
Research Article
Strategies of Preconditioner Updates for Sequences of Linear
Systems Associated with the Neutron Diffusion

A. Carreño ,1 L. Bergamaschi ,2 A. Martínez ,3 D. Ginestar ,4 A. Vidal-Ferràndiz ,4

and G. Verdú 1

1ISIRYM, Universitat Politècnica de València, Valencia, Spain
2DICEA, University of Padua, Padua, Italy
3DMG, University of Trieste, Trieste, Italy
4IMM, Universitat Politècnica de València, Valencia, Spain

Correspondence should be addressed to A. Carreño; amcarsan@iqn.upv.es

Received 9 September 2021; Revised 6 May 2022; Accepted 16 June 2022; Published 26 June 2022

Academic Editor: Higinio Ramos

Copyright © 2022 A. Carreño et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The time-dependent neutron diffusion equation approximates the neutronic power evolution inside a nuclear reactor core.
Applying a Galerkin finite element method for the spatial discretization of these equations leads to a stiff semi-discrete system
of ordinary differential equations. For time discretization, an implicit scheme is used, which implies solving a large and sparse
linear system of equations for each time step. The GMRES method is used to solve these systems because of its fast
convergence when a suitable preconditioner is provided. This work explores several matrix-free strategies based on different
updated preconditioners, which are constructed by low-rank updates of a given initial preconditioner. They are two tuned
preconditioners based on the bad and good Broyden’s methods, initially developed for nonlinear equations and optimization
problems, and spectral preconditioners. The efficiency of the resulting preconditioners under study is closely related to the
selection of the subspace used to construct the update. Our numerical results show the effectiveness of these methodologies in
terms of CPU time and storage for different nuclear benchmark transients, even if the initial preconditioner is not good enough.

1. Introduction

The safety and the design of a nuclear power plant require,
among others, fast and accurate codes that simulate the behav-
iour of the neutrons inside of the core of a nuclear reactor. The
time-dependent multigroup neutron diffusion equation
approximates the time evolution of the neutronic power. This
equation is an approximation of the neutron transport equa-
tion that assumes that the neutron current is proportional to
the gradient of the scalar neutron flux by means of a diffusion
coefficient. This equation can be expressed as [1].

V −1 ∂Φ
∂t

+LΦ = 1 − βð ÞFΦ + 〠
K

k=1
λdkχCk,

∂Ck

∂t
= βkF1Φ − λdkCk, k = 1,⋯, K ,

ð1Þ

where for the special case of two energy groups and without
considering up-scattering, the continuous operators are given
by

L = −∇
! · D1∇

!� �
+ Σa1

+Σ120−Σ12−∇
!
· D2∇

!� �
+ Σa2

h i
, F =

ν1Σf1
ν2Σf2

0 0

" #
,V =

1/v1 0
0 1/v2

" #
,

F1 = ν1Σf1
ν2Σf2

h i
, χ = 1 0½ �T ,Φ = Φ1 Φ2½ �T :

ð2Þ

The vectors Φ1 and Φ2 denote the fast and thermal flux,
respectively. The vectorsCk, k = 1,⋯, K are the concentration
of the neutron delayed precursors, whereK is the total number
of precursor groups. The cross-sections and diffusion coeffi-
cients, Σag

, Σf g
, Σ12Dg, g = 1, 2, are functions that depend

on the materials of the reactor. νg, g = 1, 2, is the average
number of neutrons released per fission while vg, g = 1, 2, is
the neutron velocity associated with the energy group g. The

Hindawi
Computational and Mathematical Methods
Volume 2022, Article ID 3884836, 13 pages
https://doi.org/10.1155/2022/3884836

https://orcid.org/0000-0003-2302-1157
https://orcid.org/0000-0001-8273-9674
https://orcid.org/0000-0003-4826-1114
https://orcid.org/0000-0003-1243-6648
https://orcid.org/0000-0001-5449-7356
https://orcid.org/0000-0001-5098-080X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3884836


spectrum of the prompt and the delayed neutrons are denoted
by χ. The fraction of the delayed neutrons is βk such that the
total delayed neutron fraction is β =∑K

k βk. Finally, the neu-
tron precursor delayed constants are denoted as λdk . The rest
of the coefficients in this work are considered constants related
to the neutron delayed precursors. The problem (1) depends
on both the position and time; thus, spatial and time discreti-
zation must be selected in order to compute the numerical
solution. Applying a Galerkin finite element method for the
spatial discretization of (1) leads to a stiff semi-discrete system
of ordinary differential equations. For time discretization, an
implicit scheme is used, which implies solving a linear system
of equations for each time step. In a realistic nuclear reactor,
the size of the resulting matrices is huge, and Krylov subspace
methods are chosen to solve the systems, but these methods
may exhibit slow convergence unless a good preconditioner
is provided.

In many works, preconditioners for these unstructured
linear systems are based on incomplete factorizations of
the coefficient matrix [2]. Incomplete LU factorization
works well for this type of problem, but it requires the stor-
age of both the full matrix and the preconditioner, and this
can be very expensive from the point of view of computa-
tional cost and memory requirement. Since the computation
of a good preconditioner can be expensive, while solving a
sequence of many linear systems, it is advantageous to recy-
cle preconditioners, that is, update a previous preconditioner
and reuse the updated version. In, e.g., [3–7] the authors
describe updating strategies for incomplete factorizations
or approximate inverse preconditioners in the solution of
sequences of linear systems. Unfortunately, these techniques
do not avoid the need to store the preconditioner. In this
work, we focus on updating strategies that can be applied
to any initial preconditioner and that can be constructed
and applied in a matrix-free regime.

This work explores several matrix-free strategies based
on different updated preconditioners, which are constructed
by low-rank corrections of a given initial preconditioner. We
analyze the performance of two tuned preconditioners based
on the bad and good Broyden’s methods, initially developed
for nonlinear equations and optimization problems, and
spectral preconditioners. We study the influence of the selec-
tion of the subspace used to construct the update on the effi-
ciency of the resulting preconditioner. The efficiency is
measured by both the decrease in the number of iterations
needed to reach convergence and the reduction of the overall
solution time. We present numerical results showing the
effectiveness of these methodologies in terms of CPU time
and storage for different nuclear benchmark transients, even
when starting from a poor-quality initial preconditioner.
Summarizing, the aims of this contribution are (1) to ana-
lyze the different low-rank updates, (2) to apply this tool to
the sequence of linear systems arising from the discretization
of the neutron diffusion equation, and (3) to perform an
experimental study on the choice of Si.

The remaining of this paper is organized as follows. In
Section 2, we describe the spatial and time discretizations
that gives rise to the sequences of sparse nonsymmetric lin-

ear systems. Section 3 describes the different low-rank pre-
conditioner updates we consider while in Section 4, we
describe the sequences of low-rank preconditioners and ana-
lyze different choices for selecting the basis of the subspace
used to construct the low-rank update. In Section 5, we pres-
ent the numerical experiments and discuss the results. The
paper is ended by stating the main conclusions of this study
in Section 6.

2. Spatial and Time Discretizations

A high-order finite element method (FEM) is considered for
the spatial discretization of the neutron diffusion equation to
get a semi-discrete system of ordinary differential equations.
This methodology can be applied to any type of reactor
geometry. In this work, a continuous Galerkin method with
Lagrange polynomials is used. It yields to the system of ordi-
nary differential equations [2]

V
d bΦ
dt

+ L�Φ = 1 − βð ÞF �Φ + 〠
Np

p=1
λdpXCp,

dPCp

dt
= βkF1 bΦ − λdpPCp, p = 1,⋯,Np,

ð3Þ

where bΦ , C, L, F, V , and X are the discrete version of the
previous differential operators. The implementation of the
FEM has been made by using the structures of the open
source library Deal.ii [8]. For a realistic nuclear reactor prob-
lem, the system (3) is, in general, stiff. Hence, it is necessary
to use implicit methods to avoid artificial stepsize restriction
due to stability and not accuracy reasons. In this work, a
one-step implicit scheme is used, such that the time domain,
½0, T� is divided into several time intervals ½tn, tn+1� with Δ
tn = tn+1 − tn and the neutron flux at time tn+1 can be
approximated by solving the linear system [2].

Tn+1 bΦn+1 = 1
Δth

Vn bΦn + 〠
Np

p=1
λdpe

−λdpΔthXCn
p , ð4Þ

where

Tn+1 = 1
Δtn

Vn+1 + Ln+1 − âFn+1, â = 1 − β + 〠
Np

p=1
βp 1 − e−λ

d
pΔth

� �
:

ð5Þ

Superindex n denotes the matrices and vectors evaluated
at time tn.

The neutron precursor equations are approximated by

PCn+1
p = PCn

pe
−λdpΔtn +

βp

λdp
1 − e−λ

d
pΔth

� �
Fn+1
1 Φn+1, p = 1,⋯,Np:

ð6Þ

The previous scheme is numerically stable, but due to its
implicit character, it requires solving a linear system at each

2 Computational and Mathematical Methods



time step. In a realistic nuclear reactor, the size of the matri-
ces is huge, and Krylov subspace methods are chosen to
solve the systems, but, to accelerate convergence, a good pre-
conditioner is mandatory. In many works, preconditioners
for these unstructured linear systems are based on incom-
plete factorizations of the coefficient matrix [2]. Incomplete
LU factorization works well for this type of problem, but it
requires the storage of the full matrix together with the pre-
conditioner, and this can be very expensive from the point of
view of memory requirement.

To alleviate the cost of computing the preconditioners,
other alternatives, based on low-rank updates of a given
incomplete factorization, have been studied, see, e.g., [3–6],
which can be implemented using only vector-matrix prod-
ucts and without requiring additional storage.

In our application, although the matrix operators change
at each time step, they are not very different, and the coeffi-
cient matrices related to successive time steps share similar
spectral properties. Therefore, it is reasonable to explore
methodologies to improve the convergence of the Krylov
methods by using some information generated when the
solutions of the previous linear systems are computed. A
technique which takes into account information of the Kry-
lov process to accelerate the iterative solution of subsequent
linear systems has been also investigated, e.g., in [9]. In [10],
spectral information on the system matrix (which is kept
constant throughout the sequence) is extracted and refined
from the conjugate gradient solution of previous linear sys-
tems and used to deflate the subsequent systems in the
sequence.

In this work, an initial preconditioner is updated from
this spectral information to improve the convergence of
the linear solver along a given transient. This technique
has been studied in previous works [3, 11–13]. Moreover,
these preconditioners have a matrix-free implementation if
the initial preconditioner can also be applied in a matrix-
free regime, as for instance the polynomial preconditioner
recently resumed in [14], reducing the CPU resources of
the matrix allocation considerably. Another strategy to
update preconditioners for sequences of linear systems,
based on the sparse minimization of the Frobenius norm
of a suitable error function, has been recently studied in [15].

We describe in the next section different preconditioner
updates for a linear system. Next, the methodology is
extended to a sequence of linear systems.

3. Updated Preconditioners for a Linear System

Let us consider a linear system

Ax = b, ð7Þ

where A ∈ℝN×N is a nonsymmetric sparse matrix; x, b ∈ℝN

is the solution vector and the independent term, respectively.
Under suitable conditions, the rate of convergence of Krylov
methods such as the GMRES [16] can depend on the distri-
bution of the eigenvalues of A [17]. Even if, in the nonsym-
metric instances, this is not directly related to extremal
eigenvalues, however, eigenvalues with small modulus are

usually responsible of slow convergence of these methods.
In this context, we define a left preconditioned system as

PAx = Pb: ð8Þ

The solution of (8) is the same as that of system (7) if P is
nonsingular; thus, P is designed such that the condition
number of matrix PA is smaller than the condition number
of A.

Theoretically, the optimal preconditioner is P = A−1

because the matrix of the left preconditioned system is A−1

A = I, which has optimal condition number 1, requiring a
single iteration for convergence. However, applying the opti-
mal preconditioner is as difficult as solving the original sys-
tem, and preconditioners that approximate A−1 are used.
Moreover, we are also interested in obtaining a precondi-
tioner that is cheap to construct and apply.

Alternatively, the system (19) can be also preconditioned
on the right as

APy = b, x = Py: ð9Þ

If the systems are associated with a symmetric and
positive definite (SPD) matrix, we can apply the conjugate
gradient method, and the convergence does not depend on
using right or left preconditioning. However, this behaviour
does not generally happen when the GMRES is applied for
nonsymmetric matrices. The results can be different if the
preconditioner is applied on the left or on the right. Typi-
cally, the right preconditioner is preferred since, in this case,
the exit test is based on the true residual.

3.1. Tuned Preconditioner. The concept of tuned precondi-
tioner was introduced in [18], and other papers of the same
authors, in the framework of iterative eigensolvers. The link
between these preconditioner and the quasi-Newton
updates, presented in [19], is described in the survey [20].
In this work, we use a block definition of these updates as
discussed in [21, 22].

Definition 1. Let P0 be an initial preconditioner of the matrix
A and S ∈ℝN×k a matrix with full column rank, a tuned
preconditioner is a matrix P obtained by updating P0 by a
low-rank matrix depending on A and S so as to satisfy the
relation

PAS = S: ð10Þ

From the previous definition, the matrix PA has the
eigenvalue 1 with (at least) multiplicity k associated with
the eigenvectors corresponding to each column of S.

Different types of tuned preconditioners can be devel-
oped. The following tuned preconditioners are derived from
the quasi-Newton methods developed in numerical optimi-
zation. These methods provide an approximation of the
inverse of the Jacobians, which is equal to A−1 if we consider
the problem FðxÞ = 0, for the particular case of FðxÞ = Ax
− b [19, 23]. Therefore, they are good candidates to design
preconditioners for Krylov methods. In particular, two

3Computational and Mathematical Methods



Broyden algorithms are used for this purpose, the Bad-
Broyden method and the Good-Broyden method.

3.1.1. The Bad-Broyden Preconditioner. This strategy has
been developed in [24], where the preconditioner is designed
from rank-1 updates from either the “bad” Broyden’s
method or Eirola and Nevalinna’s method. The Sherman-
Morrison formula constructs the sequence of approximations
of the inverse of the Jacobian Pk+1 ≈ A−1 by a low-rank update
of the previous approximate matrix as

Pk+1 = Pk +
sk − Pkykð ÞyTk

yTk yk
, ð11Þ

where sk = Δxk = xk+1 − xk is the (quasi) Newton step and
yk = Fðxk+1Þ − FðxkÞ. This is known as the Bad-Broyden var-
iant. To define the preconditioner, yk is taken as yk = Ask to
avoid the restriction of choosing the vectors sk as the Newton
step. From these assumptions, the sequence would be

Pk+1 = Pk IN −
Asks

T
k A

T� �
sTk A

TAsk

 !
+ sks

T
k A

T

sTk A
TAsk

: ð12Þ

This formula can be generalized to a block rank- k exten-
sion if the column vectors of S = ½s1,⋯sk� are in the same sub-
space that the ones that satisfy the ATA-conjugacy, i.e.,
sTi A

TAsj = 0, i ≠ j, where i, j = 1⋯ , k [25]. The authors in
[24] called this preconditioner limited memory precondi-
tioner by setting P0 = IN . In our case, we do not take this
assumption and P0 will be an initial preconditioner.

Definition 2. Let A ∈ℝN×N be a general nonsingular matrix
and S ∈ℝN×k of full rank k, with k ≤N . The Bad-Broyden
preconditioner P ∈ℝN×N for nonsymmetric systems is
defined as

P = P0 IN − AS STATAS
� �−1

STAT
� �

+ S STATAS
� �−1

STAT :

ð13Þ

Section 4.1 will study the selection of S. This precondi-
tioner satisfies the tuning property (10). The authors [25]
show spectral properties of the operator AP (where P0 = IN).

3.1.2. The Good-Broyden Preconditioner. Additionally, one
can update the preconditioner by using the Good-Broyden
method [20]. This algorithm updates the approximate
inverse of the Jacobian Pk+1 as

Pk+1 = Pk +
sk − Pkykð ÞsTk Pk

sTk Pkyk
, ð14Þ

where, as before, sk = xk+1 − xk and yk = Fðxk+1Þ − FðxkÞ. As
in the previous case, choosing yk = Ask yields

Pk+1 = Pk +
sk − PkAskð ÞsTk Pk

sTk PkAsk
, ð15Þ

and the previous expression can be extended to a block rank-
k update if the column vectors of S = ½s1,⋯, sk� are in the
same subspace as the ones that satisfy the PkA-conjugacy,
that is, sTi PkAsj = 0, i ≠ j, where i, j = 1⋯ , k:

Definition 3. Let A ∈ℝN×N be a general nonsingular matrix
and S ∈ℝN×k of full rank k, with k ≤N . The Good-Broyden
preconditioner P ∈ℝN×N for nonsymmetric systems is
defined as

P = P0 − P0AS − Sð Þ STP0AS
� �−1

STP0: ð16Þ

This preconditioner also satisfies the tuning property
(10). A selection of S will be studied in Section 4.1.

3.2. Spectral Preconditioners. The spectral preconditioners
are based on low-rank corrections obtained from the spec-
tral data associated with the smallest eigenvalues of the pre-
conditioned matrix [26, 27].

We start with a preconditioner such that the precondi-
tioned matrix P0A is diagonalizable, that is,

P0A =VΛV−1, ð17Þ

where Λ = diag ðλiÞ, where jλ1j ≤⋯≤jλnj are the eigenvalues
and V = ðviÞ the associated right eigenvectors. Let V ε be the
set of right eigenvectors associated with the set of
eigenvaluesjλij ≤ ε.

Definition 4. Let S be such that Ac = STAVε has full rank, a
left spectral preconditioner is defined as the matrix

P = P0 +VεA
−1
c ST : ð18Þ

As proved in [26], it easy to see that the matrix PAmain-
tains the same right eigenvectors Vε as the matrix P0A with
eigenvalues ηi = λi + 1, showing that the spectral precondi-
tioner shifts the smallest eigenvalues of the preconditioned
matrix away from zero. This is expected to improve the con-
vergence of the Krylov methods. To select the matrix S, dif-
ferent options are proposed in Section 4.1. In [26], a suitable
choice of S is proved to leave unchanged all the other eigen-
values and eigenvectors.

4. Sequence of Preconditioners for Sequences of
Linear Systems

Now, let us consider a sequence of linear systems

Aixi = bi, 1 ≤ i ≤ imax, ð19Þ

where Ai ∈ℝN×N are nonsymmetric sparse matrices; xi ∈ℝN

are the solution vectors, which in this application are the
neutron flux in the different time steps; and bi ∈ℝN are the
independent terms.

We are interested in computing a sequence of precondi-
tioners Pi for the sequence of linear systems (19). To construct
these preconditioners, we use the updated preconditioners of

4 Computational and Mathematical Methods



Section 3, where the initial preconditioner is kept constant and
matrix S is updated along the sequence.

Therefore, the Bad-Broyden preconditioner for the i-th
linear system is

Pi = P0 IN − AiSi S
T
i A

T
i AiSi

� �−1
STi A

T
i

� �
+ Si S

T
i A

T
i AiSi

� �−1
STi A

T
i :

ð20Þ

The Good-Broyden preconditioner is

Pi = P0 − P0AiSi − Sið Þ STi P0AiSi
� �−1

STi P0: ð21Þ

Finally, the spectral preconditioner is

Pi = P0 +Vε STi AiVε

� �−1
STi : ð22Þ

In selecting P0, two different possibilities are studied in
function of the initial preconditioner chosen. If we use the
ILU factorization for the initial preconditioner, the ILU of
the matrix A0 is used as P0 for all systems of the transient.
However, if we choose the inverse of the diagonal of the
matrix as the initial preconditioner, whose computation is
negligible, P0 corresponds to the inverse of the diagonal
matrix Ai.

4.1. Choice of Si. The selection of Si will influence the effi-
ciency of the updated preconditioner in terms of both the
number of iterations and the cost of applying the precondi-
tioner. The best option is to set the columns of matrix Si as
the eigenvectors of the matrix AiP0 or P0Ai (depending on
whether right or left preconditioning is used) associated with
the eigenvalues of the smallest modulus. However, in practi-
cal computations, this is not feasible, and other approxima-
tions are commonly used. A practical solution is to
approximate these eigenvectors from the Ritz vectors that
are defined as follows:

Definition 5. Let A be a nonsingular matrix and Q = ½q1,⋯
, qk� be a matrix whose columns form a set of orthonorma-
lized vectors. A Ritz vector of A associated with the subspace

span fq1,⋯, qkg is defined as the vector w =Qy, where y is
an eigenvector of QTAQ. The eigenvalue θ, corresponding
to the eigenvector y, is called Ritz value, and the pair ðθ,wÞ
is called the Ritz pair.

It seems reasonable to update the initial preconditioners
using the Ritz vectors associated with matrix AiP0 or P0Ai.
However, numerical results will show that the Ritz vectors
associated with matrix Ai can be used instead, without any
significant detriment of the convergence rate of the iterative
method.

The Ritz vectors can be complex because the matrices Ai,
P0Ai, or AiP0 are nonsymmetric. In the case that a Ritz vec-
tor (w) with a complex Ritz value (θ) appears, the pair (θ, �w)
is also a Ritz pair (Ai, P0Ai, and AiP0 are real). Note that the
real and imaginary parts of the Ritz vector w generate the
same subspace as the two conjugate Ritz vectors. Therefore,

R RR R R R R R R
RR

R
R
R
R
R
R
R
R R

R R R R

R R
R
R
R
R
R
R
R
RR

RRRRR

2 2 2 2 2 2 2
2 2 2 2
2
2
2
2
2
2 2

2 2 2 2

2
2
2
2
2
2

222

4

2

1 1
61 1

1
1 1

1 1 1 1
1

1 1
6
1

1
1 6 11 1

1 1 1 1 1 1 1
1 6 1 1 1 6 1

1 1 1 1

4 4

4

20 cm

20 cm

C1
C2

6
4

(a) Radial profile

R R
R

20
0 

cm

R
R
R
R
R
R
R R R

R

R R R R R R

R R R
R
R
R
R
R
R
R
R
RR

2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2

5 5 5 55

1

4
4
4

4
4
4
4

4
4
4
4

1

4

1

1

1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1

(b) Axial profile

Figure 1: Geometry and materials distribution of the Langenbuch reactor.

0 10 20 30 40 50 60
Time (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Re
la

tiv
e p

ow
er

Figure 2: Global power of the Langenbuch transient.

Table 1: Number of iterations of LGMRES to solve the linear
problem Ax = b with the different updated preconditioners and
choices of S. P0 = ILUðAÞ.
S No update Bad-Broyden Good-Broyden Spectral

eigs(P0A) 45 31 34 32

eigs(A) 45 32 34 35

5Computational and Mathematical Methods



the columns of Si are set equal to the real and imaginary
parts of the Ritz vector w. Finally, in case any linearly depen-
dent (or nearly) column appears, the last vector is removed.

In the following, we describe two ways to get a set of vec-
tors Q.

If a sequence of linear systems is solved with the
GMRES(m) in k iterations, it is assumed that the relation
QT

l AiQl =Hl holds with Ql ∈ℝN×k and Hl ∈ℝk×k (k ≤m).
In this case, the Ritz vectors are computed with the basis
Ql constructed during the solution of the previous linear
system [28, 9, 10].

Note that if the Ritz vectors associated with the matrix Ai
are computed, these are obtained asW =QlZ, where the col-
umns of the matrix Z are the eigenvectors associated with
the smallest eigenvalues of Hl.

4.1.1. Previous Solutions of the Systems. The second option
we consider is to use the orthonormal basis Q using solu-
tions of the previous linear systems [29, 20]. In that sense,
to solve the i-th linear system, the matrix ~Q is defined as

~Q = xi−p,⋯, xi−1
� �

: ð23Þ

The column vectors of Q are orthonormal vectors that
span the same subspace as ~Q computed at each iteration
before constructing the Ritz vectors.

This selection is based on the reasonable assumption
that the components of a solution xi are in the directions
of the leftmost eigenvectors of Ai, because if the independent

terms are expanded in terms of the eigenvectors of Ai, bi =
∑N

j=1αju
ðiÞ
j , then xk =∑N

j=1ðαj/λ
ðiÞ
j ÞuðiÞj with the largest weights

provided by the smallest eigenvalues.
On the other hand, in our application, two consecutive

matrices in the sequence of linear systems display small
changes since the time-step is usually considered small. In
principle, this property suggests, but does not guarantee, that
also eigenvectors of the two consecutive matrices are close.
Experimentally, we found that the eigenvectors of Ai closely
approximate those eigenvectors of Ai+1, for a given i.

Linear system

25

30

35

40

45

50

55

N
um

be
r o

f i
te

ra
tio

ns

1 2 3 4 5 6 7 8 9 10

P0
Bad-Broyden-eigs
Bad-Broyden-gmres
Bad-Broyden-sols

(a) Bad-Broyden

25

30

35

40

45

50

55

N
um

be
r o

f i
te

ra
tio

ns

Linear system
1 2 3 4 5 6 7 8 9 10

P0
Bad-Broyden-eigs
Bad-Broyden-gmres
Bad-Broyden-sols

(b) Good-Broyden

25

30

35

40

45

50

55

N
um

be
r o

f i
te

ra
tio

ns

Linear system
1 2 3 4 5 6 7 8 9 10

P0
Bad-Broyden-eigs
Bad-Broyden-gmres
Bad-Broyden-sols

(c) Spectral

Figure 3: Number of iterations of the LGMRES method to solve the sequence of linear systems with the updated preconditioners with rank
5 corrections and P0 equal to ILU (0).

6 Computational and Mathematical Methods



5. Numerical Results

5.1. 3D Langenbuch Transient. This transient was defined in
[30]. It corresponds to an operational transient of the Lan-
genbuch reactor. This reactor is a small LWR composed of
77 fuel assemblies and two types of fuel. Figure 1 shows
the geometry of the reactor model, whose spatial discretiza-
tion is composed of 1170 cells. The spatial discretization of
the problem is made with a degree of the polynomials in
the finite element method equal to 3 to obtain a problem
of size N = 69440.

Materials 4 and 6 represent control rods. It has been ini-
tiated by the withdrawal of a bank of four partially inserted
control rods (C1 in Figure 1) at a rate of 3 cm/s over 0 < t
< 26:7 s. A second bank of control rods (C2 in Figure 1) is
inserted at the same rate over 7:5 < t < 47:5 s. The transient
is followed during 60 s. Figure 1(b) represents the axial pro-
file at t = 0:0 s. The evolution of global power can be
observed in Figure 2.

As a first case, a sequence of 10 linear systems is used to
test the performance of the updated preconditioners. They are
obtained from the backward difference method (Equation (4))

with Δt = 1:0 s. The positions corresponding to the different
systems are marked in Figure 2 with red dots. GMRES with left
preconditioning (LGMRES) is applied to solve the linear sys-
tems. The initial vectors in the iterative process are set equal
to a vector of zeros for all systems. The tolerances for the stop-
ping criterion have been set to tol = 10−8 and the exit test is
based on the unpreconditioned residual kbi − Aixik2 < tol. In
this problem, MATLAB is used to compute the numerical
results.

First, we present the number of iterations to solve the
first linear system A1x1 = b1 by using the LGMRES and
updated preconditioners from 5 eigenvectors of A and P0A
associated with the smallest eigenvalues (Table 1). The
eigenvalues are computed by using the command eigs of
MATLAB. The initial preconditioner P0 is set equal to the
ILU (0) of the matrix A1 obtained with the MATLAB com-
mand ilu. This table shows that all the updated precondi-
tioners with the eigenvectors of P0A1 and A improve the
results obtained when the initial P0 (with no update) is used.
Interestingly, one can observe that using the eigenvectors of
A1 provides similar results as those obtained when the eigen-
vectors of P0A1 are used.

20

25

30

35

40

45

50

N
um

be
r o

f i
te

ra
tio

ns

Linear system
1 2 3 4 5 6 7 8 9 10

2-rank
5-rank
10-rank

(a) Bad-Broyden-sols

20

25

30

35

40

45

50

N
um

be
r o

f i
te

ra
tio

ns

Linear system
1 2 3 4 5 6 7 8 9 10

2-rank
5-rank
10-rank

(b) Good-Broyden-sols

20

25

30

35

40

45

50

N
um

be
r o

f i
te

ra
tio

ns

Linear system
1 2 3 4 5 6 7 8 9 10

2-rank
5-rank
10-rank

(c) Spectral-sols

Figure 4: Number of iterations of the LGMRES method to solve the sequence of linear systems with the updated preconditioners and
different rank corrections where P0 = is ILU (0).

7Computational and Mathematical Methods



Now, we test the performance of the updated precondi-
tioners for the sequence of linear systems. In the following,
we select the initial preconditioner P0 as the ILU (0) precon-
ditioner of matrix A1 for all computations.

First, we test the type of vectors used to construct matrix
Si. Rank-5 corrections are taken in all cases in the updated
preconditioners. Figure 3 shows the number of iterations
of the LGMRES method needed to reach convergence with
different choices of the columns of matrix S, namely, the
eigenvectors of the matrix Ai (eigs), the Ritz vectors associated
with the matrix Ai from the basis obtained from GMRES
(gmres), or the Ritz vectors associated with matrix Ai and the
basis obtained from the solutions of the previous linear sys-
tems (sols). Each subfigure reports the results obtained for
each type of updated preconditioner (good or bad Broyden
or spectral). The figures also show the number of iterations
obtained if we apply only the preconditioner P0 kept fixed
without updating for all the linear systems in the sequence.

Broyden’s preconditioners (Figures 3(a) and 3(b)) with
the “exact” eigenvectors (eigs) provide a constant reduction
of the number of iterations, with respect to using P0 fixed,
from the very first system. In contrast, the selection of the
previous solutions (sols) and the vectors of the GMRES
method (gmres) improves the convergence after a few linear
systems are solved, even though from the 8th linear system,
the improvement deteriorates. The 8th linear system corre-
sponds to the transient at t = 8 s. At t = 7:5 s, a bank of con-
trol rods is inserted to shut down the reactor. Therefore, the
subspace obtained with the 1-7th linear systems is not as
useful to construct the preconditioner for the 8th linear sys-
tem as we have observed for the systems 1-7. In the spectral
preconditioner (Figure 3(c)), the reduction for all vectors of
the number of iterations is more constant. For all updated
preconditioners, the selection of the previous solutions (sols)
speeds up the convergence of the LGMRES more than when
the Ritz vectors constructed from GMRES (gmres) are used.

20

25

30

35

40

45

50

N
um

be
r o

f i
te

ra
tio

ns

Linear system
1 2 3 4 5 6 7 8 9 10

P0
Bad-Broyden-sols
Good-Broyden-sols
Spectral-gmres

Figure 5: Number of LGMRES iterations to solve the sequence of
linear systems with the updated preconditioners, 5-rank
corrections and P0 equal ILU (0).

90
100
110
120
130
140
150
160
170
180
190

N
um

be
r o

f i
te

ra
tio

ns

Linear system
1 2 3 4 5 6 7 8 9 10

P0
Bad-Broyden-sols
Good-Broyden-sols
Spectral-sols

Figure 6: Number of iterations of LGMRES to solve the sequence
of linear systems with the updated preconditioners, 5-rank
corrections, and P0 equal to the inverse of the diagonal of Ai.

Table 2: CPU times (s) of LGMRES to solve the sequence of 10 linear systems with the updated preconditioners and P0 equal ILU (0). “Pi
construction” collects the CPU time to construct the ILU (0) preconditioner of the first matrix and the CPU time to compute the subspace Si
. “Pi application” contains the total CPU time in the computation of the 10 linear systems devoted to apply the Pi. “Total” is the total CPU
time spent to obtain the solution of the 10 linear systems.

Preconditioner Rank Total its.
CPU time (s)

Pi construction Pi application Pi application per it. Total

ILU(A1) — 456 1.3 8.1 0.018 28.1

Bad-Broyden-sols

2 365 1.4 7.5 0.021 25.6

5 328 1.5 6.8 0.021 23.3

10 313 1.5 6.6 0.021 22.5

Good-Broyden-sols

2 356 1.4 7.5 0.021 23.8

5 321 1.5 7.1 0.021 23.1

10 308 1.5 7.0 0.022 22.6

Spectral-sols

2 401 1.4 8.1 0.020 26.9

5 410 1.5 8.1 0.020 27.0

10 412 1.5 8.2 0.020 27.2

8 Computational and Mathematical Methods



We investigate in Figure 4 the effect of using different
maximum ranks (2, 5, 10) to construct the matrix Si to cor-
rect the initial preconditioner. In this experiment, the col-
umns of matrix Si have been set using the previous
solutions. For Broyden’s preconditioners, the results show
that corrections of maximum rank-5 improve the conver-
gence. Corrections of maximum rank-10 only slighlty reduce
the number of iterations because in two cases, the new solu-
tions are linearly dependent from the previous ones, and the
rank of the subspaces for these linear systems is quite similar
(see Subsection 5.1.1 for an analysis of the effect of the max-
imum rank on the number of iterations to compute 20 linear
systems).

Table 2 shows the total number of iterations and CPU
times for solving the sequence of systems with different pre-
conditioners and maximum ranks. We also report the CPU
times devoted to construct and apply the preconditioners.
We observe that the updated preconditioners are more con-
venient than using the fixed ILU(A1) preconditioner, both in
terms of number of iterations and CPU time, due also to the
fact that the cost per iteration is only slightly increased by
the preconditioner update. The best performance is obtained
with the Broyden updates. In particular, the Good-Broyden

updates are slightly more efficient when considering the
number of iterations. This improvement will be more evi-
dent for more difficult cases, as documented in Section 5.2.

Figure 5 compares the number of iterations of LGMRES
to solve the sequence of linear systems with the updated pre-
conditioners constructed using rank-5 corrections and P0
equal ILU (0). The Ritz vectors associated with the previous
solutions are chosen as set Si. Broyden’s preconditioners
(with similar results for both strategies) provide a smaller
number of iterations than the spectral preconditioner.

We note that the studied updated preconditioners
require only matrix-vector products if the application of
the initial preconditioner P0 relies on this operation. If P0
is taken as the ILU (0) factorization, then the complete
assembly of the matrix A1 is required. P0 can be set as the
inverse of the diagonal of the matrices Ai to avoid assem-
bling this matrix. The performance of the updated precondi-
tioners with LGMRES when P0 is equal to the inverse of the
diagonal is displayed in Figure 6. This figure shows that the
updated preconditioners decrease the number of iterations.

Moreover, note that, for this application, Broyden’s pre-
conditioners are better updating strategies than the spectral
preconditioner, independently of the type of P0 used.

20

25

30

35

40

45

N
um

be
r o

f i
te

ra
tio

ns

2-rank
5-rank
10-rank

Linear system
50 10 15 20

(a) Bad-Broyden-sols

20

25

30

35

40

45

N
um

be
r o

f i
te

ra
tio

ns

Linear system
50 10 15 20

2-rank
5-rank
10-rank

(b) Good-Broyden-sols

20

25

30

35

40

45

N
um

be
r o

f i
te

ra
tio

ns

Linear system
50 10 15 20

2-rank
5-rank
10-rank

(c) Spectral-sols

Figure 7: Number of iterations of the LGMRES method to solve the sequence of linear systems with the updated preconditioners and
different rank corrections where P0 = is ILU (0).

9Computational and Mathematical Methods



However, one can observe that if the inverse of the diagonal
is used, the number of iterations to reach the convergence is
much higher than when the ILU (0) factorization is used.
Selecting P0 as a diagonal preconditioner can be suitable
for huge problems with high memory demands.

5.1.1. Case 2: A Sequence of 20 Linear Systems. To conclude
this section, we study the performance of the updated pre-
conditioners for solving a sequence of 20 linear systems
associated with the previous transient. Figure 7 reports the
number of iterations obtained with the updated precondi-
tioners by using different maximum ranks (2, 5, 10) to con-
struct the matrix Si. The columns of matrix Si are set using
the previous solutions. The initial preconditioner used is
the ILU (0) of the matrix A0. For this sequence, we can
observe the improvement, in terms of reduction of the num-
ber of iterations, provided by the rank-10 Broyden precondi-
tioners. Regarding the spectral preconditioner, increasing
the rank does not translate in further reduction of the num-
ber of iterations.

5.2. AER-DYN-001 Problem. To test the efficiency of the
updated preconditioner in a more realistic nuclear bench-
mark, the AER-DYN-001 transient is used. This problem
was introduced in [31]. It corresponds to an asymmetric
control rod ejection accident without feedback in a
VVER440 reactor. The core has 250 cm height, with two
reflector layers of 25 cm each added, one to the top and the
other one to the bottom of the core. The assembly pitch is
14.7 cm. The core is a VVER-440 core type, with 25 fuel ele-
ments across the diameter. The disposition of materials
together with the initial position of the control rods is shown
in Figure 8. For the spatial discretization, the deal. II library
cannot handle hexagonal cells, so each hexagon is subdi-
vided into three quadrilaterals to obtain a total number of
15156 cells. Cubic polynomials are used for the finite ele-
ment method to obtain algebraic problems of size 857882
degrees of freedom.

The transient is defined as follows. The control rod
denoted by number 26 is ejected in the first 0:08 s with a
velocity 25 m/s. Then, scram is initiated, inserting the safety

rods 23 and 25 at t = 1:0 s with a velocity 0:25 m/s, so that
the bottom position is reached at t = 11:0 s. The drop of con-
trol rod group 21 is also started at 1:0 s with the same veloc-
ity. The transient is followed during 4 s. Figure 9 represents
the global power of the transient. For the time discretization,
Δt = 0:01 s is used to obtain a squence of 400 linear systems
to be solved. The methodology for this reactor has been
implemented in C++ by using Deal.II and PETSc structures.
The computer for the calculations is an Intel Core i7-4790 @
3:60 GHz × 8 processor with 32 Gb of RAM running on
Ubuntu GNU/Linux 18:04 LTS.

In this problem, we use the Good-Broyden precondi-
tioner, where the columns of Si are the five Ritz vectors asso-
ciated with the smallest Ritz values of Ai and the previous
solutions. The left GMRES of the PETSc library is applied
to solve the linear systems. For the initial preconditioner,
first, we use as P0 the Block Gauss-Seidel preconditioner of
A1 (BGSðA1Þ), unless the number of iterations of a linear
system j is greater than 50. In such case, the new P0 is com-
puted as the Block Gauss-Seidel preconditioner of the matrix
Aj. This preconditioner permits the use of a semi matrix-free
implementation of the matrices (see [32] for more details).
Figure 10 shows the number of iterations (Figure 10(a))
and the CPU time (Figure 10(b)) needed to reach conver-
gence to the required accuracy for each linear system. The

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

1

2

3

4

5

6

7

8

9

G
lo

ba
l p

ow
er

Figure 9: Global power of the AER-DYN-001 transient.

2
1

22
22

2
3

3

5

5

1
1

13

3

2

2

23

2

2

1

1
1

1

1

1

1

2

2

3

3

2

2
2

1

1

1

1

3

3

5

5

5

23

2
2

2

2

25

25

3

3

1

2

2

2

3

3

5

5

1

1
1

3

3

5

5

21

1
1

3

3
2

3
3

5

5
3

3
323

5
5 5

2
2

23
2

2

1
1

11

1
1

1

2

2

3

3

2
2

21

1
1

1

3

3

5

5

5

23
2

2

2
25

25

3

3

5

5

1
13

3

2
3

35

5

3
3

3
23

5
5

5

2
2

23
2

2

1
1

1

1

1

1

1

2

2

3

3

2
2

2

1

1

1

1

3

3

5

5

5

23
2

2

2

2

25

25

3

3

1
2

2

2

2

3

3

5

5

1
1

1

3

3

5

5

26
1

1

3

3

2
3

3

5

5

3
3

3
23

5

5
5

2

2

23

2

2

1

1
1

1

1

1

1

2

2

3

3

2

2
2

1

1

1

1

3

3

5

5

5

23

2
2

2

2

25

25

3

3

1

2
2

2

2

3

3

5

5

1

1
1

3

3

5

5

21

1
1

3

3
2

3
3

5

5
3

3
3 23

5
5 5

1
1

11

1
1

1

2

2

3

3

2
2

2 1

1
1

1

3

3

5

5

23
2

2 2

2
25

25

3

3

1
2

2 2

2
3

3

5

5

1
1

1 3

3
5

5

21
1

1 3

3

2
3

3 5

5

3
3

3
23

5
5

5

2
2

23
2

2
5

21
2

2
23

2
2

1
1

1

1

1

1

1

2

2

3

3

2
2

2

1

1

1

1

3

3

5

5

5

23
2

2

2

2

25

25

3

3

1
2

2

2

2

3

3

5

5

1
1

1

3

3

5

5

21
1

1

3

3

2
3

3

5

5

3
3

3
23

5

5
5

21

(a) Radial profile

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6
5
5
5
5
5
5
5
5
5
5

26
26
26
26
26
26
26

6

6

5
5
5
5
5
5
5
5
5
5

6

6
21
21
21
21
21
21
21
21
21

21
21
21
21
21
21
21
21
21

3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3

2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
22

21213 32 2 2 21 1 1 1 1 12 22 22

2626
2
2

2
2

(b) Axial profile

Figure 8: Geometry and materials distribution of the VVER-440 reactor.

10 Computational and Mathematical Methods



total CPU time of the computation is equal to 19.9 hours (no
update) whereas it is equal to 18.7 hours if P0 is updated by
the Good-Broyden formula. In this case, the updated pre-
conditioner does not provide a significant reduction neither
of the number of iterations nor the CPU time.

However, as in the previous case, we propose an alterna-
tive to set P0, which can be implemented using only matrix-
vector products. Chebyshev polynomial preconditioners are
recommended for parallel computations and matrix-free
implementations [33]. In this work, five iterations of the
Chebyshev preconditioner, whose implementation is pro-
vided by the Deal.II library [8], are applied. The application
of the Chebyshev method requires estimating the largest
eigenvalue of Ai. For that purpose, in this work, we use ten
iterations of the GMRES method preconditioned with the
inverse diagonal of Ai. Figure 11 shows the number of itera-
tions (on the left) and the CPU time (on the right) that each
linear system needs to reach convergence using P0 either
without updating or updated with the Good-Broyden
method. The total CPU time is 21.2 hours, when the P0 is
not updated, while it reduces to 9.5 hours, with the Good-
Broyden preconditioner. We observe a large improvement
in the results if the P0 (=chebyshev) is corrected.

Now, we compare these results (where P0 = chebyshevð
AiÞ) with the previous (where P0 = BGSðA1Þ). Table 3 col-
lects the total CPU times and the number of iterations that
GMRES needed with each preconditioner to reach conver-
gence. If the preconditioners are not updated, the Chebyshev
preconditioner is not as efficient as Block Gauss-Seidel in
terms of CPU time. However, if we use the Good-Broyden
to correct the initial setting, the Chebyshev preconditioner,
in addition to its negligible memory requirements, reduces
the CPU time by more than a half.

Table 3: CPU time and mean number of iterations of GMRES to
reach convergence with different preconditioners for the AER-
DYN-001 transient.

P0=BGS(A1) P0=Chebyshev(Ai)
No

update
Good-
Broyden

No
update

Good-
Broyden

CPU time (h) 19.9 18.6 21.2 9.5

Avg. GMRES
iterations

50.3 43.8 391.5 162.6

500 100 150 200 250 300 350 400
Linear system

0
10
20
30
40
50
60
70
80
90

100

N
um

be
r o

f i
te

ra
tio

ns

P0
Good-Broyden-sols

(a) N. iterations

500 100 150 200 250 300 350 400
Linear system

50

100

150

200

250

300

350

C
PU

 T
im

e 
(s

)

P0
Good-Broyden-sols

(b) CPU time (s)

Figure 10: Number of iterations and CPU time using the Good-Broyden preconditioner versus the Block Gauss-Seidel preconditioner.

0

100

200

300

400

500

600

700

N
um

be
r o

f i
te

ra
tio

ns

500 100 150 200 250 300 350 400
Linear system

P0
Good-Broyden-sols

(a) N. iterations

0

50

100

150

200

250

300

350

C
PU

 T
im

e 
(s

)

500 100 150 200 250 300 350 400
Linear system

P0
Good-Broyden-sols

(b) CPU time (s)

Figure 11: Number of iterations and CPU time using the Good-Broyden preconditioner versus the Chebyshev preconditioner.

11Computational and Mathematical Methods



6. Conclusions

This work describes and compares some strategies of
updated preconditioners to speed up the computation of
the sequence of linear systems obtained from the time dis-
cretization of the neutron diffusion equation. In particular,
three types of techniques are considered: two tuned-type
preconditioners, the Bad-Broyden and the Good-Broyden,
and a spectral preconditioner. All of them are based on
low-rank corrections of an initial preconditioner. Theoreti-
cally, they are constructed by matrix-vector multiplications
that involve a set of eigenvectors of the preconditioned
matrix. Moreover, based on different subspaces, cheaper
options to define these preconditioners are tested.

Numerical results show that the low-rank updates pre-
sented in this work accelerate the convergence of the
GMRES, with tuned preconditioners a better option than
the spectral preconditioner. We found Broyden precondi-
tioners to be less sensitive to the selection of the basis vectors
used to construct the update in comparison with the spectral
preconditioner. In fact, the vectors forming the basis for the
updates for Broyden’s preconditioner can be obtained from
the solutions to the previous linear systems in the sequence.
The cost-free choice proposed in this work, namely, the Ritz
vectors extracted from the GMRES iteration, does not always
guarantee a sufficient acceleration of the spectral precondi-
tioner. In any case, low-rank corrections are generally
enough to obtain efficient preconditioners for our problems.

The CPU times needed to apply the updated precondi-
tioners are higher than those for applying the initial precon-
ditioner only. However, these preconditioners enjoy a
matrix-free implementation if the initial preconditioner
can be applied in a matrix-free regime such as the Cheby-
shev preconditioner. In this case, low-rank updated precon-
ditioners allow for great savings in storage and also on the
CPU time needed to assemble the matrices of the sequence.

Results on a realistic nuclear benchmark requiring the
solution of a sequence of 400 linear systems, each one of size
of more than 8.5 × 105 degrees of freedom, show that the
Good-Broyden update applied to the matrix-free Chebyshev
preconditioner provides an impressive reduction of the CPU
time taking 9.5 hours to complete the simulation vs. the 21.2
hours needed without updating.

Data Availability

The data used to support the findings of this study are
included or referenced within the article.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work has been partially supported by Spanish Minis-
terio de Economía y Competitividad under projects
ENE2017-89029-P and MTM2017-85669-P. The second

and third authors have been supported by the INdAM
Research group GNCS project: Optimization and Advanced
Linear Algebra for Problems Governed by PDEs. Further-
more, this work has been financed by the Generalitat
Valenciana under the project PROMETEO/2018/035. We
sincerely thank the three anonymous reviewers for helping
us to significantly improve the manuscript.

References

[1] W. Stacey, Nuclear Reactor Physics, vol. 2, Wiley Online
Library, 2007.

[2] A. Vidal-Ferràndiz, R. Fayez, D. Ginestar, and G. Verdú,
“Moving meshes to solve the time-dependent neutron diffu-
sion equation in hexagonal geometry,” Journal of Computa-
tional and Applied Mathematics, vol. 291, pp. 197–208, 2016.

[3] D. Bertaccini, “Efficient preconditioning for sequences of para-
metric complex symmetric linear systems,” Electronic Trans-
actions on Numerical Analysis, vol. 18, pp. 49–64, 2004.

[4] C. Calgaro, J. P. Chehab, and Y. Saad, “Incremental incomplete
LU factorizations with applications,” Numerical Linear Alge-
bra with Applications, vol. 17, no. 5, pp. 811–837, 2010.

[5] S. Bellavia, D. Bertaccini, and B. Morini, “Nonsymmetric pre-
conditioner updates in Newton–Krylov methods for nonlinear
systems,” SIAM Journal on Scientific Computing, vol. 33, no. 5,
pp. 2595–2619, 2011.

[6] S. Bellavia, V. De Simone, D. Di Serafino, and B. Morini, “Effi-
cient preconditioner updates for shifted linear systems,” SIAM
Journal on Scientific Computing, vol. 33, no. 4, pp. 1785–1809,
2011.

[7] K. Ahuja, B. K. Clark, E. de Sturler, D. M. Ceperley, and J. Kim,
“Improved scaling for quantum Monte Carlo on insulators,”
SIAM Journal on Scientific Computing, vol. 33, no. 4,
pp. 1837–1859, 2011.

[8] W. Bangerth, R. Hartmann, and G. Kanschat, “deal.II—a
general-purpose object-oriented finite element library,” ACM
Transactions on Mathematical Software (TOMS), vol. 33,
no. 4, 2007.

[9] M. E. Kilmer and E. de Sturler, “Recycling subspace informa-
tion for diffuse optical tomography,” SIAM Journal on Scien-
tific Computing, vol. 27, no. 6, pp. 2140–2166, 2006.

[10] A. Stathopoulos and K. Orginos, “Computing and deflating
eigenvalues while solving multiple right-hand side linear sys-
tems with an application to quantum chromodynamics,”
SIAM Journal on Scientific Computing, vol. 32, no. 1,
pp. 439–462, 2010.

[11] M. Benzi and D. Bertaccini, “Approximate inverse precondi-
tioning for shifted linear systems,” BIT Numerical Mathemat-
ics, vol. 43, no. 2, pp. 231–244, 2003.

[12] J. D. Tebbens and M. Tůma, “Efficient preconditioning of
sequences of nonsymmetric linear systems,” SIAM Journal
on Scientific Computing, vol. 29, no. 5, pp. 1918–1941, 2007.

[13] J. Duintjer Tebbens andM. Tuma, “Preconditioner updates for
solving sequences of linear systems in matrix-free environ-
ment,” Numerical Linear Algebra with Applications, vol. 17,
no. 6, pp. 997–1019, 2010.

[14] L. Bergamaschi and A. Martínez, “Parallel Newton–Chebyshev
polynomial preconditioners for the conjugate gradient
method,” Computational and Mathematical Methods, vol. 3,
no. 6, article e1153, 2021.

12 Computational and Mathematical Methods



[15] A. Carr, E. de Sturler, and S. Gugercin, “Preconditioning
parametrized linear systems,” SIAM Journal on Scientific Com-
puting, vol. 43, no. 3, pp. A2242–A2267, 2021.

[16] Y. Saad and M. H. Schultz, “GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM Journal on Scientific and Statistical Computing, vol. 7,
no. 3, pp. 856–869, 1986.

[17] D. Bertaccini and M. K. Ng, “Band-Toeplitz preconditioned
GMRES iterations for time-dependent PDEs,” BIT Numerical
Mathematics, vol. 43, no. 5, pp. 901–914, 2003.

[18] M. A. Freitag and A. Spence, “Convergence of inexact inverse
iteration with application to preconditioned iterative solves,”
BIT Numerical Mathematics, vol. 47, no. 1, pp. 27–44, 2007.

[19] L. Bergamaschi, R. Bru, A. Martínez, and M. Putti, “Quasi-
Newton preconditioners for the inexact Newton method,”
Electronic Transactions on Numerical Analysis, vol. 23,
pp. 76–87, 2006.

[20] L. Bergamaschi, “A survey of low-rank updates of precondi-
tioners for sequences of symmetric linear systems,” Algo-
rithms, vol. 13, no. 4, p. 100, 2020.

[21] S. Gratton, A. Sartenaer, and J. Tshimanga, “On a class of lim-
ited memory preconditioners for large scale linear systems
with multiple right-hand sides,” SIAM Journal on Optimiza-
tion, vol. 21, no. 3, pp. 912–935, 2011.

[22] A. Martínez, “Tuned preconditioners for the eigensolution of
large SPD matrices arising in engineering problems,” Numeri-
cal Linear Algebra with Applications, vol. 23, no. 3, pp. 427–
443, 2016.

[23] L. Bergamaschi, R. Bru, and A. Martínez, “Low-rank update of
preconditioners for the inexact Newton method with SPD
Jacobian,” Mathematical and Computer Modelling, vol. 54,
no. 7–8, pp. 1863–1873, 2011.

[24] U. Yang and K. Gallivan, “A new family of preconditioned
iterative solvers for nonsymmetric linear systems,” Applied
Numerical Mathematics, vol. 19, no. 3, pp. 287–317, 1995.

[25] S. Mercier, Fast Nonlinear Solvers in Solid Mechanics [PhD
Thesis], Université de Toulouse, Université Toulouse III-Paul
Sabatier, Toulouse, 2015.

[26] B. Carpentieri, I. S. Duff, and L. Giraud, “A class of spectral
two-level preconditioners,” SIAM Journal on Scientific Com-
puting, vol. 25, no. 2, pp. 749–765, 2003.

[27] L. Giraud, S. Gratton, and E. Martin, “Incremental spectral
preconditioners for sequences of linear systems,” Applied
Numerical Mathematics, vol. 57, no. 11-12, pp. 1164–1180,
2007.

[28] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and
S. Maiti, “Recycling Krylov subspaces for sequences of linear
systems,” SIAM Journal on Scientific Computing, vol. 28,
no. 5, pp. 1651–1674, 2006.

[29] P. F. Fischer, “Projection techniques for iterative solution of
Ax = b with successive right- hand sides,” Computer Methods
in Applied Mechanics and Engineering, vol. 163, no. 1-4,
pp. 193–204, 1998.

[30] S. Langenbuch, W. Maurer, and W. Werner, “Coarse-mesh
flux-expansion method for the analysis of space-time effects
in large light water reactor cores,” Nuclear Science and Engi-
neering, vol. 63, no. 4, pp. 437–456, 1977.

[31] A. Keresztúri and M. Telbisz, A three dimensional hexago-
nal kinetic benchmark problem, European Nuclear Society.,
1992.

[32] A. Vidal-Ferràndiz, A. Carreño, D. Ginestar, and G. Verdú, “A
block Arnoldi method for the SPN equations,” International
Journal of Computer Mathematics, vol. 97, no. 1-2, pp. 341–
357, 2020.

[33] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, “Parallel mul-
tigrid smoothing: polynomial versus Gauss-Seidel,” Journal of
Computational Physics, vol. 188, no. 2, pp. 593–610, 2003.

13Computational and Mathematical Methods


	Strategies of Preconditioner Updates for Sequences of Linear Systems Associated with the Neutron Diffusion
	1. Introduction
	2. Spatial and Time Discretizations
	3. Updated Preconditioners for a Linear System
	3.1. Tuned Preconditioner
	3.1.1. The Bad-Broyden Preconditioner
	3.1.2. The Good-Broyden Preconditioner

	3.2. Spectral Preconditioners

	4. Sequence of Preconditioners for Sequences of Linear Systems
	4.1. Choice of Si
	4.1.1. Previous Solutions of the Systems


	5. Numerical Results
	5.1. 3D Langenbuch Transient
	5.1.1. Case 2: A Sequence of 20 Linear Systems

	5.2. AER-DYN-001 Problem

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

