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Abstract

In this paper, we investigate shift spaces arising from a multidimen-
sional graph G. In particular, we investigate non-emptiness and exis-
tence of periodic points for a multidimensional shift space. We derive
sufficient conditions under which these questions can be answered af-
firmatively. We investigate the structure of the shift space using the
generating matrices. We prove that any d-dimensional shift of finite
type is finite if and only if it is conjugate to a shift generated through
permutation matrices. We prove that if any triangular pattern of the
form c

a b can be extended to a 1× 1 square then the two dimensional
shift space possesses periodic points. We introduce the notion of an
E-pair for a two dimensional shift space. Using the notion of an E-pair,
we derive sufficient conditions for non-emptiness of the two dimensional
shift space under discussion.
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1. INTRODUCTION

Symbolic dynamics originated as a tool to investigate various natural and
physical phenomena around us. The convenience of symbolic representation
and easier computability of the system has attracted attention of several re-
searchers around the globe and the topic has found applications in various
branches of sciences and engineering. In particular, the area has found applica-
tions in areas like data storage, data transmission and communication systems
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to name a few [9, 14, 11]. The structure and dynamics of a symbolic system can
be used to investigate the dynamics of a general dynamical system. In fact, it
is known that every discrete dynamical system can be embodied in a symbolic
dynamical system (with appropriate number of symbols) [4]. Consequently,
it is sufficient to study the shift spaces and its subsystems to investigate the
dynamics of a general discrete dynamical system.

Let A = {ai : i ∈ I} be a finite set and let d be a positive integer. Let the set

A be equipped with the discrete metric and let AZd

, the collection of all func-
tions c : Zd → A be equipped with the product topology. Any such function c
is called a configuration over A. Any configuration c is called periodic if there
exists u ∈ Zd (u 6= 0) such that c(v + u) = c(v) ∀v ∈ Zd. In particular, if c is
periodic of period (m, 0) ((0,m)), then c is referred as a horizontally (vertically)
periodic point. The set Γc = {w ∈ Zd : c(v + w) = c(v) ∀v ∈ Zd} is called the

lattice of periods for the configuration c. The function D : AZd × AZd → R+

defined as D(x, y) = 1
n+1 , where n is the least non-negative integer such that

x 6= y in Rn = [−n, n]d, is a metric on AZd

and generates the product topology.

For any a ∈ Zd, the map σa : AZd → AZd

defined as (σa(x))(k) = x(k+a) is a d-
dimensional shift and is a homeomorphism. For any a, b ∈ Zd, σa ◦σb = σb ◦σa
and hence Zd acts on AZd

through commuting homeomorphisms. For any
nonempty S ⊂ Zd, any element of AS is called a pattern over S. A pattern is
said to be finite if it is defined over a finite subset of Zd. A pattern q over S is
said to be extension of the pattern p over T if T ⊂ S and q|T = p. The exten-
sion q is said to be proper extension if T ∩ Bd(S) = ∅, where Bd(S) denotes
the boundary of S. It may be noted that any d-dimensional pattern can be
visualized as an adjacent placement of some (d− 1)-dimensional patterns. For
(d− 1)-dimensional patterns B1, B2, . . . , Br, let B = [B1B2 . . . Br]i denote the
d-dimensional pattern obtained by placing B1, B2, . . . , Br adjacently in the i-th
direction. We say that a pattern C = [C1C2 . . . Cr]i overlaps progressively
with B = [B1B2 . . . Br]i in the i-th direction if B2B3 . . . Br = C1C2 . . . Cr−1.

For any two dimensional shift spaceX defined over alphabetA, let B(M,N)(X)
denote the collection of all M×N patterns allowed for the shift space X. Then,

β(M,N) : X → (B(M,N)(X))Z
2

defined as (β[(M,N)](x))[(i,j)] = x[i,i+M−1]×[j,j+N−1]
is called (M,N)-higher block code. It can be proved that β(M,N)(X) is a
shift space. Further, it may be noted that for any configuration c in the
shift space X, any rectangular patterns of size M ×N appearing in β(M,N)(c)
placed adjacently (in any direction) overlap progressively (in that direction).
A two dimensional shift space of finite type XF is said to be (m,n)-step
shift if it can be described by a forbidden set consisting of rectangles of size
(m + 1) × (n + 1). If the shift space can be described by a forbidden set
consisting of blocks of size 1 × (m + 1) or (m + 1) × 1 , then the shift space
XF is called a m-step shift. Analogously, for P = (P1, P2, . . . , Pk) ∈ Nk,
one can define BP (X) as the collection of all P1 × P2 × . . . × Pk patterns
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allowed for a d-dimensional shift space X. Then, βP : X → (BP (X))Z
k

de-
fined as (βP (x))[(i1,i2,...,ik)] = x[i1,i1+P1−1]×[i2,i2+P2−1]×...×[ik,ik+Pk−1] is called
(P1, P2, . . . , Pk)-higher block code(or P -higher block code). Once again, it
can be proved that βP (X) is a shift space and the results made for the two
dimensional case extend analogously for a d-dimensional shift space.

Let F be a given set of finite patterns (possibly over different subsets of Zd)
and let X = {x ∈ AZd : any pattern from F does not appear in x}. The set
X defines a subshift of Zd generated by set of forbidden patterns F . If the
shift space X can be generated by a finite set of finite patterns, we say that
the shift space X is a shift of finite type. We say that a pattern is allowed
if it is not an extension of any forbidden pattern. We denote the shift space
generated by the set of forbidden patterns F by XF . Two forbidden sets F1

and F2 are said to be equivalent if they generate the same shift space, i.e.
XF1 = XF2 . Refer [9, 11, 12, 6, 16] for details.

For multidimensional shifts of finite type, it is known that given a set of for-
bidden patterns, the non-emptiness problem for multidimensional shift spaces
is undecidable [2]. In [6], the authors show that the sets of periods of multidi-
mensional shifts of finite type are exactly the sets of integers of the complexity
class NE. They also give characterizations for general sofic and effective sub-
shifts. In [3], authors prove that a multidimensional shift of finite type has a
power that can be realized as the same power of a tiling system. They show
that the set of entropies of tiling systems equals the set of entropies of shifts of
finite type. It is known that multidimensional shifts of finite type with positive
topological entropy cannot be minimal[13]. In fact, if X is subshift of finite
type with positive topological entropy, then X contains a subshift which is not
of finite type, and hence contains infinitely many subshifts of finite type [13].
In [5], Hochman proved that h ≥ 0 is the entropy of a Zd effective dynamical
system if and only if it is the lim inf of a recursive sequence of rational num-
bers. For two dimensional shifts, Lightwood proved that strongly irreducible
shifts of finite type have dense set of periodic points [10]. In [15], the authors
characterized a multidimensional shift of finite type using an infinite matrix.
In [16], authors gave an algorithmic approach to address the non-emptiness
problem for multidimensional shift space. They give an algorithm to generate
the elements of the shift space using finite matrices. In the process, they prove
that elements of d-dimensional shift of finite type can be characterized by a
sequence of finite matrices.

Let G be a graph with finite set of vertices V and finite set of edges E. It can
be seen that the set of bi-infinite walks over a graph is a 1-step one dimensional
shift of finite type. Also, for any given shift of finite type X, there exists a
higher block shift (conjugate to X) which can be generated by a finite graph
G. Consequently, every one dimensional shift of finite type can be visualized
as a shift generated from some graph [9, 11]. For a d-dimensional graph G =
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(G1, G2, . . . , Gd) (where Gi = (V,Ei)), let XG denote the d-dimensional shift
space where i-th graph determines the compatibility of the vertices in the i-th
direction.

In this paper, we investigate the relation between the structure of such a
shift space and the structure of generating graphs Gi. In particular, we answer
some of the questions relating the structure of the underlying graphs with the
non-emptiness problem of the shift space and existence of periodic points. For
example, can every shift of finite type X be generated by a finite set of graphs?
When does a given collection {G1, G2, . . . , Gd} of graphs generate a non-empty
shift space? When does a multidimensional shift generated by {G1, G2, . . . , Gd}
exhibit periodic points? Does existence of periodicity in one direction ensure
the periodicity in other directions? While the non-emptiness problem and
existence of periodic points are known to be undecidable, we derive sufficient
conditions under which these questions can be answered (in the affirmative
or otherwise). While answering some of these questions, the authors were
unaware of some of the existing works in this area and consequently ended up
establishing some of the known results in the literature (Propositions 2.1, 2.4,
2.6, 2.12 [7, 12, 6, 8]). However, as the results were derived independently, we
include the proofs in the article below. We now give answers to some of these
questions relating the multidimensional shift space and the generating set of
graphs.

2. Main Results

Throughout this paper we assume that none of the generating graphs have
stranded vertices (equivalently, none of the generating matrices contain a zero
row or zero column).

Proposition 2.1. For any two dimensional one step shift of finite type X,
there exists a two dimensional graph G such that X = XG.

Proof. Let X be a two dimensional one step shift of finite type over the finite
alphabet set A. As X is one step, X is generated by a forbidden set F such
that any element of F is of the form b

a or ab (where a, b ∈ A). Define a graph H
(V ) with A as the set of vertices and ∃ a directed edge from vertex a to vertex
b in H (V ) if and only if ab (ba) does not belong to F . Then, as G = (H,V )
is a two dimensional graph that captures horizontal and vertical compatibility
of the elements of A, G generates any arbitrary element of X. Consequently,
X = XG and the proof is complete. �

Remark 2.2. The above result establishes that any two dimensional one step
shift of finite type can be generated by a two dimensional graph. It may be
noted that for a d-dimensional one step shift of finite type X, if Hi is the
graph that captures the compatibility of the symbols in the i-th direction, then
similar arguments establish that G = (H1, H2, . . . ,Hk) generates an arbitrary
element of X (and conversely) and thus the above result holds for any higher
dimensional one step shift. Further, note that as slicing any given configuration
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in patterns of size M×N at each (r, s) ∈ Z2 (and placing it at each (r, s) ∈ Z2)

yields an element of (B(M,N)(X))Z
2

. The correspondence is natural and defines

a conjugacy between X and X(M,N). Further, if X is a d-dimensional shift
space and P ∈ Nk, then slicing any configuration in X in patterns of size P at
each point in Zk (and placing the slice at each point in Zk) extends the above
result for a d-dimensional shift space and hence we get the following results.

Corollary 2.3. For any d-dimensional one step shift of finite type X, there
exists a d-dimensional graph G such that X = XG.

Proof. The proof follows from discussions in Remark 2.2. �

Proposition 2.4. For any two dimensional shift space XF , X(M,N) is a shift
space conjugate to XF .

Proof. Let XF be a shift space generated by the forbidden set F and let
(M,N) ∈ N2. Let F∗ be the set obtained by replacing any forbidden pat-
tern P of size less than size M × N by all M × N extensions of P . Then,
XF = XF∗ and hence we obtain a modified forbidden set generating XF such
that all the forbidden patterns in the generating forbidden set are bigger than
a rectangle of size M × N . Further, as all the forbidden patterns can be ex-
tended to rectangles of uniform size to generate the same space, we assume
all the elements of the forbidden set to be rectangles of size R × S (for some
integers R,S ∈ N).

For any P ∈ F , define P (M,N) to be a pattern of size (R−M+1)×(S−N+1)

over (B(M,N)(X)) defined as P
(M,N)
[(k,l)] = P[k,k+M−1]×[l,l+N−1], i.e. the M × N

rectangle with left bottom corner at (k, l) is placed at (k, l). Let F1 = {P (M,N) :

P ∈ F}. Further, let F2 = {P1P2 : P1, P2 ∈ A[M,N ]
X such that P1 and P2 do not

overlap progressively horizontally} and let F3 = {P2

P1
: P1, P2 ∈ A[M,N ]

X such that
P1 and P2 do not overlap progressively vertically}.

Note that as elements of F are forbidden for X, elements of F1 are not
allowed for X(M,N). Also, as any two blocks placed adjacently for X(M,N)

must overlap progressively, elements of F2 and F3 are also not allowed for
X(M,N) and thus X(M,N) ⊂ ∩3i=1XFi

or X(M,N) ⊆ XF1∪F2∪F3
. Conversely, for

any element x in XF1∪F2∪F3 , as adjacent placement of blocks not overlapping
progressively is not allowed, any two adjacent blocks overlap progressively.
Further, as elements of F1 are forbidden for XF1∪F2∪F3

, any block forbidden
for X does not appear in x. Consequently, x ∈ X(M,N) and the proof for
X(M,N) = XF1∪F2∪F3 is complete.

Further, for any x ∈ X as ((β(M,N))(x))(i,j) is a M × N pattern of x with
left corner at x(i,j), the map β(M,N) defines a conjugacy between shift space X

and X(M,N). �

Corollary 2.5. For any d-dimensional shift space XF and P ∈ Nk, XP is a
shift space conjugate to XF .

Proof. The proof follows from discussions in Remark 2.9. �
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Proposition 2.6. For any two dimensional shift space of finite type XF , there
exists a graph G such that XG is conjugate to XF .

Proof. Let XF be a shift space of finite type generated by the forbidden set F .
If all the elements of F are of type {αβ} or {αβ}, then XF is one step shift of
finite type. If not, let all the elements of F be rectangles of size M × N . By
previous proposition, since X [M,N ] can be viewed as one step of finite type over

alphabet A[(M,N)]
X , shift space XF can be visualized as one step shift of finite

type. For V = B(M,N)(X), define the graph H1 = (V, E1) as a graph with
set of vertices V where any two elements of V are connected if they overlap
progressively horizontally. Let H2 = (V, E2) be the graph with V as the set of
vertices where any two elements of V are connected if they overlap progressively
vertically. Then G = (H1, H2) generates X(M,N) and the proof is complete. �

Corollary 2.7. For every d-dimensional shift of finite type XF , there exists a
d-dimensional graph G such that XG is conjugate to XF .

Proof. The proof follows from discussions in Remark 2.9. �

Example 2.8. Let X be two dimensional shift space with alphabet {e, f, g}
with forbidden pattern set F = {ff, gg, fe, eg, ff , ee, gg, ef , ge}. Then, graph G
for this shift space is given by Figure 1.

e

f g

H

e

f g

V

Figure 1

Then, as there exists 2× 2 patterns (for example
g e f
f g e
e f g

) whose infinite

repetition (in both directions) tiles the plane in an allowed manner, the shift
space is non-empty and exhibits periodic points. Further for any given config-
uration, as there exists arbitrarily large central blocks whose infinite repetition
(in both directions) generates an element of X, the shift space exhibits a dense
set of periodic points.
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Remark 2.9. The above result establishes that any two dimensional shift is
conjugate to its higher block code X(M,N) and hence any shift of finite type
can be visualized as a one step shift of finite type. Further, as any one step
shift of finite type can be generated through a graph, any two dimensional
shift of finite type is conjugate to a shift generated by a two dimensional graph
G = (H,V ). Also, as any d-dimensional one step shift of finite type can be
generated through a d-dimensional graph (Corollary 2.3), any d-dimensional
shift of finite type is conjugate to a shift generated by a d-dimensional graph.
Consequently, an analogous extension of the above result is true and we get
the following results.

Example 2.10. Let X be two dimensional Golden Mean shift space over al-
phabet {0, 1} with forbidden pattern set F = {11, 1

1}. Then, X = XG, where
graph G is given by Figure 2.

0 1

H

0 1

V

Figure 2

Then, appearance of two consecutive 1’s is forbidden in horizontal and ver-
tical directions. As the configuration comprising of all 0’s is a valid element of
X, the shift space X is indeed non-empty. Note that any allowed 2× 2 pattern
can be extended to a valid repetition of the shift space X. Once again, as
there exists arbitrarily large central blocks whose infinite repetition (in both
directions) generates an element of X, the shift space exhibits a dense set of
periodic points (with finite orbits).

Remark 2.11. The above construction provides an example of a shift of finite
type with dense set of periodic points. It may be noted that any (m,n) periodic
point (with m,n 6= 0) can be realized as a vertical arrangement of shifts of an
infinite horizontal strip of height n. As the number of blocks of a given finite size
are finite, existence of periodic points is equivalent to existence of horizontally
periodic points for a shift of finite type. As the periodic point generated is also
vertically periodic, the proof establishes equivalence of existence of periodic
points with existence of vertically periodic points for a shift of finite type. We
now establish our claims below.

Proposition 2.12. For any 2-dimensional shift of finite type X, X has a
horizontally periodic point if and only if X has a (m,n) periodic point (for
some m,n ∈ Z \ {0}).

Proof. As any shift of finite type is conjugate to some one-step shift of finite
type, we establish our result for any one step 2-dimensional shift space. Let
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X be a one step shift of finite type and let x ∈ X be a (m, 0) periodic point.
Then, note that x is a infinite horizontal repetition of an infinite vertical strip
of width m (say S). Further as S can be realized as a vertical arrangement of
one dimensional strips of length m, there exists a 1×m block a1a2 . . . am which
appears twice in S (say at heights u and v). Consequently, infinite repetition of
the block x[0,m−1]×[u,v−1] is an element of X and is periodic of period (m, v−u).

Conversely, if X has a (m,n) periodic point then there exists an infinite
(horizontal) strip S such that x is a vertical arrangement of shifts of S (where
σ(−m,0)(S),S, σ(m,0)(S), σ(2m,0)(S), . . . are placed vertically one over the other
to obtain x). As the blocks of size m×n are finite, there exists a block B0 of size
m×n that appears in x at (u, 0) and (v, 0). Consequently, if B0B1 . . . BkB0 is a
block appearing in X then the k×k rectangular arrangement of B0, B1, . . . , Bk
where B(k−j+i+1)mod(k+1) is placed at (i, j)-th position is an allowed rectangu-
lar block. Further, as infinite repetition of the block generated yields an allowed
configuration of X, the shift space exhibits a horizontally periodic point and
the proof is complete. �

Corollary 2.13. For any 2-dimensional shift of finite type X, X has a ver-
tically periodic point if and only if X has a (m,n) periodic point (for some
m,n ∈ Z \ {0}).

Proof. The proof follows from discussions in Remark 2.11. �

Proposition 2.14. A two dimensional shift of finite type is finite if and only
if it is conjugate to a shift generated by a pair of permutation matrices.

Proof. Firstly note that any finite shift space is a union of finitely many periodic
points (with finite orbits). Also, if X itself is a single periodic orbit then X
can be visualized as an infinite repetition (both horizontal and vertical) of an
m× n rectangle. Then, if H and V are indexed with allowed rectangles of size
m × n capturing horizontal and vertical compatibility of the indices then H
and V are permutation matrices and the graph G = (H,V ) generates a shift
conjugate to the shift space X. Finally if X is a union of periodic orbits, a
similar argument applied to each periodic orbit (and collating the set of indices
to generate H and V ) generates a pair of permutation matrices that generate
a shift conjugate to X and the proof of forward part is complete.

Conversely, let the shift be conjugate to a shift generated by a pair of per-
mutation matrices. Note that for the shift generated by permutation matrices,
fixing the entry at the origin fixes the entries in the immediate neighborhood
and hence fixes all the entries at other coordinates. Consequently, the shift
space X generated is finite and the proof is complete. �

Remark 2.15. The above result establishes that a two dimensional shift space is
finite if and only if it is conjugate to a shift generated by a pair of permutation
matrices. In [1], the authors proved that if all the elements of the shift space
are periodic then the shift space must be finite. The above result not only
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provides an alternate view of the result established in [1] but also characterizes
such spaces in terms of shift spaces generated through permutation matrices.
However, it is worth mentioning that the finiteness of the shift space XG does
not enforce the generating matrices H and V to be permutation matrices. To
establish our claim, let X be the shift space generated by the graph shown in
Figure 3. Then, it can be seen that although the shift generated by the graph is
finite, the associated adjacency matrices H and V are not permutation matrices
and hence the claim is indeed true.

0

1 2

H

0

1 2

V

Figure 3

H =


0 1 2

0 1 1 0
1 0 0 1
2 1 0 0

 V =


0 1 2

0 0 1 1
1 1 0 0
2 1 0 0


But XG is finite as it is the orbit of a single periodic point (given below):

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

. . . 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 . . .

. . . 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 . . .

. . . 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 . . .

. . . 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 . . .

. . . 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 . . .

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

Consequently, finiteness of the shift space X does not guarantee the generat-
ing matrices to be permutation matrices. However, it is worth mentioning that
although a finite shift space may be generated by non-permutation matrices,
such a space is always conjugate to a shift generated by permutation matrices.
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Remark 2.16. We now discuss non-emptiness of shift spaces using adjacency
matrices H and V. Note that while (HV )ij computes number of ways pattern
j

i can be extended to triangular pattern of form j
i k ∈ B(XG), (V H)ij com-

putes the number of ways pattern j
i can be extended to triangular pattern of

form l j
i ∈ B(XG). As removing the vertices with no incoming (or outgoing)

edge (both horizontally or vertically) does not alter the shift space generated,
we assume that the generating matrices do not contain any zero row or zero
column. It may be noted that for any shift generated by permutation matri-
ces, as the immediate neighborhood of a symbol is uniquely determined, the
shift space generated by permutation matrices is always finite (may be empty).
It may be noted that a two dimensional shift space generated by a pair of
irreducible permutation matrices is non-empty if and only if the generating
matrices commute with each other. The proof follows from the fact that if

HV = V H, any pattern of the form
c

a b
can be extended to a 2× 2 square

and hence shift space generated is non-empty. We now establish our claim
below.

Proposition 2.17. Let G be graph with associated adjacency matrices H and
V. If H and V are irreducible permutation matrices then HV = V H iff XG 6= ∅.

Proof. Let XG be the shift space generated by G = (H,V ) and let HV = V H.
If H and V are permutation matrices then fixing an entry at origin uniquely
determines the immediate neighbors of any symbol (in both horizontal and
vertical directions). Further as HV and V H are permutation matrices (char-

acterizing blocks of form
b

a ∗ and
∗ b
a

respectively), any block
b

a ∗
can be extended to a 2× 2 square if and only if HV = V H. Consequently, for
any element x = x1x2 . . . xr generated by H, as x1x2 . . . xrx1 can be extended
vertically (as HV = V H holds), the element x can be extended (vertically) to
a valid configuration in XG. Thus, XG is non-empty and the proof of forward
part is complete.

Conversely, let XG be non-empty. As H (and V ) is an irreducible permu-
tation matrix, the one dimensional shift space generated by H (V ) comprises
of a single periodic orbit. As the choice of extension (vertical) for any index
is unique, if HV 6= V H, the periodic point generated by H cannot be ex-
tended vertically to a valid configuration and hence XG = ∅. Consequently,
HV = V H and the proof of converse is complete. �

Remark 2.18. Note that if (HV )ij 6= 0 ⇔ (V H)ij 6= 0 ∀i, j then the shift
space is non-empty and hence a more general form of the above result is true.
In fact, note that if (HV )ij 6= 0 =⇒ (V H)ij 6= 0 (or (V H)ij 6= 0 =⇒
(HV )ij 6= 0), shift space generated does not contain any forbidden pattern of

the form
c

a b
(or

a b
c

). As the condition ensures that every pattern of
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the form
c

a b
is extendable to 2× 2 square, the condition ensures existence

of arbitrarily large valid patterns for the shift space and thus the shift space
is non-empty under the imposed condition. However, once again the condition
provides a sufficient criteria to establish non-emptiness of a shift space and the
shift space can be non-empty in absence of the imposed condition. Further, as

HV T and V TH characterizes allowed patterns of the form
a b

c
and

a
b c

respectively, the non-emptiness problem and existence of periodic points can
be investigated using the matrices HV T and V TH. It is worth mentioning that
the two conditions are indeed independent and hence can be used independently
to investigate the shift space under discussion. We now establish our claims
below.

Proposition 2.19. Let XG be a shift space generated by G = (H,V ). If
(HV )ij 6= 0⇒ (V H)ij 6= 0. Then XG 6= ∅.

Proof. The proof follows from the fact that if (HV )ij 6= 0 ⇒ (V H)ij 6= 0,

the shift space does not contain forbidden pattern of the form
c

a b
. Conse-

quently, any arbitrarily large 1× r pattern can be extended to an r× r square.
As the shift space contains valid arbitrarily large squares, the shift space is
non-empty and the proof is complete. �

Example 2.20. Let X be a shift space generated by the graph in Figure 4.

0 1 2

3 4 5

H

0 1 2

3 5 4

V

Figure 4
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Then,

H =



0 1 2 3 4 5

0 0 0 1 0 0 0
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 0 0 0 1
4 0 0 0 1 0 0
5 0 0 0 0 1 0

 V =



0 1 2 3 4 5

0 0 1 0 0 0 0
1 0 0 1 0 0 0
2 1 0 0 0 0 0
3 0 0 0 0 0 1
4 0 0 0 0 1 0
5 0 0 0 1 0 0


Note that G can be written as a union of disjoint graphs G1 and G2 indexed

by symbols 0, 1, 2 and 3, 4, 5 respectively. Further, while matrices capturing
horizontal and vertical compatibility of G1 commute, matrices capturing hori-
zontal and vertical compatibility of G2 do not commute and hence XG1

6= ∅ but
XG2

= ∅. Consequently, XG = XG1
and the shift space is indeed non-empty.

Thus, the shift space is generated by a non-commuting pair of permutation
matrices.

Example 2.21. Let X be the shift space arising from graph in Figure 5 over
symbol set {1, 2, 3}.

1

2 3

H

1

2 3

V

Figure 5

Then, generating matrices corresponding to given graph are:

H =


1 2 3

1 0 1 0
2 0 0 1
3 1 1 0

 V =


1 2 3

1 0 0 1
2 1 0 1
3 0 1 0


Then,

HV =


1 2 3

1 1 0 1
2 0 1 0
3 1 0 2

 VH =


1 2 3

1 1 1 0
2 1 2 0
3 0 0 1


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For the above example, one can find indices i, j such that of (HV )ij 6= 0
but (V H)ij = 0 (and indices k, l such that (V H)kl 6= 0 but (HV )kl = 0).
Consequently, the condition (HV )ij 6= 0 iff (V H)ij 6= 0 does not hold and the
derived results cannot be used to investigate the non-emptiness of the shift
space. However, as H = V T , we have HV T = V TH and the shift space is
indeed non-empty (and possesses periodic points)

Proposition 2.22. Let XG be a shift space generated by G = (H,V ). If
(HV )ij 6= 0 ⇐⇒ (V H)ij 6= 0 ∀i, j then XG possesses periodic points.

Proof. Let XG be a shift space generated by G = (H,V ) and let m ∈ N. Let u
be a block of size 1×m. As (HV )ij 6= 0 ⇐⇒ (V H)ij 6= 0 ∀i, j, u can extended
to a pattern of size k ×m (for any k ∈ N). Without loss of generality, let u be
extended to a rectangle v of size s×m such that v00 = vms. As v00 = vms, the

block v can be further extended to the block
v

v
(along the line sx−my = 0)

to obtain a valid pattern of X. Further, as (HV )ij 6= 0 ⇐⇒ (V H)ij 6= 0 ∀i, j,
the pattern can be extended to valid 2m×2s pattern for the shift space. Finally,
note that the infinite such repetition of v (along the line sx − my = 0) and
extending the pattern with the same choices (as in the previous step) yields a
valid periodic point for the shift space. As the proof holds for any m ∈ N, the
shift space contains periodic points and the proof is complete. �

Remark 2.23. The above result establishes the existence of periodic points
under the condition (HV )ij 6= 0 ⇐⇒ (V H)ij 6= 0 ∀i, j. The proof uses the
condition to extend a horizontal pattern to a valid 2m× 2s pattern. As such a
repetition can be made infinitely often, filling the choices in a unique manner
at each step yields a periodic point for the shift space. Note that as such an
extension is possible under (HV )ij 6= 0 =⇒ (V H)ij 6= 0 ∀i, j, the result holds
under a weaker condition. Further, as similar arguments establish the result
under the condition (V H)ij 6= 0 =⇒ (HV )ij 6= 0 ∀i, j, we get the following
corollary.

Corollary 2.24. Let XG be a shift space generated by G = (H,V ). If (HV )ij 6=
0 =⇒ (V H)ij 6= 0 ∀i, j (or (V H)ij 6= 0 =⇒ (HV )ij 6= 0 ∀i, j) then XG

possesses periodic points.

Proof. The proof follows from discussions in Remark 2.23. �

Remark 2.25. Let X be a shift space generated by a graph G. It may be noted

that if (HV )ij = 0 then any block of the form
j

i ∗ is forbidden for the shift

space X. Consequently, the set {(i, j) : (HV )ij = 0 but (V H)ij 6= 0} charac-

terizes all patterns of the form
∗ j
i

which cannot be extended to a 2 × 2

square. Similarly, the set {(i, j) : (V H)ij = 0 but (HV )ij 6= 0} characterizes
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all patterns of the form
j

i ∗ which cannot be extended to a 2×2 square. As

such patterns do not contribute towards generation of points of X, one may
ignore such patterns (by simply considering them as invalid) and generate con-
figurations in XG using matrices of reduced complexity.

Let A1 = { c
a b : ∃ d ∈ V(G) such that d c

a b ∈ B(XG)} and A2 = {y zx :
∃ w ∈ V(G) such that y z

x w ∈ B(XG)}. Let M and N be matrices indexed by
elements of A1 and A2 in the following manner:

For I = a3
a1 a2 , J = a5

a3 a4 , R = b2 b3
b1

and S = b4 b5
b3

MIJ =

{
1, if a3 a4

a2 ∈ A2

0, otherwise

and NRS =

{
1, if b4

b2 b3
∈ A1

0, otherwise

Remark 2.26. It may be noted that M and N generate valid “staircase pat-
terns” for the shift space XG. Further, as extension of a staircase pattern using
complementary staircase patterns enables construction of arbitrarily large valid
patterns for XG, the same can be used to verify the non-emptiness of the shift
space under discussion. We refer to the pair of indices (I, J) (I = a3

a1 a2 and
J = a4 a3

a1 ) as an E-pair. It may be noted that if I = a3
a1 a2 and J = a4 a3

a1 form

an E-pair then d c
a b is a valid pattern for the shift space. In such a case we

refer J (I) as an E-partner of the pattern I (J). It may be noted that
if for every Mij 6= 0 and for every E- partner “ i1” of i, ∃ an E-partner “ j1”
of j such that Ni1j1 6= 0 then the shift space is non-empty. The proof follows
from the fact that the imposed condition ensures the extension of compatible
E-partners into a 3 × 3 square (and hence to a valid rectangular pattern of
arbitrarily large size) and consequently ensures the non-emptiness of the shift
space under discussion. It is worth mentioning that any shift space satisfying
the conditions imposed in the above proposition must possess periodic points.
A similar argument proves that if or every Nkl 6= 0 and for every E- partner
“ k1” of k, ∃ an E-partner “ l1” of l such that Mk1l1 6= 0 then the shift space is
non-empty and hence we get the following results.

Proposition 2.27. Let XG be a two dimensional shift generated by a graph
G = (H,V ) and let the sequence space generated by M and N be non-empty.
If for every Mij 6= 0 and for every E-partner “ i1” of i, ∃ an E-partner “ j1” of
j such that Ni1j1 6= 0 then, XG 6= ∅.

Proof. Let XG be a shift of finite type such that the sequence spaces generated
by M and N are non-empty. Let Mij 6= 0 and let i1 be an E-partner of
i. If there exists an E-partner “ j1” of j such that Ni1j1 6= 0 then the pattern

a3
a5
a4

a1 a2 can be extended to a 3×3 pattern. As the shift spaces generated by M
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and N respectively (generating valid staircase patterns for XG) are non-empty,
any finite pattern generated by M can be extended to an allowed rectangle of
arbitrarily large size and hence can be extended to a point in the shift space
XG. Consequently, XG is non-empty and the proof is complete. �

Remark 2.28. The above result establishes the non-emptiness of the shift space
using the notion of an E-pair. In particular, the proof establishes that if for
every Mij 6= 0 and for every E- partner “ i1” of i, ∃ an E-partner “ j1” of j
such that Ni1j1 6= 0 then the shift space is non-empty. It may be noted that
the proof ensures the extension of compatible E-partners into a 3 × 3 square
and hence the condition “ for every Mij 6= 0 and for every E-pair “ i1” of i,
∃ an E-pair “ j1” of j such that Ni1j1 6= 0” is sufficient (but not necessary) to
ensure non-emptiness of the shift space. It is worth mentioning that any shift
space satisfying the conditions imposed in the above proposition must possess
periodic points. A similar argument proves that if for every Nkl 6= 0 and for
every E- partner “ k1” of k, ∃ an E-partner “ l1” of l such that Mk1l1 6= 0 then
the shift space is non-empty and hence we get the following corollary.

Corollary 2.29. Let XG be a two dimensional shift generated by a graph G =
(H,V ) and let the sequence space generated by M and N be non-empty. If for
every Nkl 6= 0 and for every E- partner “ k1” of k, ∃ an E-partner “ l1” of l
such that Mk1l1 6= 0 then XG 6= ∅.

Proof. The proof follows from discussions in Remark 2.28 �

Proposition 2.30. A shift space XG is finite if it follows two conditions:

(1) M and N are permutation matrices.
(2) Every pattern in A1 and A2 has unique E-partner.

Proof. Let X be a shift space and let (1) and (2) hold. Firstly, it may be
noted that as M and N are permutation matrices, the shift spaces generated
by M and N (respectively) are finite (union of periodic orbits). Further, as
every triangular pattern is uniquely extendable to a 2×2 pattern, every infinite
pattern generated by M is uniquely extendable to an element of the shift space.
Consequently, the shift space is finite and the proof is complete. �

Remark 2.31. The above proposition establishes a sufficient condition for the
shift space XG to be finite. In particular, the result establishes that if M and
N are permutation matrices and every pattern in A1 (A2) has a unique E-
partner then the shift space XG must be finite. However, the conditions once
again provide a sufficient criteria to establish the finiteness of a shift space and
are not necessary for the shift space to be finite. We now give an example in
support of our claim.

Example 2.32. LetXG be a shift space over the alphabet setA = {1, 2, 3, 4, 5, 6,
7, 8} generated by the adjacency matrices:
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H =



1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0
3 1 0 0 0 0 1 0 0
4 0 0 0 0 1 0 0 0
5 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 1
8 0 0 1 0 0 0 0 0


and V =



1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 1
2 0 0 1 0 0 0 0 0
3 1 1 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 1 0
6 0 0 0 1 0 0 0 0
7 0 0 0 0 1 0 0 0
8 1 0 0 0 0 0 0 0


It can be seen that XG contains two disjoint periodic orbits generated by the
following configurations:

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 . . .
. . . 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 . . .
. . . 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 . . .
. . . 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 . . .
. . . 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 . . .

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

and

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 . . .
. . . 6 7 8 3 6 7 8 3 6 7 8 3 6 7 8 3 . . .
. . . 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 . . .
. . . 6 7 8 3 6 7 8 3 6 7 8 3 6 7 8 3 . . .
. . . 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 . . .

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Further, as any 1×n patterns containing the blocks 4512 and 123 (6783 and
123) cannot be extended to a valid configuration (cannot be extended vertically
to height more than 2), XG is the union of two disjoint periodic trajectories and
hence is finite. However, as 3

1 2 can be extended to 2×2 square in a non-unique
manner and 3

1 2 can be extended diagonally in non-unique manner, none of the
conditions stated in proposition 2.30 hold. Consequently, the shift space may
be finite even when none of the conditions in Proposition 2.30 hold.

We now give examples to show that shift space may not be finite if any of
the above two conditions are dropped.

Example 2.33. Let X be the shift space arising from Figure 6. Then, the
adjacency matrices associated with graph are:
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0

1 2

H

0

1 2

V

Figure 6

H =


0 1 2

0 0 1 0
1 0 0 1
2 1 1 0

 V =


0 1 2

0 1 1 0
1 0 0 1
2 1 1 0


Then,

HV =


0 1 2

0 0 0 1
1 1 1 0
2 1 1 1

 VH =


0 1 2

0 0 1 1
1 1 1 0
2 0 1 1


Note that there exists indices i, j such that (HV )ij 6= 0 but (V H)ij = 0 (and
there exists k, l such that (V H)kl 6= 0 but (HV )kl = 0). Updating the matrices
HV and V H we obtain

HV =


0 1 2

0 0 0 1
1 1 1 0
2 0 1 1

 VH =


0 1 2

0 0 0 1
1 1 1 0
2 0 1 1


Using above matrices, we obtain:
A1 = { 2

0 1,
0

1 2 ,
1

1 2 ,
1

2 0 ,
2

2 1 } and A2 = {1 2
0 , 2 0

1 , 2 1
1 , 0 1

2 , 1 2
2 }
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It can be verified that every element of A1 and A2 can be extended to 1× 1
square uniquely and hence condition (2) holds. The matrices M and N are :

M =



2
0 1

0
1 2

1
1 2

1
2 0

2
2 1

2
0 1 0 0 0 1 1
0

1 2 1 0 0 0 0
1

1 2 0 1 1 0 0
1

2 0 0 1 1 0 0
2

2 1 0 0 0 1 1



N =



1 2
0

2 0
1

2 1
1

0 1
2

1 2
2

1 2
0 0 0 0 1 1
2 0
1 1 0 0 0 0
2 1
1 0 1 1 0 0
0 1
2 0 1 1 0 0
1 2
2 0 0 0 1 1


It can be seen that M and N are not permutation matrices and the shift

space X is not finite. Consequently, the Proposition 2.30 does not hold if M
and N are not ensured to be permutation matrices.

Example 2.34. Let X be the shift space arising from graph G in Figure 7.
Then, the adjacency matrices corresponding to the graph G are:

1

2 3

H

1

2 3

V

Figure 7

H =


1 2 3

1 0 1 0
2 0 0 1
3 1 1 0

 V =


1 2 3

1 0 0 1
2 1 0 1
3 0 1 0


Further,

HV =


1 2 3

1 1 0 1
2 0 1 0
3 1 0 2

 VH =


1 2 3

1 1 1 0
2 1 2 0
3 0 0 1


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Once again, note that there exists indices i, j such that (HV )ij 6= 0 but
(V H)ij = 0 (and there exists k, l such that (V H)kl 6= 0 but (HV )kl = 0).
Updating the matrices HV and V H we obtain

HV =


1 2 3

1 1 0 0
2 0 1 0
3 0 0 2

 VH =


1 2 3

1 1 0 0
2 0 2 0
3 0 0 1


Consequently,

A1 = { 1
1 2,

2
2 3 ,

3
3 1 ,

3
3 2 } and A2 = {3 1

1 , 3 2
2 , 1 2

2 , 2 3
3 }

and

M =


1

1 2
2

2 3
3

3 1
3

3 2
1

1 2 1 0 0 0
2

2 3 0 1 0 0
3

3 1 0 0 1 0
3

3 2 0 0 0 1



N =


3 1
1

3 2
2

1 2
2

2 3
3

3 1
1 1 0 0 0
3 2
2 0 1 0 0
1 2
2 0 0 1 0
2 3
3 0 0 0 1


Clearly, M and N are permutation matrices but not every triangular pattern is
getting extended uniquely to 2× 2 pattern. It can be seen that the shift space
generated is not finite and hence the shift space need not be finite if any of the
two conditions are dropped.
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