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Abstract

Learning in AI planning tries to recognize past conducts to predict
features that help improve action models. We propose a constraint
programming approach for learning the temporal features, i.e., the dis-
tribution of conditions/effects and durations, of actions in an expressive
temporal planning model with overlapping actions, which makes it suit-
able for knowledge-based multi-agent systems. We automatically build
a purely declarative formulation that models time-stamps for dura-
tive actions, causal link relationships, threats and effect interferences
from an arbitrary number of input plans: from just a unique single
trace to many. We accommodate different degrees of input knowl-
edge and support a different range of expressiveness, subsuming the
PDDL2.1 temporal semantics. The formulation is simple but effective,
and is not only valid for learning, but also for plan validation, as
shown in its evaluation that returns high precision and accuracy values.

Keywords: Learning durative action models; Temporal planning; Partial
observability; Constraint programming
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1 Introduction

Automated planning is the model-based approach for the task of selecting the
actions that achieve a given set of goals starting from a given initial state. Clas-
sical planning (aka STRIPS planning) assumes fully observable states under
a deterministic world, instantaneous actions, and goals that are exclusively
referred to the last state reached by a plan [1, 2]. In consequence, a solution
plan for classical planning represents a sequence of planning steps where one
or more actions are executed in each step. Temporal planning extends classi-
cal planning with a richer action model that relaxes the strong assumption of
instantaneous actions [3], making it more appealing for the real world. Now,
actions have temporal features: different durations and conditions/effects that
must hold/happen at different times. Consequently, a solution plan for tempo-
ral planning problem needs to indicate the precise time-stamp when an action
starts and ends [4].

1.1 Motivation through related work

Planning requires the definition of an action model that represents the seman-
tics of actions, in terms of preconditions and effects, to build plans in an
efficient way. Action models can be defined by using different languages:
STRIPS, Functional Strips, ADL, etc. [2], though the most widely used is
PDDL (Planning Domain Definition Language [2, 3]). Despite the potential of
state-of-the-art planners, its applicability to the real world is still somewhat
limited because of the difficulty and time-consuming of manually specifying
sound and complete action models [5, 6], particularly in expressive temporal
action languages [7–9]. The more expressive the action model is, the more evi-
dent becomes this knowledge-based engineering bottleneck, which jeopardizes
the usability of AI planning technology. This has led to a growing interest
in the planning community to learn action models, as a knowledge discovery
task [10], to improve their quality and reduce the human effort [6, 11]. This
paper follows that trend of knowledge engineering, by using constraints, and
focuses on model learning, not on plan generation.

The objective of a learning task is to understand and discover action mod-
els that are consistent with a set of noiseless observations (defined as some
sequence of state changes, input constraints, world transitions, grammars,
heuristic rules, expert demonstrations, plan traces/logs, or state-based graphs).
Model learning from observation of past behavior provides indirect, but very
valuable, information to hypothesize action models.

Learning, as a feature discovery task from raw or empirical data, is spe-
cially interesting in general contexts for identifying structures and improving
accuracy and diagnostic expertise to remove the need for manual tasks [12–17].
Learning and machine learning have been traditionally seen as classification
tasks, including deep learning text classification [18], Natural Language Pro-
cessing (NLP) [19] and Named Entity Recognition (NER) [17, 20]. These
approaches usually work with documents with unformatted text that needs
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to be processed and tokenized. They use regular expressions, rules and
grammars to identify (and label) tokens within the documents. NER has
shown successful for information extraction that seeks to locate and classify
named entities into pre-defined categories, whereas recent advances in capsule
networks are very valuable to establish hierarchies of entities that are seman-
tically equivalent. However, these approaches need datasets with thousands of
samples/observations and return poor classifications from small datasets [19].

In the planning context, most approaches for learning action models are
purely inductive that also require large datasets, e.g. thousands of plan obser-
vations, to compute a statistically significant model that minimizes some error
metric over the observations or that uses combinatorial optimization [6, 21–25].
Defining model learning as an optimization task over a large set of observa-
tions does not guarantee completeness (the learned model may fail to explain
an observation), nor soundness (the states induced by the execution of the plan
generated with the model may contain contradictory information). Statistical
models might potentially learn a little from each observation, but not a model
100% valid for an individual sample. Further, in many real-world applications
it is expensive, or even impossible, to collect large datasets of observations for
training [13]. This happens when the number of samples is limited or when
a human needs to perform repetitive actions (learning by demonstration).
Therefore, reducing the effort to deal with tractable datasets is desirable [13].

Learning an action model for classical planning is a very special type of
classification that involves computing the actions (pre)conditions and effects
that are consistent with the input observations. Learning classical action mod-
els has been addressed by different approaches that use SATisfiabily models,
Markov models, Answer Set Programming, genetic algorithms and even plan-
ning techniques [26, 27]. Since pioneering learning systems like ARMS [24], we
have seen systems able to learn STRIPS action models with quantifiers like
in ADL [6, 28], from noisy actions or states [23, 25], from null state infor-
mation [29], from incomplete domain models [30, 31], from partially observed
plan traces [27, 32, 33], or more recently, from graphs that encode the struc-
ture of the state space of problem instances [21, 34] (which are later solved by
using SAT and Answer Set Programming systems, respectively). Learning the
classical action model has proved successful in literature but, to our knowl-
edge, there is a void for temporal models, as none of these systems deals with
durative actions to learn their temporal features from multiple observations.
In [35], a CP approach for learning from just one observation is used, but it
requires additional information on mutual exclusion relationships to help the
learning. Consequently, learning the temporal features is the natural evolu-
tion of learning classical models, like temporal planning was the evolution of
classical planning.

As a motivating example, let us assume a logistics scenario where temporal
features are essential. When driving a truck between two locations, the road
should be available all over the execution of the action. However, if we use a
plane for transportation, we will only need an airport at the beginning+end
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of the action. Given a full logistics trace, we can deduce the precise duration
of an action. If observations are partial, we might only observe when the trip
starts, but not the exact time when it ends (traffic congestion may affect).
In classical planning none of the previous statements entails difficulty: the
distribution of conditions/effects is fixed, as they are always allocated at the
start/end of the action, respectively, and all actions have unitary duration,
which is not very realistic. In temporal planning, if a human modeler knows
the semantics of the logistics actions, learning the temporal features may seem
simple. However, without that expert knowledge, if the human has to dis-
tribute arbitrarily named conditions {p, q, r}, effects {¬p,¬q, s} and estimate
valid durations for unknown actions {a1, a2, a3} over a set of partial observa-
tions, the task becomes much more complex. The learning task induces many
assignments that need to fit a complex puzzle, because not all combinations
are valid and they depend on the interactions with other actions, observations
and constraints.

1.2 Proposed work

Classical model of actions can be retrieved from several ways. Basically,
they can be obtained from past experience of domain modelers, from simi-
lar planning domains, or automatically learned by using existing approaches,
as presented in Section 1.1. Based on such a model, where classical precondi-
tions+effects of actions are known, this paper proposes a novel application of
Constraint Programming (CP) for learning the temporal features from observ-
ing the execution of multiple temporal plan traces. Learning the temporal
features means: i) to identify how action conditions and effects are temporally
distributed in the action execution; and ii) to estimate the action duration
according to the observed plan traces. In consequence, learning a classical
action model decides which are the conditions/effects, whereas learning the
temporal features decides when and how they are used. In a schematic way,
the outline of our proposal is:

Goal: Transform a classical model of actions into a temporal model of
actions by automatically learning the temporal features.

Input: i) a set of classical planning actions with the preconditions+effects,
and ii) a non-empty collection of temporal plan traces that come from an
unknown fully specified temporal domain. The plan traces only contain the
action names and their start time. We assume both the classical actions and
the plan traces are noiseless, meaning that what is observed is correct and with
no missing actions in the plans. No assumptions on the quality of the plans
are required; that is, minimal makespan-plans are not needed. Note that no
intermediate state can be recovered: since the duration of the actions and the
distribution of preconditions+effects is fully unknown, no intermediate state
can be deduced from the traces.

Process (learning task): generation of a CP formulation that transforms
the classical model of actions into a temporal model, where actions have dura-
tion and conditions+effects are annotated in time. The temporal model of
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actions must satisfy the observations induced by all (and not only a subset)
the temporal plan traces given as input.

Output: a set of fully defined temporal planning actions, where all condi-
tions+effects are annotated in time. Obviously, if an action precondition/effect
is missing in the input, it will not be annotated.

Quality indicators: i) similarity measure (precision) between a reference
model and the learned one, and ii) validity measure (accuracy) of the learned
model to explain a new plan trace.

1.3 Contributions

Our main contribution is a CP formulation for a very expressive temporal
planning model, which allows us to represent all Allen’s temporal relationships
between two temporal actions. Such formulation is inspired by POCL (Par-
tial Order Causal Link [36, 37]) planning, where the causal relationships are
explicitly represented via causal links. A causal link consists of two actions
and a predicate: the first action achieves the predicate that the second action
needs, thus imposing an ordering between the first and the second action.

CP has been previously used to address temporal planning problems. Some
approaches create a “planning problem ↔ CP formulation” mapping, under
a conservative model of temporal actions [38], or under a very rich model for
planning and/or scheduling [39]. Other approaches use CP to map a particular
temporal planning problem (e.g. [40] deals with a representation of a scheduling
problem, which is mapped as a CP model to be solved by a CP optimizer).
Consequently, CP has proved as a good alternative to temporal planners for
calculating plans.

Our formulation keeps the philosophy of using CP but, contrarily to [38, 39],
we address the inverse task now. Our goal is not to map a temporal planning
problem to calculate a plan, but to learn the temporal features of an action
model given a plan trace and a partial model of actions. In other words, the
input model of actions used in [39] is our output now, as we are interested in
learning/playing the designer’s role, w.r.t the temporal features, rather than
in planning.

Another contribution is to learn as much knowledge as possible from the
available observations. Rather than using a machine or deep learning classifi-
cation approach that builds a statistical model that requires huge datasets, we
exploit CP inference for reasoning on arbitrary size collections of plan traces.
We can learn from just one plan trace or from dozens of traces, and our model
satisfies the 100% of the observations given by any trace. The information we
require is automatically extracted from the constraints the plan traces impose.
Although traces contain actions, which come from action models that are sim-
ilar to regular expressions, we do not require such expressions. We only need
the actions names, which can be considered as simple labels like in NLP or
NER approaches.

In our work, we focus on the temporal aspects and rely on the classical
preconditions+effects. Although this could seem a limitation of our proposal,
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there is no need to deliberately learn them again as they can be successfully
obtained by existing approaches, previously modeled by a human, extrapolated
from similar scenarios, or simply observed. Also, observations now refer to the
execution of overlapping durative actions, in opposition to most of the exist-
ing approaches that work with sequential non-durative actions. This makes
our approach suitable for learning in multi-agent environments, which is also a
contribution to deal with realistic scenarios. Finally, the paper evidences that
learning temporal features strongly resembles the task of synthesizing and val-
idating a plan that satisfies all the imposed constraints or, in other words, that
is consistent with the noiseless input observations. This is our last contribution:
a unified CP formulation for both learning and plan validation, which sup-
ports temporal models and addresses plan validation of partial action models
beyond the functionality of standard validators [4].

The paper is organized as follows. Section 2 introduces the background and
terminology used. Section 3 formalizes the learning task of temporal features.
In Section 4 we elaborate our CP formulation for learning, presenting the
variables, constraints, formal properties and some simple heuristics. It also
shows how our formulation is flexible enough to be used for plan validation. The
evaluation and experimental results are shown in Section 5. Finally, Section 6
concludes the paper with the lessons learned and proposes some future work.

2 Background and terminology

This section formalizes the classical and temporal planning models that we
follow in this work, as well as the Constraint Satisfaction Problem.

2.1 Classical planning

Let F be a set of facts that represent propositional (true/false) variables.
Without loss of generality, we assume that F does not contain conflicting
variables p and ¬p. A state s is a full assignment of boolean values to variables,
‖s‖ = ‖F‖, so the size of the state space is 2‖F‖. Typically, a state is modeled
as a set where only the true facts are present, while the false facts are omitted.
In our context, a classical planning problem is a tuple CP = 〈F, I,G,O,A〉,
where I is the full initial state, G ⊆ F is a partial set of goal conditions over
F 1, O is a set of operators with open parameters, and A is the set of actions
grounded from O, as in PDDL.2

Each operator o ∈ O has a set of preconditions and effects to be grounded as
facts in actions in A. Consequently, each action a ∈ A has a set of preconditions
pre(a) and a set of effects eff(a) = {eff+(a)∪eff−(a)}; pre(a), eff+(a), eff−(a) ⊆
F . pre(a) must hold before a starts (this is why they are named preconditions),
whereas eff(a) happen when a ends. This way, a is applicable in a state s if
pre(a) ⊆ s. When a is executed, a new state, the successor of s, is created

1For simplicity, and without lack of completeness, only positive conditions and goals are used,
like in the STRIPS definition of PDDL.

2Strictly speaking, the actions A could make unnecessary the inclusion of O, but we keep them
separately to improve the readability and use of our formalization.



Springer Nature 2021 LATEX template

A Constraint-based Approach to Learn Temporal Features on Action Models 7

that results of applying eff(a) on s. Typically, eff(a) is formed by positive and
negative/delete effects (eff+(a) and eff−(a), which are asserted and retracted,
respectively).

Given a classical planning problem CP, we define a plan trace, or simply a
plan, for CP as ΠCP = 〈(a1, t1), (a2, t2) . . . (an, tn)〉. Each (ai, ti) pair contains
an instantaneous action ai ∈ A and the planning step ti when ai starts. This
action sequence induces a state sequence 〈s1, s2 . . . sn〉, where each ai is appli-
cable in si−1, being s0 = I, and generates state si. In every valid plan G ⊆ sn,
i.e., G is satisfied in the last state.

2.2 Temporal planning

A temporal planning problem is also a tuple T P = 〈F, I,G,O,A〉 where F , I
and G are defined like in classical planning. O represents the set of durative
operators that are grounded in the set A of durative actions. There are several
options that allow for a high expressiveness of durations. First, an operator can
have a fixed duration (i.e., all grounded actions from such operator have the
same duration) or a duration that depends on the value of the parameters (i.e.,
different grounded actions from such operator have different duration). Second,
conditions/effects are now annotated at different times, such as conditions
that must hold some time before the operator starts, effects that happen just
when the operator starts, in the middle of the operator or some time after the
operator finishes [39].

A popular model for temporal planning is given by PDDL2.1 [3], a language
that somewhat restricts temporal expressiveness, which defines a durative
action a (strictly speaking, PDDL2.1 defines durative operators) with the
following elements:

� dur(a), a positive value for the action duration.
� conds(a), condo(a), conde(a). Unlike the preconditions of a classical action,

now conditions must hold before a (at start), during the entire execution of
a (over all) or when a finishes (at end), respectively. In the simplest case,
conds(a) ∪ condo(a) ∪ conde(a) = pre(a).3

� effs(a) and effe(a). Now effects can happen at start or at end of a, respec-
tively, and can still be positive or negative. Again, in the simplest case
effs(a) ∪ effe(a) = eff(a).4

The semantics of a PDDL2.1 durative action a can be defined in terms
of two discrete events, start(a) and end(a) = start(a) + dur(a). This means
that if action a starts on state s, conds(a) must hold in s; and a ending in
state s′ means conde(a) holds in s′. Over all conditions must hold at any state
between s and s′, i.e., throughout interval [start(a)..end(a)]. Analogously, at
start and at end effects are instantaneously applied at states s and s′, respec-
tively (continuous effects are not considered). Fig. 1 shows durative actions for

3In classical planning, pre(a) = {p,¬p} is contradictory. In temporal planning, conds(a) = {p}
and conde(a) = {¬p} is a possible situation, though very unusual.

4In classical planning, eff(a) = {p,¬p} is contradictory. In temporal planning, effs(a) = {¬p}
and effe(a) = {p} is a possible and frequent situation to block/unblock a resource p used within a.
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(:durative-action board-truck
:parameters (?d - driver ?t - truck ?l - location)
:duration (= ?duration 2)
:condition (and (at start (at ?d ?l)) (at start (empty ?t))

(over all (at ?t ?l)))
:effect (and (at start (not (at ?d ?l))) (at start (not (empty ?t)))

(at end (driving ?d ?t))))

(:durative-action drive-truck
:parameters (?t - truck ?from - location ?to - location ?d - driver)
:duration (= ?duration (driving-time ?from ?to))
:condition (and (at start (at ?t ?from)) (at start (link ?from ?to))

(over all (driving ?d ?t)))
:effect (and (at start (not (at ?t ?from))) (at end (at ?t ?to))))

Fig. 1 PDDL2.1 schema for two durative actions (operators) from the driverlog domain.

board-truck and drive-truck. board-truck has a fixed duration whereas in
drive-truck the duration depends on the two locations.

PDDL2.2 is an evolution of PDDL2.1 that extends the initial state I with
the notion of Timed Initial Literals, TILs [41] (til(p, t) or til(¬p, t)). A TIL is
introduced as a way of asserting or retracting a proposition p ∈ F at a certain
time t, independently of the actions in the plan.5 TILs are very useful in
temporal planning to define exogenous happenings; for instance, a time window
when a warehouse is open in a logistics scenario (til(open, 8) and til(¬open, 20)).

Given a temporal planning problem T P, we define a temporal plan trace
for T P as ΠT P = 〈(a1, t1), (a2, t2) . . . (an, tn)〉. Each (ai, ti) pair contains a
durative action ai ∈ A and ti = start(ai). This temporal plan induces a state
sequence formed by the union of all states {sti , sti+dur(ai)}, where there exists
a state s0 = I, and G ⊆ send, being send the last state induced by the plan.

2.3 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is defined as the tuple 〈V,D,C〉,
where:

� V = 〈v1, v2 . . . vn〉 is a set of n finite domain variables.
� D = 〈Dv1 , Dv2 . . . Dvn〉 are the respective domains defining the set of

possible values for each variable vi ∈ V .
� C = 〈c1, c2 . . . cm〉 is a set of constraints binding the possible values of the

variables in V . Every constraint ci ∈ C is defined as a pair ci = 〈Vi, Ri〉,
where Vi ⊆ V is a subset of k ≤ n variables, and Ri is a k-ary relation on
the corresponding subset of domains.

An evaluation evi satisfies a constraint ci = 〈Vi, Ri〉 if the values of evi
assigned to the variables in Vi satisfy the relation Ri. An evaluation of values
to all variables in V is consistent if it does not violate any of the constraints
in C, i.e., it is a solution for the CSP 〈V,D,C〉. In absence of a metric over V ,

5The information in I can be seen as a particular case of TILs with time t = 0.
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we deal with a pure satisfaction problem. In such a case, many solutions, or
different variable assignments that are consistent with the input constraints,
are possible and equally valid. This means that no solution is preferred over
another.

3 Learning temporal features from multiple
plans

3.1 Learning temporal features in a nutshell

Let us assume the two operators board-truck and drive-truck, given in
Fig. 2, from a simple logistics PDDL domain named driverlog of the Interna-
tional Planning Competition (IPC).6 An operator is a schema that comprises
the name of the operator, the open typed parameters to be grounded (e.g.
?d, ?t and ?l) and the preconditions+effects in terms of those parameters.
board-truck boards driver ?d on an empty truck ?t at a given location ?l.
In drive-truck a truck ?t is driven between locations ?from and ?to, pro-
vided there is a link between them. An action is an instantiated operator
where all parameters are fully grounded; e.g. board-truck(driver2 truck1

s2) is an action grounded from operator board-truck.7 Given the collection
of plan traces of Fig. 2, learning the temporal features returns the informa-
tion given in Fig. 3. For instance, board-truck(driver2 truck1 s2) will be
executed throughout interval [43..45], as the learned duration is 2. The condi-
tions (at driver2 s2) and (empty truck1) are learned at interval [43..43],
which means they are start conditions (conds), whereas (at truck1 s2) will
be at [43..45], which means they are over all conditions (condo). The effects
(not (at driver2 s2)) and (not (empty truck1)) are start effects (effs),
as they are learned at interval [43..43], and (driving driver2 truck1) is an
end effect (effe), as it is learned at the end of the action, i.e., interval [45..45].
Note that the output is always a fully specified temporal domain, where no
precondition or effect remains without its temporal annotation. The temporal
features learned from individual actions can be generalized to the subsequent
operators, which allows us to define complete temporal action models in PDDL
or other variants.

The precision of the learning task depends on the number of the plan traces,
but not on their quality. Using just one trace has the drawback of preventing
us from having a better global picture of the action model [35]; the more plan
traces we use as input the better the learned model will be. Our proposal is
flexible and ranges from the most extreme scenario, where just one plan trace
is available (aka one-shot learning), to the scenario where many traces are
available. The learning task does not require minimal plans whatsoever. Our
proposal is valid for plans of any makespan.

6www.icaps-conference.org/index.php/Main/Competitions
7PDDL uses the terms operator and action indistinctly. However, operators are templates with

open parameters, whereas actions are instantiated operators where all parameters are grounded.
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operator name: board-truck(?d - driver ?t - truck ?l - location)
preconditions: (at ?d ?l) (empty ?t) (at ?t ?l)
effects: (not (at ?d ?l)) (not (empty ?t)) (driving ?d ?t))
operator name: drive-truck(?t - truck ?from - location ?to - location ?d - driver)
preconditions: (at ?t ?from) (link ?from ?to) (driving ?d ?t)
effects: (not (at ?t ?from)) (at ?t ?to)

plan trace 1: . . .
43: board-truck(driver2 truck1 s2); board-truck(driver1 truck2 s0)
46: drive-truck(truck1 s2 s1 driver2); drive-truck(truck2 s0 s3 driver1)
60: drive-truck(truck1 s1 s2 driver2); drive-truck(truck2 s3 s0 driver1)
86: drive-truck(truck2 s1 s2 driver1)
88: board-truck(driver2 truck3 s3)
. . .

plan trace 2: 01: board-truck(driver2 truck1 s0); board-truck(driver1 truck2 s4)
04: drive-truck(truck1 s0 s1 driver2); drive-truck(truck2 s4 s5 driver1)
18: drive-truck(truck1 s1 s5 driver2); drive-truck(truck2 s5 s3 driver1)
32: drive-truck(truck1 s5 s0 driver2); drive-truck(truck2 s3 s1 driver1)
. . .

. . .
plan trace n : . . .

Fig. 2 Input of the learning task: classical planning actions (operators) definition and a
collection of n temporal plan traces.

action name: board-truck(driver2 truck1 s2)
execution time: [43..45] (duration 2)
conditions: (at driver2 s2) [43..43]; (empty truck1) [43..43];

(at truck1 s2) [43..45]
effects: (not (at driver2 s2)) [43..43]; (not (empty truck1)) [43..43];

(driving driver2 truck1)) [45..45]
action name: board-truck(driver1 truck2 s0)
execution time: [43..45] (duration 2)
conditions: (at driver1 s0) [43..43]; (empty truck2) [43..43]; (at truck2 s0) [43..45]
effects: (not (at driver1 s0)) [43..43]; (not (empty truck2)) [43..43];

(driving driver1 truck2)) [45..45]
action name: drive-truck(truck1 s2 s1 driver2)
execution time: [46..56] (duration 10)
conditions: (at truck1 s2) [46..46]; (link s2 s1) [46..56];

(driving driver2 truck1) [46..56]
effects: (not (at truck1 s2)) [46..46]; (at truck1 s1) [56..56]
. . . . . .

Fig. 3 Output of the learning task: temporal planning actions definition.

3.2 Learning task. Formalization

Let us assume a set of operators O? that are partially specified because we do
not know the exact structure in terms of distribution of conditions/effects nor
the duration. Let us also consider a set of facts F that provide a first order
logic interpretation over the parameters of operators in O? to instantiate a
set of actions A?, which are partially specified like in O?. In this work, we
assume that we know pre(a) and eff(a) for each a ∈ A?, but dur(a) is unknown.
Known information can be extracted from the classical version of the planning
problem, from prior knowledge we have on the problem, or given by an expert.
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The task of learning the temporal features on action models aims at finding
a full specified model of A? (and O?) from a set of noiseless observed plan
traces, which do not need to be of minimal makespan. Consequently, given a
collection of n-temporal plan traces {ΠT P1

. . .ΠT Pn
}, being n ≥ 1 and where

each T Pi = 〈F, Ii, Gi, O?, A?〉, we define our learning task of temporal features
from n traces as a tuple Ln = 〈{ΠT P1

. . .ΠT Pn
}, O?, A?〉. The learning task

must satisfy the constraints imposed by every ΠT Pi
, so at least one plan trace

is needed for reaching some commitments in the learning.
Our definition of learning task requires the minimal amount of observa-

tions in each ΠT Pi
, that is, we do not observe any intermediate state in

pursuit of minimizing the number of observations. Other learning tasks include
intermediate states, require Gi as a full state and input knowledge on static
information or mutual exclusion relationships, which make the learning task
easier [27, 32, 35]. However, we only require Ii, as a full state, and Gi, as a
partial state of goals. It is important to note that, despite knowing the plan
traces, we cannot deduce the intermediate states because the structure of the
actions is unknown.
A is a solution to the learning task Ln if it is consistent with the partial

specification given in A?, which means having exactly the same conditions
and effects, and inducing the temporal plan ΠT Pi

for all T Pi. A explains
the n plan traces (completeness) and their subjacent temporal model implies
no contradictions in the states induced by their executions, where all condi-
tions are satisfied (soundness). Thus, A is a fully specified model of temporal
actions, with all actions of A?, where the duration and distribution of condi-
tions+effects is completely specified; i.e., they are all temporally annotated.
In other words, for each action a ∈ A?, we have its equivalent version in A
where we have learned dur(a), conds(a), condo(a), conde(a), effs(a) and effe(a).
Then, we simply extrapolate the temporal features learned in A to the oper-
ators in O?. The distribution of conditions/effects in the operators equals the
ones in their grounded actions, but the duration can be fixed per operator or
depending on the grounded parameters (see Fig. 1).

3.3 A simple example. Is “learning the temporal
features” a simple task?

Learning the temporal features may seem, a priori, a straightforward task
as it just implies to distribute the conditions+effects in time and estimate
durations. However this is untrue and shows as difficult as solving a non-
polynomial search task. Let us consider the simple example of Fig. 4, with
the observations on the start times given by just one plan trace ΠT P , and the
model of actions A? for a1 . . . a4. Clearly, a3 needs a1 to have r supported,
which represents the causal link or dependency relationship 〈a1, r, a3〉. Let us
imagine that r is in conds(a3). In such a case, if r is in effs(a1), dur(a1) is
irrelevant to a3, but if r is in effe(a1), dur(a1) has to be lower or equal than
5 (start(a1) + dur(a1) ≤ start(a3)). From a search perspective, several values
for dur(a1) are possible. On the contrary, if r is in conde(a3), dur(a1) could be
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Fig. 4 A simple example of how learning the temporal features from a plan trace ΠT P and
A? is not straightforward. We (optionally) observe the plan makespan is 22 in ΠT P .

much longer, which means that a higher number of values for dur(a1) are now
possible. Therefore, the distribution of conditions and effects has a significant
impact in the durations, and vice versa.

a4 needs p, which means two possible causal links (〈a1, p, a4〉 or 〈a2, p, a4〉),
but this depends on the effects+durations of a1 and a2. This means a new
branching point in the search task. Therefore, the causal links are unknown,
not easy to detect and they affect the structure of the temporal plan and the
complexity of the task. But a4 really needs both a1 and a2 to have p, q, r
supported. Let us imagine that p, q, r are in conds(a4) and p, q in effe(a2); then
dur(a2) ≤ 6. Even if we knew for sure that dur(a2) = 6 and r was in effe(a1),
we could never estimate the exact value of dur(a1), as any value in ]0..8] would
be valid. Intuitively, an action has to wait until the last of its supports, but we
cannot grant when those supports happen. Therefore, in some situations the
precise duration cannot be found and we can only provide values that make
the model consistent. Clearly, this makes the search task more complex.

a3 deletes p, which means that it might threat the causal link 〈a1, p, a4〉 or
〈a2, p, a4〉. Again, this threat depends on the distribution of conditions+effects
and the durations. For instance, if ¬p is in effs(a3), then a1 or a2 must support
p after time 7 and before a4 requires it, which entails many consistent alterna-
tives. Again, this would mean more branching points. On the contrary, if p is in
both effs(a1) and effs(a2), the observations on this plan trace are inconsistent
as a3 deletes p and no other action in the plan supports p for a4 (no solution
exists). However, if ¬p is in effe(a3), dur(a3) > 3 and p is in conds(a4), then
no threat will occur in the plan. Therefore, causal links and threats can easily
appear or disappear depending on the selected distributions and durations.

Finally, there are some philosophical questions without a clearly rational
answer. First, why some conditions are modeled as at start and others as over
all? In drive-truck of Fig. 1, why (driving ?d ?t) is required throughout
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the entire action but (link ?from ?to) only at its beginning? Formally, the
link between the two locations and the fact of being driving must remain all
over the action. So is this an irrational or incoherent decision of the human
modeler? In Fig. 4, s is a condition that is not asserted nor deleted in the plan
so it can be considered as static information, i.e., invariant (over all) knowledge
that always holds.8 Second, why some effects are modeled as at start and oth-
ers as at end? In board-truck, why is (not (empty ?t)) happening at start
and (driving ?d ?t) at end? Could it be in the opposite way? Although this
seems reasonable here, in some domains it is modeled in the other way round.
Third, what happens if one action requires/supports what it deletes (see a4 in
Fig. 4, which might threat itself)? In such a case, the delete effect should hap-
pen later than its requirement/supporting. Four, what happens if all effects are
at start? This makes little sense, as the duration of the actions would be unde-
termined and could potentially exceed the known plan horizon or makespan,
no matter the problem goals. However, this is possible. In Fig. 4, if the effects
of a1 and a2 are at start, is it reasonable to allow their durations to pass a
hypothetical limit of 22? In other words, once all plan goals are achieved, can
the actions be executed beyond the plan makespan, or do they need to be cut
off to such a value? This could potentially lead to an infinite number of models
and overlapping situations. Although infrequent, some humans model dura-
tive actions only with start effects, which is a bit irrational. Also, temporally
expressive examples with required concurrency or single hard envelopes [7, 8],
where envelope actions are essential to find a plan, significantly increases the
number of overlapping situations, thus increasing the complexity of the search.

As can be noticed, learning the temporal features is not a simple task, and it
resembles a non-polynomial task, and many possible combinations are feasible
provided they fit the constraints the problem and traces impose. Therefore, a
CP formulation seems a promising approach to address this learning task.

4 A CP formulation to learn temporal features
on action models

Our approach is to create a CSP that represents the learning task Ln =
〈{ΠT P1

. . .ΠT Pn
}, O?, A?〉. This comprises two parts. First, to formulate the

conditions, effects and durations for actions in A?. Second, to formulate: i) the
observations of start times for the n plan traces (n ≥ 1); ii) the causal struc-
ture for each trace with all possible supports; and iii) mechanisms to avoid
threats and possible contradictory effects in the traces. The advantage here is
that we can create a unique formulation by iterating all over the traces, which
means that the insights of the formulation are identical no matter the number
of input plan traces. Clearly, having more plan traces implies more variables
and constraints.

8Static information is commonly used in planning for the grounding process, e.g. to model
that there is a link between two locations and, consequently, driving between them is possible; to
represent that level1 is before level2 ; to model a petrol station that allows a refuel action in a
given location; etc.
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Table 1 Formulation of variables and their domains for actions in A?. This collection of
variables is repeated for each plan ΠT Pi

.

Variable Domain Description
start(a) [0..makespan] start time of a observed in ΠT Pi

dur(a) [0..makespan] duration of a
end(a) [0..makespan] end time of a
sup(p, a) {bi} that

supports p
symbolic variable for the set of potential sup-
porters bi of condition p of a (causal link
〈bi, p, a〉)

req start(p, a),
req end(p, a) [0..makespan] interval [req start(p, a)..req end(p, a)] at which

action a requires p
time(p, a) [0..makespan] time when effect p of a happens

4.1 Variables

For all ΠT Pi we first need to create the variables. For each action a in A? that
appears in ΠT Pi , we create the seven kinds of variables specified in Table 1. In
our implementation, each variable is annotated with the plan trace it belongs
to. For instance, if action a is present in ΠT Pi and ΠT Pj we create 14 variables
(7 per plan). Variables define the time-stamps for actions, the causal links, the
interval when conditions must hold and the time when the effects happen. For
simplicity, and to deal with integer variables, we model time in Z+. To prevent
time from exceeding the plan horizon, we bound all times to the makespan of
each plan ΠT Pi .

9

Our temporal model formulation supports all Allen’s temporal relation-
ships, so it is more expressive than PDDL2.1 (see more details in Section 4.3),
and allows conditions and effects to be at any time, even outside the execu-
tion of the action. For instance, let us imagine a condition p that only needs
to be maintained for 5 time units before an action a starts (e.g. warming-up a
motor before driving): the expression req end(p, a) = start(a); req end(p, a) =
req start(p, a) + 5 is possible in our formulation. We can also represent an
effect p that happens in the middle of action a: the expression time(p, a) =
start(a) + (dur(a)/2) is also possible.

Additionally, we create two dummy actions init and goal per ΠT Pi that
correspond with the initial state and goals of the planning problem T Pi.
First, init represents the initial state Ii (start(init) = 0 and dur(init) = 0).
init has no variables sup, req start and req end because it has no conditions.
init has as many time(pj , init) = 0 as pj in Ii. Second, goal represents Gi

(start(goal) = makespan and dur(goal) = 0). goal has as many sup(pj , goal)
and req start(pj , goal) = req end(pj , goal) = makespan as pj in Gi. goal has no
variables time as it has no effects.

This formulation allows us to model TILs exactly like other actions. til(p, t)
can be seen as a dummy action (start(til(p, t)) = t and dur(til(p, t)) = 0) with no
conditions and only one effect p that happens at time t (time(p, til(p, t)) = t).

9We use the makespan, which can be optionally observed, to restrict the duration of the actions.
However, it is dispensable if we consider a long enough domain for durations.
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Table 2 Formulation of constraints. This collection of variables is repeated for each plan
trace.

Constraint Description
end(a) = start(a) + dur(a) relation between start and end time of a
end(a) ≤ start(goal) goal is always the last action of the plan
req start(p, a) ≤ req end(p, a) [req start(p, a)..req end(p, a)] must be a valid

interval
if sup(p, a) = bi then

time(p, bi) < req start(p, a) modeling causal link 〈bi, p, a〉: the time when bi
supports p must be before a requires p

∀bj 6= a that deletes p at time τj :
if sup(p, a) = bi then
τj < time(p, bi) OR
τj > req end(p, a)

solving threat of bj to causal link 〈bi, p, a〉 being
bj 6= a (promotion OR demotion)

if a requires and deletes p:
time(¬p, a) ≥ req end(p, a) when a requires and deletes p, the effect cannot

happen before the condition
∀ai, aj | ai supports p and

aj deletes p:
time(p, ai) 6= time(¬p, aj)

solving effect interference (p and ¬p): they can-
not happen at the same time

As can be noted, a til is similar to init, as they both represent information that
is given at a particular time, but externally to the execution of the plan.

4.2 Constraints

Table 2 shows the constraints that we define among the variables of Table 1.
In other words, these constraints need to be repeated for the variables cre-
ated per each plan ΠT Pi

. The three first constraints are intuitive enough. The
fourth constraint models the causal links. Note that in a causal link 〈bi, p, a〉,
time(p, bi) < req start(p, a) and not ≤. This is because temporal planning usu-
ally assumes an ε > 0, as a small gap to avoid collisions between the time when
an effect p is supported and when it is required [3]. When time is modeled in
R+, epsilon is usually 0.001 but when it is modeled in Z+, ε = 1 and ≤ becomes
<. The fifth constraint avoids any threat via promotion or demotion [2]. The
sixth constraint models the fact that the same action requires and deletes p.
Note the ≥ inequality here; this is possible because if one condition and one
effect of the same action a happen at the same time, the common underlying
semantics in planning considers the condition in a is checked instantly before
the effect in a [3]. The seventh constraint solves the fact that two (possibly
equal) actions have contradictory effects.

It is important to note that the constraints involve any type of actions.
Consequently, init, goal and til are subsumed in this formulation.

4.3 Specific constraints for durative actions of PDDL2.1

PDDL2.1 restricts the expressiveness of temporal planning in terms of condi-
tions, effects, durations and structure of the actions and operators. First, we
might be interested in conditions/effects that happen at any time of an action
a, and not only at start(a) or end(a) [9]. Second, PDDL2.1 prevents some action
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overlapping [7], particularly when scheduling actions with explicit resources [9],
because of the gap ε > 0. Our temporal formulation subsumes PDDL2.1, so we
support conditions/effects at any time thanks to the variables req start(p, a),
req end(p, a) and time(p, a). Also, we can easily modify the granularity of the
gap ε, which eventually might be zero: > and < inequalities in Table 2 would
become ≥ and ≤, respectively. Consequently, our formulation is very flexible
to adopt different temporal models like those presented in [7–9].

Adding constraints to our formulation to make it fully PDDL2.1-compliant
is straightforward. First, adding req start(p, a) = req end(p, a) = start(a) limits
condition p to be at start (p is in conds(a)). Adding req start(p, a) = start(a)
AND req end(p, a) = end(a) limits condition p to be over all (p is in condo(a)).
Finally, adding req start(p, a) = req end(p, a) = end(a) limits condition p to be
at end (p is in conde(a)). Furthermore, if a condition p is never deleted in a
plan, it can be considered as static or invariant information, and the constraint
to be added is simply: req start(p, a) = start(a) AND req end(p, a) = end(a),
i.e., p ∈ condo(a). Surprisingly, invariant conditions are modeled differently
depending on the human modeler. See, for instance, (link ?from ?to) of
Fig. 1, which is modeled as an at start condition despite: i) the link is necessary
all over the driving action; and ii) no action in this domain deletes that link.
This also happens in the transport domain of the IPC, where a refuel action
requires to have a petrol station in a location only at start, rather than over
all which is more rational. This shows that modeling the temporal features is
not easy even for an expert and it highly depends on the human’s decision. On
the contrary, our formulation checks the invariant conditions and deals with
them always in a coherent and rational way.

Second, time(p, a) = start(a) OR time(p, a) = end(a) makes an effect p
happen only at start or at end of action a, i.e., p is in effs(a) or effe(a). Also,
if all effects happen at start the duration of the action would be irrelevant
and could exceed the plan makespan. To avoid this, for any action a, at least

one of its effects should happen at end :
∑n=‖eff(a)‖

i=1 time(pi, a) > n× start(a),
which guarantees effe(a) is not empty.10

Third, durations in PDDL2.1 can be defined in two different ways. On the
one hand, durations can be equal for all grounded actions of the same opera-
tor; i.e., fixed duration in the operator. For instance, any grounded action from
operator board-truck of Fig. 1 will last 2 time units no matter its parameters.
Although this may seem a bit odd, it is not an uncommon practice to simplify
the model. The constraint to model this is: ∀ai, aj being grounded actions of
the same operator: dur(ai) = dur(aj). On the other hand, although different
actions of drive-truck could last different depending on the locations, dif-
ferent occurrences of the same action will last equal. In a PDDL2.1 temporal
plan, multiple occurrences of drive-truck(truck1,loc1,loc2,driver1) will
have the same duration no matter when they start. They are different occur-
rences of the same action, but in the real-world the durations would differ from

10Certainly, this constraint is not specific of PDDL2.1 but it is required if we want to guarantee
at end effects like in typical PDDL2.1 domains.
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driving at night or in peak times. Since PDDL2.1 makes no distinction among
different occurrences, the constraint to add is: ∀ai, aj being occurrences of the
same action: dur(ai) = dur(aj). Obviously, this second constraint is subsumed
by the first one in the general case where all actions of the same operator have
the same duration.

Fourth, the structure of conditions and effects for all grounded actions of
the same operator remains constant in PDDL2.1. This means that if (empty

?t) is an at start condition of board-truck, it will be at start in any of its
grounded actions. Let {pi} be the conditions of an operator and {aj} be the
grounded actions from a particular operator. The following constraints are
necessary to guarantee a constant structure:
∀pi : (∀aj : req start(pi, aj) = start(aj)) OR (∀aj : req start(pi, aj) =

end(aj))
∀pi : (∀aj : req end(pi, aj) = start(aj)) OR (∀aj : req end(pi, aj) = end(aj))
And analogously for all effects {pi} and the grounded actions {aj} from an

operator:
∀pi : (∀aj : time(pi, aj) = start(aj)) OR (∀aj : time(pi, aj) = end(aj))
As a conclusion, in our formulation each action of A? is modeled sepa-

rately so it does not need to share the same structure or duration of other
actions. Moreover, the time-stamps for conditions/effects can be arbitrarily
placed inside or outside the execution of the action, which allows for a flexible
and expressive temporal model. Also, when necessary, we can simply include
additional constraints to restrict the expressiveness of the model, such as the
ones provided by PDDL2.1 or other models.

4.4 Result of the formulation

The result of the formulation is a solution to the CSP, as a value for each
variable in Table 1 that satisfies all constraints in Table 2. From this solution,
learning (and reconstructing) the temporal features for the action schemas, as
shown in Fig. 3, is trivial. Let us consider an action a. The temporal features
are learned in terms of:

� start(a), dur(a) and end(a), which allow us to learn the execution interval of
a in the form [start(a)..end(a)].

� Given a condition p, req start(p, a) and req end(p, a) allow us to learn when
p is required. For instance, if req start(p, a) = req end(p, a) = start(a), then
p is a start condition of a (conds(a)). Similarly, we learn over all and end
conditions, i.e., condo(a) and conde(a), respectively.

� Given an effect p, time(p, a) allows us to learn when p happens. For instance,
if time(p, a) = end(a), then p is an end effect of a (effe(a)). Similarly, we
learn start effects (effs(a)).

Extrapolating the temporal features of grounded actions to their corre-
sponding operators, particularly in PDDL2.1, is also trivial as they keep the
same structure; e.g., a start condition in an action is also a start non-grounded
condition in its operator.
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4.5 Formal properties

Lemma 1 Soundness. The formulation is sound and a temporal plan defined in
terms of durative actions, when all constraints are satisfied, is also sound.

Proof The lemma relies on the definition of plan soundness, which states that a plan
is sound if all conditions of all actions (including the dummy actions) are satisfied
at their annotation time, i.e., at start, over all or at end. The formulation provides
the same sound scheme defined by POCL planning [36, 37], which is guaranteed
by the constraints given in Table 2, including: i) the support of causal links that
guarantees that any condition is supported before it is required (fourth constraint);
ii) the resolution of threats that ensures that no threatening action can break a causal
link (fifth constraint); iii) solving requirements+deletions in the same action (sixth
constraint); and iv) avoiding effect interference that ensures that contradictory effects
cannot happen simultaneously (seventh constraint). Consequently, all conditions are
satisfied, which means the temporal plan is sound and, thereby, the formulation is
also sound.

Note that this soundness means that the result of the formulation is a temporal
action model that is consistent with a temporal model that is able to generate the
input plan traces.

�

Lemma 2 Completeness. Any solution A to the formulated learning task Ln is
computable by solving the formulation.

Proof The formulation creates a CSP that encodes the set of constraints that any
solution (i.e., learned model of temporal actions where the duration and distribution
of conditions/effects is completely specified) A must satisfy, and it does not discard
any possible model unless it violates any of the constraints of Table 2. By guaran-
teeing a complete exploration of all variables of the CSP, if a solution exists it can
be found, which means that completeness is guaranteed.

Note that completeness means that the result of the formulation is a temporal
action model that is consistent not only with a temporal model that is able to
generate the input plan traces (soundness), but also with the particular model that
generated the input plan traces.

�

Lemma 3 The number of variables and constraints generated in the formulation is
polynomial w.r.t. the number of conditions/effects and actions in the plans.

Proof Let us consider the formulation for Ln = 〈{ΠT P1
. . .ΠT Pn

}, O?, A?〉, where
there are n plan traces. Let α be the upper bound on the number of actions of each
plan ΠT Pi

, and β the upper bound on the number of pre(a) and eff(a) for each
a ∈ A?. The number of variables is bounded by O(n ∗α ∗ β). The highest number of
constraints depends on the potential number of threats and its solving mechanism
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(fifth constraint, which involves the preconditions/effects of three actions of the same
plan), and it is bounded by O(α∗n∗β3). Therefore, the formulation size is polynomial
for the variables and constraints. �

It is important to note that these properties are satisfied no matter the
specific constraints for PDDL2.1 durative actions are included or not. In other
words, PDDL2.1 constraints can limit the types of conditions to three, or the
types of effects to two, but they do not jeopardize the soundness, completeness
and polynomial size of the formulation.

4.6 Implementation. Use of heuristics for resolution

Constraint satisfaction and propositional SATisfiability are closely related
frameworks [42]. Since some of the constraints of our formulation are logical
implications that can be turned into conjunctive normal form clauses, using
modern SAT solvers seems an interesting option. However, from the point of
view of the variables, non-boolean variables make the SAT encoding more
tedious (and most of our variables represent time values). For instance, we do
not need clauses to ensure that a CSP variable is given a value, nor to ensure
that each CSP variable is given only one value [42]. Consequently, we have
opted for using a CSP-based implementation rather than a SAT-based one.

We have implemented a compiler in Java that automatically translates
the input (operators O?, typically from a planning domain, and the collec-
tion of temporal plans) into the CP formulation defined above. If the domain
requires PDDL2.1 durative actions, the specific constraints of Section 4.3 are
also included in the encoding. As for the solver, we use Choco11, an open-
source Java library for CP that provides an object-oriented API to state the
constraints to be satisfied.

In a pure satisfaction problem all possible solutions are equally valid.
Although a metric allows the user to specify preferences over the space of solu-
tions, we have not found a metric that guides to the best learning. We have
investigated the use of several metrics, e.g. preferring causal links supported
by init or reducing the number of unused side effects among many others.
However, one model is not better than another because it has more or less
causal links/effects. In drive-truck of Fig. 2, if all locations are connected
we could remove the link information. Obviously, this new model has fewer
causal links and effects, but we cannot ensure that it is a better model, because
this depends on the original intention of the human designer. As discussed in
Section 3.3, there are many philosophical questions when modeling, and they
cannot be represented by simply using a metric. Also, the use of a metric has
not a conclusive impact in reducing the variance of the learned model, as this
depends on the solver and machine performance. On the contrary, we have
opted for defining solver-independent heuristics that are CSP-specific (rather

11Choco is available at www.choco-solver.org
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than SAT-) to guide the search in a univocal way. We use the following stan-
dard static heuristics for variable and value selection, which do not require
changes in the implementation of the solver engine nor in our formulation:

1. Effects (time). For negative effects, first the lower value; and for positive
effects, first the upper value. This gives priority to delete effects as effs(a)
and positive effects as effe(a).

2. Conditions (req start and req end). For req start, first the lower value,
whereas for req end, first the upper value. This gives priority to condo(a),
trying to keep the conditions as long as possible.

3. Supporters (sup). First the lower value, thus preferring the supporter that
starts earlier in the plan.

4. Duration (dur). First the lower value, thus applying the principle of the
shortest actions that make the learned model consistent.

This collection of ordering and selection heuristics is very intuitive and has
been used in Choco by simply overriding the default search strategy for the
variable and value selectors. Although these heuristics have shown very efficient
in our experiments, they cannot always guarantee the best performance.

4.7 Using the CP formulation for plan validation

We explained that adding extra constraints allows us to restrict the temporal
expressiveness of the learned model. We show here that we can also restrict
the learned model by constraining the variables to known values, which is
specially interesting when there is additional information on the action model
that needs to be represented. For instance, based on past learned models, we
may know the precise duration of an action a is 6, or we can figure out that
its effect p always happens at end. Our formulation can include this by simply
adding dur(a) = 6 and time(p, a) = end(a), respectively, which is useful to
enrich the partially specified actions in A? of the learning task.

In particular, the possibility of adding those constraints is very appealing
when used for validating whether a partial action model allows us to learn a
consistent model, as we will see in Section 5. This leads us to a unified formu-
lation for learning and validation. In learning there are many possible values
for the formulation variables, whereas in validation the domains are more
restricted and some variables are fixed. Let us assume that the distribution
of all (or just a few) conditions and/or effects is known and, in consequence,
represented in the learning task. If a solution is found, then that structure of
conditions/effects is consistent for the learned model. On the contrary, if no
solution is found that structure is inconsistent and cannot be explained. Anal-
ogously, we can represent known values for the durations. If a solution is found,
the durations are consistent, and inconsistent otherwise. Hence, we have three
options for validating a partial model w.r.t.: i) a known structure with the dis-
tribution of conditions/effects; ii) a known set of durations; and iii) a known
structure plus a known set of durations (i+ii). The first and second option
allows for some flexibility in the learning task because some variables remain
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open. On the contrary, the third option checks whether a learned model can
fit the given constraints, thus reproducing a plan validation task equivalent
to [4], but now much more expressive.

5 Evaluation

To the best of our knowledge, there is no approach to learn temporal models
(using or not using CP) from an arbitrary collection of plan traces. Therefore,
we evaluate our formulation from two independent points of view. First, we
evaluate the formulation for the learning task. Second, we assess the learned
model by using two quality indicators.

5.1 Setup

We have selected six typical PDDL2.1 temporal planning domains from the
IPC, so we have included the constraints of Section 4.3. Although our approach
supports very expressive temporal action model domains, we focus on well-
known IPC domains. The reason for this is that a great majority of IPC
planners are limited in the class of temporal problems they solve [7, 8]; since
we use those planners for extensive testing, we are restricted to the domains
they support. The number of operators in these domains ranges from 4 (park-
ing) to 9 (rovers), and the number of propositions per domain ranges from
28 (zenotravel and driverlog) to 69 (rovers). We have used five publicly avail-
able planners (LPG-Quality [43], LPG-Speed [43], TP [44], TFD [45] and
TFLAP [46]) to solve different problems per domain. Then we have randomly
selected 50 different plans, from the simplest to the most complex ones, which
means having 50 plan traces per domain that will be used for learning or test-
ing. It is important to recall that these plans include multiple agents, such as
trucks, planes, drivers, rovers, etc., they have overlapping actions, and that we
do not need minimal makespan-plans.

We create six learning scenarios L1, L5, L10, L15, L20 and L25 with an
input collection of 1, 5, 10, 15, 20 and 25 plan traces, respectively. For each
scenario we create 25 different problems, which means 25 learning tasks with
1 plan trace (L1), 25 tasks with 5 plan traces (L5) and so on. The 25*6=150
learning tasks are solved as satisfaction problems, so we always select the first
solution found by using the heuristics of Section 4.6. The runtime was limited
to 300s on an Intel i5-6400 @ 2.70GHz with 8GB of RAM.

5.2 Performance evaluation

We measure the 150 learning tasks in terms of their input size and number of
variables and constraints of the formulation, as defined in Section 4. Table 3
shows the average values for these terms and includes the learning runtimes
per domain in each scenario. For each domain there are three rows. The first
row contains the number of actions (A) in the collection of plan traces, the size
of the initial state and goals (I and G, respectively) of the planning problem of
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Table 3 Size and runtimes of the learning tasks and their formulations for the six
scenarios. Symbol ’-’ means the formulation exceeds the solver capabilities.

L1 L5 L10 L15 L20 L25

A I G A I G A I G A I G A I G A I G
Domain V C V C V C V C V C V C

time (s) time (s) time (s) time (s) time (s) time (s)

zenotravel
37 220 9 223 1548 54 454 4164 108 659 7528 158 867 11379 210 1103 15477 273
760 6312 4823 47377 10819 111543 17191 173481 24066 236531 31569 311626
0.03 0.42 1.25 1.68 2.76 3.12

driverlog
41 1599 10 287 23598 56 555 81880 114 622 136842 153 - -
2144 12422 27388 158188 88731 441451 145412 668107 - -
0.11 2.21 10.23 17.96 - -

rovers
43 1429 9 226 11384 47 415 32973 89 607 61179 133 800 94992 178 996 130332 226
2303 12757 15910 80314 41336 195268 73434 336697 111181 500971 150552 671950
0.25 4.51 15.24 31.15 51.83 80.55

satellite
39 610 15 208 7107 83 383 21035 154 564 39106 226 763 60545 308 965 83424 391
1160 6041 10047 47143 26469 118587 47089 206982 71347 310736 97094 420706
0.04 0.46 1.79 3.97 7.05 10.82

storage
12 255 3 59 1926 15 137 5233 34 197 8382 48 265 12592 65 347 18828 85
501 3842 3133 20719 8042 51428 12432 76626 18038 108599 25996 152127
0.05 0.15 0.28 0.60 0.87 1.28

parking
21 457 12 103 3139 62 209 7590 125 311 12345 187 408 17100 249 496 21855 311
845 4432 5106 25231 11573 56012 18294 87590 24902 118095 31350 147371
0.03 0.14 0.37 0.64 0.96 1.34

the task. The second row contains the number of variables (V) and constraints
(C) of the formulation. The third row shows the running time, in seconds, for
solving the learning task. For example, in the L1 scenario of zenotravel, the
average number of actions is 37, whereas 220 and 9 is the average size of the
initial and goal state, respectively. Note that the initial state is always bigger
as it represents a full state. The average formulation contains 760 variables and
6312 constraints. The learning runtime is 0.03. Clearly, using a larger input
collection of plan traces, e.g. L25 with 1103 actions on average, has a significant
impact in both the size of the formulation and the runtime of the learning task.
See, for instance, the driverlog domain, where the largest learning scenario
that can be managed by the solver is L15 with more than 145000 variables and
668000 constraints; dealing with 20 and 25 plan traces in this domain involves
an unmanageable CP formulation. The size of the formulation highly depends
on the domain complexity, i.e., number of operators, propositions and how
they are related. The number of constraints has more impact in the learning
runtime than the number of variables (see the rovers and satellite domains).

5.3 Quality evaluation

The quality evaluation of the learned model can be addressed from two per-
spectives. From a pure syntactic perspective, learning can be considered as an
automated design task to create a new model that is similar to a reference
(or ground truth) model. The aim is to assess the precision or accuracy of the
learned model, a common metric in learning [6, 27, 32, 33]. From a seman-
tic perspective, learning resembles a classification task, where we first learn a
model from a training dataset and then validate it on a test dataset. The aim



Springer Nature 2021 LATEX template

A Constraint-based Approach to Learn Temporal Features on Action Models 23

is to assess how much the learned model explains (or transfers) to unseen test
samples [13, 47].

5.3.1 Syntactic evaluation. Precision

Precision in learning is a similarity measure between two models, a reference
model vs. a learned model. In our case, precision = p=

p=+p 6= , where p= counts

the number of propositions (i.e., conditions+effects) that are temporally dis-
tributed equally in both models, and p6= counts the number of propositions that
are distributed in a different way. As an example, given an action or operator, if
p is an at start condition in the reference model and also in the learned model,
it counts as a hit in p=, and in p6= if they differ. This is repeated for all condi-
tions and effects. A precision of 1 means the :condition and :effect sections
in both models are, respectively, syntactically identical. In other words, the
learned structure of conditions/effects matches exactly the reference model.

Fig. 5 depicts the precision score for our six learning scenarios. Unfortu-
nately, there is not a unique reference model when learning real-world temporal
models; e.g. full and ¬empty effects can be interchangeable in some domains,
both being correct, but they are syntactically different. Also, a pure syntax-
based measure may return misleading results, as it may count as incorrect (p6=)
a change in the distribution of conditions/effects that represents an equivalent
reformulation of the reference model. For instance, given the example of Fig. 1,
the condition learned (over all (link ?from ?to)) would be counted as a
difference for action drive-truck, as it is at start in the reference model. It is
specially remarkable that in drive-truck, the conditions (link ?from ?to)

and (driving ?d ?t) are at start and over all, respectively. This is surpris-
ing and somewhat irrational, as both of them should be equally annotated as
over all that leads to a more coherent and sound model. This misleading sit-
uation is common in IPC, where the domain definition is not always coherent
(even within an operator) due to: i) at start conditions that should be over all
(in zenotravel, driverlog and rovers); and ii) at start effects that should be at
end, and vice versa (in zenotravel, rovers and satellite). In our evaluation, we
first use as the reference model the hand-written domain as provided in IPC
(REF-model). Then, as a knowledge-based engineering step, we have revised
all the domains to fix these irrational situations and recalculate the precision
(REV-model) to analyze how the learned models compare to more rational
domains.

From Fig. 5 we can conclude that the precision scores are good (above 0.6
except in rovers and parking), even for the learning scenarios that use a small
collection of plan traces as input such as L1 and L5. This is an indication that,
from our syntax-based experiments, the learned models tend to converge with
just a few plan traces and dealing with large datasets of traces is not indispens-
able (note that lines are quite horizontal). Actually, scenarios such as L20 and
L25, with big collection of plan traces, show slightly worse syntactic results in
the storage and parking domains because there is more variance. We can also
conclude that the learned models are more precise, i.e., they match better, in
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zenotravel driverlog

rovers satellite

storage parking

Fig. 5 Precision w.r.t. a REFerence and a more coherent and rational REVised model.

the REV-models (specially in zenotravel and rovers). In satellite however, the
results remain the same, as the learned models still mislead some effects within
the actions. parking is a well-defined domain and needs no revision, so the pre-
cision is equal in both models. Finally, we have noted that 100% of the over
all conditions that represent static information (i.e information that always
holds) is precisely learned, thus being more coherent than human designers.

5.3.2 Semantic evaluation. Accuracy

As pointed out above, the temporal ground truth about the temporal world is
not unique, so similarity measures can be unfair. Also, as seen in Section 3.3,
some learned durations cannot be granted and will differ from a reference
model, but the underlying model is still consistent. In other words, two
syntactically-different models can be semantically equivalent. Therefore, a syn-
tactic evaluation in learning is a bit limited and we should perform a further



Springer Nature 2021 LATEX template

A Constraint-based Approach to Learn Temporal Features on Action Models 25

semantic evaluation. From this standpoint, the quality of the learned model
can be assessed by analyzing the accuracy of the learned model vs. unseen
samples of a test dataset, to check that the learned model is able to explain
new plans, analogously to a classification task.

We define the accuracy Acc = samplesX

‖dataset‖ as in [31], where samplesX counts

the number of samples the learned model explains on a test dataset. An accu-
racy of 1 implies learning a model that explains the full dataset: a feasible
solution is found which is consistent with the constraints of the input collec-
tion of plan traces together with the test sample trace. But if, for example,
one condition is learned as at start but it leads to an inconsistency in a test
sample (where it must remain over all), this does not count in samplesX.

In our experiments we have worked with 25 learning tasks per learning
scenario, which means learning 25 models. Each learned model is individually
validated vs. a dataset of 25 new plan traces, resulting in 25*25=625 validation
tests per scenario. Each test is repeated three times to validate each model vs.
the test samples w.r.t. the structure, the duration and the structure+duration,
as discussed in Section 4.7. The struct value means that the distribution of con-
ditions/effects learned is consistent with the samples. The dur value means the
duration learned is consistent with the samples. The struct+dur value means
that the learned model explains entirely the samples. This value is always the
lowest because a subtle change in the structure or duration learned that leads
to inconsistency counts as a failure. The results depend on the domain com-
plexity, the relationships (causal links, threats and interferences) among the
grounded actions, and the size and quality of the plan traces. Fig. 6 shows the
average accuracy for our experiments. For instance, in zenotravel, the struct
values denote the perfect result in the six learning scenarios (accuracy=1). The
dur values are also very good starting from the L10 scenario, as also happens
in struct+dur (accuracy around 0.9). Learning the duration seems more effec-
tive than learning the structure in the rovers and storage domains, starting
from L10 and L15. In driverlog, satellite and parking the results for struct and
dur are very similar starting from L5.

From Fig. 6 we can conclude that there is not a clear answer whether
learning the structure/duration in itself is more accurate, as this depends on
the domain. We can observe that increasing the size of the input collection of
plan traces shows beneficial for the accuracy of the learned model, in partic-
ular for the struct+dur values. Starting from the L15 scenario, the values for
struct+dur are all over 0.8 except in storage. The results are specially remark-
able in driverlog, satellite and parking domains. As we might expect, the higher
the number of plan traces in the input collection, the more accurate is the
learned model to explain unseen samples.

6 Conclusions and lessons learned

The interest in learning is growing up because it allows us to acquire pro-
cedural knowledge through demonstration and partial observations. Learning
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zenotravel driverlog

rovers satellite

storage parking

Fig. 6 Average accuracy of the learned model vs. the test dataset.

planning action models by observations of plan traces is useful in many sce-
narios: recognition of past behavior for prediction and anticipation, decision
taking and recommendation, programming and modeling, robotics motion cap-
turing and planning, etc. Learning is appealing because these scenarios include
a huge number of tasks, sometimes difficult to be described formally (and
more difficult to be annotated temporally), which require expert knowledge
and engineering that becomes impractical in complex domains.

In this paper we have presented a (solver-independent) purely declarative
constraint-based formulation to address the automated learning of temporal
features on action models which, to our knowledge, initiates a novel approach
for the intersection of knowledge-based systems, learning from multiple plans,
CP and planning. We hope the paper will also initiate new lines of research
to address the task of learning in temporal planning settings and make fur-
ther comparisons. Learning the classical model is to planning what learning
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the temporal features is to temporal planning. Knowing these features is use-
ful in practice, where learning a classical planning model is not enough and
needs to be extended with temporal features to increase its applicability. In
consequence, learning the temporal features bridges the gap between the (plan-
ning) action model and the temporal world. The ultimate goal of learning is
to reduce the laborious modeling stage, to minimize the effort human experts
need to design temporal planning models before launching the planners.

Our main result is an effective formulation that is automatically derived,
without the necessity of specific hand-coded domain knowledge. This formu-
lation has a series of advantages. First, it is flexible enough to learn from
multiple plans: from a single plan trace to a large collection of traces. This is
useful to manage domains with different levels of input knowledge and com-
plexity; for instance, we have been able to solve learning tasks with more than
50 input plans in the zenotravel domain (although these experiments are not
presented in the paper), but in more complex domains such as driverlog we can
still effectively learn from fewer input plans. Second, the quality of the input
plans is neither relevant for the learning task nor the theoretical results. The
approach learns in terms of the causal links and the constraints given by the
plan traces, so optimal plans have no impact in the learning. Third, it does
not need intermediate states, but only the initial full state and a partial goal
state. Fourth, it supports a rich temporal planning model with high levels of
concurrency; although its expressiveness is beyond PDDL2.1, it can be eas-
ily modified to be PDDL2.1-compliant. Fifth, formal properties are inherited
from the (POCL) formulation itself and the solver. The formulation is sound
because the definition of constraints to solve causal links, threats and effect
interferences are supported, which avoids contradictions. It is also complete
because the solution needs to be consistent with all the imposed constraints,
while a complete exploration of the domain of each variable returns all the
possible learned models in the form of alternative consistent solutions.

Several lessons can be learned from our work. In our context, learning is
a task to understand and acquire knowledge that fits many constraints from
the input plans, no matter their quality. Therefore, constraint technology is
very adequate for this. Unlike other approaches that obligatorily need to learn
from datasets with hundreds of traces, we can easily adapt to the number of
available traces: from only one to many. Moreover, we can easily deal with
more input information by simply including more input observations in our
learning task, i.e., by using very long plan traces. Learning from collections
of many traces can lead to better models, but retrieving many samples is not
always easy, specially in human interactive environments that require learning
by demonstration. Using fewer traces reduces the size of the required datasets
and formulation, and the computation time. From our experiments, we have
learned that a high number of input traces has no a special impact in the
syntactic evaluation, but it has a good impact in the semantic evaluation. Using
a pure satisfaction problem can lead to many solutions. Ordering heuristics,
which are easily reproducible, provide a simple way for breaking ties and guide
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the search towards the same solution, no matter the solver. Obviously, if many
solutions are returned we can always select the most learned model, that is, the
most repeated one. We have investigated this, but the most repeated model is
not always the best model and this depends on the domain used. An interesting
lesson learned is that the same CP formulation is valid for learning and for
validation, by simply adding constraints to the variables. This is an innovative
advantage, as the same formulation allows us to carry out different tasks: from
entirely learning, partial learning/validation (structure and/or duration) to
entirely plan validation.

Finally, it is important to note that our formulation can be represented and
solved by Satisfiability Modulo Theories, working with the theory of integers,
thus overcoming the limitations of the SAT encodings for non-boolean vari-
ables. This is part of our current work. As for future work, we want to extend
our formulation to learn from intermediate observations (we need to investi-
gate how many and how frequent they must be), to learn meta-models (as
combinations of several learned models), and to learn more complete action
models trying to find further similarities with NLP and NER approaches. In
the latter, we will relax the input action model to find out the conditions/-
effects together with their temporal distribution when learning from multiple
plans.
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