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Abstract: Two-stage stochastic scheduling problems often involve a large number of continuous
and discrete variables, so finding solutions in short time periods is challenging and computationally
expensive. However, for online or closed-loop scheduling implementations, optimal or near-optimal
solutions are required in real-time. We propose a decomposition method based on the so-called
Similarity Index (SI). An iterative procedure is set up so that each sub-problem (corresponding to
a scenario) is solved independently, aiming to optimize the original cost function while maximizing
the similarity of the first-stage variables among the scenarios solutions. The SI is incorporated
into each subproblem cost function, multiplied by a penalty parameter that is updated in each
iteration until reaching complete similarity in the first-stage variables among all subproblems.
The method is applied to schedule production and maintenance tasks in an evaporation network.
The tests show that significant benefits are expected in terms of computational demands as the
number of scenarios increases.
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1. INTRODUCTION

Uncertainty is always present in process operation. It
can come from many sources but the consequences are
clear: prediction errors and suboptimal, or even infeasible,
operation (Sahinidis, 2004). Multi-stage stochastic formu-
lations take uncertainty into account by discretizing the
plausible uncertainty realizations. This work focuses on
two-stage formulations, where the problem decisions are
split in two: first-stage decisions, which are taken with
the information available a priori and cannot be changed
later; and second-stage ones, which can be taken later on
according to the actual uncertainty realization. The time
periods corresponding to the first-stage variables are said to
be within the robust horizon. When applied to scheduling
problems, large-scale models that involve both continuous
and discrete decisions result. Hence, multi-stage scheduling
problems are computationally challenging and difficult to
solve to optimality, whilst industrial practice often requires
good solutions in short time periods.

A common approach for dealing with such large-scale
problems is to divide them into smaller subproblems,
defined by local constraints, which can be solved in parallel.
The solutions to those subproblems are used for updating a
global master problem defined by global constraints. Both
the master and the subproblems are alternately solved until
some termination criterion is met. Benders Decomposition
(BD) and the Progressive Hedging Algorithm (PHA) are
the most often used decomposition methods for solving
two-stage stochastic scheduling problems.

BD consists of three consecutive steps: projection, dual-
ization, and relaxation (Benders, 1962). The base method
produces a weak master problem formulation that loses all
relevant information about the second-stage variables. This
leads to slow convergence of the procedure in the end. A cut
is generated in each iteration, depending on whether the
subproblems are optimal or infeasible. Thus, BD has a high
computational burden and it is often outperformed by the
monolithic formulation. The available enhanced strategies
for overcoming the BD drawbacks can be classified into
four categories: decomposition strategy, solution generation,
cut generation, and solution procedure. See (Rahmaniani
et al., 2017) for a thorough review. In particular, for two-
stage scheduling problems, partial BD allows the master
problem to retain information of all scenario subproblems,
which reduces the number of generated cuts, increasing
thus convergence speed (Crainic et al., 2016).

The PHA consists in relaxing the non-anticipativity con-
straints so that they are incorporated into the cost functions
associated with a Lagrange-like multiplier (or penalty
parameter) that is updated iteratively until a solution
is found (Rockafellar and Wets, 1991). It results in a
full decomposition over the scenarios while progressively
enforcing the non-anticipativity constraints. The PHA has
been used successfully to obtain high-quality solutions to
stochastic scheduling problems (Gade et al., 2016; Huang
and Zheng, 2020). However, there are still open concerns
when dealing with large-scale mixed-integer problems:
the multiplier-update rule, choice of termination criteria,
and techniques for accelerating convergence (Watson and
Woodruff, 2010).
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expensive. However, for online or closed-loop scheduling implementations, optimal or near-optimal
solutions are required in real-time. We propose a decomposition method based on the so-called
Similarity Index (SI). An iterative procedure is set up so that each sub-problem (corresponding to
a scenario) is solved independently, aiming to optimize the original cost function while maximizing
the similarity of the first-stage variables among the scenarios solutions. The SI is incorporated
into each subproblem cost function, multiplied by a penalty parameter that is updated in each
iteration until reaching complete similarity in the first-stage variables among all subproblems.
The method is applied to schedule production and maintenance tasks in an evaporation network.
The tests show that significant benefits are expected in terms of computational demands as the
number of scenarios increases.
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1. INTRODUCTION

Uncertainty is always present in process operation. It
can come from many sources but the consequences are
clear: prediction errors and suboptimal, or even infeasible,
operation (Sahinidis, 2004). Multi-stage stochastic formu-
lations take uncertainty into account by discretizing the
plausible uncertainty realizations. This work focuses on
two-stage formulations, where the problem decisions are
split in two: first-stage decisions, which are taken with
the information available a priori and cannot be changed
later; and second-stage ones, which can be taken later on
according to the actual uncertainty realization. The time
periods corresponding to the first-stage variables are said to
be within the robust horizon. When applied to scheduling
problems, large-scale models that involve both continuous
and discrete decisions result. Hence, multi-stage scheduling
problems are computationally challenging and difficult to
solve to optimality, whilst industrial practice often requires
good solutions in short time periods.

A common approach for dealing with such large-scale
problems is to divide them into smaller subproblems,
defined by local constraints, which can be solved in parallel.
The solutions to those subproblems are used for updating a
global master problem defined by global constraints. Both
the master and the subproblems are alternately solved until
some termination criterion is met. Benders Decomposition
(BD) and the Progressive Hedging Algorithm (PHA) are
the most often used decomposition methods for solving
two-stage stochastic scheduling problems.

BD consists of three consecutive steps: projection, dual-
ization, and relaxation (Benders, 1962). The base method
produces a weak master problem formulation that loses all
relevant information about the second-stage variables. This
leads to slow convergence of the procedure in the end. A cut
is generated in each iteration, depending on whether the
subproblems are optimal or infeasible. Thus, BD has a high
computational burden and it is often outperformed by the
monolithic formulation. The available enhanced strategies
for overcoming the BD drawbacks can be classified into
four categories: decomposition strategy, solution generation,
cut generation, and solution procedure. See (Rahmaniani
et al., 2017) for a thorough review. In particular, for two-
stage scheduling problems, partial BD allows the master
problem to retain information of all scenario subproblems,
which reduces the number of generated cuts, increasing
thus convergence speed (Crainic et al., 2016).

The PHA consists in relaxing the non-anticipativity con-
straints so that they are incorporated into the cost functions
associated with a Lagrange-like multiplier (or penalty
parameter) that is updated iteratively until a solution
is found (Rockafellar and Wets, 1991). It results in a
full decomposition over the scenarios while progressively
enforcing the non-anticipativity constraints. The PHA has
been used successfully to obtain high-quality solutions to
stochastic scheduling problems (Gade et al., 2016; Huang
and Zheng, 2020). However, there are still open concerns
when dealing with large-scale mixed-integer problems:
the multiplier-update rule, choice of termination criteria,
and techniques for accelerating convergence (Watson and
Woodruff, 2010).
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In this work, we present an alternative decomposition
method for two-stage scheduling problems based on a
similarity index among first-stage discrete decisions. This
method enables full scenario decomposition with a single
tuning parameter. The similarity index aggregates the
solution of the first-stage discrete variables into a single
number. Then, the scenario subproblems incorporate such
index in their costs functions so that the similarity among
the other scenarios is maximized. Moreover, the similarity
index is also used as a termination criterion, as it must
reach the value of 1 to fulfill non-anticipativity constraints.
The proposed decomposition method is tested to schedule
operations in an evaporation network. Optimal solutions are
found and convergence is achieved in a few iterations, with-
out using acceleration techniques or problem-dependent
heuristics.

The paper is organized as follows: Section 2 describes
the proposed decomposition method; Section 3 describes
the case study adapted from the literature; the results of
the monolithic and decomposed problems are discussed in
Section 4 and; finally, Section 5 closes the paper with some
remarks and an outline for next steps.

2. DESCRIPTION OF THE METHOD

The concept of similarity index (SI), first presented in
Palacin et al. (2017), is inspired by the idea of minimum
agreement index (Sakawa and Kubota, 2000). It measures
the robustness of the solution in two-stage scheduling
problems, by merging the information on how similar the
recourse variables computed for each scenario are in a single
indicator. In this way, a SI equal to 1 means that the
schedules for all scenarios are identical, i.e., the risk-averse
solution. The SI is computed by fuzzifying the discrete
decisions taken within a prediction horizon. A discrete
decision in a scenario is weighted by 1 (100%) if taken
on a particular time instant t, but it is also accounted
for the near time instants tn with decreasing values that
are proportional to the time differences |t − tn|. Then,
the SI is computed as the intersection area among all
scenarios, divided by the total possible area (the area if all
the scenario solutions coincide). Figure 1 shows a graphical
representation of the SI computation in an example where
the time horizon is discretized and discrete decisions are
fuzzified along 7 time periods.

Formally, the SI formula defined in Palacin et al. (2017)
considered a three-period span to fuzzify the discrete
decisions:

SI :=
∑

t∈Mu\{tF }

min
e∈E

{
yte + 0.5y(t+1)e + 0.5y(t−1)e

}

2 (nu − 1) + 1.5
(1)

Where E is the scenario set, Mu is the subset that contains
the time periods that do not belong to the robust horizon
(i.e., those allowing recourse decisions), tF is the horizon
end, yte ∈ {0, 1} is the set of possible discrete decisions
from which only one is to be scheduled at time t and
scenario e, and nu the number of time periods in Mu.

Note that the numerator of (1), i.e. the intersection area,
involves a nonlinear operation (mine). Therefore, to be
used in linear scheduling formulations, a lower bound on
(1) can be formulated by introducing a set of slack variables
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Fig. 1. Example of fuzzifying a discrete decision along ±∆
time periods. The SI is computed from the intersection
between scenarios A and B and the total fuzzified area.

(st ∈ R+) and inequalities as shown in (2). In this way,
the lower bound on SI would be computed by (3). For
this lower bound to be tight, the slack variables need to
be included in the objective function so that they are
maximized. Hence, the slack variables st will take the
higher value that constraints (2) allow.

st ≤ yte+0.5y(t+1)e+0.5y(t−1)e ∀t ∈ Mu\{tF }, e ∈ E (2)

SI ≥
∑

t∈Mu\{tF }

st
2 (nu − 1) + 1.5

(3)

2.1 Application to the robust horizon

Although the similarity index was conceived as a means
of specifying the desired robustness level in stochastic
scheduling formulations, there is no reason to restrict
its use to second-stage variables. If applied to first-stage
variables in the solution, it will be always 1, as all scenario
solutions coincide for such variables by definition. However,
if the non-anticipativity constraints are removed from
the formulation, a scheduling solution can be computed
independently for each scenario, but such solutions would
not certainly coincide in the first stage, and the SI would
take values less than 1. Nonetheless, an iterative procedure
could be set up in this situation to progressively push
the SI forward up to the point where the solution of all
scenarios is equal along the robust horizon. That is the
proposal of this paper: a method to achieve full scenario
decomposition in two-stage stochastic scheduling problems
by just using the similarity index. This is accomplished
by completely ignoring the non-anticipativity constraints
in the formulation instead of relaxing them as in the PH
algorithm (Rockafellar and Wets, 1991).

The general formulas to compute the SI and its lower
bound for first-stage variables are (4)-(6).

SI :=

tR∑
t=1

min
e∈E

{
yte +

∆∑
τ=1

∆− τ

∆
(y(t−τ)e|t>τ

+ y(t+τ)e|t+τ≤tR)
}/(

tR∆− 2

∆∑
τ=1

τ
∆− τ

∆

) (4)

st ≤ yte +

∆∑
τ=1

∆− τ

∆
(y(t−τ)e|t>τ + y(t+τ)e|t+τ≤tR)

∀e ∈ E ; t : 1, . . . , tR (5)

SI ≥
tR∑
t=1

st

/(
tR∆− 2

∆∑
τ=1

τ
∆− τ

∆

)
(6)



 Daniel Montes  et al. / IFAC PapersOnLine 55-7 (2022) 821–826 823

In this work, we present an alternative decomposition
method for two-stage scheduling problems based on a
similarity index among first-stage discrete decisions. This
method enables full scenario decomposition with a single
tuning parameter. The similarity index aggregates the
solution of the first-stage discrete variables into a single
number. Then, the scenario subproblems incorporate such
index in their costs functions so that the similarity among
the other scenarios is maximized. Moreover, the similarity
index is also used as a termination criterion, as it must
reach the value of 1 to fulfill non-anticipativity constraints.
The proposed decomposition method is tested to schedule
operations in an evaporation network. Optimal solutions are
found and convergence is achieved in a few iterations, with-
out using acceleration techniques or problem-dependent
heuristics.

The paper is organized as follows: Section 2 describes
the proposed decomposition method; Section 3 describes
the case study adapted from the literature; the results of
the monolithic and decomposed problems are discussed in
Section 4 and; finally, Section 5 closes the paper with some
remarks and an outline for next steps.

2. DESCRIPTION OF THE METHOD

The concept of similarity index (SI), first presented in
Palacin et al. (2017), is inspired by the idea of minimum
agreement index (Sakawa and Kubota, 2000). It measures
the robustness of the solution in two-stage scheduling
problems, by merging the information on how similar the
recourse variables computed for each scenario are in a single
indicator. In this way, a SI equal to 1 means that the
schedules for all scenarios are identical, i.e., the risk-averse
solution. The SI is computed by fuzzifying the discrete
decisions taken within a prediction horizon. A discrete
decision in a scenario is weighted by 1 (100%) if taken
on a particular time instant t, but it is also accounted
for the near time instants tn with decreasing values that
are proportional to the time differences |t − tn|. Then,
the SI is computed as the intersection area among all
scenarios, divided by the total possible area (the area if all
the scenario solutions coincide). Figure 1 shows a graphical
representation of the SI computation in an example where
the time horizon is discretized and discrete decisions are
fuzzified along 7 time periods.

Formally, the SI formula defined in Palacin et al. (2017)
considered a three-period span to fuzzify the discrete
decisions:

SI :=
∑

t∈Mu\{tF }

min
e∈E

{
yte + 0.5y(t+1)e + 0.5y(t−1)e

}

2 (nu − 1) + 1.5
(1)

Where E is the scenario set, Mu is the subset that contains
the time periods that do not belong to the robust horizon
(i.e., those allowing recourse decisions), tF is the horizon
end, yte ∈ {0, 1} is the set of possible discrete decisions
from which only one is to be scheduled at time t and
scenario e, and nu the number of time periods in Mu.

Note that the numerator of (1), i.e. the intersection area,
involves a nonlinear operation (mine). Therefore, to be
used in linear scheduling formulations, a lower bound on
(1) can be formulated by introducing a set of slack variables

Weight

Timet

100%

Scenario A
decision

∆

Scenario B
decision

Fig. 1. Example of fuzzifying a discrete decision along ±∆
time periods. The SI is computed from the intersection
between scenarios A and B and the total fuzzified area.

(st ∈ R+) and inequalities as shown in (2). In this way,
the lower bound on SI would be computed by (3). For
this lower bound to be tight, the slack variables need to
be included in the objective function so that they are
maximized. Hence, the slack variables st will take the
higher value that constraints (2) allow.

st ≤ yte+0.5y(t+1)e+0.5y(t−1)e ∀t ∈ Mu\{tF }, e ∈ E (2)

SI ≥
∑

t∈Mu\{tF }

st
2 (nu − 1) + 1.5

(3)

2.1 Application to the robust horizon

Although the similarity index was conceived as a means
of specifying the desired robustness level in stochastic
scheduling formulations, there is no reason to restrict
its use to second-stage variables. If applied to first-stage
variables in the solution, it will be always 1, as all scenario
solutions coincide for such variables by definition. However,
if the non-anticipativity constraints are removed from
the formulation, a scheduling solution can be computed
independently for each scenario, but such solutions would
not certainly coincide in the first stage, and the SI would
take values less than 1. Nonetheless, an iterative procedure
could be set up in this situation to progressively push
the SI forward up to the point where the solution of all
scenarios is equal along the robust horizon. That is the
proposal of this paper: a method to achieve full scenario
decomposition in two-stage stochastic scheduling problems
by just using the similarity index. This is accomplished
by completely ignoring the non-anticipativity constraints
in the formulation instead of relaxing them as in the PH
algorithm (Rockafellar and Wets, 1991).

The general formulas to compute the SI and its lower
bound for first-stage variables are (4)-(6).

SI :=

tR∑
t=1

min
e∈E

{
yte +

∆∑
τ=1

∆− τ

∆
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τ
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∆
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∆
(y(t−τ)e|t>τ + y(t+τ)e|t+τ≤tR)
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st

/(
tR∆− 2

∆∑
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τ
∆− τ

∆
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In the above formulas, ∆ is the number of time periods
along which the discrete decisions are fuzzified (see Fig. 1),
tR is the end of the robust horizon and, with some abuse
of notation, y(t−τ)|t>τ means that y(t−τ) is only accounted
in the summation if t > τ . Note that these formulas are
slightly different from the particular case shown in (1)-(3),
as both extremes of the robust horizon (those within ∆
periods) need special treatment in the fuzzification process.

Remark 1. The nice feature of the SI is that it is capable
of informing on the fulfillment of the non-anticipativity
constraints in a single value, no matter how long the
robust horizon is nor the number of complicating first-
stage variables.

2.2 Decomposition algorithm

The core idea of the method is to solve each one of the
scenarios (subproblems) independently and then compare
their solutions using the similarity index. An iterative
procedure is set up so that the SI is progressively improved.
For this, several SI need to be computed: local ones SIe
referred to each scenario, which are part of the optimization
subproblems; and a global one SI that is computed after
the optimization solutions have been collected. Note that
each subproblem needs information from the others to
compute its SIe (see constraints (2)), but only the first-
stage variables corresponding to the current scenario can
be modified by the optimizer. A possible approach to fix
the values for the rest of the scenarios would be to use the
solutions got by each subproblem in the previous iteration.
However, this could lead to situations where a subproblem
cannot improve its solution to get a higher similarity index
because the first-stage values for the other scenarios fixed
in the previous iteration are too different. If this situation
gets entrenched and no local problem can improve its SIe,
progress stops, and the global problem gets stuck in an
infeasible solution: the global SI never reaches 1, so non-
anticipativity does not hold.

A better approach to overcome this drawback is to compute
SIe only with the variables of the current scenario plus the
ones fixed by a single solution computed somehow from the
previous iteration. For instance, the solution of the scenario
that reported the worst local SI in the previous iteration.
This way, if a subproblem cannot move its solution further
to improve the SI due to particular hard constraints (high
production, extreme ambient conditions, etc.), the others
will move to adjust it.

As mentioned earlier, the local SI calculation requires the
maximization of the slack variables st. Consequently, the
objective functions of the subproblems need an additional
term to account for it (negative sign when minimizing, pos-
itive otherwise). This term can be the SI lower bound (6)
itself, times a multiplier λ that is updated in each itera-
tion. In this way, the optimizer gives more importance to
maximizing the SI as the iterations increase.

We propose an update rule for λ inspired by the sub-
gradient method (Shor, 1985):

λk+1 = λk − αk+1 (SI − 1) (7)

Where α is a tuning parameter that decreases in each
iteration k according to a user-defined factor, for example,
αk+1 = 0.9αk. This means that, in the beginning, the

multiplier λ would presumably be small, so more preference
is given to the original objective function J in order
to accelerate the procedure towards an optimal solution.
Afterward, λ progressively increases to fulfill the non-
anticipativity feature as close as possible to that optimal
solution (Bazaraa and Sherali, 1981). As the iteration count
increases, more importance will be given to maximizing the
SI. The algorithm stops either after a maximum number
of iterations or when the global SI reaches 1. The reader
is referred to Algorithm 1 for a more succinct explanation.
The local optimization problem for each scenario e would
then read as:

min
yte, st

Je − λ

tR∑
t=1

st

/(
tR∆− 2

∆∑
τ=1

τ
∆− τ

∆

)

s.t.

Local model constraints (8)

st ≤ ȳt +

∆∑
τ=1

∆− τ

∆

(
ȳ(t−τ)|t>τ + ȳ(t+τ)|t+τ≤tR

)

st ≤ yte +

∆∑
τ=1

∆− τ

∆

(
y(t−τ)e|t>τ + y(t+τ)e|t+τ≤tR

)

t : 1, . . . , tR

Where ȳt refers to the solution of the scenario showing the
worst local SI in the previous iteration. Note that the slack
variables st are also tailored to each subproblem, and they
are bounded by the local decision variables yte as well as
by those fixed from the previous iteration ȳt. Consequently,
the local SI only compares the solution of the respective
subproblem with the one that yielded the worst SI in the
previous iteration.

Algorithm 1. Similarity Index Decomposition

Require: α0, kmax,∆
1: k ← 0, λ0 ← 0, ȳt ← 0 ▷ Initialization
2: repeat
3: for e in E do
4: y∗te, s

∗
t ← argminyte,st Je − λkSIe ▷ Solve (8)

5: SI∗e ← SIe(s
∗
t )

6: end for
7: SI ← Eq. (4) with y∗te ▷ Global SI computation
8: ȳt ← argminy∗

te
{SI∗e } ▷ Solution with worst SIe

9: αk+1 ← 0.9αk ▷ Multiplier update
10: λk+1 ← λk − αk+1 (SI − 1)
11: k ← k + 1
12: until SI = 1 ∨ k = kmax ▷ Convergence check
13: return y∗te

The algorithm has three parameters whose values need to
be chosen: α0 together with its decrease rate (suggested
here to be 0.9) and the length of the fuzzifying horizon ∆.
A right choice looks problem-dependent. ∆ must be shorter
than the length of the robust horizon tR, but we do not
recommend values over 3 due to computational reasons.
In general, α0 should be big enough so that αk(SI − 1)
does not vanish in a couple of iterations. However, large
values favor convergence speed over optimality, meaning
that a feasible solution is quickly reached but is probably
suboptimal.
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3. EVAPORATION NETWORK PROBLEM

In this section, we present a realistic industrial case study,
a mixed production, and maintenance scheduling problem
of an evaporation network, in which we tested the proposed
decomposition method. The evaporation network aims to
concentrate solvents that are used in the main process of a
cellulose fiber factory. Each plant in the network consists
of two evaporation chambers in serial connection with
heat exchangers in between. Some plants show different
nominal efficiencies. In addition, the evaporation plants
need to be cleaned regularly, as fouling increases the steam
consumption and so the processing costs.

The scheduler has several functions: link products to plants,
assign loads, decide when to clean, stop and start-up plants.
All of this is subject to several operational constraints,
such as (uncertain) processing demands, each plant can
only handle one product at a time, there is personnel to
clean a single plant per day, (uncertain) weather forecast,
etc. Palaćın et al. (2018) addressed this kind of problem
by a two-stage stochastic scheduling MILP formulation,
that was based on predefined-precedence allocation. Such
a mathematical model is replicated in the next section
with some simplifications for the sake of clarity. Figure 2
shows the possible states and transitions for an evaporation
plant: A plant that is under normal operation can either
go to the cleaning stage or standby; a plant that has not
been cleaned and is on standby can only go to the cleaning
stage; a clean plant can be put on standby or into normal
operation.

Working

CleaningStandby Standby

Fig. 2. State diagram of an evaporation plant.

3.1 Scheduling formulation

The original formulation of Palaćın et al. (2018) represented
the evolution of the fouling state in each plant by discretiz-
ing the time horizon in days and applying the concepts
of finite-state machine and timed automaton (Behrmann
et al., 2005). In this way, the resulting scheduling model in-
cludes the fouling dynamics, and the predefined-precedence
approach saves an important number of binary variables
that would be required in a general-precedence formulation.
Nevertheless, for this paper, we decided to simplify the
model flexibility (hence, its size), by replacing the original
fouling-state discretization with an integer variable that
informs on the number of days a plant has been in operation
since the last cleaning. The number of possible plant stages
is then reduced to just the four in Fig. 2: pre-cleaning and
post-cleaning standby, cleaning, and working. This reduces
the variables count by a factor of seven. However, this
simplification comes at a cost: it is not possible to account
for different types of cleaning and there is no way to specify
a set of initial days in which cleaning is not certainly worth
it.

Five different sets are defined for the model:

• V represents the set of evaporation plants.
• S denotes the possible plant states: sG for operating
stages, sP for pre-cleaning standby stages, sL for
cleaning stages, and sPL for post-cleaning standby
stages.

• M is the set of t days in the discretized scheduling
horizon. The first tR days form the robust horizon
MR ⊂ M.

• P is the set of the ρ products to allocate.
• E represents the set of considered scenarios.

The variables that relate to these sets are:

• Wvtse binary variables that specify if plant v is at a
stage s at day t in scenario e.

• Pvtpe binary variables that link product p to plant v
at day t in scenario e.

• Fvtpe nonnegative variables to assign the evaporation
flow of product p in plant v at day t in scenario e.

• Dvte nonnegative integer variables that state how
many days a plant v has been in operation at day
t in scenario e.

The cost C of an evaporation plant v processing a product
p in each scenario e is approximated as a function of the
assigned load F , the ambient temperature Tout, and the
time in operation since the last cleaning D:

C(v, t, p) = (KT (v)Tout(t) +KE(v))Fvtp+KF (v)Dvt (9)

Where KT (v) and KE(v) represent the nominal efficiencies
of the different equipment in the evaporation plant, and
KF (v) is the extra cost associated with the fouling state.

The feasible transitions between stages are formulated
according to linear generalized disjunctive programming
(Sawaya and Grossmann, 2005) following positive logic
statements:

1. A plant can only be in a single state at a day.∨

s∈S

Wvtse ∀v ∈ V, ∀t ∈ M, ∀e ∈ E (10)

2. A plant can only process a single product p at a time
(if it is working).

∨

p∈P

Pvtpe ∨WvtsLe ∨WvtsP e ∨WvtsPLe

∀v ∈ V, ∀t ∈ M, ∀e ∈ E (11)

3. Only a single cleaning task can occur per day.∨

v∈V

WvtsLe ∀t ∈ M, ∀e ∈ E (12)

4. A plant that has been put on standby without cleaning,
can either be cleaned or remain on standby.

WvtsP e →Wv(t+1)sP e ∨Wv(t+1)sLe

∀v ∈ V, ∀t ∈ M \ {tF }, ∀e ∈ E (13)

5. After a cleaning task, a plant can either be put on
standby or start operation.

WvtsLe →Wv(t+1)sPLe ∨Wv(t+1)sGe

∀v ∈ V, ∀t ∈ M \ {tF }, ∀e ∈ E
(14)

6. A plant that has been cleaned and is on standby, can
remain in such a state or begin to operate.

WvtsPLe →Wv(t+1)sPLe ∨Wv(t+1)sGe

∀v ∈ V, ∀t ∈ M \ {tF }, ∀e ∈ E (15)
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cleaning stages, and sPL for post-cleaning standby
stages.

• M is the set of t days in the discretized scheduling
horizon. The first tR days form the robust horizon
MR ⊂ M.

• P is the set of the ρ products to allocate.
• E represents the set of considered scenarios.

The variables that relate to these sets are:

• Wvtse binary variables that specify if plant v is at a
stage s at day t in scenario e.

• Pvtpe binary variables that link product p to plant v
at day t in scenario e.

• Fvtpe nonnegative variables to assign the evaporation
flow of product p in plant v at day t in scenario e.

• Dvte nonnegative integer variables that state how
many days a plant v has been in operation at day
t in scenario e.

The cost C of an evaporation plant v processing a product
p in each scenario e is approximated as a function of the
assigned load F , the ambient temperature Tout, and the
time in operation since the last cleaning D:

C(v, t, p) = (KT (v)Tout(t) +KE(v))Fvtp+KF (v)Dvt (9)

Where KT (v) and KE(v) represent the nominal efficiencies
of the different equipment in the evaporation plant, and
KF (v) is the extra cost associated with the fouling state.

The feasible transitions between stages are formulated
according to linear generalized disjunctive programming
(Sawaya and Grossmann, 2005) following positive logic
statements:

1. A plant can only be in a single state at a day.∨

s∈S

Wvtse ∀v ∈ V, ∀t ∈ M, ∀e ∈ E (10)

2. A plant can only process a single product p at a time
(if it is working).

∨

p∈P

Pvtpe ∨WvtsLe ∨WvtsP e ∨WvtsPLe

∀v ∈ V, ∀t ∈ M, ∀e ∈ E (11)

3. Only a single cleaning task can occur per day.∨

v∈V

WvtsLe ∀t ∈ M, ∀e ∈ E (12)

4. A plant that has been put on standby without cleaning,
can either be cleaned or remain on standby.

WvtsP e →Wv(t+1)sP e ∨Wv(t+1)sLe

∀v ∈ V, ∀t ∈ M \ {tF }, ∀e ∈ E (13)

5. After a cleaning task, a plant can either be put on
standby or start operation.

WvtsLe →Wv(t+1)sPLe ∨Wv(t+1)sGe

∀v ∈ V, ∀t ∈ M \ {tF }, ∀e ∈ E
(14)

6. A plant that has been cleaned and is on standby, can
remain in such a state or begin to operate.

WvtsPLe →Wv(t+1)sPLe ∨Wv(t+1)sGe

∀v ∈ V, ∀t ∈ M \ {tF }, ∀e ∈ E (15)

7. No changes in the product-plant allocation are allowed
until the plant is cleaned.

Pvtpe → Pv(t+1)pe ∨Wv(t+1)se ∀v ∈ V, ∀t ∈ M \ {tF },
s ∈ {sP , sL}, ∀p ∈ P, ∀e ∈ E (16)

8. To avoid infeasibility in the long run, no plants are
allowed to end up on standby before cleaning.

¬WvtF sP e ∀v ∈ V, ∀e ∈ E (17)

9. A terminal cost is established to account for the plants
that end up in an advanced fouling state.

TC := 0.5KL WvtF sGe ∀v ∈ V, ∀e ∈ E (18)

Where KL represents the cost of a cleaning task.
10. Dvte increase as long as plant v is in operation, hold if

the plant is stopped, and reset to zero when cleaning.[
¬WvtsLe

Dvte = Dv(t−1)e +WvtsGe

]
∨
[
WvtsLe

Dvte = 0

]

∀v ∈ V, e ∈ E , t ∈ M \ {t1} (19)

Additionally, the model has some production constraints:

• The evaporation rate in each plant is bounded (unless
the plant is not working, in which case it is zero). The
lower limit is fixed while the upper limit has a known
dependency on the ambient temperature.[

Pvtpe

Lv ≤ Fvtpe

Fvtpe ≤ Uv (Tout)

]
∨
[

¬Pvtpe

Fvtpe = 0

]
∀v ∈ V, ∀t ∈ M
∀p ∈ P, ∀e ∈ E (20)

• The production demands SPpte for each product must
be accomplished every day.∑

v∈V
Fvtpe = SPpte ∀t ∈ M, ∀p ∈ P, ∀e ∈ E (21)

The non-anticipativity constraints are enforced during tR
days.

Wvtse ≡ Wvts, Pvtpe ≡ Pvtp, Fvtpe ≡ Fvtp

∀v ∈ V, t ∈ MR, s ∈ S, p ∈ P, e ∈ E (22)

The remaining constraints are the known initial state
of the plants, denoted by the set I, and the allowed
connections between products and plants, denoted by A.
Then, the stochastic production-maintenance scheduling
problem reads as:

min
1

2ρ+1|M|
∑
e∈E

∑
t∈M

∑
v∈V

[
KF (v)Dvte +KLWvtsLe

+
∑
p∈P

(KT (v)Tout(t) +KE(v))Fvtpe

]
+ TC

s.t. Constraints (10)− (22)

{Wv1se, Pv1se, Dv1e, Fv1pe} ∈ I
Pvtpe ∈ A, Fvtpe ∈ R≥0, Dvte ∈ N
{Wvtse, Pvtpe} ∈ {0, 1}

(23)

See (Palaćın et al., 2018; Palaćın, 2020) for a detailed
description of the case study and the non-simplified model.

3.2 Adaptation to decomposition

The decomposition method requires slight modifications
to the model. The non-anticipativity constraints (22) are
disregarded, as schedules for scenarios are to be solved
independently via (8).

Similarity index calculation. As described in Section 2,
local SIe need to be calculated as part of the decomposition
method. Then, after all the solutions have been collected,
a global SI is computed to update the lagrangian-like
multiplier λ. Considering ∆ = 2, the local SIe depend on
the decision variables defined for each scenario as follows:

SIe =
∑
v∈V

∑
s∈S

∑
t∈MR

svts
nv (2tR − 1)

(24)

svts ≤ W vts +
1

2

(
W v(t−1)s|t>1 +W v(t+1)s|t+1≤tR

)

svts ≤ Wvtse +
1

2

(
Wv(t−1)se|t>1 +Wv(t+1)se|t+1≤tR

)

∀v ∈ V, s ∈ S, t ∈ MR

(25)

Where nv is the number of evaporation plants and W vts

is the previous solution for the scenario that yielded the
worst SI. Note that variables Pvtpe should also be included
in the SI computation. However, this can be neglected due
to the particular nature of the case study: if the plants
state is the same for all scenarios within the robust horizon,
there is no possibility that a plant is optimally allocated to
different products among scenarios because the evaporation
demand is not uncertain within the robust horizon.

Following (4), the global SI is calculated by:

SI =
∑
v∈V

∑
s∈S

∑
t∈MR

min
e∈E

{
Wvtse +

1

2

(
Wv(t−1)se|t>1

+Wv(t+1)se|t+1≤tR

)}/(
nv (2tR − 1)

)
(26)

4. RESULTS AND DISCUSSION

Two problems instances were studied, both with three
plants and two products to allocate. The scheduling horizon
is tF = 30 and the robust horizon is tR = 7. The only
difference is the number of scenarios considered for the
expected production demand: four and eight. The problem
instance with four scenarios has 3243 continuous variables
and 2160 binary variables. The other instance has twice as
many variables.

All model instances were solved in GAMS 36.2.0 using IBM
ILOG CPLEX 20.1 with an i7–1185G7 CPU at 3.00GHz
and 16GB of RAM. The relative gap tolerance was set to
zero. The monolithic problem was solved in parallel with
four threads using the solver default capabilities. In the
case of the decomposed problem, the subproblems were
solved in parallel using GAMS grid facility with two threads
assigned to each one. α was initially set to 5000 and it was
reduced by 3% in each iteration.

For the first instance, the solutions of both the monolithic
and the decomposed problems are identical, and their cost
functions are equal to 10174.8¤. The monolithic approach
elapsed 17.96 CPU seconds, while the decomposed ap-
proach was around 4% faster, elapsing 17.25 s and four
iterations to converge. Table 1 reports the evolution of the
global SI, local SIe, and λ over the iteration count.

See that, in every iteration, the worst SIe among all
scenarios is improved, which leads to an increase in the
global SI. Note that the SIe for the other scenarios may
momentarily decrease, for example in e = 3 between the
2nd and 3rd iterations. However, this is needed to adjust
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their solution to that of the worst scenario, which provides
global convergence in the end.

Table 1. SI evolution over the iterations.

k SI SI1 SI2 SI3 SI4 λ

1 0.48 0.00 0.00 0.00 0.00 18.60
2 0.48 0.48 0.48 1.00 1.00 35.34
3 0.73 1.00 1.00 0.77 0.77 43.12
4 1.00 1.00 1.00 1.00 1.00 43.12

For the problem instance with 8 scenarios, the solutions and
the cost functions were also identical, equal to 19927.4¤.
The Gannt diagram is omitted for brevity. Here we observed
a much more drastic improvement in the computation time.
The decomposed approach (47.35s) was around 100 times
faster than solving the monolithic problem (4761.17s). It
shall be noted that the monolithic problem reaches a 2%
optimality gap quickly, but struggles to find the optimal
solution. We reckon that, by tuning the solver-specific
heuristics, the performance of the monolithic formulation
might be enhanced considerably, but it could also be the
case for the subproblems in the decomposed approach.

5. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel decomposition method for
two-stage stochastic scheduling problems based on a
single measure of the similarity between discrete-time
schedules. The Similarity Index is computed by performing
a fuzzification of the discrete decisions taken at some
time over the neighboring instants. Then, an independent
optimization problem is set up for every scenario, and
the first-stage variables are forced to coincide using the
Similarity Index.

The method was tested in two instances of an industrial-
like problem with a different amount of scenarios. Such
tests reported exponentially increasing savings in CPU time
with the number of scenarios, with respect to a monolithic
problem formulation. In other words, the proposed ap-
proach can exploit the advantages of parallel computation
beyond the solvers native capabilities. Additionally, the
subproblems could even be solved in different computers,
in a grid-computing environment.

A disadvantage is that a feasible solution is only obtained
when the problem has converged, i.e., the similarity
index is equal to 1. In contrast, the monolithic approach
looks first for a feasible solution and starts improving it.
Furthermore, the convergence properties of the algorithm
are not deeply analyzed yet. Thus, future work will focus
on formal convergence analysis and on improving the
multiplier update rule. We also aim to extend the method
to continuous-time scheduling formulations and nonlinear
stochastic scheduling problems.

ACKNOWLEDGEMENTS

These results are funded by the Spanish MICINN with
FEDER funds, as part of the InCO4In (PGC2018-099312-
B-C31) and LOCPU (PID2020-116585GB-I00) research
projects. The first author has received financial support
from the 2020 call of the pre-doctoral contracts of the
University of Valladolid, co-financed by Banco Santander.

REFERENCES

Bazaraa, M.S. and Sherali, H.D. (1981). On the choice
of step size in subgradient optimization. Eur. J. Oper.
Res., 7(4), 380–388.

Behrmann, G., Larsen, K.G., and Rasmussen, J.I. (2005).
Optimal scheduling using priced timed automata. ACM
SIGMETRICS Perform. Eval. Rev., 32, 34–40.

Benders, J. (1962). Partitioning procedures for solving
mixed-variables programming problems. Numer. Math.,
4, 238–252.

Crainic, G.T., Hewitt, M., Maggioni, F., and Rei, W.
(2016). Partial Decomposition Strategies for Two-Stage
Stochastic Integer Programs. CIRRELT, Cent. Interuniv.
Rech. sur les réseaux d’entreprise, la logistique le Transp.
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