Índice de contenidos

Capítulo 1: Introducción

- 1. Breve evolución de las telecomunicaciones
 - 1.1. Redes ópticas 2
 - 1.2. Nanofotónica: Cristales fotónicos 4
- 2. Marco de la tesis 7
- 3. Objetivos de la tesis 7
- 4. Estructura de la tesis 8
- 5. Bibliografía 10

Capítulo 2: Modelado de cristales fotónicos con el método de los elementos finitos

- 1. Introducción 11
- 2. El Método de los Elementos Finitos 15
 - 2.1. Programa básico de Elementos finitos 17
 - 2.2. Obtención del variacional a minimizar 19
 - 2.3. Discretización del dominio 20
 - 2.4. Elección de las funciones de interpolación 21
 - 2.5. Formular el sistema de ecuaciones y aplicar restricciones 23
- 3. Aplicación al cálculo de diagramas de dispersión 28
- 4. Introducción de efectos no lineales 33
- 5. Conclusiones 35
- 6. Bibliografía 36

Capítulo 3: El Acoplador Direccional

- Introducción 39
 Estudio del acoplador direccional 2x240
 El acoplador direccional en cristales fotónicos 46
 Diseño de aplicaciones 53

 4.1. El divisor de potencia 53
 4.2. El intercalador de canal y el multiplexor 54

 Mejora de prestaciones 57

 5.1. El intercalador de canales mejorado 60
- Capítulo 4: Implementación de un Conmutador todo-óptico
 - 1. Introducción 69

6. Conclusiones

7. Bibliografía

- 2. Fundamentos físicos de los dispositivos nolineales 72
- 3. Funcionalidades activas en cristales fotónicos 75
- 4. El acoplador direccional nolineal 77

64

66

- 5. Implementación de un conmutador 78
- 6. Análisis de prestaciones 82
- 7. Conclusiones 88
- 8. Bibliografía 89

Capítulo 5: Propagación de pulsos

1.	Intro	ducción 93				
2.	Disp	ersión intramodal 93				
3.	Dispersión intermodal 95					
	3.1.	Cálculo de la dispersión intermodal 96				
	3.2.	Condiciones para la compensación de la dispersión				
		intermodal 100				
	3.3.	Estructura compensadora de la dispersión intermodal	102			
4.	Conc	clusiones 107				

Capítulo 6: Resultados experimentales

Bibliografía 108

5.

1.	Introducción 111						
2.	Medida de circuitos ópticos 112						
	2.1.	Montaje de cara	cterización	112			
	2.2.	Cálculos teórico	s previos	114			
	smisión	117					
3.	Expe	rimentación en m	icroondas	121			
	3.1.	Cálculos teórico	122				
	3.2. Medidas en transmisión en frecuencia125						
	3.3.	Medidas de trans	smisión de p	ulsos	128		
4.	Conc	elusiones 13	1				
5.	Bibli	ografía 13	3				

Capítulo 7: Conclusiones, líneas futuras y contribuciones originales

- 1. Conclusiones del trabajo realizado 135
- 2. Líneas Futuras 137
- 3. Contribuciones originales 138

Anexo A: Conceptos básicos de cristales fotónicos planares

- 1. Cristales fotónicos 2D 145
 - 1.1. ¿Qué son los cristales fotónicos? 145
 - 1.2. Diagramas de dispersión 146
- 2. Cristales fotónicos planares 148

Anexo B: Algoritmos Genéticos

- 1. Introducción a los Algoritmos Genéticos. 151
- 2. ¿Qué son los GA?- Terminología 152
- 3. Estructura de un GA 152
 - 3.1. Selección 154
 - 3.2. Recombinación 155
 - 3.3. Mutación 156
 - 3.4. Reinserción 156
- 4. Ejemplo de funcionamiento de un GA 156

Lista de acrónimos