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Abstract: Drought stress is one of the main environmental stresses affecting turfgrass 15 

growing and natural grasslands development. Traditional methods for turfgrass drought 16 

phenotyping in field are time-consuming and labor-intensive. However, remote sensing 17 

techniques emerge as effective, rapid and easy approaches to optimize turfgrass selection 18 

under water stress. Remote sensing approaches are considerate as important strategies to 19 

select species of turfgrass tolerable to drought allowing green space sustainability and 20 

environment protection in regions with water limitation. Here we evaluated differences 21 

between six mixtures of C3-C4 turfgrass grown under two water regimes (limited and high 22 

irrigation). The performance of turf species was achieved using the green area (GA) 23 

vegetation index calculated from RGB (red green, blue) images obtained by ground camera 24 

and drone imagery, the normalized difference vegetation index (NDVI), the plant canopy 25 

temperature (CT) and soil moisture content (SM). Both vegetation (GA and NDVI) and water 26 

status (CT and SM) indices presented a significant difference in turfgrass growth under the 27 

two water regimes. Differences among turfgrass species were detected under limited and high 28 

irrigation using the vegetation indices. Both NDVI and GA allowed clear separation between 29 

drought-tolerant and susceptible turfgrass, as well as the identification of the mixtures with 30 

a rapid green regeneration after a period of limited irrigation. Moreover, the canopy 31 

temperature also discriminated between turfgrass species but only under limited irrigation, 32 

while soil moisture values did not differentiate between species. Furthermore, the regression 33 

and conceptual model using remote sensing parameters revealed the most adequate criteria 34 

to detect turfgrass variability under each growing condition. This study also highlights the 35 

usefulness of green area vegetation index derived from drone imagery. GA obtained by drone 36 

images in this study explained turfgrass variability better than that derived from ground RGB 37 

images or the NDVI. 38 

Keywords: Remote sensing, NDVI, RGB images, canopy temperature, water deficit, 39 

turfgrass. 40 
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1. Introduction 43 

Drought is one of the main environmental stresses incited high risk in grasslands 44 

development and natural green areas sustainability. The high level of water deficit in many 45 

urban areas and the high consumption of water by turf makes the selection of drought-tolerant 46 

species a fundamental criterion for planning urban green space in smart cities. Turfgrass 47 

phenotyping to drought tolerance is an important strategy to select species more adequate to 48 

regions with water limitations allowing then to the preservation of green spaces and 49 

environment. In this context, the selection of turfgrass varieties with superior drought 50 

resistance and low water use emerges as an effective way to decrease the water requirements 51 

of natural turfgrass areas (Saunders, 2009). Therefore, turfgrass varieties with lower water 52 

needs and that can remain acceptable visually quality under dry conditions would be the 53 

species of choice in urban green spaces (Jansen van vuuren, 1997). However, traditional 54 

methods used to phenotype selection in field is time-consuming and labor-intensive. Araus 55 

and Cairns. (2014) have reported that limitations in field phenotyping restrict our ability to 56 

dissect the genetics of quantitative traits, particularly those related to stress tolerance. 57 

Likewise, breeders of turfgrass reported that the implicit heavy time- and labor demands of 58 

field phenotyping hinder the collection of more comprehensive data during early crop 59 

selection stages (Zhang et al., 2019). 60 

In this context, remote sensing technology has revealed as an alternative approach, in 61 

recent decades, for the selection of drought-tolerant varieties in a short time and without the 62 

need for hard labor. Low-cost phenotyping methods through remote sensing are becoming 63 

more widely used for estimating various plant traits, including chlorophyll content, nitrogen 64 

concentration and biomass (Yousfi et al., 2019; Marin et al., 2020; Saberioon et al., 2014; 65 

Thoele and Ehlert, 2010) and can provide a valuable information on plants adaptation to 66 

abiotic stress like water scarcity and extreme temperatures (Araus and Cairns, 2014). Remote 67 

sensing techniques used in filed like the hand-held point sensors such as spectroradiometers 68 

(Deery et al., 2014; Yousfi et al., 2019), thermal sensors (Amani et al., 1996), imagers (Jones 69 

et al., 2009; Marin et al., 2020) and drones (Deery et al., 2014) can provide relevant 70 

information on plant phenotypes (Montes et al., 2011) and a rapid approximation of plant 71 

biochemical and biophysical criteria for large areas in field trials (Li et al., 2014). 72 

Furthermore, the non-invasive remote sensing methods such as digital image analysis and 73 

spectral reflectance for quantifying turfgrass cover and quality (Montes et al., 2011; 74 

Richardson et al., 2001; Jiang and Carrow, 2007) are considerate as major strategies to 75 

achieve grassland sustainability and less water consumption.  76 

Vegetation indices derived from remote sensing approaches are the criteria widely 77 

employed in field phenotyping platforms. One of the most well-known indices is the 78 

normalized difference vegetation index (NDVI), derived from optical remote sensing. The 79 

NDVI has been used widely for the estimation of plant biomass (Hansen et al., 2003; Babar 80 

et al., 2006) and for turfgrass management (Marin et al., 2020; Carrow et al., 2010; Murphy 81 

et al., 2014). This index is based on the concept of a relationship between the absorption of 82 

visible light and strong reflectance of near-infrared light by chlorophyll (Viña et al., 2011). 83 

NDVI is correlated positively with turfgrass quality (Caturegli et al., 2016) and can be 84 

affected by differences in species and environments (Caturegli et al., 2015). In addition, 85 



  

 

information derived from digital RGB (red, green, blue) images can also inform on canopy 86 

vegetation (Yousfi et al., 2019; Casadesus et al., 2007). Digital image analysis has been 87 

successfully used to assess turfgrass color and the percentage of green cover (Marin et al., 88 

2020; Karcher et al., 2003; Richardson et al., 2001), as well as detect weeds in turfgrass plots 89 

(Parra et al., 2020). The color information from RGB images can be frequently utilized to 90 

estimate leaf chlorophyll content and nitrogen concentration (Amani et al., 1996; Li et al., 91 

2015), plant biomass (Amani et al., 1996; Montes et al., 2011; yousfi et al., 2016) and plant 92 

height (Bendig et al., 2014; Schirrmann et al., 2016).   93 

Furthermore, canopy temperature measurements taken using infrared thermometers 94 

sensor are also commonly used for the detection of water stress-induced stomatal closure and 95 

as a guide for genotypic performance under drought (Idso et al., 1981). Canopy temperature 96 

is a relative measure of plant transpiration associated with water uptake from the soil 97 

(Reynolds et al., 2007). Given that a major role of transpiration is leaf cooling, canopy 98 

temperature provides an indicator of the degree to which transpiration cools leaves under a 99 

demanding environmental load (Araus et al., 2008).  100 

In this study, we examined the performance of different mixtures of C3-C4 turfgrass under 101 

limited and higher irrigation using remote sensing parameters. The choice of C3-C4 mixtures 102 

permit us a large wide range of environmental conditions since C3 species are typical for 103 

cooler temperature regions and the C4 grasses are adapted to persist in warmer environments, 104 

and both species differ in the photosynthetic system for the uptake of carbon dioxide. Green 105 

biomass was estimated by NDVI (measured with a portable spectroradiometer with an active 106 

sensor) and by the green area vegetation index (GA) derived from ground and aerial (using a 107 

drone) digital pictures. Additionally, water status indices were determined by measuring the 108 

canopy temperature by infrared thermometry and the soil water content by moisture sensors. 109 

The main objective of this study is to select the turfgrass more tolerant to water limitation 110 

and those with a rapid green regeneration after a period of stress, using remote sensing 111 

methods. Moreover, we also evaluated the efficacy of the vegetation indices obtained by 112 

ground and aerial imagery, alone or in combination with canopy temperature, to track 113 

turfgrass variability under the two irrigation regimes. To the best of our knowledge, this study 114 

is the first to propose a conceptual model relating turfgrass species variability with 115 

differences in vegetation indices, canopy temperature and soil moisture under high and 116 

limited irrigation. Understanding the relationships between vegetation indices and water 117 

status parameters in turfgrass may help to design efficient breeding strategies to select those 118 

species most suitable for a given environmental condition (especially drought), thereby 119 

contributing to grassland sustainability.  120 

 121 

2. Materials and Methods 122 

2.1. Plant material and growing conditions 123 

Field trials were conducted during 2019 at the Madrid Institute for Rural, Agrarian and 124 

Food Research and Development (IMIDRA) in Alcalá de Henares. This site is characterized 125 

by loamy sand fertile soils and a continental climate. Six C3-C4 turfgrass mixtures were 126 

studied. To this end, we mixed seeds from Festuca arundinacea and Poa pratensis (both C3) 127 



  

 

with those from three C4 turfs, Cynodon dactylon, Buchloe dactyloides and Zoysia japonica, 128 

in a with 75:25 ratio of C3 to C4. The description and characteristics of the turfgrass species 129 

used are provided in Table 1. Irrigation was applied with sprinklers in blocks connected by 130 

valves and controlled by the Rain Bird irrigation system (ESP-LXME Model). Two different 131 

irrigation regimes were assayed, limited irrigation (50 % of container capacity) and high 132 

irrigation (100% of container capacity). Soil humidity (Fig. 2) was controlled by sensors 133 

(Plantae station, Plantae, Spain) placed in the experimental plots and in the root active zone 134 

(at a depth of 10 cm). Turfgrass seeds were planted on 4 April 2019 in a total of 36 plots (six 135 

turfgrass mixtures, three replicates per mixture and two water regimes), each measuring 3 m 136 

× 1.5 m (Fig. 2). Water deficit was imposed for two months (after plant germination) by 137 

decreasing the amount of water applied. Afterward, irrigation was then increased to reach a 138 

high soil moisture content (Fig. 1) and was maintained for the following two months in order 139 

to evaluate the degree of green regeneration of each mixture. Measurements were taken firstly 140 

in the two months of limited irrigation (two days of measurement in each month), and 141 

subsequently in the two month of high irrigation (also we have measured twice in each month 142 

of high irrigation treatment).  143 

Table 1. Description of C3 and C4 turfgrass used in this study 144 

Source: Dalmau Seeds: www.semillasdalmau.com and Zulueta seeds: www.zulueta.com. 145 

 146 
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Description 

C3 Species   

 Festuca arundinacea  
Highly resistant to heat and drought due to its extensive root 

system, adapted to a wide range of climatic conditions.  

 

Poa pratensis 

Vigorous root system that gives high density. Adaptable to 

various soils, climates, and typically used in mixtures. 

Excellent tolerance to salinity and shade and relatively 

resistant to heat and drought. 

C4 species    

 

Cynodon dactylon 

It is the most important C4 grass species of warm climates. 

Resistant to long periods of drought, adapts to all kinds of 

soils and with strong stolons that confer high coverage 

capacity. 

 

Buchloe dactyloides 

Species of warm climates. It adapts to all types of soil, 

preferring alkaline substrates. Resistant to drought and 

aridity. Poor adaptation to shade.  

 

Zoysia japonica 

Species of warm climates showing some tolerance to cold. 

It prefers the sun but can tolerate a little shade. Tolerates 

heat and drought. Powerful root system allowing it to resist 

drought better than other plants. 
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      Figure 1. Daily soil moisture measurements collected by the Plantae Sensor. 149 
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 152 
Figure 2. Drone image of turfgrass plots used in the field trial. 153 

 154 
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2.2. NDVI  156 

A portable spectroradiometer (GreenSeeker handheld crop sensor, Trimble, USA) was 157 

used to measure the NDVI (Normalized Difference Vegetation Index). This index is 158 

calculated by the following equation: (NIR–R)/ (NIR+R), where R is the reflectance in the 159 

red band and NIR is the reflectance in the near-infrared band. A constant distance of 50–60 160 

cm above and vertical to the canopy was maintained between the sensor and the plots. 161 

 162 

2.3. Ground and aerial RGB images   163 

RGB (red, green, blue) images were taken in each plot about 80 cm above the plant 164 

canopy in a zenithal plane using a SONY DSC-W120 camera. RGB aerial images were taken 165 

on the same day using a BEBOP drone (Parrot, Paris, France) equipped with an RGB camera. 166 

The BreedPix 0.2 free-access software established for digital image processing was used for 167 

image analysis (Casadesús et al., 2005). This software rapidly provides digital values on the 168 

basis of different color properties and measures the green area (GA; portion of pixels with 169 

60 < Hue < 120 from the total number of pixels) by capturing differences in biomass. Two 170 

GA indices were analyzed, GAground RGB (calculated from the ground image) and GAaerial RGB 171 

(calculated from aerial image).  172 

2.4 Canopy temperature measurements 173 

Canopy temperature (CT) was measured on the same day as the vegetation indices, using 174 

an infrared thermometer (Fluke 561 sensor, China). Measurements were taken approximately 175 

1 m above the plants and with the sun behind the user of the device. Three measurements 176 

were taken in each plot and the average was taken as a plot data.  177 

2.5 Plot moisture content  178 

Soil moisture (SM) was measured on the same day as the remotely sensed traits using a 179 

Field Scout Time Domain Reflectometry sensor 350 (TDR 350, Spectrum Technologies, Inc 180 

USA). Measurements were taken with the 7cm TDR rods, and at three sites in each plot. 181 

Average of the three measurement was taken as a data of each plot.  182 

2.6. Statistical analysis 183 

Data were subjected to factorial analyses of variance (ANOVA) to test the effects of irrigation 184 

on turfgrass growth. A bivariate correlation procedure was used to analyze the relationships 185 

between NDVI, GAground RGB, GAaerial RGB, and CT. Moreover, we performed a multiple linear 186 

regression analysis (stepwise) to analyze turfgrass variability under different growing 187 

conditions. Statistical analysis was done using IBM SPSS Statistics 24 (SPSS Inc., Chicago, 188 

IL, USA). Sigma-Plot 11.0 for Windows (Systat Software Inc., Point Richmond, CA, USA) 189 

was used to establish the figures. Finally, we performed path analyses (Li, 1975) to quantify 190 

the relative contributions of the direct and indirect effects of remote sensing traits on turfgrass 191 

variability. This methodology offers the possibility of building associations between 192 

variables on prior knowledge. A path analysis determines simple correlations between 193 

independent factors (in this case CT and SM), and regresses them on each intermediary 194 

(NDVI, GAground RGB, GAaerial RGB) to obtain direct effects in the form of partial regression 195 

coefficients (i.e. path coefficients) involving traits that displayed turfgrass growing variation. 196 

This model helps to understand differences in growing between the turf species (examined 197 

in this study) under the two irrigation regimes tested. A model with a comparative fit index 198 



  

 

(CFI) with values > 0.9 was taken as indicative of good fit (Arbuckle, 1997). Data were 199 

analyzed using the Amos Graphics package (IBM SPSS Amos, USA).  200 

 201 

3. Results 202 

3.1 Effect of irrigation on NDVI and green area   203 

Irrigation significantly affected the turfgrass NDVI and GA (Table 2). Low values for the 204 

three vegetation indices (NDVI, and GA calculated from both ground and aerial RGB 205 

images) were observed under limited irrigation. In addition, soil moisture (SM) content under 206 

high irrigation was double that under limited irrigation, whereas the canopy temperature (CT) 207 

of plants increased with the decrease of irrigation (Table 2). 208 

Table 2. Effect of irrigation on NDVI (Normalized Difference Vegetation Index), GAground RGB 209 

(Green Area calculated from ground RGB images), GAaerial RGB (Green Area calculated from 210 

drone RGB images), CT (canopy temperature) and SM (soil moisture) and the corresponding 211 

ANOVA. Values presented are the means of the 72 measurements in each irrigation regime (6 212 

turfgrass mixtures, three replicate per mixtures and four date of measurements in each 213 

treatment). Significance levels: ***p < 0.001. 214 

 215 

3.2 Classification of turfgrass species on the basis of vegetation and water status indices  216 

 217 

Turfgrass species showed a significant difference on comportment under the two irrigation 218 

regimes (Table 3). All the vegetation indices measured (NDVI, GAground RGB, GAaerial RGB) 219 

discriminated significantly (P < 0.000) between Festuca and Poa turfgrass mixtures under 220 

both water stress and high irrigation (Table 3). The mixtures of Festuca with the three C4 221 

turfgrass showed higher vegetation indices under limited irrigation compared to Poa-C4 222 

mixtures. Conversely, Poa-C4 mixtures showed better vegetation indices than Festuca-C4 223 

mixtures under the high irrigation. Moreover, canopy temperature (CT) also allowed 224 

significant discrimination between turfgrass species but only under the water stress regime 225 

(Table 3) with lower values of canopy temperature observed in Festuca mixtures under 226 

limited irrigation. However, for the soil moisture (TDR measures), the species effect was not 227 

significant under both water regime (Table 3). 228 

 229 

 230 

 
Limited irrigation High irrigation Level of 

significance 

NDVI 0.65 0.80 0.000*** 

GAground RGB  0.49 0.78 0.000*** 

GAaerial RGB  0.50 0.79 0.000*** 

CT 20.00 13.70 0.000*** 

SM 24.05 45.02 0.000*** 



  

 

Table 3. Means values of NDVI, GAground RGB, GAaerial RGB, CT and SM of Festuca and Poa 231 

mixtures with C4 turf. Significance levels of difference among species under limited and high 232 

irrigation are presented. Species values are the means of the 36 measurements (3 turfgrass 233 

mixtures, three replicate per mixtures and four date of measurements in each treatment). 234 

Significance levels: ns, not significant; ns, not significant; ***p < 0.001. Abbreviation of 235 

variable as in Table 2. Significance levels. 236 

 237 

 238 

Furthermore, comparison intra mixtures showed that under limited irrigation Festuca 239 

mixed with Cynodon, Zoysia and Buchloe did not present any difference between them on 240 

vegetation indices, nonetheless CT was lower in Festuca-Cynodon mixture. Whereas under 241 

high irrigation Festuca-Zoysia and Festuca-Buchloe (with higher NDVI, GAground RGB and 242 

GAaerial RGB) slightly outperformed Festuca-Cynodon (Fig. 3A, B, C). With respect to the Poa 243 

mixtures, significant differences were observed under both water regimes (Fig. 3). In this 244 

regard, under limited irrigation, Poa-Cynodon showed higher vegetation indices and lower 245 

CT (Fig. 3A, B, C, D), while under the high irrigation regime Poa-Zoysia and Poa-Buchloe 246 

showed better growing parameters than Poa-Cynodon. Whereas, SM did show any 247 

differences intra mixtures (Fig 3E).  248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

    Limited irrigation    High irrigation 

       Mixtures        Mixtures 

 Festuca-C4 Poa-C4 Significance Festuca-C4 Poa-C4 Significance 

NDVI 0.69 0.58  0.000*** 0.77 0.80  0.000*** 

GAground RGB 0.59 0.40  0.000*** 0.75 0.81  0.000*** 

GAaerial RGB 0.57 0.44  0.000*** 0.76 0.83  0.001*** 

CT 18.33 20.51  0.000*** 13.33 14.20   0.065ns 

SM 23.50 24.5   0.179ns 44.78 45.27 0.095ns 



  

 

 256 

 257 

Figure 3. NDVI, GAground RGB, GAaerial RGB, CT and SM values of each turfgrass mixture 258 

under limited and high irrigation. Abbreviation of variable as explained in Table 1. Turf 259 

mixtures are: PC, Poa-Cynodon; PZ, Poa-Zoysia; PB, Poa-Buchloe; FC, Festuca-Cynodon; 260 

FZ, Festuca-Ziysia; and FB, Festuca-Buchloe. 261 

 262 

 263 



  

 

3.3 Remote sensing trait and turfgrass variability  264 

A multiple linear regression (stepwise) explaining turfgrass species variability as a 265 

function of traits related to NDVI, GAground RGB and GAaerial RGB, CT and SM under limited and 266 

high irrigation (Table 4) was performed. The GAaerial RGB was chosen as the first explanatory 267 

variable of turfgrass variability under high irrigation and with a strong R2 (0.85). 268 

Additionally, GAground RGB and NDVI were the two other variables chosen by the model. 269 

However, under limited irrigation, the first variable chosen was the NDVI, with (R2= 0.41), 270 

followed by GAaerial RGB and GAground RGB. In contrast to high irrigation, under limited 271 

irrigation the CT contributed (even less than the vegetation indices) to explaining the model.   272 

 Table 4. Multiple linear regressions (stepwise) explaining turfgrass variability using the 273 

NDVI, GAaerial RGB, GAground RGB, CT and SM as independent variables. Abbreviation of 274 

variables as in Table 2. Significance levels: ***p < 0.001. 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

In addition, a conceptual model based on a path analysis was proposed (Fig. 4A) for the 287 

data of both water regimes (comparative fit index (CFI)>0.9 and P>0.05; as the objective was 288 

to develop models that fit the data well). Under high irrigation, neither CT nor SM had any 289 

direct significant effect on the variability of C3-C4 turfgrass mixtures. However, the canopy 290 

temperature (CT) had a significant negative effect on the three vegetation indices (NDVI, 291 

GAaerial RGB, GAground RGB), which in turn were associated significantly with turfgrass 292 

variability (Fig. 4B). Under limited irrigation, the effects of CT and SM on turfgrass 293 

variability were considerable but with a lower coefficient. Nevertheless, these two parameters 294 

(related to plant and soil water status) indirectly affected turfgrass discrimination. Thus, SM 295 

was negatively related to CT, which in turn was strongly and negatively related to the three 296 

vegetation indices. Finally, the vegetation indices showed a high and significant effect on 297 

turfgrass variability under limited irrigation (Fig. 4C), with Higher correlation coefficient of 298 

GAaerial RGB, GAground RGB than NDVI. 299 

Growing Conditions Variable Chosen R2 

High irrigation GAaerial RGB, 0.85 

 GAaerial RGB, GAground RGB 0.91 

 NDVI, GAaerial RGB, GA ground RGB 0.95*** 

Limited irrigation  NDVI  0.41 

 NDVI,  GAaerial RGB 0.83 

 NDVI, GAaerial RGB, GAground RGB 0.94 

 
NDVI, GAaerial RGB, GAground RGB, 

CT 0.96*** 



  

 

 300 

Figure 4. Path analyses of turfgrass species variability under different water regimes. 301 

Parameters included in the model are: NDVI, GAground RGB, GAaerial RGB, CT and SM. 302 

Abbreviation of variables as in Table 2. CFIs with values > 0.9 are taken as indicative of 303 

good fit. Significance levels: **p < 0.01 and ***p < 0.001. 304 

 305 

3.4 Relationships between ground and aerial measurements   306 

NDVI was correlated positively, and with the same pattern, with the GA obtained by aerial 307 

and ground RGB when all turfgrass species, water regimes and replicates are combined (Fig. 308 

5A, B). Moreover, the GAground RGB was also strongly correlated (r = 0.83***) with GAaerial 309 

RGB. (Fig. 5C). Likewise, the three vegetation indices were strongly and negatively correlated 310 

with the canopy temperature and with the same pattern (Fig. 6A, B, C).  311 



  

 

 312 

 313 

Figure 5. Correlation coefficients of the relationships between the different 314 

vegetation indices (NDVI, GAaerial RGB and GAground). Water regime and turfgrass 315 

species were analyzed together. Significance levels: **p < 0.010; ***p < 0.000. 316 

Abbreviations of variables as in Table 2. 317 

 318 

 319 



  

 

 320 

Figure 6. Correlation coefficients of the relationships between the different vegetation 321 

indices (NDVI, GAaerial RGB and GAground) and the canopy temperature (CT). Water regime 322 

and turfgrass species were analyzed together. Significance levels: **p < 0.010; ***p < 0.000. 323 

Abbreviations of variables as in Table 2. 324 

 325 



  

 

4. Discussion 326 

4.1 Potential of NDVI and RGB imagery to screen differences in turfgrass species  327 

Vegetation indices based on RGB images, and the NDVI have demonstrated high-328 

throughput for the precise prediction of several traits that are valuable for breeders and 329 

agronomists (Vergara-Díaz et al., 2016). In this study, NDVI and both GAground RGB and 330 

GAaerial RGB of the turfgrass plots were significantly lower under limited irrigation than high 331 

irrigation. In this context, water-stressed canopies have been reported to have a lower spectral 332 

reflectance in the NIR wavebands than unstressed ones (Fan et al., 2020). The leaves of plants 333 

growing under water stress reflect significantly less NIR and greater red irradiance. 334 

Consequently, the NDVI and GA values are lower under stress conditions. Similar changes 335 

in the reflectance at the visible and NIR wavebands caused by irrigation were observed in 336 

other turf studies on Fescue (Fenstermaker-Shaulis et al., 1997), Lolium (Baghzouz et al., 337 

2006) and Cynodon grass (Baghzouz et al., 2007). The changes in the reflectance values of 338 

turfgrass observed in this study informs on the growing status of plants under limited and 339 

higher irrigation and can indicates perfectly of the turf performance and quality under water 340 

stress conditions. In accordance, Vergara-Díaz et al. (2016) have reported that vegetation 341 

indices based on RGB images, and the NDVI have demonstrated high-throughput for the 342 

precise prediction of several traits that are valuable for breeders and agronomists (Vergara-343 

Díaz et al., 2016). Moreover, Richardson et al. (2001) informed that vegetation indices can 344 

be used to evaluate turf quality, color, dry matter, chlorophyll, carotenoids and nitrogen 345 

content. Other studies also demonstrated the utility of the NDVI and other plant stress 346 

indicators based on spectral reflectance for assessing turfgrass performance (Montes et al., 347 

2011; Trenholm et al., 2000, Marin el al., 2020) and has been used to measure drought stress 348 

(Bell et al., 2002; Trenholm et al., 1999). Our results demonstrate the usefulness of NDVI 349 

and GA measurements from ground and aerial images to distinguish between turfgrass 350 

species under limited and higher. Accordingly, in a previous study, we also highlighted the 351 

utility of NDVI and GA to differentiate between C3-C4 turfgrass under water deficit (Marin 352 

et al., 2020). In addition, other authors also showed that vegetation indices are useful to 353 

discriminate between turfgrass cultivars grown under the same conditions and maintained 354 

under identical agronomical practices (Caturegli et al., 2014).  355 

Moreover, here we have also demonstrated the greater growth of Festuca mixture with 356 

the three C4 turf under water stress compared to the Poa mixtures. In this context, the 357 

metabolism and architecture of roots in Festuca species are key for the development of 358 

tolerance to water deficit (Perlikowski et al., 2020). Likewise, it has been described that 359 

Festuca species adapt to drought stress through alterations in leaf and root morphology 360 

(Wang et al., 2008).  361 

Furthermore, the data obtained from the optical remote sensing techniques in this study, 362 

showed an interesting pattern in the spectral characteristics of both C3-C4 mixtures. 363 

Vegetation indices exhibited that Festuca mixture with Cynodon, Buchloe and Zoysia 364 

presented a similar pattern of growth under limited irrigation, while under high irrigation 365 

Fescue-Buchloe and Fescue-Zoysia outperformed Festuca-Cynodon. Nevertheless, the 366 

NDVI, GAaerial RGB and GAground RGB of Poa with the three C4 species revealed significant 367 

differences under the two water regimes. Under limited irrigation, Poa-Cynodon was found 368 

javascript:;


  

 

to have better vegetation indices, while under high irrigation Poa-Buchloe and Poa- Zoysia 369 

outperformed Poa-Cynodon, with Poa-Buchloe showing the best growth under this condition. 370 

According to this, several types of Bermuda grass have a deep and large root systems, a 371 

morphological trait that allows them to reach available water at greater depth under stress 372 

conditions (Carrow, 1996). On the basis of our results, we can suggest that mixtures of 373 

Festuca with Cynodon, Buchloe or Zoysia have a similar tolerance to water deficit and would 374 

be similar suitable for regions with limited water availability. Whereas, in the case of Pao 375 

mixtures, Poa-Cynodon would be the mixture of choice for drought regions. Furthermore, 376 

under climates with higher precipitation and no water deficiency, the Festuca-Buchloe and 377 

Festuca-Zoysia mixtures can offer better turf quality. Likewise, the Poa-Zoysia and Poa-378 

Buchloe mixtures would be the most suitable in such climates due to their high quality under 379 

optimal growing conditions. Additionally, we also observed that after a period of growth 380 

under limited irrigation followed by high irrigation, the C3 mixture with Buchloe provided 381 

the highest vegetation indices indicating better green biomass regeneration after growing 382 

under water deficit. Accordingly, the most characteristic response of drought-dormant 383 

Buffalo grass (Buchloe dactyloides) is its rapid ability to regenerate growth after a period of 384 

water stress followed by water availability (Shantz, 1911).  385 

 386 

4.2 Turfgrass canopy temperature and water status  387 

The canopy temperature (also referred to as leaf temperature) has been widely employed for 388 

estimating plant water stress (Blum et al., 1982) and for providing a relative measure of plant 389 

transpiration (Araus et al., 2008). In yhis study, the canopy temperature (CT) of the six 390 

turfgrass mixtures, measured by an infrared thermometer, was lower under limited irrigation 391 

than high irrigation. Under water deficit, the decreased in water uptake caused the stomata to 392 

close, thereby reducing transpiration and increasing leaf temperature (Blonquist et al., 2009). 393 

However, a lower CT indicates a greater capacity for transpiration and for taking up water 394 

from the soil, and therefore a better plant water status (Blum et al., 1982). Also, and consistent 395 

with the findings of other studies (Lopes and Reynolds, 2012) we observed that the CT was 396 

strongly related to the vegetation indices. In this regard, lower CTs are strongly associated 397 

with higher green biomass, and these two parameters can help to identify turf species with 398 

the greatest tolerance to drought.  399 

Our results also reveal that, under limited irrigation, the mixture of Festuca with the three 400 

C4 turf showed a lower CT than the Poa mixtures. In this context, Festuca arundinacea is 401 

water use efficiency than other turfgrass species (Horst et al., 1997). Furthermore, in response 402 

to water stress, Festuca spp. undergoes an osmotic adjustment that maintains sufficient turgor 403 

pressure in the growing zone to ensure leaf elongation (Wang et al., 2008). In contrast to the 404 

vegetation indices, the CT of the three Festuca mixtures under limited irrigation showed a 405 

clear difference between mixtures, with Festuca-Buchloe exhibiting the lowest CT. It has 406 

been reported that Buchloe grass requires low levels of water for survival and that under 407 

semi-arid conditions it needs less irrigation to maintain good turf quality than tall Festuca or 408 

and Zoysia grass (Hicks et al., 1984). Also, lower evapotranspiration rates in Buchloe 409 

dactyloides indicate that this species uses less water than selected ornamentals (Horst et al., 410 

1997). However, our comparison between Poa mixtures revealed that Poa-Cynodon showed 411 



  

 

better performance under water deficit. In this context, the thick leaf cuticles and smaller 412 

stomatal openings (Zhou et al., 2009) as well as the reduced leaf surface, stoma density, and 413 

lower water transpiration rate (Mukhtar et al., 2013) of Cynodon dactylon confer better 414 

tolerance to water stress compared to the other turfgrass species. 415 

 416 

4.3 Soil moisture  417 

Soil moisture (SM) values measured by the TDR 350 did not show any differences 418 

between the turfgrass species under limited or high irrigation (Table 3, Fig. 4D). 419 

Nevertheless, the analyze combining all SM data of the six turfgrass mixtures evaluated in 420 

this study demonstrated difference between turfgrass growth under the two irrigation regimes 421 

(Table 2). In this context, such sensors can indicate when the soil profile is full of water or 422 

dry and therefore healthy turf is maintained by avoiding plant stress caused by soil that is too 423 

dry or too waterlogged (Bremer and Ham, 2003). Accordingly, moisture sensors are among 424 

the most used devices to manage crop irrigation schemes and have been reported to improve 425 

irrigation efficacy in lawns (Parra et al., 2019). We propose SM as a useful criterion for 426 

managing turf irrigation, but not for distinguishing between turfgrass mixtures. Moreover, 427 

the feasibility of SM sensing devices has also been addressed for the irrigation management 428 

of Bermuda grass (Osborne et al., 2002). We considerate the SM data obtained by the soil 429 

sensors in this study as indirect measures to evaluate the development of turfgrass species. 430 

Osborne et al. 2002 reported that as SM decreases, plants show a decrease in tissue moisture 431 

content, which in turn influences their reflectance properties.  432 

 433 

4.4 Relationship between ground and aerial optical remote sensing trait   434 

The two groups of vegetation indices (NDVI and ground and aerial RGB images) showed 435 

high and positive correlations between them (Fig. 7). This result is in accordance with 436 

previous research (Adamsen et al., 1999; Lukina et al., 1999, Montes et al., 2011) and 437 

confirms that these indices inform about biomass status in a comparable manner. Likewise, 438 

there was a high association between GAaerial RGB and GAground RGB images. However, GA 439 

obtained by drone images is better than GA of ground images with respect to explaining the 440 

variability in turfgrass growth (Fig. 4D, Fig. 5, Table 4) and was less labor-intensive and with 441 

less time-consuming. The use of spectral vegetation indices derived from UAV imagery is 442 

emerging as a rapid and cost-efficient approach for plant phenotyping (Angelos et al., 2017). 443 

In present, many low cost drones with an integrated simple RGB camera are now available 444 

to take images of large turfgrass surfaces in a short time. In this context, Zhang et al. (2019) 445 

reported that unmanned aerial vehicle (UAV) imagery is considered a powerful tool for 446 

turfgrass breeders allowing them to evaluate crop performance and greatly increase the 447 

efficacy of data collection in relatively large trials (advantages in field of view, spatial and 448 

temporal resolution). Furthermore, the high correlation found between the NDVI and the 449 

GAaerial RGB index in this study allows us to confirm the reliability UAV-based measurements 450 

for selecting drought-tolerant species in large areas. The GreenSeeker hand-held sensor, a 451 

low-cost practical device, has proved useful for detecting turfgrass stress for small areas, 452 

(Caturegli et al., 2015). However, proximal sensors would need to be complemented with 453 

special cameras on board UAVs to monitor the entire surface of large areas Caturegli et al., 454 

2015). 455 

 456 



  

 

4.5 Comparative model using remote sensing methods for turfgrass breeding  457 

Results of the lineal regression presented here showed the usefulness of the vegetation 458 

indices derived from RGB imagery to explain the differences between turfgrass species under 459 

the high irrigation. Of note, the GA vegetation index derived from aerial imagery was the 460 

most important parameter chosen by the model and with a higher impact (r2 = 0.85). 461 

Moreover, NDVI made a negligible contribution to explaining variability under high 462 

irrigation, due to the problem of saturation. In this context, a saturated NDVI in higher 463 

periods of turfgrass activity informs less than RGB indices, which are characterized by less 464 

evident saturation (Montes et al., 2011). However, under limited irrigation, NDVI was the 465 

first criterion chosen by the regression model. Other authors indicated that the NDVI is an 466 

index based on the strong contrast between the near infrared and the red band reflectance of 467 

a vegetation canopy and this difference becomes extensive as canopy vegetation cover 468 

increases (Amani t al., 1996). This would explain why the NDVI is a more appropriate 469 

approach to study stress conditions in sparse canopies or during the early senescence of plants 470 

(Casadesus et al., 2007; Aparicio et al., 2000). However, our study combined both NDVI and 471 

vegetation indices derived from RGB images for collecting more and complete information 472 

to discriminate between turfgrass species under the two irrigation regimes. Accordingly, data 473 

fusion in remote sensing can facilitates estimations of biomass, possibly resolving saturation 474 

difficulties observed with VIS-NIR sensor data under higher density vegetation (Tilly et al., 475 

2015). 476 

 477 

Likewise, the path model performed in the present study confirms the stepwise result and 478 

reveals the high capacity of vegetation indices (NDVI and both GAaerial RGB and GAground RGB) 479 

to explain turfgrass variability, specially the GA index derived from drone images under high 480 

irrigation, where the water status parameters (CT and SM) have no direct effect on turfgrass 481 

species variability. Moreover, under limited irrigation, vegetation indices are still more 482 

important criterion to explain variability of turf. In this case (water stress conditions), CT 483 

contribute to explaining the model (although to a lower extent than the vegetation indices) 484 

and have a direct effect on turf species variability. To the best of our knowledge, this is the 485 

first study to report on a model combining remote sensing techniques to explain variability 486 

in the growth of different turfgrass species under different water regimes. The results of this 487 

study are expected to help breeders to select appropriate criteria for turfgrass phenotyping 488 

under distinct environmental conditions.  489 

 490 

5. Conclusion 491 

This study demonstrates the efficiency of vegetation indices to reveal variability in the 492 

performance of turfgrass species under different growing conditions. Our results confirm the 493 

usefulness of the vegetation indices for phenotyping most drought-tolerant turfgrass mixtures 494 

in terms of retaining greener biomass during periods of limited irrigation. Although the NDVI 495 

is extensively used to monitor changes in growth under different conditions, here we have 496 

shown that the GA vegetation index derived from aerial images provides a better evaluation 497 

of turfgrass mixtures in a short time and with high efficiency. Furthermore, the path analysis 498 



  

 

model developed confirms the importance of the traits assessed by remote sensing for 499 

establishing variability in turfgrass performance. The path analysis and regression model 500 

revealed the most suitable criteria to be used in certain environmental conditions for 501 

discriminating between turfgrass species. Therefore, optimized turfgrass breeding strategies 502 

can allow the precise and rapid (in the case of drones) phenotyping of a large numbers of turf 503 

mixtures to identify those with greatest tolerant to water stress, contributing in this way in 504 

the preservation of water resources, the grasslands sustainability and the environment 505 

protection. In future work, we propose to add thermography (thermal imagery) to the model 506 

for detecting water stress in the same turfgrass mixtures used in this study. We believe that a 507 

strategy combining aerial RGB and thermal imagery may potentially enhance turfgrass 508 

phenotyping and help to rapidly identify those mixtures most tolerant to drought conditions 509 

or those with rapid green regeneration after a period of water stress. 510 
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