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Abstract

Persistent activity, the maintenance of neural activation over short periods of time in
cortical networks, is widely thought to underlie the cognitive function of working
memory. A large body of modeling studies has reproduced this kind of activity using
cell assemblies with strengthened synaptic connections. However, almost all of these
studies have considered persistent activity within networks with homogeneous neurons
and synapses, making it difficult to judge the validity of such model results for cortical
dynamics, which is based on highly heterogeneous neurons. Here, we consider
persistent activity in a detailed, strongly data-driven network model of the prefrontal
cortex with heterogeneous neuron and synapse parameters. Surprisingly, persistent
activity could not be reproduced in this model without incorporating further
constraints. We identified three factors that prevent successful persistent activity:
heterogeneity in the cell parameters of interneurons, heterogeneity in the parameters
of short-term synaptic plasticity and heterogeneity in the synaptic weights. Our model
predicts that persistent activity is recovered if the heterogeneity in the activity of
individual interneurons is diminished, which could be achieved by a homeostatic
plasticity mechanism. Such a plasticity scheme could also compensate the
heterogeneities in the synaptic weights and short-term plasticity when applied to the
inhibitory synapses. Cell assemblies shaped in this way may be potentially targeted by
distinct inputs or become more responsive to specific tuning or spectral properties.
Furthermore, the model predicts that a network that exhibits persistent activity is not
able to dynamically produce intrinsic in vivo-like irregular activity at the same time,
because heterogeneous synaptic connections are required for these dynamics. Thus,
the background noise in such a network must either be produced by external input or
constitutes an entirely different state of the network, which is brought about, e.g., by
neuromodulation.

Author summary

To operate effectively in a constantly changing world, it is crucial to keep relevant
information in mind for short periods of time. This ability, called working memory, is
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commonly assumed to rest on reverberating activity among members of cell assemblies.
While effective in reproducing key results of working memory, most cell assembly
models rest on major simplifications such as using the same parameters for all neurons
and synapses, i.e., assuming homogeneity in these parameters. Here, we show that this
homogeneity assumption is necessary for persistent activity to arise, specifically for
inhibitory interneurons and synapses. Using a strongly data-driven network model of
the prefrontal cortex, we show that the heterogeneities in the above parameters that
are implied by in vitro studies prevent persistent activity. When homogeneity is
imposed on inhibitory neurons and synapses, persistent activity is recovered. We
propose that the homogeneity constraints can be implemented in the brain by means
of homeostatic plasticity, a form of learning that keeps the activity of a network in a
constant, homeostatic state. The model makes a number of predictions for biological
networks, including a structural separation of networks responsible for generating
persistent activity and spontaneous, noise-like activity.

Introduction 1

Working memory can be defined as the ability to maintain a representation of a 2

sensory stimulus, a thought or a memory retrieved from long-term storage over a 3

period of time, even after the source of this representation is gone [1]. Working 4

memory is a crucial prerequisite for many cognitive functions such as planning, 5

reasoning, goal-directed behavior or language comprehension. It is also among the 6

most commonly distorted cognitive functions in neurological and psychiatric disorders 7

such as schizophrenia [2,3]. A neural basis of working memory is widely believed to be 8

persistent activity in cortical neurons, i.e., elevated firing rates that emerge during 9

synaptic stimulation that persist after the input is removed [4–6]. This type of activity 10

has been consistently found during working memory tasks in electrophysiological 11

recordings [4, 7–9] as well as imaging recordings from humans [5, 10], most prominently 12

in the prefrontal cortex (PFC). Furthermore, the stability of persistent activity is 13

often strongly correlated with behavioral performance, i.e., if activity does not persist, 14

animals are much more likely to make an error [4, 7]. 15

The prominent role of persistent activity in working memory and cognition has 16

inspired a large number of modeling studies that aim to understand the neural 17

mechanisms underlying persistent activity [4, 6, 11]. The most widely studied of these 18

mechanisms is reverberating synaptic activity in so-called attractor networks or cell 19

assemblies, sets of neurons that are more strongly interconnected to each other 20

compared to the average connectivity. This mechanism has been implemented in 21

models of different levels of biological abstraction [4, 11–14]. In this study, we focus on 22

attractor network models that rely on anatomically and physiologically stable 23

assemblies, which may either be shaped by Hebbian learning or by proximity in space 24

(either physical or defined by stimulus features), as opposed to more recent proposals 25

of transient activations of cellular subsets [11], e.g., based on short-term synaptic 26

modifications [15]. 27

An important simplification in most of the existing models of persistent activity is 28

disregard of the substantial heterogeneity of functional properties of neurons and 29

synapses observed in the living brain, i.e., using the same set of parameters for all the 30

simulated entities of the same type. Few studies have investigated the impact of 31

incorporating heterogeneities into working memory models. The existing ones have 32

focused on the ring model [16], for spatial working memory and heterogeneities in the 33

parameters of pyramidal cells and their synaptic connections. Results suggest that 34

random heterogeneities in the model cause the representation to drift to other spatial 35

locations [17–19], while spatially structured heterogeneities [20], homeostatic 36
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regulation of pyramidal cell activity [17] and short-term synaptic plasticity [18, 19] can 37

prevent this drift. 38

In this work, we investigate persistent activity of single cell assemblies within a 39

biophysically detailed spiking network model of the PFC that is strongly constrained 40

by in vitro data, including cellular and synaptic heterogeneities [21]. We find that 41

these naturally occurring heterogeneities abolish bistability that is necessary for 42

stimulus-dependent persistent activity. Thus, persistent activity itself is lost, instead 43

of drifting away from the encoded location as in the ring model. Three aspects of 44

heterogeneity are found to be harmful for persistent activity: Heterogeneous 45

excitability of the interneurons (but not of the pyramidal cells, as in previous studies), 46

heavy tails in the distribution of synaptic inputs [22] and heterogeneous short-term 47

plasticity, i.e. different types of plasticity (facilitating, depressing or both) in synapses 48

between neurons of the same type. We also show that persistent activity is recovered 49

when the heterogeneities in the interneurons are compensated, e.g., by homeostatic 50

plasticity [23, 24]. The same plasticity scheme could also compensate the 51

heterogeneities in the synaptic weights and short-term plasticity when applied to the 52

inhibitory synapses. However, as an important consequence of the homogeneity 53

requirement for persistent activity, we show that cell assembly neurons cannot 54

dynamically produce the often observed irregular ground state on their own: The 55

dynamics that stabilize persistent activity are mutually exclusive with those dynamics 56

necessary for the generation of irregular behavior. Instead, the assemblies may inherit 57

these noise-like properties from input from other subnetworks or change its dynamic 58

mode, e.g., using neuromodulation. 59

Results 60

No persistent activity in the detailed network model 61

Stimulus-dependent persistent activity is routinely seen in a wide variety of 62

computational models that implement cell assemblies, sets of neurons that either 63

innervate each other with a more dense connectivity or stronger synaptic weights. 64

Mathematically, these assemblies show bistable behavior: In the absence of a stimulus, 65

the firing rates of their member neurons are low, and there is no difference from the 66

neurons outside the assembly (also called the spontaneous activity, e.g., [25]). When a 67

stimulus is given to the neurons of the assembly, however, the strong activation triggers 68

a positive feedback loop among the assembly neurons, which extends a high-rate 69

persistent activity over time due to the long time constant of the NMDA currents. We 70

attempted to generate persistent activity in the same way in a biologically validated 71

model we recently proposed [21], which comprises broad, multivariate cell parameter 72

distributions derived from in vitro recordings, laminar anatomy and experimentally 73

constrained synaptic dynamics (see Methods for details). Surprisingly, we did not find 74

the bistable behavior that is necessary for persistent activity as observed in vivo. 75

Depending on the parameters of the model, either the spontaneous or the persistent 76

activity state is stable, while the other one is not. Thus, the network either relaxes 77

back to spontaneous activity after a transient reaction to the stimulus (Figure 1A) or 78

persistent activity is present over the entire simulation time, only mildly modulated by 79

the stimulus (Figure 1B). We varied a number of model parameters that are likely to 80

affect persistent activity, such as the baseline synaptic weights between pyramidal cells 81

and interneurons, synaptic weights and connectivity within the assembly (using scaling 82

factors sCA for weights and pCA for connection probabilities), background currents 83

into the pyramidal cells (Iex) and interneurons (Iinh), as well as the size of the 84

assembly NCA and the ratio between the peak conductance of NMDA and AMPA 85
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currents, which is originally set to 1.09 [26,27] (see Methods for a full overview over all 86

parameter variations). Almost none of these manipulations led to persistent activity 87

(with a single exception, which requires unphysiological levels of NMDA currents and 88

puts the entire network in an epileptiform state with extremely high firing rates). 89

Figure 1C shows the normalized activity in the cell assembly (see Methods for details) 90

before the stimulus presentation (blue) and for the last 500 ms of the simulation (red). 91

The results are sorted for ascending values of the activity before the stimulus. One can 92

see that all possible activity values are covered, and the activity values at the end of 93

the simulation hover around those before stimulation, i.e. activity that is low before 94

stimulation stays low afterwards (Figure 1A), while high activity levels at the end of 95

the simulation are already generated before stimulus presentation (Figure 1B), 96

reflecting a continuum of monostable states.

Fig 1. Failed persistent activity in the original network. A: Raster plot (upper
panel) and instantaneous firing rate (lower panel) of layer 2/3 of the network, with
pyramidal cells in red (cell assembly members) and black (neurons outside the
assembly) and interneurons in blue. The red bar denotes a stimulus to the assembly
neurons. Activity in the cell assembly quickly decays back to baseline after a few
hundred ms. B: Raster plot as in A. Activity in the assembly persists, but arises
spontaneously, i.e., not in reaction to the external stimulus. C: Summary of
normalized activity in the cell assembly (see Methods for details) before stimulus
presentation (blue) and at the end of the simulation (red) for 300 simulations with
different parameters (assembly size between 30 and 80 cells). Simulations are sorted
by ascending values of activity before the stimulus.

97

The remainder of the paper aims to identify how bistability can be introduced in a 98

physiologically realistic network configuration. To differentiate bistability-induced 99

persistent activity from the monostable states described above (Figure 1A and B), we 100

introduce the measure dPA, which is defined as the difference between the normalized 101

activity in the cell assembly after and before the stimulus, ranging between zero and 102

one (dPA is set to zero for negative differences, i.e. higher activity before the stimulus, 103

see Methods for details). dPA is close to zero in all of the monostable cases (largely 104

constant firing rates over time) and increases only if the stimulus induces a persistent 105

high-activity state, i.e., in the bistable case. 106

Constraints for persistent activity 107

The above results (Figure 1) show that none of the simulations exploring a wide range 108

of parameter combinations for the biologically validated network model was able to 109

generate realistic persistent activity. This is a surprising result, as simpler models 110

easily incorporated persistent activity in cell assemblies. Thus, we hypothesized that 111

some of the biological complexity that is mimicked in the present model, but was 112

missing in others, prevents persistent activity. To test this, we simplified the model to 113

see which of the added features cause the problem. Most notably, we reduced the 114

network to contain pyramidal cells and fast-spiking interneurons in layer 2/3 only (i.e., 115

lacking layer 5 and four other types of interneurons, see Methods for details), used a 116

uniform connection probability of 10%, removed short-term plasticity and reduced the 117

input currents to the mean rheobase of each neuron type, which strongly reduced 118

spontaneous firing. Furthermore, we made the neuron parameters of a given cell type 119

much more uniform, reducing its standard deviation to 5% of the original value. These 120

simplifications made the model more similar to previously studied models of persistent 121

activity, in particular the Brunel and Wang model [25] (we also tested a configuration 122

that completely mimicked that model, but results did not qualitatively change). 123
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Most of these manipulations did not improve the ability of the network to produce 124

persistent activity, with three exceptions: The reduction of the standard deviation of 125

the neuron parameters, the removal of short-term plasticity and the use of a uniform 126

connectivity across cell types. Each of these manipulations represents aspects of 127

heterogeneity and variability of the network: Heterogeneity in the neuron parameters, 128

the synaptic connectivity and the dynamics of synaptic response. In the following, we 129

will investigate how these three aspects of heterogeneity relate to persistent activity 130

and how they can be compensated in a biologically meaningful way. 131

Low-rheobase interneurons suppress persistent activity First, we varied the 132

amount of heterogeneity in the neuron parameters by jointly decreasing the standard 133

deviations of the parameter distributions obtained from in vitro recordings to a given 134

fraction of their original values for all parameters. Figure 2A shows the persistent 135

activity measure dPA as a function of cell parameter variability. Persistent activity 136

emerges when variability is reduced to about 25% or less of the original value. This is 137

indicated by values of dPA above 0.3 (dotted line in Figure 2A), which has proven a 138

good demarcation between successful and failed persistent activity using visual 139

inspection of the raster plots, and will be used in this way throughout the paper. The 140

exact choice of this demarcation is not critical for the results. To understand why the

Fig 2. Breaking persistent activity by interneuron heterogeneity. A: dPA as
a function of the variability in neuron parameters in pyramidal cells only (red),
interneurons only (blue) or all neurons (black). B: Persistent activity measure dPA as
individual parameters are increased back to 100% of their original variability, with all
other parameters at 5%. The leftmost bar shows baseline dPA if all parameters’
variability is left at 5%. The dashed line demarks the boundary between successful
(dPA ≥ 0.3) and failed (dPA < 0.3) persistent activity. C: dPA in simulations with
interneuron variability set to 5% as increasing number of interneurons are replaced by
neurons at the original variability, but only with rheobases above (blue) or below (red)
the mean rheobase. Background currents are adjusted accordingly (see text for
details). The dashed line demarks dPA = 0.3 as in A.

141

naturally occurring heterogeneity in the neuron parameters [21, 28] prevents persistent 142

activity, we first analyzed the effect of individual cell types and neuron parameters, in 143

particular the rheobase, the minimal amount of input current that elicits an action 144

potential. Figure 2A shows the persistent activity measure dPA as the cellular 145

variability of pyramidal cells or interneurons were varied, respectively, while the other 146

cells were left at their original parameter distribution. It is apparent that only the 147

heterogeneity in the interneurons affects persistent activity (blue curve), while 148

pyramidal cell variability does not have a noticeable effect, either when varied alone 149

(red curve) or in concert with interneuron variability (black vs. blue curve). 150

To differentiate the effects of the individual neuron parameters of the interneurons, 151

we started from a simulation where the variability of all parameters was set to 5% of 152

their original values (Figure 2B, left bar, dPA = 0.60 ± 0.02; mean ± SEM). Then, we 153

replaced the reduced distribution of each of the nine independent model parameters of 154

the neuron model (the simplified exponential integrate and fire neuron, or 155

simpAdEx [28]) by the full distribution, one at a time. dPA significantly decreased 156

relative to baseline for each of these manipulations, but mostly stayed above 0.3, 157

indicating successful persistent activity (dotted line in Figure 2B). However, dPA 158

dropped to values of almost zero when the original heterogeneity was used in the 159

parameters Vth (onset of exponential upswing in the membrane potential, dPA = 0.0 160

for all simulations) and EL (reversal potential of the leak current, dPA = 0.01 ± 0.01; 161

mean ± SEM). 162
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The parameters Vth and EL that proved most important in the above analysis are 163

the major determinants of the rheobase current in the simpAdEx [28]. Thus, we 164

hypothesized that interneurons with low rheobase and high spontaneous firing rate 165

will prevent the initiation of persistent activity. To test this hypothesis, we set up a 166

simulation with two populations of interneurons, one using the original distribution 167

and another with the variability of all parameters reduced to 5%. We first drew all 168

interneurons from the reduced distribution and then replaced increasing numbers of 169

interneurons by those drawn from the original distribution and computed the dPA 170

measure in each of these cases. Importantly, we replaced only neurons with rheobases 171

above the average in one set of simulations (blue curve in Figure 2C) and only those 172

with rheobases below the average in another one (red curve in Figure 2C). Background 173

currents were adjusted such that the input relative to the mean rheobase was kept 174

constant as neurons were replaced, so the effective mean input into the interneurons 175

are not changed. While the replacement of neurons above rheobase does not affect 176

persistent activity, dPA drops as the number of replaced neurons below rheobase is 177

increased. This implies that interneurons with rheobases below the population average 178

dominate inhibition and prevent the initiation of persistent activity. Importantly, the 179

adjustment of the (constant) background current was not sufficient to compensate the 180

increased inhibitory activity. This suggests that the low-rheobase interneurons may 181

induce a skew in the distribution of inhibitory activity rather than just shifting its 182

mean. 183

Homeostatic compensation for rheobase heterogeneity recovers persistent 184

activity Persistent activity occurs in prefrontal cortex where cells are highly 185

heterogeneous, so it is important to explain how persistent activity and cellular 186

heterogeneity can be reconciled in a model of the prefrontal cortex. As we identified 187

high spontaneous firing rates in low-rheobase interneurons as the main limiting factor 188

for the initiation of persistent activity, the effect of these interneurons on total 189

inhibition needs to be limited in a biologically realistic way. A potential mechanism 190

limiting the maximal inhibition is homeostatic scaling of synaptic weights that aims to 191

keep roughly uniform firing rates. This kind of homeostatic plasticity has been 192

observed in both in vivo and in vitro studies and has been shown to regulate both 193

excitatory and inhibitory synapses [24]. We emulate this homeostatic regulation by 194

adjusting the excitatory background inputs (which are meant to represent the average 195

synaptic input from outside the simulated network) individually for each interneuron 196

such that the effective drive (input current minus rheobase) is the same for each 197

interneuron. External input constitutes the bulk of the excitatory input to each cell, 198

so extending the homeostasis to all excitatory input does not significantly change the 199

results. With this adjustment, the distribution of firing rates in the network peaks at 200

the mean rheobase, while previously, it was strongly skewed towards low-rheobase 201

interneurons at high rates (Figure 3A). Furthermore, persistent activity emerges as the 202

background currents are slightly decreased compared to the original value of 37pA 203

(blue curve in Figure 3B). Importantly, the same manipulation lacks any effect without 204

rheobase compensation (red curve). Thus, homeostatic plasticity is a possible way to 205

compensate rheobase heterogeneity and allow for persistent activity. 206

The role of short-term plasticity The simulations shown in Figure 2 and 3 were 207

conducted without short-term synaptic plasticity (STP). Here, we investigate the how 208

the incorporation of STP affects persistent activity. STP refers to the dynamic change 209

of synaptic efficacies in response to incoming spikes, which relaxes back to a baseline 210

within several hundred milliseconds [29] (see Methods for details). This short time 211

scale sets STP apart from long-term plasticity, which induces lasting changes in the 212

December 20, 2018 6/31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/645663doi: bioRxiv preprint 

https://doi.org/10.1101/645663
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 3. Compensation of rheobases restores persistent activity. A: Average
interneuron firing rate as a function of rheobase with (blue) and without (red)
background currents adapted to rheobases (mean ± SEM over all neurons). B:
Persistent activity measure dPA as a function of the background current into
interneurons with (blue) and without (red) compensation of rheobases by adapting the
background currents such that the input relative to each individual rheobase is
constant (mean ± SEM over 12 simulations).

synaptic weights. It has also been suggested that STP can be used as a dynamic basis 213

for persistent activity [15], a proposal we do not consider in this study. Instead, we 214

investigate the effect of STP heterogeneity on persistent activity generated by 215

reverberation in a cell assembly. Our original model [21] contained three types of STP, 216

which are suggested by electrophysiological data: Predominantly facilitating plasticity, 217

predominantly depressing plasticity, and a mixed plasticity type [30, 31]. These studies 218

also show that the cell types of the pre- and postsynaptic neuron determines the 219

plasticity type of a given synapse. Connections among pyramidal cells, among 220

fast-spiking interneurons and between fast-spiking interneurons and pyramidal cells, 221

however, can exhibit all three types of plasticity with different probabilities (see 222

Methods for details), introducing another factor of heterogeneity. We refer to 223

simulations with this full distribution of STP types as “heterogeneous STP” and to 224

those with only one STP type for a given pair of cell types as “homogeneous STP”. In 225

the homogeneous case, only the most frequently occurring STP is being used for each 226

pair of cell types (facilitating STP for pyramidal-pyramidal connections and 227

depressing STP for fast-spiking interneurons inhibiting pyramidal cells as well as for 228

interneuron-interneuron connections, c.f. Figure 2B in [21]). 229

The different curves in Figure 4 represent these different parameter configurations 230

of STP: Heterogeneous STP (red curve), no STP at all (black curve) and homogeneous 231

STP (blue curve). With heterogeneous STP (red curve), dPA is close to zero for all 232

values of cell parameter variability, while in the simulations without STP (black curve), 233

persistent activity emerges as cellular heterogeneity is reduced. However, removing 234

STP is not a necessary condition for persistent activity. Homogeneous STP (blue 235

curve) also leads to persistent activity for low cell parameter heterogeneity. Thus, it is 236

the heterogeneity of STP that prevents persistent activity to emerge, not STP per se.

Fig 4. Interaction of cellular heterogeneity and short-term plasticity.

Persistent activity measure dPA as a function of the variability in neuron parameters
with original STP (red), homogeneous STP (blue) and no STP (black). Mean dPA±
SEM over 24 simulations is shown.

237

Dynamic impact of heterogeneous synaptic input The above results show that 238

persistent activity can be achieved when heterogeneities in interneuron cell parameters 239

and short-term plasticity are removed or compensated. While these conditions are 240

necessary for persistent activity, they are not sufficient: All of the simulations so far 241

used a uniform connectivity of 10% across all cell types, while persistent activity could 242

not be generated in the full network with all layers and cell types included and the 243

original connectivity pattern obtained from in vitro data [21]. In this original pattern, 244

connection probabilities are higher among interneurons (25%) and between 245

interneurons and pyramidal cells (15% to 70%) compared to the connectivity among 246

pyramidal cells (about 10%). Fast-spiking interneurons and Martinotti cells project 247

particularly frequently onto pyramidal cells (about 50% and 70%, respectively). In the 248

following, we investigate how this pattern of heterogeneous connectivities between 249
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different cell types shapes the dynamics of the full network (including homogeneous 250

short-term plasticity) and why it prevents persistent activity from emerging. 251

First, we found that the most notable difference between the heterogeneous 252

connectivity patterns and the homogeneous one (10% connectivity among all cell 253

types) lies in the distribution of synaptic weights: In the heterogeneous connection 254

pattern, pyramidal cells receive many more connections from fast-spiking interneurons 255

and Martinotti cells in layer 2/3 compared to other cells types and cells from layer 5. 256

Furthermore, synaptic weights for these densely connected cells type combinations are 257

much stronger compared to others (2.30 mV and 1.91 mV, for fast-spiking 258

interneurons and Martinotti cells, respectively, compared to an average of 0.10 mV for 259

all other types of interneurons). These two sources of inhibition result in a bimodal 260

distribution of synaptic weights (Figure 5A, red curve). When all connectivities are set 261

to a uniform 10%, far fewer of the strong weights from fast-spiking interneurons and 262

Martinotti cells are being drawn, while the distribution of the weaker weights is much 263

less affected (Figure 5A, blue curve). This leads to greatly decreased numbers of 264

strong inhibitory synapses onto L2/3 pyramidal cells in the uniform network compared 265

to the heterogeneous one.

Fig 5. Dynamic difference between homogeneous and heterogeneous

synaptic connections. A: Histogram of synaptic weights in networks with
homogeneous connectivity (10% for all cell types, blue curve) and heterogeneous
connectivity (connectivity constrained by data, red curve). B: Histogram of the total
strength of each synapse in the networks with homogeneous and heterogeneous
connectivity, computed as the product of the synaptic weight, the variables of
short-term synaptic plasticity, averaged over all synaptic events, and the number of
synaptic events. The inset shows the distributions on a log-log scale to demonstrate
the heavy tail of the distributions. The black bar shows a 1/x2 distribution for
comparison.

266

Second, we investigated the impact of the weight distribution on the total synaptic 267

input from a given interneuron to a given cell assembly member. The total synaptic 268

input is defined as the sum of synaptic conductance changes in the target neuron by 269

spikes from the presynaptic interneuron, summed over the entire spike train of that 270

interneuron. These total inputs follow of a heavy-tailed distribution (Figure 5B), 271

where the tail sits on top of barely visible bimodal distribution at lower values. While 272

the two modes reflect the distribution of the weights, the heavy tail occurs from the 273

fact that large values of the total input require the rare coincidence of both large 274

weights and high firing rates. Furthermore, inputs from interneurons with high rates 275

are often strongly attenuated by short-term synaptic plasticity, as the predominant 276

plasticity type from interneurons to pyramidal cells is synaptic depression. Thus, a 277

high total input also requires suitable parameters of short-term plasticity, most 278

importantly, a short time constant of synaptic depression. All these conditions only 279

rarely coincide, but when they do, very large total synaptic inputs result, constituting 280

the heavy tail of the distribution. Importantly, coincidence is much more likely if there 281

is a large fraction of strong synapses, as in the noise network. Thus, the tail is heavier 282

for heterogeneous connectivity (Figure 5B, red curve) compared to uniform 283

connectivity (Figure 5B, blue curve). 284

Cell assembly neurons that receive even a few of those extreme inputs well show 285

inhibitory conductances which are much higher than those from neurons which 286

inhibitory inputs are all close to the mean, being effectively dominated by those few 287

inputs. Thus, because of the much higher probability of extreme inputs under 288

heterogeneous connectivity, we expected to see an increase both in the mean and in 289

the standard deviations of the distribution of inhibitory conductances compared to 290
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uniform connectivity. Indeed, inhibitory conductances did show a higher mean and 291

standard deviation across assembly neurons for the heterogeneous connectivity 292

(54.30± 12.66 for heterogeneous connectivity compared to 14.25± 7.91 for uniform 293

connectivity; mean ± SD; p=1.4 · 10−54, t(158)=24.01, two-sided t-test), while 294

excitatory conductances only slightly (but significantly) differ in both configurations 295

(1.05± 0.41 for heterogeneous connectivity compared to 1.32± 0.43 for uniform 296

connectivity; mean ± SD; p=−4.8 · 10−5, t(158)=-4.18, two-sided t-test). 297

When we compared the homogeneous and the heterogeneous network, we actually 298

did two comparisions at once: One between homogeneous and heterogeneous 299

connectivities (same or different numbers of connections between different cell types) 300

and another one between a high and low overall number of connections (10% in the 301

homogeneous network vs. about 20% in the heterogeneous network constrained by 302

data). Thus, we need to check which of the two differences sets apart the two types of 303

networks. To this end, we conducted one set of simulations where connectivity was 304

heterogeneous, but scaled to 10% and another one where we set all connectivities to 305

20%. In both of these cases, persistent activity could be achieved. Thus, we conclude 306

that an increased number of connections is only harmful for persistent activity if they 307

increase the overall number of inhibitory connections. 308

Persistent vs. spontaneous activity 309

In the previous section, we reported conditions under which a biologically tightly 310

constrained network model [21] can exhibit persistent activity. An important goal of 311

the study that introduced this model [21] was to mimic the asynchronous-irregular 312

(AI) background activity [32, 33], which has been observed both in models [32–34] and 313

experiments [33, 35]. Thus, it needs to be tested whether AI activity can be generated 314

in a network that fulfills the constraints for persistent activity (note that we 315

concentrate on the irregularity in the following). We implemented all three conditions 316

(homogeneous short-term plasticity, interneuron parameter variability at 5% of its 317

original value and uniform connectivity at 10% for all cell types) in the original 318

network and assessed both persistent activity and measured the coefficient of variation 319

(CV ), a measure of inter-spike time variability. As expected, persistent activity 320

robustly emerged in this network (Figure 6A) after decreasing the background current 321

from 500 to 120 pA. However, activity was also much more regular compared to the 322

original, heterogeneous network (mean CV = 0.46 before and mean CV = 0.14 after 323

the stimulus in Figure 6A compared to 1.04± 0.33 in the original network [21], mean 324

± SD). While removing the constraints on variability of cellular and short-term 325

plasticity parameters did not change the regularity of the activity, using the original, 326

heterogeneous connectivity did: The mean CV reached 0.64, which is above the lower 327

bound of the values found in the original network. However, persistent activity was 328

not possible in this configuration: Activity levels quickly decay back to baseline once 329

the stimulus is switched off (Figure 6B). This could not be changed by using a range 330

of different background currents and synaptic weight strengths (see below). There are 331

at least two possible explanations for this observation: Persistent activity could either 332

be destabilized by noise, or the dynamic regimes that bring about persistent activity 333

and which generates noisy, irregular behavior may be mutually exclusive. In the 334

following to sections, we present tests of both hypotheses. We found that persistent 335

activity is robust to noise, but that noise indeed needs to be generated at a different 336

synaptic configuration. Finally, we tested to which degree a “noise network” 337

generating irregular activity could overlap with the “signal network” generating 338

persistent activity, both in terms of pyramidal cells and interneurons. 339
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Fig 6. Persistent and spontaneous activity. A: The full network with interneuron
cell parameter, connectivity and short-term plasticity heterogeneity removed shows
persistent activity, but at low variability. B: When the original, heterogeneous
connectivity pattern is used, persistent activity breaks down, but irregular activity
emerges. Both panels show raster plots and instantaneous firing rates as in Figure 1A.

Robustness against external noise To investigate the robustness of persistent 340

activity against noise, we added a second set of 1000 neurons to the network and 341

configured the first subnetwork to generate persistent activity (“signal network”, 342

uniform connectivity at 10%) and the second one to generate spontaneous activity 343

(“noise network”, original connectivity from [21], i.e., many fewer connections among 344

pyramidal cells compared to interneurons and compared to pyramidal-interneuron 345

connections). Pyramidal cells from the noise network project onto the pyramidal cells 346

in the signal network with the same synapse parameters as within the noise network, 347

but with uniform connection probabilities c between zero and one (which constitutes a 348

minimal perturbation of the signal network). Thus, the two networks simulate 349

spatially separate columns that communicate via pyramidal cells only (see sections 350

below for more interleaved networks). Figure 7A shows the dPA values for different 351

values of the coupling constant c (only for those simulations which show successful 352

persistent activity, i.e., dPA ≥ 0.3). These values do not systematically change as c is 353

increased, which shows that persistent activity can survive considerable levels of 354

externally generated noise, compatible with previous results [25]. CV s within the cell 355

assemblies are consistently above one, largely independent of the values of c (1.16 ± 356

0.06, mean ± SEM over all c values). Outside the cell assembly, however, CV s are 357

strongly modulated by the connection strength to the noise network. Figure 7B shows 358

the CV both before and after the stimulus presentation as a function of c (same 359

simulations as in panel A). CV increases with c in both cases. However, only CV s 360

measured after the stimulus presentation, i.e., during persistent activity itself, reach 361

values that are within the range of experimentally measured CV s in vivo (shaded 362

region in Figure 7A, spanning one standard deviation around the mean CV s measured 363

in a multi-item working memory task in rats [21, 36]). Activity before stimulus 364

presentation is much more regular: CV values do not reach the in vivo range for any of 365

the c values used (stronger connections with c > 0.25 ignite persistent activity 366

independent of the stimulus). Apparently the additional (noisy) drive from persistent 367

activity is needed to fuel sufficient activity in the neurons outside the cell assembly, so 368

the noisy activity is a joint product of the noisy dynamics of persistent activity and 369

the synaptic bombardment from outside the network.

Fig 7. Generation of spontaneous and persistent activity in two coupled

networks. A: Persistent activity measure dPA as a function of the connectivity c (see
text for details). B: CV measured during 500 ms before (spontaneous activity, blue)
and after (persistent activity, red) stimulus presentation as a function of the
connectivity c of the signal network to the noise network (same simulations as in Panel
A). The shaded area denotes the range of one standard deviation around the mean
(dotted line) of CV measured experimentally in vivo [21].

370

In summary, input from the noise network is effective for increasing the CV of the 371

signal network without harming its ability to generate persistent activity for moderate 372

connectivity between the two networks. 373

Dynamic generation of persistent and spontaneous activity To answer the 374

question of whether noise and persistent activity can be dynamically generated within 375
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the same network (potentially at different times and states), we tried to transform the 376

signal network into a noise network (i.e., a network exhibiting CV s near one outside 377

the cell assembly) while keeping its ability to generate persistent activity. If this is not 378

possible, the noise within a network exhibiting persistent activity may either have to 379

be generated by external input or by modulation of its properties. As the key 380

difference between the signal and the noise network is in the connection probabilities, 381

we changed these probabilities in the signal network from the uniform 10% back to the 382

original values of the noise network (see previous section) and tried to retrieve 383

persistent activity by compensating for these changes using the synaptic weights: 384

Whenever a connections probability was decreased, we increased the weight of the 385

remaining synapses, and vice versa. Note that this procedure is not intended to mimic 386

a real biological process, but rather to test whether it is possible to construct a 387

network which is capable of both persistent and noise-like activity (see section 388

“Working memory and irregular activity” for a possible way to switch between 389

persistent and irregular activity using neuromodulation). Indeed, we obtained 390

persistent activity with the original connectivity in this way (Figure 8A), but only 391

with fine-tuning of each synaptic weight up to the tenth of a percent. More 392

importantly, this fine-tuning did not yield realistic, noisy activity in the neurons 393

outside the cell assembly: CV s are very low (mean CV = 0.27), so the ability to 394

generate noisy activity could not be recovered in a network with persistent activity.

Fig 8. Failure to generate spontaneous and persistent activity in the same

network. A: Example of persistent activity with original connectivity values and
fine-tuned synaptic weights, but regular activity (CV = 0.27, raster plot and
instantaneous firing rate as in Figure 1A). B: Persistent activity measure dPA as a
function of the CV for all attempts to combine spontaneous and persistent activity
generation in the same network. The shaded area denotes the range of one standard
deviation around the mean (dotted line) of CV measured experimentally in vivo.

395

We summarize all attempts to combine persistent and spontaneous activity by 396

plotting the mean CV and dPA values in Figure 8B, excluding those configurations 397

which either put the network in an epileptiform state (mean firing rates ≥ 20 Hz for 398

neurons outside the cell assemblies) or yield almost no firing at all (mean firing rates 399

≤ 0.1 Hz). One clearly sees that successful persistent activity (dPA ≥ 0.3, dotted red 400

line) can only be found at low CV values between 0.5 and 0.6, which are significantly 401

below the Poisson-like value of one usually reported in vivo. In particular, all these 402

values are outside the range of CV s obtained from our reference data set (shaded 403

region in Figure 7B and Figure 8B [21, 36]). 404

Admissible overlap between signal and noise network As subnetworks in the 405

cortex do not exist in isolation, we next studied to which degree the signal network 406

(generating persistent activity) and the noise network (generating noisy, spontaneous 407

activity) can be mutually interconnected without harming persistent activity, as 408

opposed to the one-directional projection from noise to signal network we described 409

above. We considered two different types of connections (Figure 9A): First, synapses 410

between the two networks, but within the same cell type, i.e. from pyramidal cells of 411

the noise network to pyramidal cells of the signal network, and the same for 412

interneurons (with a connectivity of a fraction cP of the connectivity within the noise 413

network). And second, synapses between the pyramidal cells of one network and the 414

interneurons of the other (connectivity varied as a fraction cC of the noise network 415

connectivity). We found that persistent activity can be generated simultaneously with 416

spontaneous activity for arbitrary values of cP , while even small non-zero values of cC 417

completely abolished persistent activity (Figure 9B). 418
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Fig 9. Admissible overlap between signal and noise network. A: Illustration
of the network connectivity. A signal network (uniform connectivity of 10%) and a
noise network (original connectivity) are connected at variable fractions of the original
connectivities. Pyramidal cells and interneurons in both networks are mutually
connected at a fraction cP , and pyramidal cells in one network and interneurons in the
other are connected at a fraction cC . B: Persistent activity measure dPA as a function
of the connection strengths cC (black curve) and cP (blue curve). As one of the
strengths is varied, the other one is kept to zero.

From the previous results of this paper, we hypothesized that persistent activity is 419

destroyed by the variability of the inhibitory input from the noise network onto the 420

cell assembly members. To test this hypothesis, we varied the strength of the synaptic 421

input from the interneurons of the noise network to the pyramidal cells of the signal 422

network and compared the statistics of the resulting synaptic conductances (at 423

cP = 0.3) onto the members of the cell assembly with those conductances emerging 424

without crosstalk between the two networks (cP = 0). We found that the inhibitory 425

currents at cP = 0.3 and full synaptic strength of the corresponding synapses are 426

higher (average conductance 18.24 ± 1.07 nS for cP = 0.3 compared to 12.27 ± 0.64 427

nS for cP = 0.0; mean ± SEM; p = 2.0 · 10−45, t(78)=30.28, one-sided t-test) and 428

more variable (standard deviation 9.23 ± 0.52 nS for cP = 0.3 compared to 5.90 ± 429

0.34 nS for cP = 0.0; mean ± SEM; p = 1.1 · 10−48, t(78)=33.90, one-sided t-test) 430

compared to cP = 0. Only when the weights of the cross-network synapses are 431

decreased as much as 90% of the original value, average strength and variability of the 432

inhibitory inputs are reduced close to the values at cP = 0 (average conductance 13.76 433

± 0.92 nS, standard deviation 6.82 ± 0.50 nS), also restoring persistent activity. Thus, 434

although only 30% of the connections of the noise network project onto the cell 435

assembly members, the corresponding weights must be very strongly decreased to 436

compensate for the effects of the heavy tail in the inhibitory inputs. 437

Dynamic mechanism of breaking persistent activity 438

In this final part of the results section, we investigate the dynamic mechanism of how 439

heterogeneity in the interneuron rheobases breaks persistent activity. This effect seems 440

counterintuitive at first glance, as the stronger input of low-rheobase interneurons 441

should be compensated by the lower input form high-rheobase ones, given a symmetric 442

rheobase distribution. However, inhibitory input to pyramdial cells exhibits two 443

important nonlinearities: If the inhibitory input is too strong, the pyramidal cell 444

ceases firing at all. On the other hand, if the input to interneurons falls below the 445

rheobase, there is no inhibitory input at all, leaving the pyramidal cell constantly 446

active. As heterogeneity of interneuron rheobase increases, more and more pyramidal 447

cells in the cell assembly are being driven into one of these two extremes, taking them 448

out of the bistable regime that is necessary for stimulus-dependent persistent activity. 449

To show that this mechanism does not depend on the specific configuration of the 450

present model, we use a minimal model of persistent activity [37], comprising only a 451

single pyramidal cell of the simplified Hodgkin-Huxley-type [38] equipped with an 452

GABA and NMDA autapse, which are modelled in the same way as in the present 453

model (conductance-based synapses, NMDA including a magnesium block for low 454

voltages of the postsynaptic cell, see Methods for details). As shown in [37], the 455

positive feedback from the NMDA self-connections enables persistent activity, or more 456

precisely, bistablity between an active state (moderate to high firing rate) and an 457

inactive state (zero firing rate), while the inhibitory GABA self-connection contributes 458

to the stability of the inactive state. We extend this model by filtering the GABA 459
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conductances by a number of rectified linear units (ReLU), each mimicking an 460

interneuron with a different rheobase. The slope and the mean rheobase of the ReLU 461

units are chosen to fit the f-I curve of the interneurons in the full model (see Methods 462

for details). Furthermore, we decrease the synaptic condutances to 10% of the values 463

reported in [37] to keep the firing rate persistent activity in a regime similar to the 464

present simulations (up to 80 Hz). This system constitutes a minimal model of a 465

pyramidal cell activating a number interneurons with heterogeneous rheobases, which 466

in turn inhibit that cell, as it is the case of each member of the cell assemblies of the 467

full model considered before.

Fig 10. Nullclines of a minimal model of persistent activity. A: Example of
nullclines with the three fixed points necessary for bistability. B: Mean (thick red
curve), mean plus and minus standard deviation (thin red curves), minimum and
maximum (green curves) of the Isyn nullcline for a large standard deviation of the
rheobase of the interneurons (std rheo=120 pA) together with the firing rate nullcline
(blue curve).

468

To analyze the dynamic behavior of the minimal model, we construct a 469

two-dimensional phasespace by computing the instantaneous firing rate FR (inverse of 470

the interspike interval) and the mean input current Isyn between each two spikes 471

(Figure 10A, following the approach in [39]). In particular, we compute the nullclines 472

of the two variables, curves in phasespace at which the flow in the direction of one of 473

the two variables changes sign, i.e. that variable does not change when starting 474

anywhere the nullcline if the other variable is held constant. The FR nullcline is 475

computed by varying the input current into the cell and compute the average firing 476

rate for each current without synaptic feedback (blue curve in Figure 10A) and the 477

Isyn nullcline is the mean synaptic current produced at each of these rates (red curve 478

in Figure 10A). The FR nullcline is identical to the f-I curve of the pyramidal cell 479

modelled here and the Isyn nullcline is the sum of the average NMDA and GABA 480

currents generated at a given firing rate, plus the background current. The geometric 481

shape of the Isyn nullcline determines the number and stability of fixed points, and 482

thus the ability of the system to exhibit bistability and stimulus-specific persistent 483

activity: Each crossing of the FR and Isyn nullclines constitutes a fixed point and 484

bistability requires two stable fixed points separated by an unstable one (black dots in 485

Figure 10A). Geometrically, this implies that the slope of the Isyn nullcline needs to 486

change sign at least once. As the inhibitory input is varied (directly or via rheobase 487

variation), the inhibitory component of the Isyn nullcline is shifted to the left or to the 488

right. When the inhibitory input becomes too strong, the Isyn bends more and more 489

to the left, eventually losing the active state fixed point at non-zero firing rates (left 490

green curve in Figure 10B). When the input to the interneurons drops below the 491

rheobase, on the other hand, the inhibitory component of the Isyn becomes zero and 492

the Isyn is identical to its excitatory component, which lacks a change in the slope sign 493

and does not cross the FR firing rate at zero firing rate (right green curve in 494

Figure 10B), losing the inactive stater fixed point. In both cases, the system becomes 495

monostable, either in the active or the inactive state. 496

To study the effects of heterogeneity in the interneurons, we model a population of 497

1000 pyramidal cells, each of which receiving a different amount of inhibition and thus 498

being governed by a different Isyn nullcline (Figure 10B, see Methods for details). As 499

heterogeneity increases, more and more of these cells will be driven out of the bistable 500

range, into one of the two monostable regimes. As a result, the number of bistable 501

neurons, i.e., exhibiting three fixed points, drops with increasing rheobase 502

heterogeneity, which is precisely the effect we observed in the full model using the 503

measure dPA (Figure 11A, blue curve). Importantly, changing the (mean) background 504
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Fig 11. Number of bistable neurons drop as rheobase variability increases.

A: Number of bistable neurons, i.e. Isyn nullclines with three intersections with the
firing rate nullcline, as a function of the standard deviation of the rheobase of the
ReLU units providing inhibitory input (blue curve) or excitatory input (black and red
curves, using two different slopes for the ReLU units). B: Number of bistable (three
intersections), active (one intersection at non-zero firing rates) and inactive (one
intersection at zero firing rate) neurons as a function of the background current. The
standard deviation of the inhibitory ReLU units is set to 60 pA.

current does not help to restore bistability, as it simply replaces monostable active by 505

monostable inactive cells or vice versa Figure 11B, compare the red curve 506

with Figure 1C). 507

The amount of rheobase heterogeneity that is admissible for persistent activtiy 508

depends on the curvature of the Isyn nullcline, or more precisely, on the range between 509

the current at zero firing rate and the one at the first local maximum where the 510

nullcline changes its slope (e.g. -6 and 15 nA in Figure 10B). This range is largely 511

determined by the strength of the two synaptic inputs. Thus, it is possible to restore 512

persistent activity at a given level of interneuron heterogeneity, e.g., by choosing larger 513

peak conductances. However, such a scaling also increases the firing rate of the active 514

state, illustrated by comparing the (mean) Isyn nullclines in Figure 10A and B. Indeed, 515

as we systematically vary the scaling of the peak conductances of the NMDA and 516

GABA currents (Figure 12A), we observe a linear increase in both the maximal 517

admissable rheobase variability (blue curve) and the firing rate (orange curve) as the 518

scaling, and thus, the range of the Isyn nullcline, is increased.

Fig 12. Restoring bistability by increasing peak conductances or number of

interneurons A: Maximum of the rheobase standard deviation without a drop in the
number of bistable neurons (blue curve) and firing rate in the active state (orange
curve) as both NMDA and GABA peak conductances are being scaled by the same
factor. As the weights are scaled up, the range of the (mean) Isyn nullcline also
increases (written above the graph for each value of the scaling factor). B: Number of
bistable neurons as the number of interneurons (ReLU units with different rheobase
values filtering the inhibitory conductance) is being increased. The standard deviation
of the rheobase was set to 60 pA for all simulations.

519

Next, we compare the effect of interneuron heterogeneity with the effect of 520

pyramidal cell heterogeneity. To that end, we filter the NMDA conductances instead 521

of the GABA conductances by a number of ReLUs, effectively modelling a number of 522

pyramidal cells that are excited by the modelled cell and excite that cell in turn. If the 523

same slope is being used for the pyramdial ReLUs as for the interneuron ReLUs 524

(s=0.3), the number of bistable neurons drop with rheobase heterogeneity in the 525

pyramidal cell in the same way as it did with interneuron heterogeneity (Figure 11A, 526

black curve). However, when mimicking the much shallower slope of the pyramidal 527

cells from the simulations (s=0.05), increasing rheobase heterogeneity to the same 528

extend as in the interneurons does not have a significant effect on the number of 529

bistable neurons, as in the full PFC network (Figure 11A, red curve, cf. (Figure 2A, 530

red curve)). Note that in the full model, pyramidal cell heterogeneity was varied while 531

interneurons exhibited their full heterogeneity, while they are all identical here, 532

explaining the different levels of the curves in the two figures. 533

Finally, we assess the effect of the number of interneurons projecting on a single 534

pyramidal cell. In all previous simulations, we used 200 ReLU units with different 535

rheobases to compute the inhibitory component for each of the 1000 Isyn nullclines, 536
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each representing a single pyramidal cell. As this number is increased, more and more 537

of the variability in the inhibitory input is averaged out, which leads to a lower 538

standard deviation in the total input to each pyramidal cell. Consequently, the 539

number of bistable neurons increases as the number of simulated interneurons increase 540

(Figure 12B). As apparent in the figure, about 1000 interneurons are sufficient to keep 541

all pyramidal cells in the bistable regime for a rheobase variability of 60 pA. 542

As the above results suggest that increasing the number of neurons could be a 543

possible way to produce persistent activity in the presence of heterogeneities, we also 544

conducted a number of simulations of the full model with larger networks. As 545

expected, homogeneous networks showed persistent activity, while heterogeneous 546

networks (using the original connectivity) did not using 3000, 5000 or 10000 neurons. 547

Importantly, the 3000 neuron network also showed persistent activity when the 548

rheobase heterogeneity was increased to 10% of the original values, while the 5000 549

neuron network could even tolerate 50% heterogeneity. However, even the 10000 550

neuron network was not able to produce peristent activity at full rheobase 551

heterogeneity. So, increasing the network size can in fact be used to extend the range 552

of admissible heterogeneity, but the full range obtained from in vitro data can not be 553

averaged out even in a network that is larger than a cortical column (containing about 554

7500 neurons [40]). 555

Discussion 556

We presented a working memory model based on persistent activity within a 557

biologically validated network model of the prefrontal cortex. We found that the 558

network shows the bistability necessary for stimulus-dependent persistent activity only 559

under the condition that the excitability of the interneurons that inhibit the neurons 560

of the cell assembly is largely homogeneous. The same is true for the strengths of the 561

inhibitory inputs onto the assembly members - a heavy tail in the distribution of these 562

inputs also destroys persistent activity. Furthermore, pairs of neurons need to exhibit 563

the same type of short-term plasticity (if present) for a given combination of cell types. 564

None of these homogeneity criteria is fulfilled in the full network model, nor in the 565

electrophysiological experiments from which the neuron and synapse parameter 566

distributions of the model are taken from [21]. Thus, we argue that persistent activity 567

may require that heterogeneities are compensated by appropriate learning rules such 568

as homeostatic plasticity, at least locally for a given cell assembly. 569

Breaking persistent activity by interneuron heterogeneity 570

We have identified the dynamic mechanism of breaking persistent activity by 571

heterogeneity in the rheobase of the interneurons, namely a spread in the inhibitory 572

input that drives part of pyramidal cells into inactivity and another part into 573

hyperactivity. Using a minimal model of persistent activity, we have shown that this 574

mechanism does not depend on the exact implementation details of the model. Rather, 575

using the language of dynamical systems theory, we have shown that this mechanism 576

is a general dynamic phenomenon that can occur in any system where at least one of 577

the nullclines exhibits enough variability to lead to different number of fixed points for 578

the different components (e.g. pyramidal cells). In this sense, the interneuron 579

rheobase can be seen as a bifurcation parameter that is varied above and below the 580

two bifurcation points between bistability and monostability of the active and inactive 581

state, respectively. In particular, any source of heterogeneity in the inhibitory part of 582

the Isyn nullcline will have a similar effect, potentially explaining the deleterious effect 583

of heterogeneity in the synaptic weights and in the parameters of short-term synaptic 584
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plasticity for persistent activity as well. Also in line with the results in the full 585

network, the minimal model predicts a very limited effect of pyramidal cell 586

heterogeneity (Figure 11A, red curve), which can be explained by the fact that the f-I 587

curve of the pyramidal cells is much shallower compared to those of interneurons 588

(compare red and black curve in Figure 11A). 589

Using the minimal model, we have identified two potential mechanisms to 590

compensate the effects of heterogeneity in the interneurons: Increasing the synaptic 591

peak conductances and increasing the number of interneurons that innervate a given 592

pyramidal cell (Figure 12). The former is accompanied by an increase in the firing rate 593

(Figure 12A, orange curve). Thus, a low-rate active state is unlikely to be stabilized 594

against interneuron heterogeneity in this way, especially when starting from the even 595

lower weights that are required rates as low as 20 Hz (about 0.5 to 1% of the original 596

weights). In line with these observations, the only simulations of the full model 597

showing peristent activity at full heterogeneity used strongly increased 598

NMDA-to-AMPA ratios and a large cell assembly (e.g. many strong excitatory inputs 599

and lead to epileptiform firing of the entire network at a very high rate. 600

The latter analysis allows for an estimate of the number of interneurons that are 601

necessary to sufficiently average out their heterogeneity. From Figure 12B, full 602

bistability is recovered starting from about 1000 interneurons (at a rheobase 603

variability of 60 pA, which is close to the value in the full model). Given the number 604

of 7500 neurons in a cortical column [40] and the cell type distributions used in the 605

full model [21], one arrives at 230 local interneurons in L2/3 and and only 40 local 606

interneurons in L5 in a single column, which is clearly not enough to average out 607

rheobase heterogeneities. Taking together all interneuron types, these numbers 608

increase to 780 and 230 in L2/3 and L5, respectively, so the total effect of interneuron 609

heterogeneities may depend on the degree to with these other types of interneurons 610

(e.g. VIP and SOM positive cells) affect persistent activity. A recent study [41] shows 611

that VIP and SOM positive interneurons improves persistent activity rather than 612

hindering it. Finally, we have only considered interneuron heterogeneity in the 613

minimal model, while heterogeneity from other sources will add onto the overall 614

variability of the inhibitory input. In particular, we have seen that the interplay 615

between the (log-normal) distribution of the synaptic weights, the firing rate of 616

interneurons and short-term synaptic plasticity creates a heavy tail of inhibitory 617

inputs (Figure 5). The very strong inputs from that tail often dominate the entire 618

inhibitory input of a neuron, largely irrespective of the number of smaller inputs. 619

Working memory and irregular activity 620

To our knowledge, this study is one of very few to consider the relation between the 621

dynamic generation of persistent activity and irregular activity within the same 622

network (e.g. [34, 42]). Previous working memory models were typically provided with 623

Poisson background spike trains [16, 25, 43], which mimicked the synaptic 624

bombardment with random input from outside the memory network, characterized by 625

coefficients of variation near one and spike-time correlations between input neurons 626

near zero. The generation of noisy activity alone has been subject to many studies 627

(e.g. [32, 44] based on the notion of balanced excitation and inhibition. 628

The biologically constrained model we use here [21] provides a slightly different 629

mechanism for generating irregular activity, namely a balance between few very active 630

neurons (mostly interneurons) and a vast majority of almost silent neurons (mostly 631

pyramidal cells). While a full analysis of this mechanism is out of the scope of this 632

paper, Figure 5B suggests that irregular activity is being driven by a heavy tail of 633

inhibitory synaptic inputs. Previous studies [42] already suggested that self-sustained 634

irregular activity requires strong synaptic weights. The present study shows that only 635
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a few strong inhibitory inputs together with a constant excitatory input also generate 636

irregular activity. In contrast to previous proposals, this form of noise generation is 637

compatible with the frequent observation of a large fraction of neurons that are mostly 638

silent when using recording techniques that are not biased towards spiking such as 639

calcium imaging or in vivo patch-clamp (“dark matter theory” of 640

neuroscience, [45–47]). 641

Importantly, the heavy tail of the inhibitory inputs [22] does not result from the 642

log-normal distribution of the synaptic weights alone, but in concert with 643

heterogeneous firing rates, i.e. strong weights and high firing rates need to coincide to 644

from the tail of the distribution. On the other hand, we have shown that persistent 645

activity breaks down in the present of heterogeneous inhibitory inputs. Thus, at least 646

within our modeling framework, the dynamic basis of irregular activity seems to be 647

incompatible with the more regular, homogeneous synaptic configuration that is 648

needed for persistent activity: A cell assembly needs relatively homogeneous 649

distributions of synaptic inputs to exhibit persistent activity, while heterogeneities in 650

the synaptic inputs are needed to generate irregular activity. The heavy tail explains 651

why the increased inhibitory connectivity in the original network cannot be simply 652

compensated with a decrease in the mean synaptic weights. Such a decrease would 653

only shift the entire input distribution to lower values, but does not abolish the heavy 654

tail that is responsible for most of the increase in the inhibitory conductance. 655

As a consequence, noisy background activity must be implanted into a cell 656

assembly by its surroundings to show the routinely observed asynchronous-irregular 657

activity [33, 35], while it remains to be investigated whether asynchronicity is also 658

being affected by heterogeneities. Alternatively, the network may be capable of 659

exhibiting both kinds of activity and switch between the signal and noise state by 660

neuromodulation. Dopamine, for instance, is known to stabilize working memory due 661

to a number of modulatory effects on cellular and synaptic properties [25, 48, 49]. 662

Thus, activation of dopamine receptors may compensate the effects of existing 663

heterogeneous inhibitory input. This could enable persistent activity in a noise 664

network, temporarily turning it into a signal network. We can use the minimal model 665

to illustrate how such a modulation could work. In the study [37] from which the 666

model is taken, dopaminergic modulation is modelled by scaling both NMDA and 667

GABA condutances by the same factor, i.e., higher dopamine levels lead to stronger 668

feedback via NMDA and GABA synapses. Thus, we can study the possible effect of 669

dopamine in Figure 12A: As dopamine levels increase, so does the range of the Isyn 670

nullclines, the maximal admissible standard deviation, and the firing rate. This raises 671

the possibility that high dopamine levels facilitate persistent activity by increasing its 672

firing rates making it more robust against higher levels of interneuron heterogeneity. 673

When noise is provided from outside the network, as in previous models [16, 25, 43], 674

persistent activity is not impaired (Figure 2B), but shows the irregularity that is seen 675

in vivo. Interestingly, CV s are higher during persistent activity compared to 676

spontaneous activity (Figure 7A), likely due to the additional (noisy) drive provided 677

by the cell assembly neurons to those outside the assembly, which is consistent with 678

observations in vivo [50]. 679

Regarding interactions of signal and noise networks, we have shown that inhibitory 680

input from a noise network disrupts persistent activity in a signal network, while 681

excitatory input does not. Interestingly, a recent in vivo study has shown that 682

optogenetic activation of somatostatin (SOM)- and parvalbumin (PV)-positive 683

interneurons disrupt persistent activity during the delay period of a memory-guided 684

behavioral task, while vasoactive intestinal peptide (VIP)-positive interneuron 685

activation enhanced task performance [41]. PV interneurons are commonly associated 686

with fast-spiking interneurons, SOM interneurons with Martinotti cells and VIP cells 687
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with bitufted and other cross-layer projecting interneurons. The first two types may 688

project beyond a single cortical column, while the latter is largely confined within its 689

own column. The current study may explain the differential effect of VIP and 690

PV/SOM cells on persistent activity under the assumption that signal and noise 691

networks are spatially separated in different cortical columns: Activating PV and 692

SOM cells may elicit inhibitory effects that travels across networks, contaminating the 693

signal networks supporting the delay phase activity. VIP cells, on the other hand, 694

mostly inhibit cells within one column, so there is much less inhibitory crosstalk 695

between different networks. On the other hand, a recent study [51] suggested that cell 696

assembly formation may not be limited to pyramidal cells, but local interneurons can 697

be recruited into the assembly, while far-reaching interneurons such as SOM cells 698

decorrelate from the assembly. Thus, it seems possible that a cell assembly may learn 699

to separate itself from direct inhibitory input from the outside that is harmful to 700

persistent activity, even in the absence of spatial separation. 701

From in vitro constraints to in vivo activity 702

This study demonstrates a number of constraints on persistent activity within our 703

model, namely homogeneity of interneuron excitability, connection probability and 704

synaptic dynamics within a cell assembly, which are unlikely to be fulfilled if the 705

neurons within the assembly are randomly selected. Thus, we must discuss whether 706

these constraints are relevant for persistent activity in the real brain, and if they are, 707

how they can be fulfilled by biologically plausible mechanisms. 708

Regarding the biological relevance, we emphasize that all heterogeneities in this 709

model are directly derived from electrophysiological experiments [21]. Nevertheless, we 710

cannot exclude that the variability of cellular and synaptic parameters may be 711

artificially inflated, e.g., by combining data from different experimental conditions. So 712

in theory, if this artificial variability is larger than the variability due to biological 713

diversity, the breakdown of persistent activity could be an artifact of the inflated 714

variability. On the other hand, our results show that even moderate heterogeneity in 715

the interneuron excitability breaks persistent activity (20-25% of the original 716

variability, c.f. Figure 2). Thus, potential artificial variability would have to be 717

inflated at least four-fold over biological variability to break persistent activity on its 718

own, which is highly unlikely. Furthermore, we have drawn all neuron parameters from 719

a multivariate distribution which respects the correlations between these parameters 720

(see Methods for details), so we can exclude that the effect of heterogeneity in one 721

parameter e.g. on firing rate output is compensated by the heterogeneity in another 722

one by mean of correlations between the two [52]. However, we cannot exclude that 723

such compensatory mechanisms exist between neuron and synapse parameters, as we 724

have obtained the latter from the experimental literature. In fact, such correlations 725

could arise the result of homeostatic mechanisms, e.g., compensating the effect of 726

strongly firing interneurons with lower synaptic weights [52] (see below). 727

For a biologically plausible mechanism to fulfill the homogeneity constraints, we 728

consider that cell assemblies are assumed to be formed by long-term neural plasticity 729

as a result of repeated common input to a set of neurons. This Hebbian plasticity may 730

be complemented by homeostatic plasticity rules that are known to scale synaptic 731

efficacies such that a given average firing rate in the postsynaptic network is 732

maintained [23, 24]. Here, we have considered a (simplified) scaling of the excitatory 733

input into interneurons, such that the differences in excitability are compensated by 734

opposing differences in the input. Another way to limit the effect of the skewed 735

excitability distribution would be to leave the firing rates of the interneurons 736

unaffected, but scale the inhibitory synapses onto pyramidal cells. Recent studies have 737

suggested that both types of homeostatic plasticity may work together to maintain a 738
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balance of excitation and inhibition [24], at a spatial resolution that allows fine-tuning 739

of individual synapses [53]. While such a homeostatic mechanism is unlikely to 740

eliminate all heterogeneity in effective excitability, our results suggest that a decrease 741

to a maximum of approximately 20% of the original heterogeneity will be sufficient to 742

enable persistent activity. 743

Using homeostatic plasticity on the inhibitory synapses could also help to 744

attenuate heterogeneities in the synaptic input: Pyramidal cells that are subject to 745

very high total inputs from interneurons will fire much less than others, leading to a 746

downregulation of its inhibitory weights. Similarly, combined homeostatic plasticity on 747

excitatory and inhibitory synapses could assimilate inputs from synapses with different 748

types of short-term plasticity: On average, facilitating synapses have a stronger total 749

input on the postsynaptic neuron compared to depressing or mixed-type synapses. As 750

an effect, neurons will exhibit higher or lower firing rates, depending on which type of 751

plasticity dominates, and thus, the respective weights will be adjusted to compensate 752

existing heterogeneities. 753

Functional benefits from cellular heterogeneity 754

At first glance, the constraints outlined above appear to limit the utility of cell 755

assemblies as the basis of working memory. However, they could also provide a specific 756

benefit: If each cell assembly is controlled by inhibition of a well-defined strength and 757

timing, the heterogeneity in these parameters between cell assemblies could make each 758

assembly most reactive to a stimulus with specific tuning properties. More specifically, 759

interneuron excitability is an important determinant of the specific frequency of 760

PING-type rhythms (pyramidal-interneuron network gamma [54]) that are generated 761

within a given subnetwork. A cell assembly with a given, mostly homogenous set of 762

interneurons will likely exhibit a rhythm at a narrowly defined frequency and also 763

resonate to input of that particular frequency. If different assemblies exhibit different 764

resonance frequencies, this could help multiplexing multiple memory items at a time, 765

avoiding interference between the assemblies. This proposal is supported by a recent 766

study in monkeys [55], reporting brief gamma bursts during the delay period. Each of 767

these bursts has a well-defined frequency, which varies considerably among different 768

bursts. As cortical oscillations are strongly shaped by interneuron properties, these 769

results are compatible with the existence of a spectrum of cell assemblies, each of 770

which controlled by a relatively homogeneous interneuron population. 771

Model predictions 772

The current model makes a number of concrete predictions which could be tested 773

experimentally. Here, we make them explicit and briefly discuss methodological issues 774

of this test. 775

1. Interneurons within a single cell assembly exhibit similar firing rates. 776

2. Isolated networks that show persistent activity have more regular spontaneous 777

activity (lower coefficient of variation) before stimulus onset compared to those 778

in which activity does not persist. 779

3. Synaptic connections between the same cell types within a cell assembly have 780

the same type of short-term synaptic plasticity (namely, facilitating for 781

connections among pyramidal, depressing for interneuron-to-pyramidal 782

connections or those among interneurons). 783

All three predictions require an experimental identification of cell assemblies and a 784

subsequent analysis of cellular or synaptic properties. A number of computational 785
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methods are now available for cell assembly detection in electrophysiological data, the 786

most recent one even spanning a range of lag times [56]. The non-trivial process of 787

detecting these assemblies may be one of the reasons why the above properties have 788

not been identified before: Assemblies are not necessarily spatially localized, thus 789

anatomical and physiological recordings that are focused in a small spatial volume 790

may fail to see the organization of cellular and synaptic properties within a cell 791

assembly. If these recordings are combined with a detection of the cell assembly, 792

though, one could test, e.g., the first prediction by comparing the firing rates of 793

interneuron units. This could be done both in vivo and in vitro. Prediction 2 requires 794

the comparison of activity in the same units before and after a stimulus and the 795

isolation of the memory network from most of its environment, both of which should 796

be possible in vitro. Finally, prediction three concerns the dynamic properties of 797

synapses within an assembly. Organotypic slices provide access to these properties, 798

with a good chance of intact assembly structures, although it is not always clear to 799

what extent in vitro results can be transferred to in vivo networks. 800

Naturally, the predictions rest on the assumption that the network model [21] 801

provides a reasonably valid image of the prefrontal cortex, despite the necessary 802

simplifications, such as a specific selection of cell types and cortex layers, a 803

phenomenological model of the neurons [28] and a constant background current for all 804

pyramidal cells and interneurons of a given layer. We have previously shown that the 805

neuron model provides an accurate description of neuron’s responses to fluctuating 806

currents [28] and the network model veridically reproduces many key features of 807

baseline in vivo activity [21]. Nevertheless, the model needs to be further tested in 808

terms of its ability to reproduce a wider range of dynamic regimes and functions of the 809

prefrontal cortex. 810

Heterogeneity in previous working memory models 811

While there is a wide range of models of working memory based on persistent activity, 812

most of them use homogeneous parameters and few have investigated the effects of 813

heterogeneities on working memory performance; to our knowledge, there are four 814

studies on variants of the ring model [17–20] and another one on a related parametric 815

memory model [57], investigating the effect of random and spatially structures 816

heterogeneities on working memory. In the ring model [16], neurons are spatially 817

organized on a ring and form the strongest connections to their nearest neighbors, 818

effectively forming a continuum of cell assemblies along the ring. Thus, input at any 819

point of the ring can cause a persistent bump of activity in the neurons nearby. 820

Random heterogeneities, e.g., in neural excitability, cause these bumps to drift towards 821

specific points on the ring, compromising their ability to encode the spatial position of 822

the input over time [17–20]. The reason for this drift is the fact that the energy 823

landscape along the ring is basically flat (neutral stability on the ring), such that any 824

point of the line can be represented. Random heterogeneities create hills and valleys in 825

this landscape, so activity drifts towards its local minimum. Homeostatic plasticity 826

has shown to effectively flatten out these local minima such that the representation 827

becomes stable again. In contrast to random heterogeneities, spatially structured 828

heterogeneities are deliberately put into the networks to fulfill a specific 829

function [20, 57], in one case even to counteract the harmful effects of the random 830

heterogeneities [20]. 831

In the present model, we focus on random heterogeneities in the cell parameters, 832

which destroy working memory when present in the interneurons. The cause of this 833

problem is very different from the one in the ring model: Instead of shifting persistent 834

activity into some uninformative region, it is either completely lost or permanently 835

activated without a stimulus (c.f. Figure 1) - in short, the system loses its bistability. 836
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In the ring model, the instability was compensated using either homeostatic plasticity 837

targeting the activity of pyramidal cells [17], short-term plasticity [18, 19] or a 838

systematic structure of the energy landscape, effectively segmenting the line attractor 839

into a discrete set of attractors [20]. In principle, however, this instability could be 840

removed by considering a ring with a sufficiently large number of neurons, which 841

would statistically equalize populations representing different spatial positions. The 842

loss of bistability due to the skewed distribution of interneuron excitability, on the 843

other hand, must be compensated for persistent activity to work at all. These 844

considerations emphasize the need to work with parameter distributions that are 845

derived from experimental studies. 846

The current state of persistence-based working memory models 847

Persistent activity in cell assemblies in the prefrontal cortex has long been the 848

dominant model for the mechanism of working memory. Recently, this dominance is 849

challenged by a a number of alternative model frameworks which are based, e.g., on 850

short-term synaptic modifications [15], dynamic activity patterns [11], or short-lived 851

attractor states [58], potentially paced by beta, gamma and theta oscillations [59]. 852

The theoretical proposals are accompanied by experimental observations that delay 853

activity may be more complex than simply maintaining neurons at elevated firing 854

rates [11,55]. Supporters of persistence-based models counter these arguments showing 855

that the alternative models “could mediate only a limited range of memory-dependent 856

behaviors” and are not mutually exclusive with stimulus-dependent persistent 857

activity [6]. 858

We argue that tests of the current model’s predictions would also contribute to the 859

evidence in favor or against the general concept of persistence-based working memory 860

models. As the role of oscillations in working memory has been addressed in a number 861

of recent studies [55, 60, 61], we note that we also see slow, quasi-periodic interruptions 862

of persistent activity in our model (e.g. Figure 1B, frequencies in the delta range, 0.6-2 863

Hz), and faster (beta/gamma) oscillations can by induced by strongly decreasing the 864

background current into the interneurons while increasing the 865

pyramidal-to-interneuron connections, leaving interneuron activity to be more 866

controlled by pyramidal cell activity and thus enabling a PING-type rhythm 867

(pyramidal-interneuron network gamma [54]). As outlined above, this would lead to a 868

range of assemblies, each of them associated with its own, relatively well defined 869

frequency signature, as seen in [55]. As proposed in [59], increased working memory 870

load would then be associated to more gamma-synchronized assemblies being active at 871

the same time. This would not only result in increased gamma power (e.g. [55, 62]), 872

but also predict that the overall gamma band would be more smeared out, because it 873

would result from several assemblies oscillating at different frequencies. All these 874

proposals can now be tested in a biologically validated modeling framework, 875

contributing to our understanding of the neural underpinnings of working memory. 876

Methods 877

Model description 878

The data-driven model of the prefrontal cortex used here is described in detail in [21].
Briefly, the model consists of 1000 neurons modeled by a simplified version
(simpAdEx [28]) of the adaptive exponential integrate-and-fire neuron (AdEx [63])
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which was optimized for high-throughput fitting to in vitro electrophysiological data:

C ·
dV

dt
= −gL · (V − EL) + gL ·∆T · e

(
V −VT

∆T
)
+ I − w =: wV − w (1)

dw

dt
=

{

0 for |w − wV | >
τm

τw
wV

Θ(VT − V ) ·
[

1− τm

τw

]

dwV

dV

dV

dt
otherwise

(2)

if V > Vup then V → Vr and w → wr = w + b

if w =

(

1 +
τm
τw

)

wV then w →

(

1−
τm
τw

)

wV ,

where C is the membrane capacitance, gL a leak conductance (with reversal potential 879

EL), τm and τw are the membrane and adaptation time constants, respectively, Θ 880

denotes the heavy-side function, and wV is the V-nullcline of the system as defined in 881

Equation 1. Like the full AdEx [64], this model consists of one differential equation for 882

the membrane potential V (including an exponential term with slope parameter ∆T , 883

which causes a strong upswing of the membrane potential once it exceeds VT ), and one 884

for an adaptation variable w, and can reproduce a whole variety of different spiking 885

patterns [28]. A spike is recorded whenever V crosses Vup, at which point the voltage 886

is reset to Vr and spike-triggered adaptation is simulated by increasing w by a fixed 887

amount b. 888

Based on about 200 neurons from rodent PFC, we generated multivariate 889

parameter distributions for five different electrophysiological neuron types [21], namely 890

pyramidal cells in layer 2/3 and 5, fast-spiking, bitufted and Martinotti interneurons. 891

These distributions respect the full covariance structure between the eight parameters 892

of model, which was estimated from the joint data set of all fits of the model to each 893

individual neuron. The simulated neurons are embedded in a laminar and columnar 894

network structure that distinguishes pyramidal cells from superficial (L2/3) and deep 895

layers (L5) as well as four subsets of interneurons which either project within the same 896

layer and column (fast-spiking interneurons), or across layers (bitufted interneurons), 897

columns (large basket cells, with the same electrophysiological properties as the 898

pyramidal cells of the respective layer [65]) or both across layers and columns 899

(Martinotti cells). Neurons from each of these subclasses are randomly connected with 900

different connection probabilities. These values, as well as the statistics on synaptic 901

weights (following a log-normal distribution [66]) and connection delays are directly 902

obtained from the experimental literature. Neurons are connected through 903

conductance-based AMPA-, GABAA-, and NMDA-type synapses, with kinetics 904

modeled by double exponential functions [39], which time constants again taken from 905

the literature (see Figure SS1 Fig for a schematic of the network architecture and 906

Tables SS1 Table to SS4 Table for a list of the network parameters). 907

Synapses are equipped with short-term plasticity dynamics implemented by the
corrected version [67] of the Tsodyks and Markram model [29]

ak = uk ·Rk (3)

uk = U + uk−1(1− U) exp(−∆k−1/τfac) (4)

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1) exp(−∆k−1/τrec). (5)

These recursive equations describe the dynamics of the relative efficiency a(tspk
) across 908

series of spikes, with initial conditions u1 = U and R1 = 1, where tspk
is the interval 909

between the (k − 1)th and the kth spike. Model parameters U , τrec and τfac were 910

specified according to [30] and [31] who differentiated between facilitating, depressing 911

or combined short-term dynamics, for both excitatory and inhibitory connections. The 912

cell types of the pre- and postsynaptic neurons determine which of these classes is 913
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used for each individual combination. In particular, connections among pyramidal 914

cells, among interneurons and between fast-spiking interneurons and pyramidal exhibit 915

all three types of connections to varying degrees (pyramidal-pyramidal: 45% E1, 38% 916

E2, 17% E3 [31]; interneuron-interneuron: 29% E1, 58% E2, 13% E3 [30], fast-spiking 917

interneuron-pyramidal: 25% E1, 50% E2, 25% E3 [30]). All neurons are driven by 918

constant background currents. The values of these currents are the only parameters 919

which are not directly obtained from the in vitro literature, but are estimated in a 920

self-consistent way from the network activity itself (see [21] for details). 921

Importantly, the model has been validated with neuronal data on two levels. On 922

the single-cell level, the fits obtained from the simpAdEx model were tested with in 923

vitro data which are fundamentally different from those used for the fit [28], namely 924

fluctuating currents generated by filtering a Poisson spike train with the synapse 925

model described above, as opposed to standard constant DC currents which were used 926

for fitting. The responses of the model neurons to the fluctuating currents matched 927

those of the real neurons within the bounds of their own reliability [28]. On the 928

network level, we compared the activity of the model network which the stationary 929

extracellular recordings from rats in vivo during a multi-item working memory task, 930

and intracellular recordings from anesthetized rats. We assessed spike train statistics 931

such as mean, CV , autocorrelation of interspike intervals and cross-correlations 932

between interspike intervals from pairs of neurons, power spectra of local field 933

potentials and the distribution of membrane potential fluctuations. In almost all of 934

these measures, the distributions from the experimental recordings and the model 935

network were statistically indistinguishable. 936

Implementation of cell assemblies 937

For a given simulation, a random population of N ex
CA pyramidal cells and N inh

CA 938

interneurons was defined as a cell assembly. Synaptic connections within an assembly 939

were strengthened by either increasing all peak conductances (synaptic weights) of 940

existing connections by a factor sCA or by rewiring the neurons with connection 941

probabilities increased by a factor pCA. Unless otherwise stated, N ex
CA = 80 and 942

N inh
CA = 0 was used. For graphical representations in raster plots, all members of a cell 943

assembly are grouped together in the middle of the respective neuron pool. 944

Stimulus presentation 945

External stimuli were simulated by Poisson spike train with firing rate finp for period 946

of Tinp ms in a number of Ninp excitatory input neurons. Two cases are considered: In 947

the first case, a single input neuron (Ninp=1) is randomly connected to L2/3 cells, 948

using the connection probability for pyramidal cells within that layer. In the second 949

case, there is one input neuron for each pyramidal cell in the assembly (Ninp=N ex
CA), 950

with connections from each input neuron to one of the assembly neurons. In both cases, 951

all synaptic peak conductances of the input are set to sinp times the peak conductance 952

of excitatory synapses within the network. Unless otherwise stated, the following 953

values are used for these parameters: finp = 1000 Hz, Tinp = 50 ms and sinp = 1. 954

Measures of persistent activity 955

To quantify to which degree a cell assembly exhibits persistent activity, we define the 956

measure dPA as follows 957

dPA = Θ(aend − astart) (aend − astart) , (6)
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aend and astart are normalized measures of the activity during 500 ms before the 958

stimulus and the last 500 ms of the simulation, respectively. Θ is the heavy-side 959

function, setting dPA to zero if activity is higher in the beginning (i.e. 960

aend − astart < 0). The activity measures are computed by comparing the firing rate in 961

the cells of the assembly with those outside the assembly. An assembly cell is regarded 962

as activated if its average firing rate during the observed time interval exceeds those of 963

the average firing rate of all non-assembly (pyramidal, layer 2/3) cells. Normalized 964

activity a is then defined as the fraction of activated cells in the assembly. Thus, by 965

definition, dPA ranges between zero and one. The maximum of one is reached when all 966

cells in assembly are activated at the end of the simulation and none of them before 967

the stimulus, which reflects the desired case of stimulus-induced persistent activity. 968

On the other hand, dPA is zero if either none of the assembly cells is activated in the 969

end (decayed activity) or more cells are activated before the stimulus 970

(aend − astart < 0, spontaneous persistent activity). 971

Variation of model parameters 972

We systematically varied a number of parameters of the model in order to find 973

configurations allowing for persistent activity. In particular, we varied the size of the 974

cell assembly between 30, 50, 80 and 470 neurons (the latter being the number of 975

neurons in L2/3), the ratio between NMDA and AMPA conductances between 1, 2, 3, 976

4, 6 and 8 times the original value, the peak conductance among pyramdial cells 977

between 1, 5, 10, 15 and 20 times the original value, the scaling factor sCA of the 978

synaptic weights within the cell assembly between 1, 5, 15 and 20, connectivity within 979

the cell assembly between 10 and 40% and both background currents Iex into 980

pyramidal cells and Iinh into interneurons between 0 and 1000 pA. We conducted all of 981

these changes in isolation (using a default of 80 cell assembly neurons, the original 982

ratio of NMDA and AMPA conductances as well as the original value of peak 983

conductances among pyramidal cells, a scaling factor for the weights within the cell 984

assembly of 5 and a connectivity of 10% as well as Iex and Iinh values of 300 and 200 985

pA, respectively) and also assessed a considerable number of these modifications 986

together. Overall, we performed 720 simulations with the full model, summarized in 987

Figure 1C (except for those where the full L2/3 was used as a single assembly, as they 988

exhibit epiletiform activity following stimulus presentation). 989

Minimal model of persistent activity 990

To assess the dynamic mechanisms of persistent activity and the effect of rheobase 991

heterogeneitities in more detail, we employ a minimal model of persistent activity [37] 992

comprising a single pyramidal cell modelled by a simplified version of the 993

Hodgkin-Huxley equations [38] that excites itself by an NMDA autapse and also 994

inhibits itself by a GABA autapse. We modify this model in three ways: First, we 995

decrease the strenghts of the synaptic weights to 10% of the original values. This 996

allows for firing rates (80 Hz) that are closer to the low rates (about 20 Hz) seen in 997

our full simulations (compared to over 200 Hz at the original weights, c.f. Figure 12A). 998

Further decrease of the weights would have required too much fine-tuning to show the 999

principle results, but we also discuss the effect of the scaling in the main text. Second, 1000

we filter the inhibitory conductances by a function GI that mimicks interneuron 1001

heterogeneity. This function is described in details below. In some simulations 1002

(indicated at the text), we apply a function GE of the same form to the excitatory 1003

conductances, but with different parameters. Finally, we simulate a population of 1000 1004

pyramidal cells instead of one, which only differ in their particular realization of GI or 1005
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GE . This population of models (c.f. [52]) allows to assess the impact of heterogeneity 1006

on the dynamics of the pyramidal cell. 1007

The equations governing the dynamics of one of the pyramidal cells are given by: 1008

− CmV̇ = IL + INa + IK + sINMDA + sIGABA + Iext (7)

IL = gL(V − EL)

INa = gNam∞(V − ENa),

m∞ = [1 + exp ((VhNa − V )/kNa)]
−1

IK = gKn(V − EK),

INMDA = gNMDA(sNMDA + sbase) [1 + 0.33 exp(−0.0625V )]
−1

(V − ENMDA)

IGABA = (GI (gGABA(sGABA + sbase)) (V − EGABA)

ṅ =
n∞ − n

τn
, n∞ = [1 + exp ((VhK − V )/kK)]

−1
(8)

˙sNMDA = H(V ) (1− sNMDA)− sNMDA/τNMDA (9)

H(V ) = [1 + exp (10(Vspike − V ))]
−1

˙sGABA = H(V ) (1− sGABA)− sGABA/τGABA (10)

By applying the function GI , we interpret the inhibitory conductance as an input 1009

to a population of interneurons, which are modelled as rectified linear units (ReLU) 1010

representing the f-I curve of the interneurons, each with a different rheobase drawn 1011

from an normal distribution. The conductance is first converted into an input current, 1012

second into a firing rate and third back into a conductance. In this way, one inhibitory 1013

conductance is being generated for each interneuron and all these conductances are 1014

averaged over all interneurons projecting to the pyramidal cell, which is the output of 1015

GI . The first two steps - conversion of the conductance into a current and into a firing 1016

rate - are being conducted in a self-consistent way by finding the intersection between 1017

the f-I curve of the current interneuron and a curve describing the current that is 1018

being generated at a given firing rate, given the input conductance. That second curve 1019

is computed from the numerically obtained relation between firing rate and average 1020

membrane potential during the interspike interval of the simulated neuron and the 1021

relation between current I and conductance g, I = g(V − E). Once the firing rate is 1022

obtained, it is multiplied with the GABA peak conductance gGABA, which is 1023

equivalent to the computation of the average over a long random spike train at that 1024

rate, convoluted with the response function of the synapse, given a normalization of 1025

the area under that function to one. We tested different variants of implementing GI 1026

and found that results did not qualitatively depend on these details. 1027

The different pyramidal cells in the population differ only in the inhibitory input 1028

they receive via GI . In particular, we randomly pick 20% of the simulated interneurons 1029

(200 by default) and construct the synaptic input in GI only from these 20%. 1030

The phase space of the model is being constructed by considering one pair of 1031

subsequent spikes at a time and computing both the instantaneous firing rate FR 1032

(inverse of the interspike interval) and the average of the input currents 1033

(Isyn = INMDA + IGABA + Iext) over that interval. The time series of these two 1034

variables over all pairs of spikes constitutes the trajectory of the system in the 1035

phasespace. The nullclines were being computed by varying the input current into the 1036

cell and compute the average firing rate for each current without synaptic feedback 1037

(FR nullcline) and the mean synaptic current produced at each of these rates (Isyn). 1038

Intersections of the nullclines constitute fixed points of the system and we verified that 1039

the trajectories converged to one of these fixed points for different parameter sets. 1040
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To classify neurons as bistable, active or inactive, we compute the intersections 1041

between FR and Isyn nullclines for each of the simulated pyramidal cells. Cells with 1042

three intersections are labeled as bistable, cells with only one intersection at zero firing 1043

rate as labeled as inactive and cells with one intersection at non-zero firing rates are 1044

termed active. Importantly, in real, connected network, the number of bistable cells 1045

also affects the shape of the Isyn nullclines: Inactive pyramidal cells in the cell 1046

assembly do not contribute to the excitatory feedback and constantly active cells also 1047

need to be excluded from the assembly to avoid premature activation before a 1048

stimulus arrives. We mimick these constraints by scaling the excitatory peak 1049

conductance by the fraction of bistable neurons. After that, the numbers of each types 1050

of cells is counted again and the procedure is repeated until convergence to a fixed 1051

number of each type (always the case after at most five iterations). 1052
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Supporting information

S1 Fig. Schematic of the network architecture. (A) Laminar structure of a
single network column (only one column is simulated in this study). Arrow widths
represent relative strength of connections (black: excitatory, gray: inhibitory), i.e. the
product of connection probability and synaptic peak conductance. (B) Left panel:
Distribution of three different short-term plasticity types over different combinations
of pre- and postsynaptic neuron types. Arrows from or to one of the shaded blocks
(rather than from or to a single neuron type) denote connection types that are
identical for all excitatory (PC) or inhibitory (IN) neurons. Where all three types are
drawn, they are randomly distributed over all synapses between these two neuron
types according to the probabilities given in the figure (termed “heterogeneous STP”
in the the text). Right panel: Illustration of the postsynaptic potential in response to
a series of presynaptic spikes for three types of short-term synaptic plasticity for
excitatory (E1 to E3) and inhibitory synapses (I1 to I3). The figure is taken from [21].

S1 Table. Neuron parameters. Mean and standard deviation of the parameters
of the simpAdEx model for the five different neuron types used in the network (PC:
Pyramidal cell, FS: Fast-spiking interneuron, BT: Bitufted interneuron, MC:
Martinotti cell). The table is taken from [21].

S2 Table. Cell numbers. Relative numbers of cells for each type. PC: pyramidal
cell, IN: interneuron, see Materials and Methods section in [21] for interneuron
subtypes. The table is taken from [21].

S3 Table. Synaptic parameters. Mean ± standard deviation of the parameters
of the synapses connecting the different pre- and postsynaptic neuron types (pcon:
connection probability, gmax: peak conductance, τD: transmission delay). The table is
taken from [21].
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S4 Table. Short-term synaptic plasticity. Mean (standard deviation) of the
parameters of the six types of short-term synaptic plasticity. The table is taken
from [21].
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