at the design frequencies-

To end the proof, periodicity and symmetry properties of L0
(

ej𝜔Ts
)

are recalled to obtain the folding frequency 𝜔† ∈
[0, 𝜋∕Ts] at which the inequality poses a restriction over the nominal open-loop function. If𝜔 ∈

[
k 2𝜋

Ts
,
(
2k + 1

) 𝜋

Ts

]
for some

k = 0, 1, 2, … then at the frequency 𝜔† = 𝜔 − k 2𝜋
Ts

∈
[
0, 𝜋

Ts

]
, periodicity of nominal open-loop gain function results in that

L0
(

ej𝜔Ts
)
= L

(
ej
(
𝜔†+k 2𝜋

Ts

)
Ts
)
= L0

(
ej𝜔†Ts

)
. Alternatively, if 𝜔 ∈

[
(2k + 1) 𝜋

Ts
, (k + 1) 2𝜋

Ts

]
for some k = 0, 1, 2, … , then at the

frequency 𝜔† = −𝜔 + (k + 1) 2𝜋
Ts

∈
[
0, 𝜋

Ts

]
, using symmetry and periodicity arguments it directly follows that L0

(
ej𝜔Ts

)
=

L0
(

ej
(
−𝜔†+(k+1) 2𝜋

Ts

)
Ts
)
= L0

(
e−j𝜔†Ts

)
= L∗

0(e
j𝜔†Ts ). The same property holds for ΔL

(
ej𝜔Ts

)
. Considering the inequality (55) in

both cases directly gives (48) and (49), respectively. ▪

Example 4. The example of Section 3.1 is now analyzed by using discrete-time and continuous-time tracking specifica-
tions using the above QFT specifications. By simplicity, first it is considered the case of no-uncertainty, that is the plant is
given by (5). And the slow and fast controllers are given by (6) and (7), respectively. Also, the prefilter is F(s) = 1

0.1s+1
and

it is discretization is FL(zs) = 1−e−10Ts

zs−e−10Ts
.

First, consider a discrete-time tracking specification like (47), that combined with a stability specification like
(45), gives a restriction over the discrete-time sensitivity function like |SL

(
ej𝜔Ts

)| ≤ min{𝛿1(𝜔)∕|FL
(

ej𝜔Ts
) |, 1∕𝜇}, where

𝛿1(𝜔) = 𝜔∕2 and 𝜇 = 0.5 has been chosen. Moreover, the design frequencies {0.01, 0.03, 0.1, 0.3, 0.5, 0.7, 1} ⋅ 𝜋∕Ts are
chosen (note that for the discrete-time sensitivity function the Nyquist frequency 𝜋∕Ts is the highest frequency). In
Figure 11-left both QFT bounds and the open-loop gain function L0 are plotted. It is clear that the tracking (and stability)
specification is satisfied at the working frequencies. However, the design must be validated for the rest of frequencies, this
is shown in the 11-right where the design is validated for the discrete-time tracking specification (as it is expected from
the results of Section 3.1).

Now, continuous-time tracking specifications are considered, including frequencies below and beyond the Nyquist
frequency 𝜋∕Ts. The continuous-time step tracking specification is |E(j𝜔)∕R(j𝜔)| ≤ min{𝛿2(𝜔)∕|F(j𝜔)|, 𝜇}. where 𝛿2(𝜔) =
𝜔∕2 and 𝜇 = 0.5. Two sets of frequencies are separately considered in the following.

First, frequencies below the Nyquist frequency; in this case, the same frequencies that the previously used for
discrete-time step tracking are used, that is {0.01, 0.03, 0.1, 0.3, 0.5, 0.7, 1} ⋅ 𝜋∕Ts. The resulting boundaries (according
to Proposition 3) are shown in Figure 12-left; note that the nominal open loop gain satisfies the restrictions posed by
the boundaries, except for the frequency 𝜔4 = 0.3𝜋∕Ts where it slightly crosses the boundary. Figure 12-right shows a
Bode plot of the continuous sensitivity magnitude over the frequency interval [0, 𝜋∕Ts], validating the design except
for the interval [0.2, 0.5] ⋅ 𝜋∕Ts where it slightly crosses the specification bound. In practice, this design is reasonably
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BAÑOS et al. 1045

F I G U R E 12 Continuous-time tracking for frequencies below the Nyquist frequency 𝜋∕Ts. (Left) Boundaries at the working
frequencies 𝜔1,2,3,4,5,6,7 = (0.01, 0.02, 0.1, 0.3, 0.5, 0.7, 1) ⋅ 𝜋∕Ts, indexed by the labels 1, 2, … , 7, and nominal open loop gain L0

(
ej𝜔Ts

)
(thick

line) with asterisks denoting its values at the corresponding working frequencies. Open boundaries (#1, #2, #3, with solid line) define a
forbidden region below, and close boundaries (#4..#7) define a forbidden region inside. (Right) Magnitude Bode plot of the sensitivity
function S(j𝜔) (solid line), and specification bound (dotted line)

good and it may be concluded that the DR design, that correctly performs according to discrete-time tracking speci-
fications (see Figure 11), also will satisfactorily track steps as far as frequencies below the slow Nyquist frequency is
concerned.

Second, frequencies beyond the Nyquist frequency. The set {2.5, 2.75, 3, 3.8, 5, 8.9} ⋅ 𝜋∕Ts (note that 3𝜋∕Ts is the ripple
frequency. see Figure 8) has been chosen. By using Proposition 3, boundaries are obtained at the folded frequencies
{0.5, 0.75, 1, 0.2, 1, 0.9} ⋅ 𝜋∕Ts, see Figure 13-left. Note that in particular there are boundary crossings at 𝜔†

9 = 0.75𝜋∕Ts

and 𝜔†
10 = 𝜋∕Ts, these are the responsible for the ripple in the step response. Figure 13-right is a magnitude Bode plot of

the sensitivity function over the interval [0, 100] Rad/s. As a conclusion, the DR design is not validated for frequencies
beyond the (slow) Nyquist frequency.

Remark 3. It is worthwhile to emphasize that when analyzing or designing DR controllers for satisfying continuous-time
tracking specifications, like in Example 4, the shaping of the (nominal) open-loop gain at every working frequency
in [0, 𝜋∕Ts] is the design element, however a particular value a some frequency in that interval is responsible for the
shaping of the continuous sensitivity function not only at that same frequency, but also in (infinitely) many frequen-
cies beyond 𝜋∕Ts. In Example 4, this is reflected for example by the fact that L(ej𝜋∕Ts) (the high-frequency value of
the open-loop gain) is constrained by continuous tracking specifications at several frequencies, significatively at 𝜋∕Ts,
3𝜋∕Ts (the ripple frequency), and 5𝜋∕Ts (also less importantly at higher frequencies 7𝜋∕Ts, 9𝜋∕Ts, … ). These con-
straints are exactly boundaries #7, #10, and #12 (Figures 12 and 13). As a direct consequence, for ripple avoiding the
open-loop gain should be redesigned at𝜋∕Ts to satisfy the worst-case boundary, which in this case reduces to boundary #10
(Figure 13).

Example 5. In this example, the DR control system of Section 3.1 example is redesigned to avoid the ripple in the step
response. According to Example 4 (see also Remark 3), the design action will consists of redesigning the slow controller by
reshaping the open-loop gain, to satisfy the constraint posed by boundary #10, obviously without significatively altering
it at the rest of frequencies. Looking at Figure 13, the design problem is about to shape the open-loop gain close to the
Nyquist frequency to be below the boundary #10. A simple solution is to add a notch filter to the slow controller. The
following filter has been used, with design parameters K, 𝛼1, and 𝛼2:

N(z) = K (z − 𝛼1)(z + 𝛼2)
(z − 0.5)(z + 0.5)

(56)
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1046 BAÑOS et al.

F I G U R E 13 Continuous-time tracking for frequencies beyond 𝜋∕Ts. (Left) Specifications at the working frequencies
𝜔8,9,10,11,12,13 = (2.5, 2.75, 3, 3.8, 5, 8.9) ⋅ 𝜋∕Ts, result in boundaries at the folded frequencies 𝜔†

8,9,10,11,12,13 = {0.5, 0.75, 1, 0.2, 1, 0.9} ⋅ 𝜋∕Ts. The
open boundary #10 (dotted line) define the forbidden region above. (Right) Magnitude Bode plot of the sensitivity function S(j𝜔) (solid line),
and specification bound (dotted line)

After some trial and error, a good solution has been found (the previous design has not been significatively changed
at low frequencies), resulting in 𝛼1 = 0.52, 𝛼1 = 0.76, and K = 0.75. Note that the dc-gain of the notch filter is 0.85,
which means that the open-loop gain has been detuned at low frequencies to allow it to satisfy restrictions posed by
the boundaries at frequencies beyond the Nyquist frequency, including the ripple frequency. Figure 14-left shows the
Nichols plot of the open-loop gain including the notch filter, that is L0

(
ej𝜔Ts

)
= N

(
ej𝜔Ts

)
GL

(
ej𝜔Ts

)
PL0

(
ej𝜔Ts

)
. Note that

although at low frequencies the open-loop gain has been slightly detuned, there is no much significative differences with
the design of Figure 12; however, at frequencies close to the Nyquist frequency 𝜋∕Ts the open-loop gain satisfies the
restrictions posed by boundaries, in particular the boundary #10 which is the dominant boundary corresponding to the
ripple frequency. The validation of the design is performed by checking the value of the continuous sensitivity S(j𝜔) for
frequencies up to 𝜔 = 100 Rad/s. In contrast to Figure 13-right, it is shown in Figure 14-right how S(j𝜔) clearly satisfies
tracking specification for frequencies beyond 𝜋∕Ts. As it is above discussed, the detuning of the open-loop gain at low
frequencies is also clearly seen when comparing both Figures, but it is not considered relevant in practice. Of course, a
better design without the need of detuning could be performed but at the cost of using a slow controller with a much
higher order. Finally, a time simulation of the initial DR control system and its redesign to avoid the ripple is shown in
Figure 15.

5 APPLICATION

In this section, the QFT design procedure developed above is going to be applied to an unstable system with parametric
uncertainty: a reaction wheel balancing. In contrast to Examples 3–5, where besides robust stability the focus was in the
performance at frequencies beyond the (slow) Nyquist frequency, in this application case the design challenge will be at
low frequencies, below the Nyquist frequency, with the added difficulty posed by the fact that the open-loop system is
unstable.

The inverted pendulum is a classical control problem, frequently used as a test-bed to evaluate different control strate-
gies. Among several versions of the inverted pendulum, in the reaction wheel inverted pendulum (RWIP) the motor is
located at the top of the pendulum instead than at its base. A flywheel connected to the motor axis generates the torque
that keeps the pendulum in its unstable equilibrium position, cancelling the unavoidable disturbances and following a
desired reference. Figure 16 shows a CAD model of the RWIP.

An angular position sensor is located at the joint between the pendulum and the base. This sensor is used to measure
the angular position of the pendulum, 𝜃(t).
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BAÑOS et al. 1047

F I G U R E 14 Continuous-time tracking for frequencies below and beyond the Nyquist frequency 𝜋∕Ts. Redesign by using a notch filter.
(Left) Boundaries at the working frequencies 𝜔1,2,… ,13 = (0.01, 0.02, 0.1, 0.3, 0.5, 0.7, 1, 2.5, 2.75, 3, 3.8, 5, 8.9) ⋅ 𝜋∕Ts, indexed by the labels
1, 2, … , 13, and nominal open loop gain L0

(
ej𝜔Ts

)
over [0, 𝜋∕Ts] (thick line) with asterisks denoting its values at the corresponding working

frequencies (note that working frequencies beyond 𝜋∕Ts are folded). (Right) Magnitude Bode plot of the sensitivity function S(j𝜔) (solid line),
and specification bound (dotted line)

F I G U R E 15 Step response of the initial DR control system, the redesigned DR control system, and the corresponding to the PID
controller
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1048 BAÑOS et al.

F I G U R E 16 Reaction wheel set-up

T A B L E 1 Physical constant values for
the RWIP

Constant Value Units

Jp 413 kg mm2

mp 0.233 kg

lp 84.85 mm

Jf (nominal) 290 kg mm2

mf 0.147 kg

lf 84.85 mm

B 0.1 N m/s

g 9.81 m/s2

A DR control design problem will defined by using stability and tracking specifications, the goal is to move the pen-
dulum following a specified reference, typically a sinusoid. The case of no prefilter, that is, F(s) = 1 will be considered. To
reach these goals the motor applies a certain torque to the flywheel. The torque causes the angular velocity of the wheel,
w(t). The acceleration of the flywheel generate a torsion torque that rotates the pendulum around the joint. In order to
design the appropriated controller, a mathematical model of the RWIP is needed. The non-linear equation that describes
the relationship between the angular velocity of the flywheel and the angular position of the pendulum is as follows:

Jf ẇ(t) + M̂Lgsin(𝜃(t)) − B𝜃̇(t) = JT 𝜃̈(t) (57)

being JT the moment of inertia of the RWIP that can be calculated using the Steiner theorem as follows:

JT = mpl2
p + mf l2

f + Jp + Jf (58)

where constants mp and mf are the mass of the pendulum (including the motor attached to it) and the flywheel. Constants
lp and lf are the distance between the rotation point of the pendulum and the center of gravity of pendulum and flywheel
(note that in the proposed structured shown in Figure 16 these distances are equal). Constants Jp and Jf are the moments
of inertia of the pendulum and flywheel, which depends on its density and geometry. Table 1 shows the values of these
parameters, measured in the CAD model of the proposed RWIP.

M̂L is the product of the masses and distances of the different parts of the RWIP:

M̂L = mplp + mf lf (59)
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BAÑOS et al. 1049

Constant B is the viscous friction of the motor joint that must be experimentally determined in the motor that moves
the flywheel. Finally, g is the gravitational constant. Nonlinear dynamics from (57) can be easily linearized for small
movements around the working point 𝜃(t) = 0, that is, the upwards unstable equilibrium position. The result is the plant
transfer function P(s) given by

P(s) = 𝜃(s)
w(s)

=
Jf s

JTs2 + Bs − MLg
(60)

Moreover, different weights in the flywheel are obtained by allowing a varying number of screws (Figure 16). The nom-
inal value Jf= 290 kg mm2 may be reduced until a third of it resulting in an uncertain parameter Jf ∈

[
1∕3, 1

]
290 kg mm2

(the correct values of Jf are obtained by means of NX Siemens software). In the following, all the time simulations have
been performed using Simscape Multibody of Simulink considering all physical constants of our set-up.

The design specifications are robust stability and robust continuous-time tracking: the DR control system must be
stable and satisfy some stability margin 𝜇, and also tracks a sinusoidal reference of amplitude 10◦ and frequency 0.1
Hz; and for any Jf ∈

[
1∕3, 1

]
290 kg mm2. More specifically, a stability margin 𝜇 = 1∕

√
2 (corresponding to worst-case

margins PM = ≈ 40◦ and GM ≈ 10 dB) has been chosen. Also, the continuous-time tracking specification is based on a
second order model with 𝜉 = 0.5 and 𝜔n = 5, it is given by |||E(j𝜔)

R(j𝜔)
||| ≤ 𝛿2(𝜔), where

𝛿2(𝜔) =

{
1 − 52

(j𝜔)2+5(j𝜔)+52 if 𝜔 ≤ 5 Rad∕s√
2 if 𝜔 > 5 Rad∕s

(61)

and the reference is the sinusoidal signal R(j𝜔) = A b
(j𝜔+a)2+b2 with A = 10𝜋∕180 and b = 2𝜋∕10. Moreover, there are design

restrictions regarding the controller digital implementation: the angle measurement should be performed at most each
Ts=8 ms, while the control action may be updating with Tf = 4 ms.

5.1 PID-based DR controller

The design procedure starts with a continuous-time PID that has been tuned to satisfy the design specifications for the
nominal plant (with Jf = 290 kg mm2). A root-locus based design technique has been used here, but any other tuning
method can be used. The result is Gr(s) = Kr(1 + Tds + 1∕(sTi)), with Kr = 42.2, Td = 0.031, and Ti = 3. Now, this PID is
used for a first DR controller design, consisting of a slow (integral) and fast (derivative) parts discretization. In this case,
the proportional constant was included in the integral part (although it does not matter to include it in the derivative
part). The result (see Reference 55 for computation details) is

GL(zs) = Kr
zs − (1 − (t∕Ti))

zs − 1
= 42.2 zs − 0.9973

zs − 1
(62)

GR(zf ) =
(1 + (Td∕Tf ))zf − (Td∕Tf )

zf
=

8.817zf − 0.8866
zf

(63)

A time simulation of the DR control system with the above controllers is shown in Figure 17, for the nominal case. The
result is that the sensitivity function does not satisfy the tracking specification, note that in particular |E(j0.63)∕R(j0.63)| ≈
−10 dB, which is far from the design specification of approximately −20 dB obtained from (61) (see also Figure 17-right).
For other values of the parameter Jf the performance is even worst.

5.2 QFT design of the dual-rate controller

The next design step consists of designing a QFT DR controller for the RWIP following the design procedure developed
in Section 4. The fast controller (63) is used, jointly with the uncertain plant model and the design specifications (robust
stability and robust tracking of a sinusoidal reference), to design a new slow controller, that will be referred to as GL,QFT .
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1050 BAÑOS et al.
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F I G U R E 17 Tracking of a sinusoidal reference with the PID-based DR controller (62)–(63): left) RWIP angle (solid) and reference
(dotted), and right) Sensitivity magnitude |E(j𝜔)∕R(j𝜔)| for the sinusoidal reference (solid), and tracking specification bound 𝛿2(𝜔) (dotted)

Robust stability Note that the plant, given by (60), always have one unstable pole (the uncertain parameter Jf only
affects its gain), thus the procedure developed in Section 4.1 (based on Proposition 1) can be directly used. DR control
system stability is guarantied if: the nominal DR control system is stable, and the nominal open-loop gain is out of the
forbidden regions defined by the stability bounds.

First, for stability of the nominal case Proposition 1 has to be used. Assumptions 1 and 2 are easily checked (details
are omitted by brevity). This first stability condition is satisfied if the Nichols plot of the nominal open-loop gain makes a
net number of crossings of R0 equal to 1 (the number of open-loop unstable poles). Since there is an open-loop integrator
(given by (62)), then there is a half crossing −1∕2 (see Remark 1). Thus, for a stable design with an open-loop integrator,
the Nichols plot of the open-loop gain must perform a crossing +1 of the ray R0, in this way the net number of crossings is
−1∕2 + 1 = 1∕2, and its double is the number of unstable poles. For example, the PID-based dual controller guaranties a
nominal stable design (see Figure 18-left, its Nichols plot of the nominal open-loop gain satisfies the crossing condition).
Note that the net number of crossings must be equal to 1∕2 for any nominal stable design.

Second, stability bounds are computed according to (45) for the stability margin 𝜇 = 1∕
√

2 as specified. In this case,
since there is only uncertainty in the gain plant all the stability bounds are identical for any frequency. The forbidden
region corresponds to the shadow region in Figure 18-left. Note that, although the PID-based DR controller makes the
nominal control system stable, its Nichols plot enters the forbidden region and thus the DR is not robustly stable with the
specified margin. Thus, the slow controller must be redesigned to avoid the forbidden region at every frequency in order
to satisfy design specifications.

Robust tracking Here, the design procedure starts with the computation the tracking bounds that define the for-
bidden regions in the Nichols plane. The chosen design frequencies are 𝜔 ∈ {0.001, 0.003, 0.01, 0.1, 0.5, 1}𝜋∕Ts. In this
problem, frequencies beyond 𝜋∕Ts result in forbidden regions that are not significative, since they are less demand-
ing than for example the corresponding to stability bounds (details are omitted by brevity), and thus the design will
be focused on frequencies below 𝜋∕Ts. The computed stability bounds are shown in Figure 18-left. Note that the
PID-based DR controller does not satisfy the tracking specifications for the design frequencies 0.001𝜋∕Ts, 0.003𝜋∕Ts, and
0.01𝜋∕Ts.

Using the slow PID-based controller (62) as starting point, it needs to be redesign to satisfy both robust stability
and tracking specifications. Clearly, its gain should be increased (this is equivalent to move upward the Nichols plot
in Figure 18-left) to satisfy low frequencies bounds; however, something else is needed since otherwise high-frequency
bounds may be crossed and thus tracking specifications would not be satisfied at those frequencies. A solution has been
obtained both modifying the controller gain and its zero. The result is

GL,QFT(zs) = 84.4 zs − 0.9823
zs − 1

(64)
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BAÑOS et al. 1051

R0

F I G U R E 18 QFT design of the dual rate controller: (Left) stability and continuous-time tracking boundaries at
𝜔 ∈ {0.001, 0.003, 0.01, 0.1, 0.5, 1}𝜋∕Ts, and loop-shaping of the PID-based DR controller (dashed), and the modified QFT controller (solid);
(right) validation of robust continuous-time tracking specifications for the QFT design
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F I G U R E 19 Tracking reference with QFT designed DR controller. Comparison among cases Jf = 290 kg mm2, Jf = 122 kg mm2, and Jf

= 88 kg mm2: (Left) Closed-loop output, (right) control action

Note that the Nichols plot of the open-loop gain corresponding to (64) satisfied the crossing condition, avoids the for-
bidden stability region, and also does not enters the forbidden regions defined by the tracking bounds. Regarding tracking,
this must be validated for frequencies different to the design frequencies. Figure 18-right shows how the sensitivity
function satisfies the tracking bound, and thus the design is validated.

Finally, time simulation plots with this new DR controller (63)–(64) are shown in Figure 19. The cases for
Jf = 290 kg mm2 (nominal value), Jf = 0.4 × 290 kg mm2 = 122 kg mm2, and Jf = 0.3 × 290 kg mm2 = 88 kg mm2 (case
without screws), have been considered. Note that the design performs correctly in spite of the uncertainty. As
it may be expected, the design results in a more demanding control action of the motor for decreasing values
of Jf .
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1052 BAÑOS et al.

6 CONCLUSIONS

In spite of the large number of contributions on dual-rate control systems, there has been a lack of efficient techniques for
their analysis and design in the frequency domain. In this work, a QFT approach is proposed to cope with this problem.
Besides allowing the formulation a Nyquist-like stability result, also including worst-case stability margins, robust track-
ing specifications are considered both in the discrete-time domain and in the continuous-time domain. As a result, a
new QFT-based technique has been developed for the design of robust DR control systems, using as a design element
the slow discrete-time controller. Several detailed examples, and finally a case study (a reaction wheel inverted pendu-
lum), have been developed including cases with/without uncertainty, and with continuous-time tracking specifications
below/beyond the Nyquist frequency. To the authors knowledge, this work is the first interdisciplinary work on the areas
of QFT and multirate control, that surprisingly have been isolated over the years. Throughout this work, several illus-
trative examples have been developed with a tutorial style, with the goal of building a bridge between both areas. The
proposed approach is limited by several simplifying assumptions including the fact that the plant has a rational transfer
function, and the fast and slow sampling rates are related by an integer. Overcoming these limitations will be investigated
in future works.
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controllers with continuous-time specifications beyond the Nyquist frequency, extending previous work in the literature
that suffered from that limitation. Also, it is useful for analyzing and designing DR controllers for plants with small or no
uncertainty, although it is full potential is clearly obtained for the case of large uncertainty.
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