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ANALYTIC SPREAD AND INTEGRAL CLOSURE OF INTEGRALLY

DECOMPOSABLE MODULES

CARLES BIVIÀ-AUSINA and JONATHAN MONTAÑO

Abstract. We relate the analytic spread of a module expressed as the direct

sum of two submodules with the analytic spread of its components. We also

study a class of submodules whose integral closure can be expressed in terms of

the integral closure of its row ideals, and therefore can be obtained by means

of a simple computer algebra procedure. In particular, we analyze a class of

modules, not necessarily of maximal rank, whose integral closure is determined

by the family of Newton polyhedra of their row ideals.

§1. Introduction

Given an ideal I in a Noetherian local ring (R,m), the notions of integral closure,

reduction, analytic spread, and multiplicity of I are fundamental objects of study in

commutative algebra and algebraic geometry (see for instance [26, 27, 45]). These notions

have essential applications also in singularity theory mainly due to the works of Lejeune

and Teissier [34, 41, 42]. These applications concern the study of the equisingularity of

deformations of hypersurfaces in (Cn,0) with isolated singularity at the origin. The concept

of integral closure of ideals was extended by Rees to modules (see [38]). Moreover, the

multiplicity of ideals was extended to modules by Buchsbaum and Rim [11] (see also

Kirby [31]), thus leading to what is commonly known as Buchsbaum–Rim multiplicity

of a submodule of Rp of finite colength.

The integral closure and multiplicity of a submodule of a free module satisfy analogous

properties as those satisfied by ideals. For instance, they satisfy an analogous of the Rees’

multiplicity theorem (see [30] or [45, Corollary 8.20]). Moreover, when the residual field

is infinite, the analytic spread of a submodule (see Definition 2.6) also coincides with the

minimum number of elements needed to generate a reduction of the submodule (see [7, 27,

45]). We also remark that, by the results of Gaffney [18, 19], the notion of integral closure

of modules and Buchsbaum–Rim multiplicities have essential applications to the study of

the equisingularity of deformations of isolated complete intersection singularities. We also

refer to [20] for other applications in singularity theory.

In general, the computation of the analytic spread and the integral closure of a submodule

is a nonctrivial problem than can be approached from several points of view. Our objective

in this work takes part of the general project of computing effectively the analytic spread and

the integral closure for certain classes of modules. We relate the analytic spread of a module

expressed as the direct sum of two submodules with the analytic spread of its components

(see Theorem 3.6 and Corollary 3.8). Moreover, we analyze a class of submodules M ⊆Rp,

that we call integrally decomposable, for which a generating system of M can be obtained

by means of an easy computer algebra procedure once the integral closure of each row ideal

Mi is known (Theorem 4.9).
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In Section 2, we recall briefly some fundamental facts about the integral closure of

modules, analytic spread, reductions, Buchsbaum–Rim multiplicity of submodules of a

free module, and Rees algebras that will be used in subsequent sections. In particular,

we highlight the connection between the integral closure of a module M and the integral

closure of the ideal generated by the minors of size rank(M) of M (Theorem 2.10 and

Corollary 2.12).

Section 3 is devoted to the study of the analytic spread of decomposable modules. The

main result of this section is Theorem 3.6, where we relate ℓ(M ⊕N) with ℓ(M) and

ℓ(N), and we derive a generalization of some results of [29] and [35] about the analytic

spread of ideals (see also [27, 8.4.4]). This result has required the study of multigraded Rees

algebras and their corresponding multiprojective spectrum (see Sections 3.1 and 3.2). As a

corollary, given ideals I1, . . . , Ip of R, we prove that ℓ(I1⊕·· ·⊕ Ip) = ℓ(I1 · · ·Ip)+p−1 (see

Corollary 3.10).

In Section 4, we introduce the class of integrally decomposable modules M ⊆ Rp

(Definition 4.1) and analyze their relation with the condition C(M) =M (see Theorem 4.9),

where C(M) denotes the submodule of Rp generated by the elements h ∈M1⊕ ·· ·⊕Mp

such that rank(M) = rank(M,h). In general, we have that M ⊆ C(M). If equality holds,

then we obtain a substantial simplification of the computation of M , as can be seen in

Examples 4.14 and 4.23.

We also extend the notion of Newton nondegenerate submodule of Op
n introduced in

[2] to the case where the rank of the module is not p. These modules constitute a wide

class of integrally decomposable submodules. We recall that On denotes the local ring of

analytic function germs (Cn,0)→ C. As a consequence of our study, we show in Example

4.28 an integrally closed and nondecomposable submodule of O2
2 (see Definition 2.1) whose

ideal of maximal minors can be factorized as the product of two proper integrally closed

ideals.

§2. Preliminaries: Rees algebras, analytic spread, and integral closure

Throughout this paper, R is a Noetherian ring and all R-modules are finitely generated.

An R-module M has a rank if there exists e ∈ N such that Mp
∼=Re

p for every p associated

prime of R. Equivalently, if M⊗RQ(R) is a free Q(R)-module of rank e, where Q(R) is the

total ring of fractions of R. In this case, we also say M has rank e (rank(M) = e), and if

e > 0, we say M has positive rank. We note that an R-ideal I has positive rank if it contains

nonzero divisors. If R is an integral domain, then Q(R) is a field and hence every module

over an integral domain has a rank.

From now on, whenever M is a submodule of a free module Rp, we identify M with a

matrix of generators. In this case, we denote by Ii(M) the ideal of R generated by the i× i

minors ofM. If i > p, then we set Ii(M) = (0). We note that the ideals Ii(M) are independent

of the matrix of generators chosen as they agree with the Fitting ideals of the module Rp/M

(see [16, Section 2.2]). If M has a rank, the maximum i such that Ii(M)⊗R Q(R) 6= (0)

coincides with rank(M).

If M ⊆ Rp is a submodule, then for any L ⊆ {1, . . . ,p}, L 6= ∅, we denote by ML the

submodule of R|L| obtained by projecting the components of M indexed by L, where |L| is
the cardinal of L. In particular, we have M{i} =Mi for all i= 1, . . . ,p, where Mi is the ideal

of R generated by the elements of the ith row of any matrix of generators of M. The ideals
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168 C. BIVIÀ-AUSINA AND J. MONTAÑO

M1, . . . ,Mp are called the row ideals of M. It is immediate to check that these ideals are

independent of the chosen matrix of generators of M.

Definition 2.1. Let M be a submodule of Rp. We say that M is decomposable when

M =M1⊕·· ·⊕Mp.

2.1 Rees algebras and the analytic spread

In this subsection, we include the definition and some of the properties of Rees algebras

of modules. We also define the analytic spread of modules. For more details see [17]

and [40].

Henceforth, we denote by SymR(M), the symmetric algebra of the R-moduleM, or simply

Sym(M) when the base ring is clear. We also denote by τR(M) the R-torsion of M, that

is, τR(M) = {x ∈M | (0 :R x) contains nonzero divisors of R}.
Definition 2.2 If M has a rank, the Rees algebra of M is defined as

R(M) := Sym(M)/τR(Sym(M)).

The above definition coincides with the usual one for ideals, that is, R(I) = R[It] =

⊕n∈NI
ntn, although we note that the latter does not require the rank assumption.

Remark 2.3. Assume M has a rank, then the natural map R(M)→R(M/τR(M)) is

an isomorphism, that is,

Sym(M)/τR(Sym(M))∼= Sym(M/τR(M))/τR
(
Sym(M/τR(M))

)
.

To see this, we note that since Sym(M/τR(M))/τR
(
Sym(M/τR(M))

)
is torsion-free, the

kernel of the natural map ϕ : Sym(M)→ Sym(M/τR(M))/τR
(
Sym(M/τR(M))

)
contains

τR(Sym(M)). On the other hand, sinceM has a rank,M⊗RQ(R) is free and then ϕ⊗RQ(R)

is an isomorphism. Thus, ker(ϕ) has rank zero which is equivalent to being contained in

τR(Sym(M)).

We also note that M/τR(M) is a torsion-free module with a rank, then it is contained in

a free R-module. The latter implies that when dealing with the Rees algebra of a module

with a rank, one may always assume it is contained in a free module.

Remark 2.4. Assume M has a rank and M/τR(M) ⊆ F for a free R-module F ∼= Rr,

then R(M) is isomorphic to the image of the map Sym(M)
α−→ Sym(F )∼=R[t1, . . . , tr].

In the following proposition, we recall some facts about the dimension and associated

primes of Rees algebras. Following the notation from Remark 2.4, let T :=R[t1, . . . , tr]. For

any I ∈ SpecR, we denote by I ′ the R-ideal IT ∩R(M).

Proposition 2.5. Let M be an R-module that has a rank. Then

(1) Min(R(M)) = {P ′ | P ∈Min(R)} and Ass(R(M)) = {P ′ | P ∈Ass(R)}.
(2) dimR(M) = dimR+rank(M).

Proof. See [36, Section 15.4] and [40, 2.2].

We are now ready to define the analytic spread.
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Definition 2.6. Assume (R,m,k) is local and M is an R-module having a rank. The

fiber cone of M is defined as F(M) := R(M)⊗R k. The analytic spread of M is then

ℓ(M) := dimF(M).

The following proposition will be needed in several of our arguments.

Proposition 2.7 ([40, 2.3]). Let M be an R-module having a rank. Then

rank(M)6ℓ(M)6dimR+rank(M)−1.

2.2 Integral closure of modules

In this subsection, we include the definition of integral closure of modules and some basic

properties of it. We restrict ourselves to the case of torsion-free modules with a rank. For

more details see [27, Chapter 16] and [45, Chapter 8].

Definition 2.8 (Rees [38]). Let R be a Noetherian ring and let M be a submodule

of Rp.

(1) The element h ∈ Rp is integral over M if for every minimal prime p of R and every

discrete valuation ring (DVR) or field V between R/p and Rp/pRp, the image hV of

h in V p is in the image MV of the composition of R-maps M →֒ Rp → V p (see [27,

16.4.9]).

(2) The integral closure of M in Rp is defined as M := {h ∈ Rp : h is integral over M},
which is a submodule of Rp. If M =M , we say M is integrally closed. We note that if

M ⊆ R is an ideal, then the integral closure of M as a module coincides with that as

an ideal (see [27, 6.8.3]).

(3) AssumeM has a rank. A submodule U ⊆M having a rank is a reduction ofM ifM ⊆U .

As shown in [38] (see also [27, 16.2.3]), this is equivalent to R(M) being integral over

the subalgebra generated by the image of U. The latter condition is in turn equivalent

to [R(M)]n+1 = U [R(M)]n for n≫ 0, where U is identified with its image in [R(M)]1.

A reduction is minimal if it does not properly contain any other reduction of M.

Remark 2.9. Let M ⊂Rp be a submodule having a rank, then

(1) M = [R(M)]1, where R(M) is the integral closure of R(M) in Sym(Rp) (cf. [27, 5.2.1]).

(2) If R is local, then for every reduction U ofM we have µ(U)>ℓ(M), where µ(−) denotes
the minimal number of generators. Moreover, if R has infinite residue field then every

minimal reduction is generated by exactly ℓ(M) elements.

(3) It is clear from the definition that free modules Rq ⊆Rp are integrally closed. Moreover,

if U ⊆M is a reduction, then rank(U) = rank(M) (see [45, p. 416]). In particular,

rank(M) = rank(M).

The integral closure of modules admits several characterizations. The following theorem

relates the integral closure of modules with the integral closure of ideals. As far as the

authors are aware, this result had not appeared in the literature in this generality (see [18,

1.7], [27, 16.3.2], [38, 1.2], [45, 8.66] for related statements).

Theorem 2.10. Let R be a Noetherian ring and M ⊆ Rp a submodule having a rank.

Let h ∈ Rp be such that M +Rh also has a rank and rank(M) = rank(M +Rh). Then the

following conditions are equivalent.
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170 C. BIVIÀ-AUSINA AND J. MONTAÑO

(1) h ∈M .

(2) Ii(M) = Ii(M +Rh), for all i>1.

(3) Ir(M) = Ir(M +Rh), for r = rank(M).

For the proof of the theorem, we need the following lemma whose proof is essentially the

same as [18, 1.6]. We include here the details for completeness.

Lemma 2.11. Let R be a Noetherian integral domain and M ⊆ Rp a submodule. Let

h ∈Rp be an arbitrary element and set r = rank(M +Rh), then Ir(M)h⊆ Ir(M +Rh)M .

Proof. If rank(M) < r, then Ir(M) = 0 and the conclusion clearly follows. Then we

may assume rank(M) = r. We identify M with a matrix of generators and M +Rh with

the matrix [M |h]. Let M ′ be a r× r submatrix of M such that d = det(M ′) 6= 0 and let

L ⊆ {1, . . . ,p} be the rows of M corresponding to the rows of M ′. By Cramer’s rule, there

exists x1, . . . ,xr ∈ Ir(M ′|hL)⊆ Ir(M |h) such that Mx= dhL, where x= [x1 . . . xr]
T ∈Rr.

Let N be the p× r submatrix of M corresponding to the columns of M ′ and consider the

vector g = dh−Nx. By construction, we have g ∈M +Rh and gL = 0. Let i ∈ {1, . . . ,p}\L,
then the (r+1)× (r+1) minor of [N |g] corresponding to the rows L∪ {i} is ±gid and

it must vanish since rank(M +Rh) = r. Therefore, gid = 0 which implies gi = 0. Thus

g = 0 and then dh = Nx ⊆ Ir(M +Rh)M . Since M ′ was chosen arbitrarily the proof is

complete.

We are now ready to prove the theorem.

Proof of Theorem 2.10. We begin with (1) ⇒ (2). Let p be a minimal prime of R and

V a DVR or a field between R/p and Rp/pRp. Since hV ∈MV , for every i>1 we have

Ii(M +Rh)V = Ii(MV +R(hV ))⊆ Ii(MV ) = Ii(M)V.

Thus Ii(M +Rh)⊆ Ii(M) and (2) follows.

Since (2)⇒ (3) is clear, it suffices to show (3)⇒ (1). Let p be a minimal prime of R and for

a submodule N ⊆Rq let N(R/p) its image in (R/p)q. By assumption, we have that M(R/p)

and (M +Rh)(R/p) both have rank r. In particular, Ir(M)(R/p) = Ir(M(R/p)) 6= 0, and

likewise Ir(M +Rh)(R/p) 6= 0. Let V a DVR or a field between R/p and Rp/pRp. Then by

the assumption and Lemma 2.11, applied to R/p, we have

(Ir(M)V )hV = (Ir(M)h)V ⊆ (Ir(M +Rh)M)V = (Ir(M +Rh)V )MV = (Ir(M)V )MV.

Thus hV ∈MV . We conclude h ∈M , as desired.

As an immediate consequence of Theorem 2.10, we have the following result.

Corollary 2.12. Let R be a Noetherian ring and let M ⊆ Rp be a submodule having

a rank. Let r = rank(M). Then

M =
{
h ∈Rp : rank(M +Rh) = r and Ir(M +Rh)⊆ Ir(M)

}
.

Assume R is local of dimension d and let λ(−) denote the length function of R-modules.

If λ(Rp/M)<∞, we say M has finite colength and in this case the limit

e(M) = (d+p−1)! lim
n→∞

λ([Sym(Rp)]n/[R(M)]n)

nd+p−1
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is called the Buchsbaum–Rim multiplicity of M. It is known that if R is Cohen Macaulay

and M is generated by d+ p− 1 elements, then e(M) = λ(Rp/M) = λ(R/Ip(M)) (see for

instance [19, p. 214]).

We recall the following numerical characterization of integral closures due to Rees [37]

in the case of ideals and Katz [30] for modules.

Theorem 2.13 ([27, p. 317], [30]). Let R be a formally equidimensional Noetherian local

ring of dimension d > 0. Let N ⊆M ⊆ Rp be submodules such that λ(Rp/N) <∞. Then

M =N if and only if e(N) = e(M).

Remark 2.14. Let M ⊆Rp be a submodule. In general, we have

M ⊆M1⊕·· ·⊕Mp =M1⊕·· ·⊕Mp. (2.1)

However, the first inclusion in (2.1) might be strict. For instance, consider the submodule

of O2
2 generated by the columns of the matrix

[
x+y x3 y3

x y x

]

.

It is clear that x3 ∈M1, x∈M2. Let h= [x3 x]T , we can see that h /∈M . By Theorem 2.10,

we have that

h ∈M ⇐⇒ I2(M +O2h)⊆ I2(M)⇐⇒ e(I2(M)) = e(I2(M +O2h)),

where the last equivalence follows from Theorem 2.13. However e(I2(M)) = 8 and e(I2(M+

O2h)) = 6, as can be computed using Singular [14]. Hence h /∈M .

Another argument leading to the conclusion that h /∈M is the following. We have that

e(M) = 7 and e(M +O2h) = 5, computed again using Singular. Since these multiplicities

are different, it follows that h /∈M , by Theorem 2.13. Moreover, by using Macaulay2 [21]

(see Remark 4.25), it is possible to prove that M is generated by the columns of the matrix

[
x+y x3 y3 x3y2

x y x x+y

]

.

That is, M =M +O2[x
3y2 x+y]T .

Given an analytic map ϕ : (Cm,0) → (Cn,0), we denote by ϕ∗ the morphism On →
Om given by ϕ∗(h) = h ◦ϕ, for all h ∈ On. For submodules of Op

n, we have the following

alternative definition of integral closure.

Theorem 2.15 (Gaffney [18, p. 303]). Let M ⊆Op
n be a submodule and let h∈Op

n. Then

h is integral over M if and only if ϕ∗(h) ∈ O1ϕ
∗(M), for any analytic curve ϕ : (C,0)→

(Cn,0).

Example 2.16. It is also possible to check that h /∈M in the example from Remark 2.14

by considering the arc ϕ : (C,0)→ (C2,0) given by ϕ(t) = (−t+ t3, t), for all t ∈C. We have

that ϕ∗(h) = [(−t+ t3)3 −t+ t3]T and that ϕ∗(M) is generated by the columns of the

matrix
[

t3 (−t+ t3)3 t3

−t+ t3 t −t+ t3

]

.
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172 C. BIVIÀ-AUSINA AND J. MONTAÑO

We note that the first and third columns of the previous matrix coincide. If ϕ∗(h)∈ ϕ∗(M),

then we would have

I2

[
t3 (−t+ t3)3

−t+ t3 t

]

= I2

[
t3 (−t+ t3)3 (−t+ t3)3

−t+ t3 t −t+ t3

]

. (2.2)

The ideal on the left of (2.2) is equal to (t4) and the ideal on the right of (2.2) is equal to

(t6). Hence ϕ∗(h) /∈ ϕ∗(M) and by Theorem 2.15 it follows that h 6∈M .

We finish this section with the following relation between integral closures and

projections.

Proposition 2.17. Let R be a Noetherian ring and M ⊆ Rp a submodule, then for

every nonempty L⊆ {1, . . . ,p} we have (M)L ⊆ML.

Proof. Fix h ∈ M . For every a minimal prime p of R and every DVR or field V

between R/p and Rp/pRp, we have hLV = (hV )L ∈ (MV )L =MLV. Thus hL ∈ML. The result

follows.

§3. The analytic spread of decomposable modules

In this section, we study the analytic spread of decomposable modules and its relation

with the analytic spread of their components. Our main results are Theorem 3.6 and its

corollaries. We begin with some necessary background information.

3.1 Multigraded algebras and multiprojective spectrum

In this subsection, we recall several facts about multigraded algebras and their multiho-

mogeneous spectrum, we refer the reader to [28] for more information. We start by setting

up some notation.

Let p ∈ Z>0. We denote by n the vector (n1, . . . ,np) ∈ Np. For convenience, we also set

0= (0, . . . ,0) and 1= (1, . . . ,1) where each of these vectors belongs to Np. We call the sum

n1+ · · ·+np the total degree of n and denote it by |n|.
Let R be a Noetherian ring and A = ⊕n∈NpAn a Noetherian Np-graded algebra with

A0 = R and generated by the elements of total degree one (standard graded). We denote

by A∆ the diagonal subalgebra of A, that is, A∆ = ⊕n∈NAn1. For every 16i6p, we write

A(i) = ⊕ni=0An. We also consider the following Np-homogeneous A-ideals A+
i = ⊕ni>0An

for 16i6p and A+ =⊕n1,...,np>0An. We write ProjpA= {P ∈ SpecA |P is Np-homogeneous,

and A+ 6⊂ P}. The dimension of ProjpA is one minus the maximal length of an increasing

chain of elements of ProjpA, P0 ( P1 ( · · · ( Pd. The relation between the dimensions of

ProjpA and A is explained in the following lemma.

Lemma 3.1 ([28, 1.2]). Let Z = ProjpA and assume Z 6= ∅, then
(1) dimZ =max{dimA/P | P ∈ Z}−p6dimA−p.

(2) If dimA(i) < dimA for every 16i6p, then dimZ = dimA−p.

It is possible to give ProjpA a structure of scheme and to show that it is isomorphic to

Proj1A∆ (see [22, Part II, Exercise 5.11] and also [24, Lemma 3.2] and [33, Lemma 7.1]).

For the reader’s convenience, we provide a proof of the following particular result which

suffices for our applications.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nmj.2020.35
Downloaded from https://www.cambridge.org/core. Universitat Politecnica de Valencia, on 28 Apr 2022 at 10:21:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nmj.2020.35
https://www.cambridge.org/core


ANALYTIC SPREAD AND INTEGRAL CLOSURE OF INTEGRALLY DECOMPOSABLE MODULES 173

Proposition 3.2. Let ι :A∆→A be the natural inclusion. Then ι∗ : ProjpA→Proj1A∆

is a bijection.

Proof. Clearly ProjpA = ∅ if and only if Proj1A∆ = ∅ if and only if An1 = 0 for n≫
0, then we may assume these two sets are both nonempty. For every 16i6p, let ei =

(0, . . . ,0,1,0, . . . ,0) ∈ Np where the 1 is in the ith-position. Fix 0 6= fi ∈ Aei for 16i6p

and let f = f1 · · ·fp. Since every element in the localization Af is a unit times an element

of A∆
f , one can easily see that ι∗f is bijective.

We first show ι∗ is injective. Let P1,P2 ∈ ProjpA and assume ι∗(P1) = ι∗(P2). If f is as

above and such that f 6∈ P1 (thus f 6∈ P2), then by assumption ι∗f (P1Af ) = ι∗f (P2Af ). Hence

P1Af = P2Af , which implies P1 = P2.

We now show ι∗ is surjective. Let P ∈ Proj1A∆ and f 6∈ P as above. Then there exists

Q ∈A such that ι∗f (QAf ) = PA∆
f , which implies ι∗(Q) = P , finishing the proof.

We end this subsection with the following lemma that will be used in the proofs of our

main results.

Lemma 3.3. Let A = ⊕n∈NpAn be a Noetherian standard Np-graded algebra and p ∈
Projp−1A(p) (if p= 1, Proj0A0 is simply SpecA0). Fix e ∈N, then the following statements

are equivalent.

(1) There exists a chain of elements in ProjpA, P0 (P1 ( · · ·(Pe−1 such that p=Pi∩A(p)

for every 06i6e−1.

(2) dimQ(A(p)/p)⊗A(p) A>e.

Proof. SetW =Q(A(p)/p)⊗A(p)A. If (1) holds, then P0W ( · · ·(Pe−1W ( (p+A+
p )W =

W+ is a chain of prime ideals in W. Thus, dimW >e and (2) follows.

Conversely, if (2) holds then dim(A/pA)
pA+A

+
p
>e. Since associated primes of Np-graded

rings are Np-homogeneous ([27, A.3.1]), a direct adaptation of [9, 1.5.8(a)] to Np-graded

rings shows that there exist Np-homogeneous A-ideals pA ⊆ P0 ( · · · ( Pe−1 ( (pA+A+
p )

whose images in the ring (A/pA)
pA+A

+
p

are all different. Since p = Pi ∩A(p) for every

06i6e−1, the result follows.

3.2 Multigraded Rees algebras

In this subsection, we describe a standard multigraded structure for the Rees algebras of

direct sums of modules.

Definition 3.4. Let M1, . . . ,Mp be R-modules having a rank. We define a natural

standard Np-graded structure on R(M1⊕·· ·⊕Mp). By [16, A2.2.c], we have

Sym(M1⊕·· ·⊕Mp)∼=
p
⊗

i=1

Sym(Mi),

and since each of the algebras Sym(Mi) has a standard N-grading, we can combine these

to an Np-grading of R(M1⊕·· ·⊕Mp) by setting [
⊗p

i=1Sym(Mi)]n =
⊗p

i=1Sym(Mi)ni
.

Proposition 3.5. Let M1, . . . ,Mp be R-modules having a rank and set R′ = R
(M1⊕·· ·⊕Mp−1). Then there is a natural graded R′-isomorphism

R(M1⊕·· ·⊕Mp)∼=R(Mp⊗RR′).
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Proof. We claim that for any R-module M with a rank we have τR′(M ⊗RR′) is equal

to the image T of τR(M)⊗RR′ in M ⊗RR′. First observe that by Proposition 2.5(1),

M ⊗RR′ has a rank as R′-module and it is equal to rank(M). Now, consider a short exact

sequence

0→ τR(M)→M → F ∼=Rr→ 0.

By tensoring with R′ it follows that T contains τR′(M ⊗RR′). On the other hand, T has

rank zero as R′-module (since rank(τR(M)) = 0), then it must be R′-torsion. The claim

follows. We obtain the following natural maps

S :=

p
⊗

i=1

SymR(Mi)
[16, A2.2.c]−−−−−−−→R′⊗R SymR(Mp)

[16, A2.2.c]∼= SymR′(Mp⊗RR′)

onto−−−→ SymR′(Mp⊗RR′)/τR(SymR′(Mp⊗RR′))

claim
= R(Mp⊗RR′).

Clearly the kernel of the composition of these maps contains τR(S) and, since tensoring

by Q(R) leads to an monomorphism, this kernel must be equal to τR(S). The result

follows.

3.3 Main results about the analytic spread of modules

This subsection contains the main results of this section. We assume (R,m,k) is a

Noetherian local ring.

The following is the main theorem of this section. This result, in particular, allows us to

recover, and extend, the results in [29, Lemma 4.7], [35, 5.5], and [40, 2.3].

Theorem 3.6. Let M and N be R-modules having a rank. Then

max{ℓ(M)+rank(N), ℓ(N)+rank(M)}6ℓ(M ⊕N)6ℓ(M)+ ℓ(N).

Proof. We may assume M and N are torsion-free and hence contained in free R-modules

(Remark 2.3). If either M or N has rank zero, then it has to be the zero module. Then we

may assume they both have positive rank. Consider the following natural surjective maps

R(M)⊗RR(N)
α−→R(M)⊗RR(N)/τR(R(M)⊗RR(N))

β←− Sym(M)⊗R Sym(N).

Since Q(R)⊗R β is an isomorphism and the image of β is torsion-free, it follows that

kerβ ⊆ τR(Sym(M)⊗R Sym(N))⊆ kerβ. Then we obtain a surjective map

R(M)⊗RR(N)
onto−−−→ Sym(M)⊗R Sym(N)/τR(Sym(M)⊗R Sym(N))

[16, A2.2.c]∼= Sym(M ⊕N)/τR(Sym(M ⊕N))

= R(M ⊕N).

By tensoring this map by k, we observe that F(M ⊕N) is a quotient of F(M)⊗k F(N),

and since the latter is a tensor product of affine algebras, it has dimension dimF(M)+

dimF(N) = ℓ(M)+ ℓ(N). The right-hand inequality follows.
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We now show the left-hand inequality. Set R =R(M ⊕N). Following the multigrading

in Definition 3.4, we have R(1) = R(M). We also observe that R ∼= R(N ′), where

N ′ =N ⊗RR(1) (Proposition 3.5). Fix p ∈ Proj1R(1) such that p∩R=m and dimR(1)/p=

ℓ(M), which exists by Lemma 3.3 and the fact that ℓ(M)>1 (Proposition 2.7). By

Proposition 2.5(1), (N ′)p is an R(1)
p -module with the same rank as N ; let e be this rank.

Then,

dimQ(R(1)/p)⊗R(1)R= ℓ((N ′)p)>e (Proposition 2.7). (3.1)

Therefore, by Lemma 3.3, there exist P0 ( · · ·( Pe−1 in Proj2R with Pi∩R(1) = p for every

06i6e− 1. We have an inclusion of domains A = R(1)/p →֒ B := R/P0 and Lemma 3.3

implies dimQ(A)⊗AB>e. Hence, dimQ(A/p′)⊗AB>e for every p′ ∈Proj1A ([16, 14.8(b)]).

Choose a p′ that avoids a general element of A (cf. [16, 14.5]) and that dimA/p′ = 1;

such p′ exists by Hilbert’s Nullstellensatz. Additionally, choose P ′
e−1 ∈ Proj2B such that

P ′
e−1∩A = p′ and its image in Q(A/p′)⊗AB has height >e−1 (Lemma 3.3). Then, from

[16, 14.5], we obtain

dimProj1A= dimAp′ = dimBP ′

e−1
−dimBP ′

e−1
/p′BP ′

e−1
6dimProj2B−e+1. (3.2)

Thus,

ℓ(M ⊕N) = dimR⊗R k>dimB>dimProj2B+2>dimProj1A+e+1 = ℓ(M)+e.

Where the second inequality follows from Lemma 3.1(1). Likewise, ℓ(M ⊕N)>ℓ(N) +

rank(M), finishing the proof.

Remark 3.7. Under the conditions of Theorem 3.6, let us assume R has infinite residue

field. Then ℓ(M) = ℓ(M). Hence Theorem 3.6 applies when M is decomposable.

In the following corollary, we observe that if a module satisfies equality in one of the

inequalities in Proposition 2.7, then we obtain a closed formula for the analytic spread of

its direct sum with any other module.

Corollary 3.8. Let M and N be R-modules having a rank.

(1) If ℓ(N) = rank(N), then ℓ(M ⊕N) = ℓ(M)+rank(N).

(2) If ℓ(N) = dimR+rank(N)−1, then ℓ(M ⊕N) = dimR+rank(M)+rank(N)−1.

Proof. The conclusion follows from Theorem 3.6, Proposition 2.7, and the fact that

rank(M ⊕N) = rank(M)+rank(N).

Remark 3.9. We note that the equality ℓ(N) = dimR+rank(N)− 1 is satisfied in a

variety of situations. For example, if N is torsion-free and F/N has finite length for some

free R-module F ([45, 8.4]); if N is an ideal module (i.e., N is torsion-free and HomR(N,R)

is free), and such that Np is free for any p ∈ Spec(R) \ {m} ([40, 5.2]); and if R is a two-

dimensional local normal domain with infinite residue field and N is not free ([45, page 418]).

The equality ℓ(N) = rank(N) trivially holds for any free R-module.

In the following corollary, we relate the analytic spread of direct sums and products of

ideals and modules. We remark that the estimates for the analytic spread in [5, 6.5 6.8] and

[6, 5.9] follow from our next result.
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Corollary 3.10. Let I1, . . . , Ip−1 be R-ideals for some p>1 and let M be an R-module,

all of positive rank. Then

ℓ(I1 . . . Ip−1M)+p−1 = ℓ(I1⊕·· ·⊕ Ip−1⊕M)

> max
16i6p−1

{ℓ(Ii)+rank(M)−1, ℓ(M)}+p−1.

Proof. As the inequality follows directly from Theorem 3.6, it suffices to show the

equality.

We may assume M is torsion-free (Remark 2.3). We proceed by induction on p>1, the

case p= 1 being clear. Now, assume p>2 and set A=F(I1⊕·· ·⊕Ip−1⊕M). Notice that A

has a natural Np-graded structure (Definition 3.4). Moreover, A∆ =F(I1 . . . Ip−1M), A(i) =

F(I1⊕·· ·⊕Ii−1⊕Ii+1⊕·· ·⊕Ip−1⊕M) for every 16i6p−1, and A(p) =F(I1⊕·· ·⊕Ip−1).

Hence, dimA(i) < dimA for every 16i6p (Theorem 3.6). Therefore, by Lemmas 3.1(2) and

3.2 we have

dimA= dimProjpA+p= dimProj1A∆+p= dimA∆+p−1,

and the result follows.

The following example extends [45, 8.6]. Here we are able to provide a formula for the

analytic spread of a certain class of modules.

Example 3.11. Let A1, . . . ,Ap be standard graded k -algebras and for each i= 1, . . . ,p

let Ii be an Ri-ideal of positive rank and generated by elements of degree δi. Consider A=

A1⊗k · · ·⊗kAp and identify each Ii with its image in A. Then I1 · · ·Ip is generated in degree

δ1+ · · ·+ δp and its minimal number of generators is the dimension of the k -vector space

[I1]δ1 ⊗k · · · ⊗k [Ip]δp , that is,
∏p

i=1dimk[Ii]δi =
∏p

i=1µ(Ii), where µ(−) denotes minimal

number of generators. Likewise, for every n∈N, we have µ((I1 · · ·Ip)n) =
∏p

i=1µ(I
n
i ). Hence,

ℓ(I1 · · ·Ip)−1 = (ℓ(I1)−1)+ · · ·+(ℓ(Ip)−1) ([9, 4.1.3]). From Corollary 3.10, we conclude

that

ℓ(I1⊕·· ·⊕ Ip) = ℓ(I1)+ · · ·+ ℓ(Ip).

In the following corollary we recover, and slightly extend, the results in [35, 5.5] (see also

[27, 8.4.4] and [29, Lemma 4.7]). We recall that the analytic spread of an ideal is defined as

ℓ(I) = dimR(I)⊗R k regardless of any rank assumption.

Corollary 3.12. Let I and J be R-ideals (not necessarily with a rank). Then

(1) If I or J is not nilpotent, then ℓ(I)+ ℓ(J)> ℓ(IJ).

(2) If IJ has positive height, or
√
I =
√
J , then ℓ(IJ)>max{ℓ(I), ℓ(J)}.

Proof. For (1), assume I is not nilpotent. If J is nilpotent, that is, ℓ(J)= 0, the inequality

clearly holds. Otherwise, for any p minimal prime of R that does not contain IJ, we have

ℓ(I)+ ℓ(J)>ℓ(I(R/p))+ ℓ(J(R/p))> ℓ(IJ(R/p))

where the first inequality follows from [27, 5.1.7] and the second one from Theorem 3.6 and

Corollary 3.10. The result then follows from [27, 5.1.7]. Similarly, for (2), let p be a minimal

prime of R such that ℓ(I) = ℓ(I(R/p)) ([27, 5.1.7] ), then

ℓ(IJ)>ℓ(IJ(R/p))>ℓ(I(R/p)) = ℓ(I),
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where the second inequality follows from Corollary 3.10. Likewise, ℓ(IJ)>ℓ(J), and the

result follows.

Our results allow us to build a minimal reduction of a direct sum of multiple copies of an

ideal I as we show in the next corollary. This result extends [45, 8.67] to arbitrary ideals.

Moreover, the computation of integral closure in [34, 3.5] follows from this result.

Given elements a1, . . . ,as ∈R and an integer p>1, we define the matrix

Ap(a1, . . . ,as) :=










a1 a2 a3 · · · 0 0 0

0 a1 a2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · as−1 as 0

0 0 0 · · · as−2 as−1 as










.

Corollary 3.13. Let I be an R-ideal of positive rank and let s be its analytic spread.

Fix p ∈ Z>0 and consider the R-module

M = I⊕·· ·⊕ I
︸ ︷︷ ︸

p times

.

Then, ℓ(M) = s+p−1 and given any (minimal) reduction (a1, . . . ,as)⊆ I, the R-submodule

of Rp generated by the columns of the matrix Ap(a1, . . . ,as) is a minimal reduction of M.

Proof. Let U be the module generated by the columns of this matrix and notice that

U ⊆ M . We first show that U is a reduction of M. For this, note that by [10, p. 15],

Ip(U) = Ip, and the latter is clearly also equal to Ip(M). By Theorem 2.10, it follows that

U is a reduction of M.

It remains to show ℓ(M) = s+p−1, but this follows from Corollary 3.10 since

ℓ(M) = ℓ(Ip)+p−1 = s+p−1,

finishing the proof.

Example 3.14. Let I be a monomial ideal of O2. Let Γ+(I) denote the New-

ton polyhedron of I (see the definition of this notion before Example 4.14) and let

{(a1, b1), (a2, b2), . . . , (an, bn)} ⊂ N2 be the set of vertices of Γ+(I), with n>2 and a1 <

a2 < · · ·< an and b1 > b2 > · · ·> bn. Consider the polynomials of C[x,y] given by

g1 =
∑

i is odd

xaiybi and g2 =
∑

i is even

xaiybi .

By [4] (see also [13, 3.6] or [12, 3.7]), the ideal (g1,g2) is a reduction of I. Thus, by

Corollary 3.13, the module generated by the columns of Ap(g1,g2) is a minimal reduction

of the module M = I⊕·· ·⊕ I ⊂Op
2 .

§4. Integrally decomposable modules, Newton nondegeneracy, and the

computation of the integral closure

In this section, we address the task of computing the integral closure of modules. In

general, this is a difficult and involved process as it requires the computation of the

normalization of Rees algebras. In our main results, we focus on a wide family of modules,

that we call integrally decomposable, for which an important example are the Newton
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nondegenerate modules (see Definitions 4.1 and 4.15). In our main results, we express the

integral closure of these modules in terms of the integral closure of its component ideals

(see Theorem 4.9 and Corollary 4.21). Therefore, we translate the problem of computing

integral closures of modules to integral closures of ideals, for which several algorithms are

available in the literature (see for instance [44, Chapter 6]).

Throughout this section R is a Noetherian ring.

4.1 Integrally decomposable modules

Let M be a submodule of Rp and let r = rank(M). We identify M with any matrix of

generators and denote by ΛM the set of vectors (i1, . . . , ir)∈Zr
>0 such that 16i1 < · · ·< ir6p

and there exists some nonzero minor of M formed from rows i1, . . . , ir.

Definition 4.1. Let M be submodule of Rp and let r = rank(M). We say that M is

integrally decomposable when ML is decomposable, for all L ∈ ΛM .

We remark that, under the conditions of the above definition, if L ∈ ΛM and we write

L = (i1, . . . , ir), where 16i1 < · · · < ir6p, then ML is decomposable if and only if ML =

(ML)i1 ⊕ ·· · ⊕ (ML)ir . In particular, we observe that Definition 4.1 constitutes a void

condition when rank(M) = 1.

Lemma 4.2. Let M be submodule of Rp. Then (M)i =Mi, for all i= 1, . . . ,p.

Proof. Fix an index i ∈ {1, . . . ,p}. The inclusion M ⊆M implies that Mi ⊆ (M)i. Thus

Mi ⊆ (M)i. From Proposition 2.17, we deduce that (M)i ⊆Mi. Therefore, (M)i ⊆Mi, and

hence the result follows.

Proposition 4.3. Let M be submodule of Rp and let r= rank(M). Then M is integrally

decomposable if and only if

ML =Mi1⊕·· ·⊕Mir . (4.1)

for all L= (i1, . . . , ir) ∈ ΛM , where 16i1 < · · ·< ir6p.

Proof. Since ML is a submodule of Rr of rank r, for all L ∈ ΛM , it suffices to show the

result in the case r= p. So let us assume that rank(M) = p. In general we have the following

inclusions:

M ⊆ (M)1⊕·· ·⊕ (M)p ⊆ (M)1⊕·· ·⊕ (M)p =M1⊕·· ·⊕Mp

where the last equality is an application of Lemma 4.2. This shows that if relation (4.1)

holds, then M is decomposable.

Conversely, if M is decomposable, then M = (M)1⊕·· ·⊕ (M)p. Taking integral closures

in this equality it follows that

M =M = (M)1⊕·· ·⊕ (M)p = (M)1⊕·· ·⊕ (M)p =M1⊕·· ·⊕Mp

again by Lemma 4.2, and thus equality (4.1) follows.

In the following proposition we characterize integrally decomposable modules in terms

of their ideals of minors.

Proposition 4.4. Let M be a submodule of Rp and let r= rank(M). Then the following

conditions are equivalent.
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(1) M is integrally decomposable.

(2) Ir(ML) =
∏

i∈LMi, for all L ∈ ΛM .

Proof. Fix L= (i1, . . . , ir)∈ΛM and let N =Mi1⊕·· ·⊕Mir . Then ML ⊆N =Mi1⊕·· ·⊕
Mir , where the last equality holds by Remark 2.14. Therefore, by Theorem 2.10, ML =N

if and only if Ir(ML) = Ir(N) =Mi1 . . .Mir . Then the result follows as a direct application

of Proposition 4.3.

Let R be a Noetherian local ring of dimension d and let I1, . . . , Id be a family of ideals

of R of finite colength. We denote by e(I1, . . . , Id) the mixed multiplicity of the family of

ideals I1, . . . , Id (see [27, p. 339]). We recall that when the ideals I1, . . . , Id coincide with a

given ideal I of finite colength, then e(I1, . . . , Id) = e(I), where e(I) is the multiplicity of I,

in the usual sense.

Let (i1, . . . , ip) ∈ Z
p
>0, for some p6d, such that i1 + · · · + ip = d. We denote by

ei1,...,ip(I1, . . . , Ip) the mixed multiplicity e(I1, . . . , I1, . . . , Ip, . . . , Ip) where Ij is repeated ij
times, for all j = 1, . . . ,p.

Let M be a submodule of Rp of finite colength. Following [2, p. 418], we define

δ(M) =
∑

i1+···+ip=d
i1,...,ip>0

ei1,...,ip(M1, . . . ,Mp).

We remark that the condition that M has finite colength in Rp implies that Mi has finite

colength in R, for all i= 1, . . . ,p.

By a result of Kirby and Rees in [32, p. 444] (see also [2, p. 417]), we have that e(I1⊕·· ·⊕
Ip)

= δ(I1 ⊕ ·· · ⊕ Ip), for any family of ideals I1, . . . , Ip of R of finite colength. Therefore

δ(M) = e(M1⊕·· ·⊕Mp).

Proposition 4.5. Let R be a formally equidimensional Noetherian local ring of

dimension d > 0. Let M be a submodule of Rp. Let r = rank(M). Assume ML has finite

colength, as a submodule of Rr, for all L ∈ ΛM . Then M is integrally decomposable if and

only if e(ML) = δ(ML), for all L ∈ ΛM .

Proof. Let us fix any L= (i1, . . . , ir) ∈ ΛM . By Proposition 4.3, the submodule ML ⊆Rr

is decomposable if and only if ML =Mi1⊕·· ·⊕Mir . Let us recall that

Mi1⊕·· ·⊕Mir =Mi1⊕·· ·⊕Mir .

Thus ML is integrally decomposable if and only if ML is a reduction of Mi1⊕·· ·⊕Mir , which

is to say that e(ML) = e(Mi1⊕·· ·⊕Mir), by Theorem 2.13. But e(Mi1⊕·· ·⊕Mir) = δ(ML),

thus the result follows.

For a submodule of Rp, we introduce the following objects.

Definition 4.6. Let M ⊆Rp be a submodule of rank r. We define the ideal

JM =
∑

(i1,...,ir)∈ΛM

Mi1 . . .Mir

and the following modules

Z(M) =
{
h ∈Rp : rank(M) = rank(M +Rh)

}
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C(M) = Z(M)∩
(
M1⊕·· ·⊕Mp

)
.

Remark 4.7. In the previous definition, if r = p then Z(M) = Rp and thus C(M) =

M1⊕·· ·⊕Mp.

From Remarks 2.9 and 2.14, it follows that M is always contained in C(M) but this

containment can be strict. We ask the following question.

Question 4.8. Let M be a submodule of Rp, when do we have M = C(M)?

The following is the main theorem of this section, here we provide a partial answer to

Question 4.8 by showing that integrally decomposable modules satisfy this equality.

Theorem 4.9. Let M be a submodule of Rp and let r= rank(M). Consider the following

conditions.

(1) M is integrally decomposable.

(2) Ir(M) = JM .

(3) M = C(M).

Then (1)⇒ (2)⇒ (3). Moreover, if r = p, then these implications become equivalences.

We remark that (3); (2). In particular (3); (1) in general. This is shown in Example

4.26. In a wide variety of examples of modules M ⊆R3 with rank(M) = 2, we have verified

that M is integrally decomposable when Ir(M) = JM . However, we have not yet found a

proof or a counterexample of the implication (2)⇒ (1); we conjecture that this implication

holds in general.

We present the proof of Theorem 4.9 after the following remark and lemma.

Remark 4.10. We observe that Ir(M)⊆ JM . In general, this inclusion might be strict.

For instance, consider the submodule M ⊆ O3
2 generated by the columns of the following

matrix




x2 xy x3

y2 y2 y2

x+y 2y x2+y



 .

Notice that M1 = (x2,xy), M2 = (y2), and M3 = (x,y). We see that rank(M) = 2 and

JM =M1M2+M1M3+M2M3 = (x3,y3).

However, I2(M) = (x2y,xy2,y3). Therefore Ir(M) is strictly contained in JM .

We need one more lemma prior presenting the proof of the theorem.

Lemma 4.11. Let M ⊆Rp be a submodule and let h ∈Rp. If rank(M) = rank(M+Rh),

then rank(ML) = rank(ML+RhL), for any L⊆ {1, . . . ,p}, L 6= ∅.
Proof. Let us identify M with a given matrix of generators. Let Q(R) denote the total

ring of fractions of R. We note that rank(M) = rank(M +Rh) if and only if h is equal

to a linear combination of the columns of M with coefficients in Q(R). By projecting this

linear combination onto the rows corresponding to L we obtain that hL is equal to a linear

combination of the columns of ML, which means rank(ML) = rank(ML+RhL), as desired.

We are now ready to present the proof of Theorem 4.9.
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Proof of Theorem 4.9. We begin with (1)⇒ (2). From Ir(M) =
∑

L∈ΛM
Ir(ML) and

Proposition 4.4, we obtain

Ir(M) =
∑

L∈ΛM

Ir(ML) =
∑

L∈ΛM

Ir(ML) =
∑

L∈ΛM

∏

i∈L

Mi = JM .

We continue with (2) ⇒ (3). The inclusion M ⊆ C(M) follows immediately from

Remarks 2.9 and 2.14, then we need to show the reverse inclusion. Let h ∈ C(M), we

claim that Ir(M +Rh)⊆ Ir(M). We note that if the claim holds then h is integral over M,

by Theorem 2.10, finishing the proof.

Now we prove the claim. Identify M with a matrix of generators and let g be a nonzero

minor of size r of the matrix [M |h] with row set L= {i1, . . . , ir}. By Lemma 4.11, we have

rank(ML) = rank(ML|hL). In particular, the matrix ML has some nonzero minor of order r.

This implies that L ∈ ΛM . Since h ∈M1⊕·· ·⊕Mp, we have g ∈∏i∈LMi ⊆
∏

i∈LMi ⊆ JM
([27, 1.3.2]). Therefore, Ir(M +Rh)⊆ JM = Ir(M), and the claim follows.

Let us suppose that r= p. In this case, C(M) =M1⊕·· ·Mp and therefore the equivalence

of the conditions follows as a direct consequence of Propositions 4.3.

The following result shows a procedure to compute the module Z(M) with the aid of

Singular [14] or other computational algebra programs. If N is a submodule of Rp, then we

denote by NT the transpose of any matrix whose columns generate N.

Lemma 4.12. Let R be an integral domain and let M be an p×m matrix with entries

in R. Then

{h ∈Rp : rank(M) = rank([M | h])}= ker
(
(ker(MT ))T

)
.

Proof. Let Q(R) be the field of fractions of R and let kerQ(R)(−) the kernel of matrices

computed over Q(R).

Clearly the rank of a matrix over R is equal to the rank as a matrix over Q(R). Let

h ∈Rp, then by the dimension theorem for matrices, we have

rank(M) = rank(MT ) = p−dimkerQ(R)(M
T ), and

rank([M | h]) = p−dimkerQ(R)([M | h]T ).

Since we always have kerQ(R)([M | h]T )⊆ kerQ(R)(M
T ), it follows that

rank(M) = rank([M | h])⇐⇒ kerQ(R)([M | h]T ) = kerQ(R)(M
T )

⇐⇒ hT v = 0 for every v ∈ kerQ(R)(M
T )

⇐⇒ hT v = 0 for every v ∈ ker(MT )

⇐⇒ h ∈ ker
(
(ker(MT ))T

)
.

This finishes the proof.

Remark 4.13. Given a submodule M of Rp, the computation of Z(M) can be

done with Singular [14] as follows. Denoting also by M a matrix whose columns

generate this module, then Z(M) is generated by the columns of the matrix obtained

as syz(transpose(syz(transpose(M)))).

In the next example we show an application of Theorem 4.9 in order to compute the

integral closure of a module. First, we introduce some concepts.
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Let us fix coordinates x1, . . . ,xn for Cn. If n = 2, we simply write x,y instead of x1,x2.

If k = (k1, . . . ,kn) ∈ Nn, then we denote the monomial xk1
1 · · ·xkn

n by xk. If f ∈ On and

f =
∑

k
akx

k is the Taylor expansion of f around the origin, then the support of f, denoted

by supp(f), is the set {k ∈Nn : ak 6= 0}. The support of a nonzero ideal I of On is the union

of the supports of the elements of I. We denote this set by supp(I).

Given a subset A⊆Rn
>0, the Newton polyhedron determined by A, denoted by Γ+(A), is

the convex hull of the set {k+v : k ∈ A,v ∈ Rn
>0}. The Newton polyhedron of f is defined

as Γ+(f) = Γ+(supp(f)). For an ideal I of On, the Newton polyhedron of I is defined as

Γ+(I) = Γ+(supp(I)). It is well-known that Γ+(I) = Γ+(I) (see for instance [4, p. 58]).

Let w ∈ Zn
>0 and let f ∈On, f 6= 0. We define dw(f) =min{〈w,k〉 : k ∈ supp(f)}, where

〈w,k〉 denotes the usual scalar product. If f = 0 then we set dw(f) = +∞. We say that a

nonzero f ∈ On is weighted homogeneous with respect to w when 〈w,k〉 = dw(f), for all

k ∈ supp(f).

Example 4.14. Let us consider the submodule M of O3
2 generated by the columns of

the following matrix:





x2y xy3 x2+y5

xy3 x2+y5 x2y

x2y−xy3 xy3−x2−y5 x2+y5−x2y



 .

We observe that rank(M) = 2 and ΛM = {(1,2),(1,3),(2,3)}. Using Singular [14] we verified

that M12, M13 and M23 have finite colength and e(M12) = e(M13) = e(M23) = 33.

Let I = M1 = M2 = (x2y,xy3,x2 + y5). We have e(I) = 11 = e(M3). Since M3 ⊆ I, it

follows that I =M3. Hence e(M1,M2) = e(M1,M3) = e(M2,M3) = e(I) = 11. This fact shows

that δ(M12) = e(M1)+e(M1,M2)+e(M2) = 3e(I) = 33 = δ(M13) = δ(M23). Therefore M is

integrally decomposable, by Proposition 4.5.

By Theorem 4.9, the integral closure of M is expressed as

M =
{
h ∈ I⊕ I⊕ I : rank(M +O2h) = 2

}
.

Let L= (x2+y5,xy3,x2y,x3,y6). We observe that IL= L2, therefore I is a reduction of L.

Hence L⊆ I. Let us see that equality holds.

Let f = x2+y5. We observe that f is weighted homogeneous with respect to w = (5,2).

Let N denote the ideal of O2 generated by all monomials xk1yk2 , where k1,k2 ∈ Z>0, such

that dw(x
k1yk2) = 5k1+2k2>11. Then L= (f)+N .

Let g ∈ I. In particular Γ+(g) ⊆ Γ+(I) = Γ+(I) = Γ+(x
2,y5). Let g1 denote the part of

lowest degree with respect to w in the Taylor expansion of g, and let g2 = g− g1. Then

dw(g1)>10 and dw(g2)>11. In particular g2 ∈N ⊆ L. Then g ∈ L if and only if g1 ∈ L.

We may assume that supp(g1) ⊆ {(2,0),(0,5)}, as otherwise g ∈ L. If supp(g1) is equal

to {(2,0)} or to {(0,5)}, then the ideal (f,g1) has finite colength and e(f,g1) = 10, which is

a contradiction, since (f,g1) ⊆ I and e(I) = 11. Therefore g1 = αx2+βy5, for some α,β ∈
C\{0}. If α 6= β, we would have that (f,g1) is an ideal of finite colength and e(f,g1) = 10.

Therefore α= β, which means that g1 ∈ (f)⊆ L. Therefore I ⊆ L.

By Theorem 4.9, we have that M = Z(M)∩ (I ⊕ I ⊕ I). The module Z(M) can be

computed by means of Lemma 4.11. Thus we obtain that Z(M) is generated by the columns
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of the matrix




1 0

0 −1
1 1



 .

We have seen before that I =L. Let us remark that {x2+y5,xy3,y6} is a minimal system of

generators of L. Then, by intersecting the modules Z(M) and L⊕L⊕L, we finally obtain

that M is generated by the columns of the following matrix:





x2+y5 xy3 y6 x2+y5 xy3 y6

x2+y5 xy3 y6 0 0 0

0 0 0 x2+y5 xy3 y6



 .

In the next subsection, we will introduce an important class of modules that are integrally

decomposable.

4.2 Newton nondegenerate modules

Let us fix coordinates x1, . . . ,xn for Cn. Let M be a submodule of Op
n and let us identify

M with any matrix of generators of M. We recall that Mi is the ideal of On generated by

the elements of ith row of M. We define the Newton polyhedron of M as

Γ+(M) = Γ+

(
p
∏

i=1

Mi

)

= Γ+(M1)+ · · ·+ Γ+(Mp) = {k1+ · · ·+kp : ki ∈ Γ+(Mi), for all i}.

We denote by Fc(Γ+(M)) the set of compact faces of Γ+(M) (see [2, p. 408] or [3, p. 397]

for details).

Let I be an ideal of On. We denote by I0 the ideal by all monomials xk such that

k ∈ Γ+(I). We refer to this ideal as the term ideal of I. If I is the zero ideal, then we set

Γ+(I) = ∅ and I0 = 0. Recall that an ideal is said to be monomial if it admits a generating

system formed by monomials. It is known that if I is a monomial ideal, then I = I0 (see

[16, p. 141], [27, p. 11], or [43, p. 219]). The ideals I for which I is generated by monomials

are characterized in [39] and are called Newton nondegenerate ideals (see also [3], [4], or

[43, p. 242]).

In [2], the Carles Bivià-Ausina introduced and studied the notion of Newton nondegen-

erate modules of maximal rank. Here we extend this concept to modules of submaximal

rank.

Let f ∈ On and let f =
∑

k
akx

k be the Taylor expansion of f around the origin. If ∆ is

any compact subset of Rn
>0, then we denote by f∆ the polynomial resulting as the sum of

all terms akx
k such that k ∈∆. If no such k exist, then we set f∆ = 0.

Definition 4.15. Let M be a nonzero submodule of Op
n and let r= rank(M). Let [mij ]

be a p×m matrix of generators of M, where p6m.

(1) ([2, 3.6]) First assume r = p. We say that M is Newton nondegenerate when

{
x ∈ Cn : rank[(mij)∆i

(x)]< p
}
⊆
{
x ∈ Cn : x1 . . .xn = 0

}
,

for any ∆∈Fc(Γ+(M)), where we write ∆ as ∆=∆1+ · · ·+∆p with ∆i being a compact

face of Γ+(Mi), for all i= 1, . . . ,p.
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(2) Now assume r < p. We say that M is Newton nondegenerate when ML is Newton

nondegenerate, as a submodule (of rank r) of Or
n, for any L ∈ ΛM .

In particular, if I is an ideal of On and g1, . . . ,gs denotes a generating system of I, then

I is Newton nondegenerate if and only if {x ∈ Cn : (g1)∆(x) = · · · = (gs)∆(x) = 0} ⊆ {x ∈
Cn : x1 · · ·xn = 0}, for any ∆ ∈ Fc(Γ+(I)).

The following result follows from [2, 3.7, 3.8] and it characterizes the Newton nondegen-

eracy of submodules of Op
n of maximal rank.

Theorem 4.16. [2] Let M ⊆Op
n be a submodule of rank p. Then the following conditions

are equivalent:

(1) M is Newton nondegenerate.

(2) Ip(M) is a Newton nondegenerate ideal and Γ+(Ip(M)) = Γ+(M).

(3) M =M0
1 ⊕·· ·⊕M0

p .

If furthermore, λ(Op
n/M)<∞, then the previous conditions are equivalent to the following:

(4) e
(
Ip(M)

)
= n!Vn

(
Γ+(M)

)
.

(5) Mi is Newton nondegenerate, for all i= 1, . . . ,p, and e(M) = δ(M).

As an immediate consequence of Theorem 4.16, the following result follows.

Corollary 4.17. Let M be a submodule of Op
n and let r= rank(M). Then the following

conditions are equivalent:

(1) M is Newton nondegenerate.

(2) Ir(ML) =
∏

i∈LM
0
i , for all L ∈ ΛM .

(3) M{i1,...,ir} =M0
i1
⊕·· ·⊕M0

ir
, for all (i1, . . . , ir) ∈ ΛM .

(4) M is integrally decomposable and Mi is Newton nondegenerate, for all i= 1, . . . ,p.

Therefore, we see from the previous result that if M is Newton nondegenerate, then it is

integrally decomposable. The converse does not hold in general, as Example 4.14 shows.

From the results of the previous section we obtain the following combinatorial interpre-

tation for the analytic spread of Newton nondegenerate modules of maximal rank.

Corollary 4.18. Let M ⊆Op
n be a Newton nondegenerate module of rank p, then

ℓ(M) = max
{
dim(∆) : ∆ ∈ Fc(Γ+(M))

}
+p.

Proof. We may assume R has infinite residue field and then ℓ(M) = ℓ(M) (see

Remark 3.7). Moreover M =M0
1 ⊕·· ·⊕M0

p , since M is Newton nondegenerate. Therefore

ℓ(M) = ℓ(M0
1 ⊕·· ·⊕M0

p ) = ℓ(M0
1 · · ·M0

p )+ p− 1, where the last equality is an application

of Corollary 3.10. By [1, Theorem 2.3] we have

ℓ(M0
1 · · ·M0

p ) = max
{
dim(∆) : ∆ ∈ Fc

(
Γ+(M

0
1 · · ·M0

p )
)}

+1.

Since Γ+(M) = Γ+(M
0
1 · · ·M0

p ) the result follows.

Example 4.19. Let M be the submodule of O2
2 generated by the columns of the

following matrix

M =

[
x3 xy y3 y3

x5 x2y xy2 x5+x2y

]

.
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We observe that rank(M) = 2 and I2(M) is a Newton nondegenerate ideal. Moreover

I2(M) = (xy5,x2y3,x3y2,x5y,x8) = M1M2. Therefore M = M0
1 ⊕M0

2 , by Corollary 4.17

and ℓ(M) = ℓ(M) = 3, by Corollary 4.18.

Analogously to Definition 4.6, for a submodule of Op
n we introduce the following objects.

Definition 4.20. Let M ⊆On
p and let r = rank(M). We define

HM =
∑

(i1,...,ir)∈ΛM

M0
i1
. . .M0

ir
,

and

C0(M) = Z(M)∩
(
M0

1 ⊕·· ·⊕M0
p

)
,

where we recall that Z(M) =
{
h ∈Rp : rank(M) = rank(M +Rh)

}
.

We remark that HM is a monomial ideal and Γ+(HM ) = Γ+(JM ). Therefore HM = J0
M ,

where J0
M is the ideal of On generated by the monomials xk such that k ∈ Γ+(JM ). We

also remark that C(M) ⊆ C0(M). The following result follows from Theorem 4.9 and

Corollary 4.17.

Corollary 4.21. Let M be a submodule of Op
n and let r = rank(M). Consider the

following conditions.

(1) M is Newton nondegenerate.

(2) Ir(M) = J0
M .

(3) M = C0(M).

Then (1)⇒ (2)⇒ (3). Moreover, if r = p, then these implications become equivalences.

Remark 4.22. (1) The implication (3)⇒ (2) in Corollary 4.21 does not hold in general,

as shown in Example 4.24. Analogous to Theorem 4.9, in a wide variety of examples of

modules M ⊆O3
2 with rank(M) = 2, we have checked that M is Newton nondegenerate

whenever Ir(M) = J0
M . However we have not still found a proof or a counterexample

of the implication (2)⇒ (1) of Corollary 4.21 in general.

(2) We remark that the advantage of Corollary 4.21 over Theorem 4.9 is that it is usually

easy to verify if a module is Newton nondegenerate via Theorem 4.16. Moreover, C0(M)

admits a faster computation than C(M) as we can use convex-geometric methods to

compute the integral closure of monomial ideals.

In the following example we use Corollary 4.21 to compute the integral closure of a family

of modules.

Example 4.23. Let us consider the submodule M ⊆ O3
2 generated by the columns of

the following matrix:




xa xy ya

ya xa xy

xa+ya xy+xa ya+xy



 ,

where a ∈ Z>2. We remark that rank(M) = 2. Let J = (xa,xy,ya). The ideal J is

integrally closed and M0
1 =M0

2 =M0
3 = J . An elementary computation shows that I2(M) =

(xya+1 − x2a,xa+1y − y2a,x2y2) and that I2(M) is Newton nondegenerate. Moreover
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J0
M = (x2a,x2y2,y2a) and then I2(M) = J0

M , since Γ+(I2(M)) = Γ+(J
0
M ). Therefore, by

Corollary 4.21, we conclude that M =C0(M) =C(M). Given any element h= (h1,h2,h3)∈
O3

2, we have that rank(M) = rank(M +O2h) if and only if h3 = h1 + h2 (Lemma 4.12).

Therefore,

M =
{
h ∈M0

1 ⊕M0
2 ⊕M0

3 : rank(M) = rank(M +O2h)
}

=
{
[h1 h2 h1+h2]

T ∈ O3
2 : h1,h2 ∈ J

}
.

Therefore, a minimal generating system of M is given by the columns of the folowing matrix





xa xy ya 0 0 0

0 0 0 xa xy ya

xa xy ya xa xy ya



 .

Example 4.24. Let M be the submodule of O2
2 generated by the columns of the

following matrix

[
x3 x2y

x(x+y) y(x+y)

]

.

We observe that rank(M) = 1. The ideal I1(M) is given by

I1(M) = (x3,x2y,x(x+y),y(x+y)) =M1+M2 = JM .

We have Γ+(I1(M)) = Γ+(x
2,y2). Let ∆ denote the unique compact face of dimension 1 of

Γ+(x
2,y2). Hence (x3)∆ = 0, (x2y)∆ = 0, (x(x+y))∆ = x(x+y) and (y(x+y))∆ = y(x+y).

Since the line of equation y = −x is contained in the set of solutions of the system x(x+

y) = y(x+ y) = 0, we conclude that I1(M) is Newton degenerate. Therefore I1(M) 6= J0
M

(otherwise I1(M) would be a reduction of the monomial ideal J0
M and hence I1(M) would be

Newton nondegenerate, which is not the case). Let us observe that I1(M) = (x(x+y),y(x+

y))+m3
2. Therefore, by Corollary 2.12 and applying Singular [14] (see Remark 4.13), we

deduce that M =M .

By computing explicitly a generating system of C0(M) = Z(M)∩ (M0
1 ⊕M0

2 ), we also

obtain that C0(M) =M and hence C0(M) =M . Then (3); (2) in Corollary 4.21.

Remark 4.25. Let R be a Noetherian normal domain. We note that the only general

approach to compute the integral closure of an arbitrary submodule M ⊆ Rp is to

compute the normalization R(M) of the Rees algebra R(M). Indeed, by [38], we have

[R(M)]1 = M and this algebra can be computed via algorithms such as the one in [15],

which is implemented in Macaulay2 [21] under the command integralClosure.

We note that Theorem 4.9 and Corollary 4.21 can be used to compute the effectively

the integral closure of integrally decomposable modules. Other algorithms that compute

integral closures of modules under special conditions can be found in the literature (see for

instance [45, 9.23]).

The following two examples are motivated by Example 5.8 of [34].
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Example 4.26. Let us consider the submodule M ⊆ O3
2 generated by the columns of

the following matrix





x2 y 0

0 x y2

x2 x+y y2



 .

The rank of M is 2 and I2(M) = (x3,x2y2,y3). Thus I2(M) =m3
2. By Corollary 2.12, we

have M = Z(M)∩A(M), where

A(M) =
{
h= [h1 h2 h3]

T ∈ O3
2 : I2(M,h)⊆m3

2

}
. (4.2)

In general, the submodule Z(M) can be computed by using Singular [14], as explained in

Remark 4.13. In this case it is immediate to see that

Z(M) =





1 0

0 1

1 1



 .

In (4.2) the minors of size 2 of the matrix (M,h) are x2h2,yh2−xh1,y
2h1,x

2(h3−h1),yh3−
(x+ y)h1,xh3− (x+ y)h2 and y2(h3−h2). Then A(M) is equal to the intersection of the

following submodules of O3
2:

N1 =
{
h= [h1 h2 h3]

T ∈ O3
2 : x

2h2 ∈m3
2

}

N2 =
{
h= [h1 h2 h3]

T ∈ O3
2 : yh2−xh1 ∈m3

2

}

N3 =
{
h= [h1 h2 h3]

T ∈ O3
2 : y

2h1 ∈m3
2

}

N4 =
{
h= [h1 h2 h3]

T ∈ O3
2 : x

2(h3−h1) ∈m3
2

}

N5 =
{
h= [h1 h2 h3]

T ∈ O3
2 : yh3− (x+y)h1 ∈m3

2

}

N6 =
{
h= [h1 h2 h3]

T ∈ O3
2 : xh3− (x+y)h2 ∈m3

2

}

N7 =
{
h= [h1 h2 h3]

T ∈ O3
2 : y

2(h3−h2) ∈m3
2

}
.

Each of the above submodules can be computed with Singular. For instance, to obtain a

generating system of N5 we can use the following procedure. Let S denote the quotient ring

O2/m
3
2 and let us consider the submodule of S3 given by syzS(−x−y,0,y) = {(g1,g2,g3) ∈

S3 : (−x−y)g1+yg3 =0}. Once we have obtained a matrix of generators of syzS(−x−y,0,y)
with Singular, if B is any submodule of O3

2 whose image in S3 generates syzS(−x−y,0,y),

then N5 = B+(m3
2⊕m3

2⊕m3
2). Therefore it follows that N5 is generated by the columns

of the matrix




y2 y2 xy−y2 x2−xy+y2 y 0

0 0 y2 0 0 1

0 y2 −y2 y2 x+y 0



 .

By computing a minimal generating system of Z(M)∩N1∩· · ·∩N7, it follows that





x2 xy y2 y 0

0 0 0 x y2

x2 xy y2 x+y y2



 .
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We remark that M1 = M1, M2 = M2 and M3 = (x+ y)+m2
2. Therefore, a computation

with Singular shows that the module C(M), which is defined as Z(M)∩ (M1⊕M2⊕M3),

is equal to M .

However we have the strict inclusion I2(M)⊆ JM in this case, since JM =m2
2. Hence we

have (3); (2) in Theorem 4.9.

The inequality I2(M) 6= JM implies that M is not integrally decomposable, by The-

orem 4.9. Actually, none of the submodules M{1,2}, M{1,3} and M{2,3} are integrally

decomposable, by Proposition 4.5, since they δ(M1,2)= δ(M1,3)= δ(M2,3)= 5 and e(M1,2)=

e(M1,3) = e(M2,3) = 8.

Example 4.27. Let us consider the submodule M ⊆ O2
2 generated by the columns of

the following matrix:

[
xa yb 0

0 xc yd

]

,

where a,b,c,d ∈ Z>1. Let I = I2(M) = (xa+c,xayd,yb+d). Since the ideals M1 and M2 are

generated by monomials we have, from Theorem 4.16, that

M is decomposable⇐⇒M =M0
1 ⊕M0

2

⇐⇒M is Newton nondegenerate

⇐⇒ I is Newton nondegenerate and Γ+(I) = Γ+(M1M2). (4.3)

Therefore M is not decomposable if and only if Γ+(I) is strictly contained in Γ+(M1M2). We

see that Γ+(M1M2) = Γ+(x
a+c,xayd,yb+d,xcyb). Let us observe that Γ+(I) = Γ+(x

a+c,yb+d)

if and only if ad>bc.

Let us suppose first that ad>bc. Then Γ+(I) is strictly contained in Γ+(M1M2) if and

only if (c,b) lies below the line determined by the two vertices of Γ+(I), which is to say that

ad > bc.

If ad < bc, then the Newton boundary of Γ+(I) is equal to the union of two segments and

(c,b) belongs to the interior of Γ+(I). Hence Γ+(I) = Γ+(M1M2) and this implies that M is

decomposable by (4.3).

Thus we have shown that M is not decomposable if and only if ad > bc. In this case, we

have Γ+(I) = Γ+(x
a+c,yb+d). Let w = (b+d,a+ c). By Corollary 2.12, we obtain that

M =
{
h= [h1 h2]

T ∈ O2
2 : dw(x

ah2)>(a+ c)(b+d), (4.4)

dw(y
bh2−xch1)>(a+ c)(b+d) and

dw(y
dh1)>(a+ c)(b+d)

}
.

Once positive integer values are assigned to a,b,c,d, it is possible to obtain a generating

system of M with Singular [14] by following an analogous procedure as in Example 4.26.

In the following example, we show an example of a nondecomposable integrally closed

submodule of O2
2 of rank 2 whose ideal of maximal minors is not simple (i.e., it is factorized

as the product of two proper integrally closed ideals).
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Example 4.28. Let M be the submodule of O2
2 generated by the columns of the

following matrix:
[
x5 xy y5

y2 x+y y2

]

.

We observe that e(M1)= 10, e(M2)= 2 and e(M1,M2)= 2. Therefore δ(M)= 14. However

e(M) = 22. Then M is not decomposable by Proposition 4.5. In particular, since M is a

submodule of O2
2, M does not split as the direct sum of two proper ideals of O2. Let

I = I2(M) = (−xy3 +xy5 + y6,−x5y2 + y7,−xy3+x6+x5y). By Corollary 2.12 it follows

that

M =
{
h ∈ O2

2 : I2(M +O2h)⊆ I2(M)
}
.

An easy computation shows that I is Newton nondegenerate and Γ+(I) = Γ+(x
6,xy3,y6).

The ideal generated by all monomials xk1yk2 such that (k1,k2) ∈ Γ+(I) is J =

(x6,x5y,x3y2,xy3,y6). Hence I = J and this implies that

M =
{
h= [h1 h2]

T ∈ O2
2 : x

5h2−y2h1, y
5h2−y2h1, xyh2− (x+y)h1 ∈ J

}
.

Hence M =N1∩N2∩N3, where

N1 =
{
h= [h1 h2]

T ∈ O3
2 : x

5h2−y2h1 ∈ J
}

N2 =
{
h= [h1 h2]

T ∈ O3
2 : y

5h2−y2h1 ∈ J
}

N3 =
{
h= [h1 h2]

T ∈ O3
2 : xyh2− (x+y)h1 ∈ J

}
.

As in Example 4.26, using Singular [14], we obtain that

N1 =

[
y4 x3 xy 0 0

0 0 0 y x

]

N2 =

[
y4 x3 xy y3

0 0 0 1

]

N3 =

[
y5 x4y−x3y2+x2y3−xy4 x5−x4y+x3y2−x2y3+xy4 x2y2−xy3 0 xy

0 0 0 0 y2 x+y

]

.

Using Singular again, we have N3 ⊆ N1 ∩N2. Therefore M = N3. As we have discussed

before, M is not decomposable and obviously it is integrally closed. However, we have that

I2(M) = I2(M) = (x6,x5y,x3y2,xy3,y6) = (x,y3)(x5,x4y,x2y2,y3).

That is, the ideal I2(M) is not simple. We also refer to [23] for another type and wide class

of examples of integrally closed and nondecomposable submodules N ⊆ O2
2 of rank 2 for

which the ideal I2(N) is not simple (these examples are motivated by a question raised by

Kodiyalam in [34, p. 3572] about the converse of Theorem 5.7 of [34]).
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