
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/200384

Zamudio-Ramirez, I.; Saucedo-Dorantes, JJ.; Antonino-Daviu, JA.; Osornio-Rios, RA.;
Dunai, L. (2022). Detection of Uniform Gearbox Wear in Induction Motors based on the
Analysis of Stray Flux Signals through Statistical Time-Domain Features and Dimensionality
Reduction Techniques. IEEE Transactions on Industry Applications. 58(4):4648-4656.
https://doi.org/10.1109/TIA.2022.3174049

https://doi.org/10.1109/TIA.2022.3174049

Institute of Electrical and Electronics Engineers



1 

 

 

Abstract—Gearboxes are core elements in power transmission 

systems, although gearboxes are reliable and high-efficiency 

components, the occurrence of different faults is frequent since 

they are often subjected to adverse operating conditions. Classical 

gearbox condition monitoring approaches are based on the 

analysis of vibration and current motor signals and rely on the 

identification of specific fault-related frequency patterns. In this 

regard, this paper proposes a novel diagnosis methodology based 

on the analysis of stray flux signals for detecting uniform wear in 

the gear teeth. The proposed methodology is based on the 

processing of the stray flux signals through feature calculation and 

extraction stages that lead to a high-performance signal 

characterization by estimating a set of statistical time domain-

based features and then reducing the dimensionally by means of 

the PCA and LDA techniques. Additionally, an automatic fault 

diagnosis is achieved through a Neural Network-based classifier 

for the detection and identification of uniform wear in a gearbox. 

The obtained results prove the potential of the proposal for its 

incorporation in condition maintenance programs in the industry, 

becoming an excellent alternative to classical approaches. 

Index Terms— Gearbox wear, fault diagnosis, induction motor, 

stray flux, feature extraction, Linear discriminant analysis. 

I. INTRODUCTION 

HE implementation of Condition-based maintenance 

(CMB) programs has played a key role in industrial 

sites to ensure the proper working condition and 

availability of industrial machinery [1]. Indeed, most of 

the industrial applications are based on electromechanical 

systems or kinematic chains where multiple electromechanical 

configurations can be made by involving the use of Induction 

Motors (IM), couplings, shafts, belts, pulleys, and gearboxes. 

Generally, most of these elements are mechanically coupled to 

be part of Power Transmission Systems (PTS) that may be 

found in many industrial applications in aerospace, heavy-duty 

industry, wind turbines, and machining tools [2], [3]. Certainly, 

although gearboxes are the key element of PTS due to their high 

efficiency and robustness [3], adverse operating conditions 

produce constant stresses causing gradual wear on the gear teeth 

that can lead to an unacceptable reduction of their performance 

[4]. In this sense, the development of effective and reliable 

condition monitoring strategies for the assessment and 

detection of incipient faults such as the uniform wear in 

gearboxes is necessary. 

A great deal of condition monitoring strategies based on the 

analysis of vibration, stator currents, torque, and sound have 

been proposed to diagnose discrete faults in gearboxes like 

broken or chipped teeth [1], [2], [4]. In this regard, it has been 

proved that the fault identification in gearboxes can be 

associated to the amplitude increase of the characteristic fault-

related frequency components and sidebands in a vibration 

spectrum [1], [5]; whereas, the fault detection may be also 

performed by analyzing the modulation effects on stator current 

spectrum [6], by using the bispectrum analysis [7], and/or by 

applying time-frequency decomposition (TFD) methods [8]. 

Despite vibrations and stator currents have classically used to 

to assess the gearbox condition, the analysis of torque and 

sound signals in the time-frequency domain, i.e. Wavelet 

transform, have led to the detection of gearbox faults [9]-[10]. 

Regarding the use of stray flux signals to diagnose gearbox 

faults, only few works can be found in the available literature 

[11]-[12]. However, the analysis of stray flux signals can help 

to achieve accurate diagnosis in comparison with classical 

analyses that are based on vibrations or stator currents, since the 

rotor magneto-motive forces (MMF) or stray fluxes are less 

influenced by oscillations in the load compared to other 

quantities [13]-[16]. Accordingly, based on the results obtained 

by [11] and [12], the analysis of stray flux signals in the steady-

state allows the detection of gearbox faults due to the amplitude 

increase of specific fault-related patterns. Yet, although 

gearbox faults may be detected by the analysis of stray flux 

signals, some limitations that affect the diagnosis must be faced, 

i.e., the sensitivity of signal-to-noise ratio, inadequacy for 

nonstationary signals, spectral leakage, and loss of information 

related to time. Thus, it is mandatory to propose new 

alternatives based on stray flux signals that can overcome all 

these drawbacks. 

On the other hand, the development of intelligent condition 

monitoring strategies able to achieve the automatic fault 
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diagnosis may improve the condition assessment of those 

analyses that are dependent on the user expertise, i.e., the 

amplitude increase of the characteristic fault-related patterns in 

a frequency spectrum. In this context, feature calculation and 

feature reduction stages in condition monitoring approaches are 

considered to achieve a high-performance characterization of 

the fault-related patterns. Thus, the feature calculation aims to 

obtain a meaningful pool of features that are estimated through 

the analysis of the acquired raw signals in different domains 

such as time domain (TD), frequency domain (FD) and time-

frequency domain (TFD); i.e., by estimating a set of statistical 

features from TD analysis [17]. While, the feature reduction is 

performed to extract the most significative information from an 

original pool of features that is commonly represented into a 

high-dimensional space; i.e., the original pool of features is 

subjected to a reduction procedure by means of the Principal 

Component Analysis (PCA) and the Linear Discriminant 

Analysis (LDA). Finally, the automatic fault detection may be 

achieved by considering artificial intelligence algorithms such 

as Artificial Neural-Networks (ANN), Support Vector 

Machines (SVM), Fuzzy classifiers, among others. In fact, 

condition monitoring strategies that incorporate the feature 

calculation and feature reduction, even classification algorithms 

are capable of detecting the occurrence of a fault in rotating 

electrical or mechanical machines [17]-[18]. 

This work is based on the proposal of a novel non-invasive 

diagnosis methodology capable of detecting different levels of 

uniform wear on the gear teeth of a gearbox, the gearbox wear 

detection is performed by analyzing stray flux signals that are 

acquired through different sensors installed in the frame of the 

IM that drives the gearbox under study. The gearbox wear 

assessment is achieved by characterizing the acquired signals 

through the estimation of a significant set of 15 statistical time-

domain features to obtain the fault-related patterns that 

characterize the fault occurrence. Subsequently, the estimated 

set of statistical features is subjected to a dimensionality 

reduction process by means of the PCA and the LDA aiming to 

analyze the data distribution and to obtain a 2-D representation 

of the evaluated conditions. Then, through a Neural Network-

based classifier, the automatic diagnosis of four different 

conditions (healthy condition and three different levels of 

uniform wear on the gear teeth, 25%, 50% and 75%) is 

performed. Finally, an analysis and validation of the acquired 

signals is also performed by means of the short-time MUSIC 

algorithm reported in [19]. Such analysis is included to identify 

the effects that the occurrence of uniform wear on the gear teeth 

induces over the stray flux signals. The obtained results 

demonstrate the effectiveness of the proposed diagnosis 

methodology for being included as a part of the condition-based 

maintenance programs in industrial applications, becoming an 

excellent alternative versus classical approaches. 

II. THEORETICAL BACKGROUND 

In this section are presented the theoretical basis that must be 

considered to perform the proposed condition monitoring 

strategy, where, the aim of including dimensionality reduction 

techniques such as Principal Component Analysis (PCA) and 

the Linear Discriminant Analysis (LDA) is the analysis of the 

data distribution and the reduction of an original feature space; 

as well as, the description of the most important aspects 

considered in the Neural Network (NN) that is used to achieve 

the automatic fault diagnosis and classification of faults. 

A. Dimensionality reduction 

Feature calculation and dimensionality reduction techniques 

play an important role when they are part of condition 

monitoring strategies. Feature calculation refers to the signal 

processing methods that have the goal of obtaining the specific 

patterns that characterize that signal [20]; on the other hand, 

dimensionality reduction techniques may be used for different 

purposes, e.g., the analysis of data distributions and/or the 

reduction of an original feature space that may not be visually 

represented. In this regard, the Principal Component Analysis 

(PCA) and the Linear Discriminant Analysis (LDA) are two 

well-known dimensionality reduction techniques in the field of 

machine learning [17]. 

Both PCA and LDA can be used as a way of reducing the 

dimensionality of the data set, but PCA is an unsupervised 

technique while LDA is supervised. Thus, both techniques have 

different goals, PCA aims to map an original data set into the 

coordinate axis that is most convenient for representing the data 

set, retaining as much as possible the data variance. The data 

mapped by the PCA do not consider any classification 

information and this technique is more convenient to represent 

an original data set into reduced dimensionality representation 

with the minimization of information loss. On the other hand, 

since LDA considers classification information, it aims to map 

the original data set into another coordinate axis in which the 

maximum linear separation between different classes is 

intended; thus, multi-class problems represented by complex 

and high-dimensional data sets become easier to be 

distinguished through the LDA. This is possible since all 

considered classes can be distinguished and represented into a 

low dimensional feature space, while reducing the large amount 

of computations required [18]. 

B. Neural Network-based classifiers 

Certain algorithms and methods used in computational learning 

allow to obtain the prediction of events once a specific model 

has been trained with known data, in addition, after the training 

procedure it is desired to obtain precise answers, if not identical, 

the most similar to the correct one. In this regard, from the 

viewpoint of condition monitoring and automatic diagnosis, the 

Neural Network-based classifiers have been widely used in 

several applications where the detection of unexpected 

conditions is the goal to be achieved. Several configurations 

may be considered when using NN’s, however, the basic 

structure comprises three main layers, the input, hidden, and 

output layers that must be defined with a specific number of 

neurons [21]. Therefore, for condition monitoring approaches,  

the input layer has as many neurons as many as characteristic 

features are available; in the hidden layer can be defined a 

number of neurons equivalent to three, four, or five times the 
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number of neurons of the hidden layer; and, in the output layer 

are defined as many neurons as many conditions are evaluated 

[22]. 

III. PROPOSED METHODOLOGY 

The flowchart shown in Fig. 1 depicts the proposed diagnosis 

methodology which is mainly based on five steps. First, the 

different fault conditions are experimentally developed in a 

kinematic chain, namely: the healthy condition and three 

different levels of uniform wear on the gear teeth (25%, 50% 

and 75% of uniform wear) are evaluated. The second step relies 

on the data acquisition, where, the stray flux signals generated 

in the IM during its operation are continuously acquired by 

means of the data acquisition system (DAS) module proposed 

in [23]. The stray flux signals are continuously measured by 

means of proprietary Hall-effect tri-axial sensors allowing the 

acquisition of the radial stray flux (𝜙1), axial stray flux (𝜙2), 

and axial + radial stray flux (𝜙3). 

Subsequently, in the third step of feature calculation, each 

acquired signal is characterized by means of estimating a 

meaningful set of statistical time domain-based features; hence, 

a set of 15 statistical features is estimated and composed by: the 

mean, maximum value, RMS, square root mean, standard 

deviation, variance, RMS shape factor, square root mean shape 

factor, crest factor, latitude factor, impulse factor, skewness, 

kurtosis, and normalized fifth and sixth moments. As a result, a 

characteristic feature matrix with 𝑇𝐷 = 45 statistical features 

is computed, 𝐓 ∈  ℝ𝑇𝐷. In fact, it has been proven that this set 

of features allows achieving a high-performance signal 

characterization due to its capability for modeling trends and 

changes in signals. The corresponding mathematical equations 

of these features may be found in [17]. 

After that, in the fourth step is performed the feature 

reduction, where, two well-known feature reduction techniques 

are employed, PCA and LDA. Thereby, the PCA is first used to 

analyze the variability of the data distribution of characteristic 

feature matrix 𝐓 ∈  ℝ𝑇 that represents the evaluated 

conditions. Thus, given a data matrix 𝐓 with 𝑀 = 𝑇𝐷 columns 

representing features and 𝑁 rows representing samples, the 

PCA is performed as follows: 

The estimation of the covariance matrix by (1): 

𝑪 =
∑ (𝑇𝑛 − �̅�)𝑁

𝑛=1 (𝑇𝑛 − �̅�)′

𝑁 − 1
 (1) 

where, C is the covariance matrix, 𝑇𝑛 the n-th vector and �̅� the 

mean of the n-th vector of the feature matrix 𝐓 ∈  ℝ𝑇 . Then, 

the eigenvalues and eigenvector of C are computed by (2): 

𝑪 = ∑ 𝜆𝑚𝑣𝑚𝑣𝑚
′ = 𝑉Λ𝑉′

𝑀

𝑚=1

 (2) 

where 𝑣𝑚 and 𝜆𝑚 are the mth eigenvector and eigenvalue of C, 

respectively, and V and Λ represent the corresponding 

eigenvectors and eigenvalues of C, respectively. And Finally, 

the eigenvalues are sorted from largest to smallest and the 

individual and cumulative contribution rates of the considered 

feature are estimated by (3) and (4), respectively: 

𝑝𝜄 = 𝜆𝜄 ∑ 𝜆𝜄
𝑀

𝜄=1
⁄  (3) 

�̅� = ∑ 𝑝𝜄
𝑀

𝜄=1
 (4) 

wehere, 𝑝𝜄 is is the contribution rate of the Ith component, 𝜆𝜄 is 

the Ith eigenvalue arranged from large to small and �̅� represents 

the cumulative contribution rate. In this regard, the individual 

and cumulative contribution rates estimated by (3) and (4) 

depicts the variability of the data distribution and are considered 

to identify the minimum space into which the original feature 

space (45-D) may be represented by retaining as much as 

possible its variance, which is desired to be the 2-D or 3-D 

space. 

Subsequently, as a part of the same feature reduction step, the 

LDA technique is applied over the feature matrix 𝐓 ∈  ℝ𝑇 

aiming to reduce the original feature space (45-D) by means of 

a linear transformation that attempts to maximize as much as 

possible the linear distance between considered conditions; that 

is carried out as described below: 

The LDA is based of the solution of a multi-class problem, thus, 

for Q-classes is supported by the estimation of the the between-

class scatter matrix (𝑺𝒃) and the within-class scatter matrix (𝑺𝒘) 

following (5) and (6), respectively: 

𝑺𝒃 = ∑ 𝑁𝑗(𝑚𝑗 − �̅�)(𝑚𝑗 − �̅�)
𝑇

𝑄

𝑗=1

 (5) 

𝑺𝒘 = ∑ ∑(𝑥𝑖
𝑗

− 𝑚𝑗)(𝑥𝑖
𝑗

− 𝑚𝑗)
𝑇

𝑁𝑗

𝑖=1

𝑄

𝑗=1

= ∑ 𝑆𝑤𝑗

𝑄

𝑗=1

 (6) 

where, 𝑁𝑗 represents the total number of samples for the j-th 

class 𝑄𝑗 , �̅� represents the mean of all the samples, 𝑚𝑗 the mean 

of the class 𝑄𝑗 , 𝑥𝑖
𝑗
 the ith sample of the class 𝑄𝑗 . The objective 

of the LDA is to find an optimal projection matrix 𝑾 where the 

ratio between matrices 𝑺𝒃 and 𝑺𝒘 is maximized, such 

 
Fig. 1. Proposed diagnosis methodology based on the analysis of stray flux signals for the diagnosis of uniform wear on the gear teeth. 
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maximization is performed through Fisher’s criterion by (7): 

𝑾 = arg max
|𝑊𝑇𝑆𝑏𝑊|

|𝑊𝑇𝑆𝑤𝑊|
 (7) 

Therefore, the dimensionality reduction and/or feature space 

transformation is carried out by projecting the original feature 

matrix 𝐓 ∈  ℝ𝑇 𝑾 by (8): 

𝑽 = 𝑾𝑇𝑻 (8) 

where, 𝑽 is a new set of extracted features that represent the 

original feature space into a lower dimension, i,e, 2-D or 3-D 

space where the evaluated conditions are visually represented 

(healthy, 25%, 50% and 75% of wear). 

Then, in the fifth step of fault diagnosis, the features 

extracted by the LDA technique are then subjected to an 

automatic fault decision process using a Neural Network (NN)-

based classifier. The NN-based classifier is achieved by a 

classical structure that only considers the input layer, a single 

hidden layer, and the output layer. This classical structure is 

implemented since the feature reduction procedure allows to 

facilitate the classification task. The representation of the 

implemented NN-based classifier is shown in Fig. 2, as it is 

observed, the proposed classifier consists of three layers where 

the input layer has ade fined number of neurons equal to 

features extracted by the LDA, the hidden layer considers ten 

neurons as suggested by the literature and the output layer 

comprises four neurons associated to the assesses conditions. 

 

Fig. 2. Basic structure of a NN-based classifier. 

Where, 𝜔𝑗𝑘
𝑙  is the weight from the k-th neuron in the (𝑙 − 1)th 

layer to the j-th neuron in the l-th layer, and the activation of the 

𝑎𝑗
𝑙 of the jth neuron in the l-th layer is associated with the 

activation in the (𝑙 − 1)th layer by (9): 

𝑎𝑗
𝑙 = ∑ 𝜔𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

𝑘

 (9) 

IV. EXPERIMENTAL TEST BENCH 

The proposed method is evaluated with a set of experimental 

data that were collected in a laboratory test bench. Such test 

bench is based on a kinematic chain that comprises an induction 

motor (IM) with 2P, 1 hp, 220 V (WEG 00236ET3E145T-

W22), a gearbox with ratio 4:1 (BALDOR GCF4X01AA) and 

an automotive alternator that is used as a load. The IM speed is 

controlled by a variable frequency drive (VFD); the startup is 

set to a linear profile based on the variation of the supply 

frequency from 0 Hz to 60 Hz in 5 seconds. The four considered 

fault conditions (healthy condition and three different levels of 

uniform wear on the gear teeth) are successively tested using 

the specified 4:1 ratio gearbox. The automotive alternator 

acting as mechanical load was setup so that the IM operates at 

10% of its rated load, for the results shown in this paper. The 

whole laboratory kinematic chain is shown in Fig. 3. 

 

Fig. 3. Laboratory test bench based on a kinematic chain for the experimental 
evaluation of different levels of wear on the gear teeth in a gearbox. 

The stray flux magnetic signals of the IM are acquired 

through three different hall-effect stray flux transducers that are 

perpendicularly installed between them allowing the 

measurement in the radial, axial and radial+axial axes, as it is 

proposed in [23]. These sensors allow an easy installation since 

are mounted on a board with its corresponding signal 

conditioning. Thus the magnetic flux signals of the IM are 

affected depending on whether the IM is operating under the 

influence of mechanical or electrical faults; in this sense, the 

sensors are located on one of the sides of the IM at a single point 

of the motor frame, in the plate, where the electrical and 

mechanical specifications of the IM are given. The signals are 

acquired through a proprietary data acquisition system (DAS) 

module (having a14-bit analog-to-digital converter) with a 

sampling rate of 5 kHz during a 30 seconds: the first 5 seconds 

correspond to the startup transient, while the remaining 25 

seconds correspond to the steady-state. 

The considered fault condition relies on a uniform wear in 

the gear that is an incipient fault which has received little 

attention in previous literature of the area. In this way, four 

conditions are considered: healthy gear and gear with three 

different levels of uniform wear on the teeth (25%, 50% and 

75%); each one of these four conditions may be observed in Fig. 

4 (a) to Fig. 4 (d), respectively. The uniform teeth wear levels 

were artificially induced during the manufacturing of the gears. 

 

(a) 

 

(b) 

 

(c) 
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Fig. 4. Set of analysed gears: (a) healthy gear, and uniform wear on the gear 
teeth (b) 25%, (c) 50% and (d) 75%, respectively. 

V. RESULTS AND VALIDATION 

A. Evaluation of the proposed method 

The results provided in this section are obtained by applying 

the proposed diagnosis methodology to assess the gearbox 

condition. Thus, as commented above, the considered 

conditions are experimentally tested in the kinematic chain by 

replacing the healthy gear with each of the worn gears. 

Subsequently, for each evaluated condition, the stray flux 

signals are continuously acquired during the IM working 

condition while it is driven through the VFD, with 60 Hz as a 

supply frequency. Each one of the experiments was carried out 

several times to acquire different signals that allow to verify the 

repeatability of the results; as a result, there are at least 175 

seconds of acquired data for each evaluated condition. 

Afterwards, each acquired signal is characterized by means 

of estimating a meaningful set of 15 statistical time domain-

based features, as a result, it is obtained a characteristic feature 

matrix with 𝑇𝐷 = 45 statistical features is computed, 𝐓 ∈

 ℝ𝑇𝐷. Also, previous to feature estimation, the acquired signals 

are subjected to a segmentation procedure by dividing the 

acquired signals in equal parts of 1 second. The segmentation 

procedure is performed to obtain a consecutive set of samples. 

Therefore, by considering each 𝐪𝑖 as each stray flux available 

signal, for j=1,2,…,P, the segmentation procedure is achieved 

by following (10): 

𝐪
𝑖

= [𝐪
𝑖
1:𝐾, 𝐪

𝑖
𝐿+1:2𝐾, … , 𝐪

𝑖
(((𝑛 𝐾⁄ )−1)𝑛)+1:𝑛] (10) 

where K is the length of the time windows (more precisely, it is 

the number of sampled points for each segmented part of the 

signal); n is the total number of sampled points for each 

available signal. Hence, each available stray flux signal is 

divided in equal parts obtaining n/K segments. As a result of the 

feature estimation process, it is obtained a characteristic feature 

matrix for each one of the studied conditions. That is, the 

resulting feature matrix has a representation into a 45-

dimensional space with 175 consecutive samples. Accordingly, 

the addressed conditions (healthy, and 25%, 50% and 75% of 

uniform wear in the teeth gear) are represented by their 

characteristic feature matrices.  

Subsequently, following the proposed diagnosis 

methodology, the estimated feature matrices are subjected to 

the feature reduction procedure by means of applying the PCA 

and LDA technique. To this end, such matrices are first 

subjected to the dimensionality reduction procedure through the 

PCA to analyze the distribution of the data for all evaluated 

conditions. Table I summarizes the achieved eigenvalues, 

individual variance and the cumulative variance for the first 

seven principal components (PCs); note that, if the first two PCs 

are selected to represent the original feature space, then, a 

representation into a 2-dimensional space by retaining a 

cumulative variance equal to 98.791% from the original feature 

space will be achieved. Although, the analyzed features have a 

specific physical representation, i.e. RMS value, kurtosis, 

skewness, among other, the resulting Eigenvalues are 

considered as dimensionless due to there are only considered 

for estimating both values of variance percentage. 

In accordance, the estimated features matrices, for all 

addressed conditions, are subjected to the dimensionality 

reduction procedure by means of the LDA technique and the 

original 15-dimensional feature space is transformed and 

projected into a 2-dimensional space to obtain a visual 

representation of the assessed conditions. In this regard, it must 

be highlighted that the most representative and discriminative 

information is retained by the LDA, which pursues the 

maximization of the linear separation between studied 

conditions. The obtained 2-dimensional projection is shown in 

Fig. 5; note that the four considered conditions are clearly 

separated from each other. The separation between the 

evaluated conditions is due to the fact that the resulting 

projection belongs to the linear combination of different 

weights of the statistical features; those statistical features with 

higher weights are considered as the most discriminative, i.e., 

they contain the most significative information that leads to a 

linear separation between the analysed conditions. 

Following the proposed diagnosis methodology, the last step 

relies on the automatic fault diagnosis through a classical NN-

based classifier. Thereby, the considered NN-based classifier 

has three layers; the input layer consists of two neurons in 

which each neuron represents each of the features extracted by 

TABLE I RESULTING EIGENVALUES, INDIVIDUAL AND CUMULATIVE 

VARIANCE FOR THE PCS 

Number 

of PC 
Eigenvalues 

Individual 

variance (%) 

Cumulative 

variance (%) 

PC1 1911.1 94.542 94.542 

PC2 85.891 4.248 98.791 

PC3 21.184 1.047 99.839 

PC4 2.024 0.100 99.939 

PC5 0.064 0.056 99.9953 

PC6 0.016 0.003 99.998 

PC7 0.012 8.33x10-4 >99.999 

 

Fig. 5. Resulting 2-dimensional representation obtained by applying 

the LDA technique to the characteristic feature matrices for all 
considered conditions. 
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the LDA technique, i.e., Feature 1 and Feature 2. The hidden 

layer is a single layer based on ten neurons, as several state-of-

the-art works recommend. Finally, the output layer is based on 

four neurons representing each one of the assessed conditions. 

Additionally, the NN-based classifier is trained and tested under 

a k-fold cross-validation scheme, with k=5, to obtain 

statistically significant results. Thus, the samples of the 2-

dimensional set of extracted features are divided in two parts; 

the first one (with 140 samples per condition) is used during the 

training procedure and, the second one (with 35 samples per 

condition) is used during the test and validation. The proposed 

classifier is trained during 70 epochs and the backpropagation 

algorithm with the sigmoid function is used as the activation 

method. During the training and test, the proposed NN-based 

classifier reaches values of 99.8% and 100% as global 

classification ratios, respectively. Particularly, the individual 

results achieved for each one of the assessed conditions are 

summarized by the confusion matrix in Table II; note that only 

one misclassification error occurs during the training procedure 

whereas the test procedure fits all the samples to its 

corresponding class. These high-performance results prove that 

the consideration of the feature calculation and feature 

reduction stages leads to achieve a proper signal 

characterization of the evaluated conditions. 

Moreover, the consideration of the proposed NN-based 

classifier also allows to obtain the decision regions that are 

modelled over the 2-dimensional projection where all addressed 

conditions are represented. In this sense, Fig. 6 shows the 

resulting decision regions that are modelled by the NN-based 

classifier for each considered condition during the training 

procedure. Even if one single sample of the condition related to 

50% of uniform wear is misclassified, by means of the predicted 

percentage of membership function, it may be re-evaluated, and 

such misclassification error can be assigned to its 

corresponding true class. 

B. Validation and comparison with ST-MUSIC 

For validating the effectiveness of the proposed method, a 

comparative analysis is carried out by analyzing the time-

frequency maps of the three stray flux acquired signals 

corresponding to the considered condition. In this regard, it is 

considered that the mechanical vibrations produced by gears are 

inherent to its operation due to the backlash or the excitation of 

the dynamic [1]. Thereby, the backlash leads to an increase of 

the vibration amplitude known as the mesh frequency (𝑓𝑚𝑒𝑠ℎ), 

and mesh-related frequencies (𝑓𝐺𝑟1𝑚𝑒𝑠ℎ) which can be observed 

in the vibration and torque spectra; such components are 

described by (11) and (12), respectively [24]: 

𝑓𝑚𝑒𝑠ℎ = 𝑁𝑟1 ∙ 𝑓𝑟1 = 𝑁𝑟2 ∙ 𝑓𝑟2 (11) 

𝑓𝐺𝑟1𝑚𝑒𝑠ℎ = 𝑁𝑟1 ∙ 𝑓𝑟1 ±  𝑓𝑟1 (12) 

where 𝑁𝑟1 and 𝑁𝑟2 are the number of input and output gear 

teeth, respectively, and 𝑓𝑟1 and 𝑓𝑟2 are the input and output 

rotating frequency, respectively. 

Moreover, in [25] it is shown that, in presence of gearbox 

faults, any torsional vibration in the rotor will introduce 

families of sidebands harmonics induced either by the rotation 

of the input gear (𝑓𝐺𝑟1), the rotation of the output gear (𝑓𝐺𝑟2), or 

the stiffness variation of the gear teeth contact (𝑓𝐺𝑚𝑒𝑠ℎ). In 

addition, the combination of componenets associated with the 

input and output gears, 𝑓𝐺𝑟1 and 𝑓𝐺𝑟2, can also appear producing 

the amplification its related harmonics (𝑓𝐺𝑟1−𝐺𝑟2). Moreover, 

the appearance of characteristic frequency compoenents 

associated to the input gear and mesh frequency (𝑓𝐺𝑟1−𝑚𝑒𝑠ℎ), 

and associated with the output gear and mesh frequency 

(𝑓𝐺𝑟1−𝐺𝑟2−𝑚𝑒𝑠ℎ) are similarly generated. Such sidebands 

harmonics can be observed around the power supply frequency 

( 𝑓𝑠) of the stator current, and their location is given by (13) to 

(18). 

𝑓𝐺𝑟1 = 𝑓𝑠  ± 𝑚 ∙ 𝑓𝑟1 (13) 

𝑓𝐺𝑟2 = 𝑓𝑠  ± 𝑛 ∙ 𝑓𝑟2 (14) 

𝑓𝐺𝑚𝑒𝑠ℎ = 𝑓𝑠  ± 𝑝 ∙ 𝑓𝑚𝑒𝑠ℎ (15) 

𝑓𝐺𝑟1−G𝑟2 = 𝑓𝑠  ± 𝑚 ∙ 𝑓𝑟1 ± 𝑛 ∙ 𝑓𝑟2 (16) 

𝑓𝐺𝑟1−𝑚𝑒𝑠ℎ = 𝑓𝑠  ± 𝑚 ∙ 𝑓𝑟1 ± 𝑝 ∙ 𝑓𝑚𝑒𝑠ℎ (17) 

𝑓𝐺𝑟1−G𝑟2−𝑚𝑒𝑠ℎ = 𝑓𝑠  ± 𝑚 ∙ 𝑓𝑟1 ± 𝑛 ∙ 𝑓𝑟2 ± 𝑝 ∙ 𝑓𝑚𝑒𝑠ℎ (18) 

where m, n and p represent a positive integer number that can 

take values equal to 1, 2, 3, …that allows computing the 

corresponding harmonics of the fundamental components 𝑓𝐺𝑟1, 

𝑓𝐺𝑟2and 𝑓𝐺𝑚𝑒𝑠ℎ, respectively, in a frequency spectrum. 

TABLE II CONFUSION MATRIX ACHIEVED BY THE RESULTING 

INDIVIDUAL CLASSIFICATION THROUGH THE PROPOSED NN-BASED 

CLASSIFIER 

  True class 

  Training Test 

  HLT 25% 50% 75% HLT 25% 50% 75% 

A
ss

ig
n

ed
 c

la
ss

 HLT 140 0 1 0 35 0 0 0 

25% 0 140 0 0 0 35 0 0 

50% 0 0 139 0 0 0 35 0 

75% 0 0 0 140 0 0 0 35 

 

Fig. 6. Resulting decision regions modelled by the proposed NN-based 

classifier over the 2-dimensional space where all considered conditions 
are represented. 
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Likewise, as pointed out in [26], the stray flux of an electric 

motor is the magnetic flux that radiates outside the frame of the 

machine induced by stator and rotor currents. These currents 

(and hence the stray flux) are modified when the electric motor 

and/or an element linked to the electric motor operates under a 

fault condition [27]. Consequently, in the case of gearboxes 

driven by electric motors, the stray flux signals can suffer 

changes due to a gearbox fault; and, due to the fault harmonic 

components being slip-dependent, a fault-related pattern is 

expected in the stray flux signals during the start-up transient, 

as it happened with other faults [27]. 

Accordingly, the validation consists in the comparison and 

analysis of the results achieved in the previous reported work 

[19]; where, the short-time MUSIC (ST-MUSIC) algorithm is 

implemented in order to identify those fault-related frequency 

components described by (13) to (18). Indeed, through the ST-

MUSIC it is performed the transient analysis of the three stray 

flux signals captured during the experimental evaluation of 

each studied condition.Hence, ¡Error! No se encuentra el 

origen de la referencia.  

TABLE III MAXIMUM AMPLITUDE TRACKED FOR 𝒇𝑮𝒓𝟐 FAULT-RELATED 

HARMONIC 

Teeth gear 

condition 

𝒇𝑮𝒓𝟐 maximum amplitude tracked (dB) 

Radial stray 

flux 

Axial stray 

flux 

Axial + radial 

stray flux 

Healthy gear -43.80 -49.890 -42.165 

25 % of wear -42.21 -46.450 -37.648 

50 % of wear -41.58 -48.60 -34.30 

75 % of wear -32.97 -47.300 -31.77 

 

shows the resulting time–frequency (t-f) maps where it is 

possible to observe the characteristic fault-related time-

frequency patterns that are caused by the amplified fault 

components predicted in the theory. Particularly, when 

analyzing the t-f map that corresponds to the axial + radial stray 

flux signal, it is clearly visible the evolution during the start-up 

transient of the fault frequency component 𝑓𝐺𝑟2 = 𝑓𝑠  ± 𝑛 ∙ 𝑓𝑟2 

with 𝑛 = 1, for the cases when the kinematic chain is working 

the uniform wear conditions (i.e., 25%, 50% and 75% of 

uniform wear in the teeth gear).s 

On the contrary, when the gearbox is in a healthy state, the 

characteristic fault-related component does not appear. 

Moreover, ¡Error! No se encuentra el origen de la referencia. 

shows that there is not a specific pattern related to a fault 

component in the axial stray flux while the radial stray flux 

shows a certain amplitude 𝑓𝐺𝑟2 fault evolution. Additionally, 

Table III shows the maximum amplitude achieved for the 𝑓𝐺𝑅2 

fault-related harmonic and for the different studied cases. Note 

that the 𝑓𝐺𝑅2 frequency component obtained by analysing the 

radial stray flux shows an amplitude of -43.80 dB for a healthy 

gear; in contrast, the same frequency component for a 75 % 

uniform teeth wear has a maximum achieved amplitude of -

32.97 dB. Similarly, by analysing the axial + radial stray flux it 

is obtained a 𝑓𝐺𝑅2 maximum amplitude of -42.165 dB for a 

healthy gear, -37.648 dB for a 25% of uniform wear, -34.30 dB 

for a 50% of uniform wear and -31.77 dB for a 75 % of uniform 

wear in the teeth gear. This situation allows to discriminate 

between an incipient wear in the gear and a healthy gear by 

comparing the maximum amplitude of the 𝑓𝐺𝑅2 fault-related 

harmonic during the start-up. Additionally, this condition 

shows that gearbox faults mainly affect the radial flux. On the 

other hand, the maximum amplitude tracked for the axial stray 

flux shows a minimum difference among the different studied 

wear conditions. Although through the analysis of the t-f maps 

it is possible to identify the occurrence of gearbox faults, such 

as uniform wear in the teeth gear, the condition assessment is 

limited to be performed as a manual procedure, in which the 

characteristic fault-related frequency components must be 

identified and compared, a fact that justifies the value of the 

method proposed in this work. 

TABLE III MAXIMUM AMPLITUDE TRACKED FOR 𝒇𝑮𝒓𝟐 FAULT-RELATED 

HARMONIC 

Teeth gear 

condition 

𝒇𝑮𝒓𝟐 maximum amplitude tracked (dB) 

Radial stray 

flux 

Axial stray 

flux 

Axial + radial 

stray flux 

Healthy gear -43.80 -49.890 -42.165 

25 % of wear -42.21 -46.450 -37.648 

50 % of wear -41.58 -48.60 -34.30 

75 % of wear -32.97 -47.300 -31.77 

 

VI. CONCLUSIONS 

In this paper, a novel condition monitoring approach for the 

condition assessment of a gearbox under the incipient fault 

conditions of uniform wear in the teeth is proposed. The method 

 

Fig. 7. MUSIC analyses of the stray flux signals under starting for the 

different fault conditions, healthy gear, and three fault conditions of 

uniform wear on the gear teeth 25%, 50% and 75%. 
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is based on the analysis of stray flux signals that are captured 

during the operation of an induction motor that drives the 

gearbox under observation. There are three important aspects of 

the proposed approach that must be highlighted; first, the 

condition assessment proposal that leads to the identification of 

an incipient fault such as the uniform wear in the teeth gear 

which shows superiority in comparison with other related 

works in which discrete faults have been analysed, i.e., chipped 

or fully broken teeth in a gear. Second, the analysis of stray flux 

signals and its characterization through the estimation of a 

meaningful set of statistical time domain-based features that 

leads to a high-performance feature pattern characterization of 

the different evaluated conditions. Third, the analysis of the 

estimated set of features through PCA, which facilities to 

determine the minimum number of dimensions that are required 

to represent the original feature space with any information 

loss, also, the use of the LDA technique to obtain a 2-

dimensional representation where all considered conditions are 

clearly separated between them. Finally, the feature reduction 

through the LDA facilitates the classification task for the 

proposed classical structure of the NN-based classifier; indeed, 

the global classification ratio achieved by the NN-based 

classifier is higher than 99.8%. Moreover, regarding the 

comparison with ST-MUSIC, it should be mentioned that the 

proposed method has also advantages since it yields an 

automatic fault diagnosis and classification, whereas the simple 

use of the ST-MUSIC method requires additional user expertise 

to identify the fault-related components in the resulting time-

frequency maps, a fact that suggests the use of ST-MUSIC for 

offline analysis, being and less suitable to automatic condition 

monitoring systems. The high-performance results demonstrate 

the effectiveness of the proposed and make the proposed 

method suitable to be implemented as a non-invasive diagnostic 

tool that may be incorporated in the Condition-Based 

Maintenance programs for industrial applications. 
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