

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/200525

Naranjo-Delgado, DM.; Risco, S.; Moltó, G.; Blanquer Espert, I. (2023). A serverless
gateway for event-driven machine learning inference in multiple clouds. Concurrency and
Computation: Practice and Experience (Online). 35(18):1-17.
https://doi.org/10.1002/cpe.6728

https://doi.org/10.1002/cpe.6728

John Wiley & Sons

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

RESEARCH ARTICLE

A Serverless Gateway for Event-driven Machine Learning
Inference in Multiple Clouds

Diana M. Naranjo | Sebastián Risco | Germán Moltó | Ignacio Blanquer

Instituto de Instrumentación para Imagen
Molecular (I3M), Centro mixto CSIC -
Universitat Politècnica de València, Camino
de Vera s/n, 46022 Valencia, España
Correspondence
Email: {dnaranjo,serisgal}@i3m.upv.es,
{iblanque,gmolto}@dsic.upv.es

Summary

Serverless computing and, in particular, the functions as a service (FaaS) model has
become a convincing paradigm for the development and implementation of highly
scalable applications in the cloud. This is due to the transparent management of
three key functionalities: triggering of functions due to events, automatic provision-
ing and scalability of resources, and fine-grained pay-per-use. This article presents
a serverless web-based scientific gateway to execute the inference phase of previ-
ously trained machine learning and artificial intelligence models. The execution of
the models is performed both in Amazon Web Services (AWS) and in on-premises
clouds with the OSCAR framework for serverless scientific computing. In both cases,
the computing infrastructure grows elastically according to the demand adopting
scale-to-zero approaches to minimize costs. The web interface provides an improved
user experience by simplifying the use of the models. The usage of machine learn-
ing in a computing platform that can use both on-premises clouds and public clouds
constitutes a step forward in the adoption of serverless computing for scientific
applications.
KEYWORDS:
Cloud Computing, Serverless Computing, Function as a Service, Machine Learning

1 INTRODUCTION

The development of cloud computing has introduced a series of service models that provide various abstraction layers with
different levels of control. Common service models are IaaS (Infrastructure as a Service), PaaS (Platform as a Service), SaaS
(Software as a Service), and FaaS (Functions as a Service).
The FaaS model is a part of serverless computing, which also includes the BaaS (Backend as a Service) category. It is

considered an evolution of cloud programming models, with a higher level of abstraction, where the cloud provider dynamically
manages the provisioning of resources. Serverless computing, and particularly the FaaS model, has become a paradigm for
the deployment of applications in the Cloud, primarily because of the advantages it provides to developers with respect to the
adoption of containers and microservices-based architectures1. Indeed, one of the fundamental challenges in the transition to
serverless computing for a microservices-based architectures is that applications must be designed as a set of functions.
The FaaS model reduces infrastructure costs and developers’ time, since they only have to focus on the functionalities of

their application and not on the administration of the underlying infrastructure. In this model, applications run in stateless
environments called functions that are triggered by certain events, such as the upload of a file to a storage system or an HTTP
call, and are managed entirely by the cloud service provider.

2 AUTHOR ONE ET AL

The fine-grained pay-per-use model of serverless computing is one of the key elements that has led to its adoption by enter-
prises. This paradigm allows customers to pay only for the amount of resources used from the public cloud provider for the time
they have been used. One of the most attractive potentialities is that the infrastructure provisioned by the public cloud provider
dynamically resizes with the execution of multiple invocations of the function. This allows applications to run without worrying
about over-provisioning and without the need to provision a specific amount of resources since these are flexible and entirely
managed by the public cloud provider.
Large public cloud providers such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform (GCP)

offer, through the pay-per-use model, storage services, network resources, databases and computational resources, among others.
These providers have included support for FaaS services for the definition and execution of functions. This is the case of AWS
Lambda, Azure Functions and Google Cloud Functions.
When using platform services from public cloud providers, there is a risk of being dependent on the services and products

they offer. Indeed, FaaS APIs and formats strongly differ among providers. This dependency is often referred to as “vendor
lock-in”, since switching technologies and vendors may be costly. In order to mitigate this risk in the use of the resources for
serverless computing from public cloud providers, several open-source frameworks have emerged, as is the case of OpenFaaS2,
Knative3 and Apache OpenWhisk4. In this sense, the emergence of containers and the development of Container Orchestration
Platforms (COPS), such as Kubernetes, facilitate the implementation of FaaS models in open-source platforms such as those
mentioned above.
In parallel, the development of artificial intelligence andmachine learning has led companies to include these types of services

due to the wide range of benefits that can affect all aspects of human life, such as customer service, detection of fraud and business
intelligence5. Artificial intelligence combined with cloud computing is seen as the next step in machine learning automation6.
Deploying machine learning models on local servers has a certain complexity mainly due to the lack of high-end local com-

puting power, which introduces significant delays in the inference and training processes. In fact it is a reality that regular
maintenance and scaling is becoming increasingly complex7. In this sense, serverless computing emerges as a profitable and
scalable solution that allows addressing the main challenges in terms of excessive resource provisioning and simplifies the
implementation of the underlying infrastructure.
In order to address these challenges, this paper introduces a web-based serverless scientific gateway that supports the inference

phase of machine learning and artificial intelligence models on dynamically scalable serverless platforms. Execution of the
models can be done in public or in on-premises clouds, as specified in the web interface. This platform constitutes an extension of
the work carried out by Naranjo et al.8,9 presented in Gateways 2020. In our previous work, only the deployment in a public cloud
was supported. For this contribution, we have included an analysis of execution times and economic cost of the platform and the
deployment in on-premises cloud with the OSCAR framework, thus supporting multi-cloud infrastructures. The fundamental
objective of this platform is to support the inference of machine learning and artificial intelligence models in multi-clouds by
abstracting the configuration, management and scaling details of the underlying infrastructure by adopting serverless computing
both from on-premises and public clouds.
After the introduction, the structure of the article is as follows. First, section 2 introduces the related works in the area of the

execution of machine learning and artificial intelligence models on serverless platforms, both in public and on-premises clouds.
Next, section 3 presents the components and the architecture of the platform. Then, section 4 introduces the models integrated
in the platform. Later, section 5 presents the results of the use cases and section 6 discusses the results obtained. Finally, section
7 summarizes the main achievements and future works are presented.

2 RELATEDWORK

Previous research exposes the advantages of the serverless paradigm in scientific computing. This is the case of the work by
Spillner et al.10 which introduces the benefits of adopting the FaaS model for multiple scientific applications such as com-
puter graphics, cryptology, mathematics, and meteorology. A study by Baldini et al.11 analyzes existing serverless platforms by
identifying key features, use cases, and describing technical challenges and open issues. The conclusions of this research indi-
cates that the FaaS model appropriately adapts to a number of distributed applications, including event processing pipelines in
compute-intensive applications.
One of the pioneers in the use of the FaaS model was Jonas et al.12 who introduced the PyWren framework in order to

perform Python-based distributed computing on AWS Lambda to support different distributed computing models efficiently.

AUTHOR ONE ET AL 3

Later, this study was expanded in13 presenting numpywren, a linear algebraic system built on a serverless platform. In addition,
LAmbdaPACK is presented, a domain-specific language designed to implement highly parallel linear algebra algorithms in a
serverless environment.
A more recent study by Eismann et al.14 presents a guide for the design of new serverless approaches examining 89 use cases

obtained from other scientific literatures. Each case is studied by analyzing different characteristics that include general aspects,
but also workloads, applications and requirements. The work carried out by Jindal et al.15 introduces an extension of FaaS to
computing clusters, to support functions across a network of distributed heterogeneous target platforms, called Function Delivery
Network (FDN). As a result, the varied characteristics of the target platform, the possibility of collaborative execution between
multiple target platforms, and the data localization provided by FDN are shown. The work done by Mahmoudi and Khazaei16
introduces SimFaaS, an open-source tool written in Python that allows to simplify the validation process of a performance model
developed on serverless public computing platforms. Through SimFaaS it is possible to predict various metrics related to service
quality such as cold start, average response time and the probability of rejection of requests that helps to understand the limits of
the system and measure the compliance with the Service Level Agreement (SLA) without the need for expensive experiments.
Serverless computing also covers other fields of computing such as the analysis of large amounts of data (Big Data). The

work by Giménez-Alventosa et al.17 presents MARLA (MapReduce on AWS Lambda) †a high performance open-source server-
less architecture to run MapReduce jobs on AWS Lambda and Amazon S3, without the need for the user to pre-provision the
computing infrastructure.
As stated in the introduction, an important element to consider in the adoption of serverless computing is the risk of vendor

lock-in with the technologies and services of public cloud providers. In this scenario, it is difficult to migrate to a different
provider without substantial cost due to the technical incompatibilities18. In order to mitigate this phenomenon, developers have
focused on creating open-source solutions such as OpenFaaS2, Knative3, Fission19, Nuclio20, Apache OpenWhisk4, and Oracle
Cloud Fn21, to name a few. These platforms support the definition and execution of functions in response to certain events. The
difference between them is fundamentally in the programming language they support, the event sources and in the use of an
orchestration platform such as Kubernetes.
The study conducted by Hendrickson et al.22 presents OpenLambda, an open-source platform for running applications and

web services based on a serverless architecture. In the work presented by Kaviani et al.23 Knative compared with other serverless
platforms in order to extract a minimal executionmodel with a common denominator that is close to a unified serverless platform.
Palade et al.24 performed an analysis of four open-source serverless frameworks: Kubeless, Apache OpenWhisk, OpenFaaS and
Knative in some typical scenarios related to edge computing and IoT (Internet of Things) networks. The results of this research
indicate that Kubeless surpasses the other frameworks in terms of response, time and performance.
The work carried out by Li et al.25 presents an analysis of open-source serverless frameworks taking into account platform

design problems that affect performance. They determine that simple autoscaling based on resources or workloads is not adequate
to meet the needs of serverless platforms. In the work developed by Benedetti et al.26 the suitability of a local serverless platform
for IoT applications, implemented through OpenFaas, is discussed and analyzed. A performance study is presented taking into
account latency and resource consumption for the cold and warm boot deployment mode.
The rise in the development of machine learning and artificial intelligence applications has led to the adoption of the service

models available in the cloud. Public cloud providers have included support for artificial intelligence and machine learning
applications within their services. Amazon SageMaker ‡ for example, is a fully managed platform in AWS that allows users to
easily and rapidly create, deploy and train machine learning models.
The article conducted by Corral-Plaza et al.27 presents an analysis of the main options for machine learning available in

the cloud. The work is focused on the BigML § platform and Amazon Machine Learning. Another study by Ishakian et al.28
evaluates the suitability of AWS Lambda to serve lightweight deep learning models. As a result, an analysis is made of how cold
start influences processing performance and AWS Lambda storage limits restrict the implementation of larger models. In the
work done by Kodandarama et al.29 the feasibility of implementing the inference phase on a serverless platform using services
provided by AWS is studied. Research results show that serverless platforms show promise for implementing the inference phase
of machine learning models.
In the work by Bhattacharjee et al.30 it is presented Barista, a local serverless platform for the implementation of machine

learning models based on OpenStack to execute predictions, selecting the configuration of the virtual machine based on the

†MARLA - https://github.com/grycap/marla
‡Amazon SageMaker - https://aws.amazon.com/sagemaker/
§BigML - https://bigml.com/

https://github.com/grycap/marla
https://aws.amazon.com/sagemaker/
https://bigml.com/

4 AUTHOR ONE ET AL

DEEPaaS API

User Interface

ON-PREMISES CLOUDPUBLIC CLOUD

SCAR OSCAR

FIGURE 1 Components of the designed architecture.

objectives of service level, cost, and time of execution. For its implementation, this system requires a machine powerful enough
to support the framework. The articles conducted by Christidis et al.31 32 propose a set of optimization techniques for the imple-
mentation of machine learning models on a serverless platform, without compromising capacity or performance. The results
obtained indicate the feasibility of using serverless platforms in the implementation of machine learning and artificial intelli-
gence models. A recent work presented by Kurz33 analyzes the feasibility of implementing double machine learning, a method
based on the estimation of primary and auxiliary predictive models34, on AWS Lambda, taking advantage of the high level of
parallelism that can be achieved with serverless computing. In the case study analyzed in the research, an implementation writ-
ten in Python called DoubleML-Serverless is presented, where its usefulness is demonstrated by analyzing the execution times
and estimating the costs.
In the work by Ishakian et al.28 a series of experiments are performed to run Amazon MXNet machine learning models on

AWS Lambda. The objective in this research is to measure efficiency in terms of processing time, scalability, and memory used.
The results obtained demonstrate that the use of a serverless platform is adequate to obtain the prediction of the models, as long
as they are integrated into the AWS platform and that they comply with the limitations of AWS Lambda. Other research presents
SerFer29 as an inference system for machine learning applications in the AWS cloud. In this system the inference is restricted
to AlexNet, a convolutional neural network (CNN)35, and the implementation is based on a system that executes the inference
phase in an EC2 instance.
The challenges in the execution of machine learning models are limited memory and compute capacity, together with long

execution times. Serverless computing allows the implementation of these applications in a more cost-effective way, especially
in the inference phase where large amounts of resources are required in a short execution time. In order to address the main chal-
lenges, this document presents a serverless architecture integrated with these type of applications, where the inference phase of
machine learning models can be executed in a public cloud or on-premises clouds using serverless computing strategies. Access
to the models is implemented through a web-based scientific gateway, which facilitates their use by users without experience in
this type of technology. The models implemented in the use cases and the tools used to design the platform are open-source and
publicly available in GitHub: models36, SCAR37, DEEPaaS38 and web-based scientific gateway39.

3 COMPONENTS AND ARCHITECTURE

This section introduces the main components used to create the web-based scientific gateway to support the inference phase
of machine learning models from multi-clouds based on the serverless model (both public and on-premises clouds). Figure 1
shows the components used in this development. Two fundamental deployment methods are identified in the developed platform,
a public cloud and an on-premises cloud. DEEPaaS API and the user interface are common components to both deployment
methods. On the one hand, SCAR allows the implementation of the FaaS model in AWS and, on the other hand, OSCAR
allows supporting the FaaS model in an on-premises cloud. The following subsections provide further details on the components
involved in the scientific gateway.

AUTHOR ONE ET AL 5

3.1 DEEPaaS API
DEEPaaS API¶ is a software developed in the European DEEP Hybrid-DataCloud# project. It is a REST API written in Python
which provides simplified access to machine learning, deep learning, and artificial intelligence models. Through HTTP calls,
the user has access to the functionalities of the implemented model. The requirements and changes to integrate the applications
with the DEEPaaS API are minimal, and this allows an easier interaction with the training and validation functionalities of the
models40.
The inference and training of the models integrated with the DEEPaaS API is done through its REST API. In order to obtain

the prediction of the models in the designed platform a new functionality was added to obtain the prediction of the models from
the command-line interface. This functionality is a command written in Python where the user specifies certain input values in
order to obtain the prediction result through the command-line. This enables support for batch execution ofMLmodels packaged
in DEEPaaS API to execute on both high-end HPC supercomputers and batch-based computing installations such as virtual
clusters9.
The command to be executed is deepaas-predict. The required options are: --input-file and --output-file for the input

and output files respectively, and --content-type to specify the type of file that is returned in the execution of the command.
By default, a JSON file is returned with the result of the prediction, but depending on how the user has integrated the model,
other types of files such as JPG or ZIP files can be obtained. Furthermore, as optional elements, users can define --model-name,
to select a specific model in case of having several models installed in the same environment, and --url to define the input file
from a URL.
Developing command-line-based tools that connect to a REST API that implement a particular service is a common approach

in distributed systems41. The functionality incorporated into DEEPaaS API allows extending the field of use to scenarios where
both a REST API and the command line can be used.

3.2 Web-based Scientific Gateway
The development of a scientific gateway contributes to improve the user experience by allowing the efficient use of the tool and
reducing the learning curve. The implemented web interface allows users to perform the inference of files with the machine
learning models integrated in the platform, which contributes to the application being used by users who have no experience in
the use of those models.
In the web programming environment there are many frameworks and languages that facilitate the work of developers. The

development of this web interface is based on the Javascript frameworks VueJS‖ and Vuetify∗∗. VueJS is a popular open-
source Javascript front-end framework aimed at organizing and simplifying web development, mainly in the development of user
interfaces. The use of components is one of the most powerful features of Vue. In large applications it is more efficient to divide
the application into small, autonomous, and often reusable components so that development is more adaptable42.Vuetify is a
component library made for VueJS that makes web interface development easy, with each component designed to be modular,
responsive, and high-performance. The web interface is compiled as a static web site that is served from an Amazon S3 bucket
and made publicly available††.
Authentication to the web can be done through two methods, as Figure 2 shows: Amazon Cognito and DEEP IAM. Amazon

Cognito is a service offered by AWS that allows user registration, login, and access control in web and mobile applications. In
this service, through theUser Pools43, a group of users is created where access credentials are assigned. DEEP IAM is an identity
provider based on the OpenID Connect standard that allows existing users in that community to log in into our service without
having to register. Both authentication methods are integrated with Amazon Cognito Identity Pools44 (Federated Identities) to
obtain temporary credentials from AWS that allow access to other services such as Amazon S3, AWS Lambda, among others.
Once authenticated, the user can interact with the different integrated models by uploading, downloading, listing, and deleting

the files to be processed or those that are the result of the inference phase. In addition, from the gateway itself, it is possible to
check the status of the jobs that are being processed, in case they execute for a long amount of time. All this process is possible

¶DEEPaaS API - https://github.com/indigo-dc/DEEPaaS
#DEEP Hybrid-Datacloud - https://deep-hybrid-datacloud.eu/
‖VueJS - https://vuejs.org/

∗∗Vuetify - https://vuetifyjs.com/
††Web Interface - https://scar-deepaas-ui.grycap.net/

https://github.com/indigo-dc/DEEPaaS
https://deep-hybrid-datacloud.eu/
https://vuejs.org/
https://vuetifyjs.com/
https://scar-deepaas-ui.grycap.net/

6 AUTHOR ONE ET AL

User Interface

DEEP IAM

AMAZON COGNITO

User Pool

AMAZON COGNITO

Identity Pool

AWS SERVICESAWS SDK
for Javascript

1. Authenticate and
get Tokens.

2. Exchange token
 for AWS temporary

credentials

3. Access AWS services
with credentials

FIGURE 2 High-level authentication and authorization flow in the web interface.

through the OSCAR API and AWS services such as Amazon S3, AWS Lambda, AWS Batch and the use of AWS SDK for
JavaScript that allows access to AWS services from a web interface.

3.3 Serverless Frameworks
This section refers to the frameworks that allow to implement the execution of machine learning and artificial intelligencemodels
on AWS and in the on-premises cloud. SCAR is used for deployment in AWS, while OSCAR is used for on-premises clouds.
Both tools are developed by our research group and allow us to implement the FaaS model across multi-clouds.

3.3.1 SCAR (Serverless Container-aware ARchitectures)
AWS Lambda is the serverless computing service provided by AWS for the implementation of the FaaS model. This service
has certain limitations that restrict the customization of the applications to run. For example, it is not possible to install external
packages at runtime because the functions are not executed with root privileges.
One of the solutions would be the use of Docker containers, though Docker requires root access for its installation. To solve

this limitation, a container engine able to run Docker containers in the user space is needed. In this sense, tools such as udocker 45,
Singularity46,CharlieCloud 47, Shifter 48 orPodman49 play a fundamental role since they precisely allow the execution of Docker
images in spaces where there are no root privileges.
SCAR‡‡ 50 is a tool that uses udocker to transparently run container out of Docker images in AWS Lambda as event-driven

applications, such as in response to uploading a file to a S3 bucket or via an HTTP call to API Gateway§§. SCAR started to be
implemented in 2016 and, in late 2020, AWS Lambda announced native support for running applications packaged on Docker
containers. However, this feature does not support images fromDocker Hub, the largest repository of Docker images. This shows
that as users need more customizable environments, as is the case for scientific applications, cloud providers adapt their services
to the new requirements.
The functions in SCAR are created from a YAML51 file which describes, among other features, the Docker image of the

application, the script to be executed in the container, the input and output storage provider, and the execution mode. SCAR
allows the implementation of several execution modes: lambda, batch, and lambda-batch. These execution modes determine
the service to be executed based on computational requirements.

‡‡SCAR - https://github.com/grycap/scar
§§API Gateway - https://aws.amazon.com/api-gateway/

https://github.com/grycap/scar
https://aws.amazon.com/api-gateway/

AUTHOR ONE ET AL 7

In the lambdamode, all executions are performed as Lambda function invocations. In addition to the AWSLambda limitations
mentioned above, it is important to add: maximum execution time of 15 minutes, 512MB of ephemeral, potentially shared,
storage space, and 10GB of RAM, which affects linearly to the computing capacity. These computing requirements of AWS
Lambda led to the emergence of other execution modes in SCAR, as is the case of the integration of AWS Batch into SCAR, as
described in the work by Risco et al.52.
In the batch mode, the executions are delegated to AWS Batch, a service that allows the execution of jobs based on Docker

containers in an elastic computing cluster of automatically provisioned virtual machines, that grow and shrink according to
the execution needs and enable GPU support, a feature not yet available in Lambda. These clusters also have the ability to
automatically scale down to zero nodes and provide a perfect fit to the serverless computing model. In the lambda-batch mode
the execution is carried out in AWS Lambda and in case of a timeout, the job is automatically delegated to AWS Batch.

3.3.2 OSCAR (Open Source Serverless Computing for Data-Processing Applications)
OSCAR¶¶ is an open-source platform that deploys and integrates several services in order to support event-driven long-running
executions within an elastic Kubernetes cluster, accessed through a web interface53, REST API or CLI. The graphical interface
of OSCAR is a static web site for users to view, create, edit, and delete the functions implemented in the platform. From the
web interface itself, you can access the storage system, which allows to download and view the input and output files. It is also
possible to check the status of the functions and the logs generated in the execution.
In the process of defining the function there are certain parameters, such as the name of the function, the Docker image that

contains the application code and the shell-script to be executed to perform the processing, which are required. Other parameters
such as environment variables are optional. The function is executed once a file is uploaded into the input storage system,
which is processed in an ephemeral container that contains the application code and the configuration specified in the function
definition. Once the processing is completed, the result is stored in the output storage system.
A previous research by Naranjo et al.54 achieved the integration of acceleration devices, such as GPUs, into the OSCAR

platform. For this, the rCUDA## 55 56 tool was used, which allows virtualizing GPU devices that represent physical GPUs in a
remote machine. In addition, rCUDA allows the same GPU to be shared by multiple applications accessing them simultaneously.
The use of acceleration devices on a serverless platform allows expanding the field of action and inclusion of applications that
require intensive computing, such as machine learning and artificial intelligence models.

3.4 Architecture
Figure 3 shows the proposed architecture for the web-based scientific gateway that supports the inference frommachine learning
models executed on serverless platforms in multi-clouds.
The integration of the models in AWS is done through SCAR, with functions that are activated once a file is uploaded into the

input storage system. In the case of the on-premises cloud, the integration of the models is done through the OSCAR framework.
Both deployment methods support three types of storage providers: Amazon S3, MinIO‖‖, and EGI DataHub57. Amazon S3
is the storage system provided by AWS, MinIO is a server-side storage system compatible with the Amazon S3 API, and EGI
DataHub is one of the storage systems supported by the EGI Federated Cloud58, an IaaS-type cloud made up of on-premises
and academic clouds that provide computing resources to the scientific research community.
For the integration of the models in the platform, the system administrator must first create the functions through the SCAR

client in the case of the deployment method in AWS, and through the OSCAR graphical interface, REST API or CLI, in the
case of selecting this deployment method. In both cases, it is necessary to specify the name of the function, the Docker image
with the code of the models and the script to be executed in the container. In the case of SCAR, it is also necessary to specify
the execution mode, taking into account if the application complies with AWS Lambda’s execution time and storage limitations
(lambda execution mode) or if it does not comply with them (batch execution mode). If the duration of the function is unknown,
the user can select the lambda-batch execution mode, which will execute the job in AWS Lambda and, if a timeout is obtained, a
job is automatically delegated to AWS Batch. From this moment on, the functions with the models will be available from AWS
and from the OSCAR platform. These functions will be executed every time a file is uploaded to the input storage system.

¶¶OSCAR - https://github.com/grycap/oscar
##rCUDA - http://www.rcuda.net/
‖‖MinIO - https://min.io/

https://github.com/grycap/oscar
http://www.rcuda.net/
https://min.io/

8 AUTHOR ONE ET AL

Get token
using

End user

Cognito

User Pool Identity Pool

S3 /input
/output SCAR

supervisor

Lambda
AWS BATCH

Execute on
GPU/CPU resources

Trigger Trigger

Store
output

Store
output

Gets temporary AWS credentials
using identity token

Upload, download,list
and delete files to S3
using the temporary

AWS credentials

1

2

3

Username and
password from
Cognito User

OpenID Connect
identity provider

or

DEEP IAM

Web User
Interface

Lambda Function

SCAR Execution Modes

Administrator

MinIO

/input

OSCAR FUNCTION

/output

Trigger
Store
ouput

Kubernetes
Job

OpenFaaS
Watchdog

FaaS
Supervisor

User Container

SCAR
CLIENT

OSCAR
UI

Provision infrastructure
resources

Set MinIO
 Credentials

OSCAR
CLUSTER

FIGURE 3 Architecture for the integration of Machine Learning models in AWS and an on-premises cloud.

The development of this type of architecture allows the integration of machine learning and artificial intelligence models
in a serverless platform that allows execution in a public cloud (AWS) and in an on-premises cloud. The tools used for these
deployments, SCAR and OSCAR, are open-source tools that enable the creation of highly parallel event-based file process-
ing serverless applications in environments such as AWS Lambda, AWS Batch, and an on-premises cloud via a dynamically
provisioned elastic Kubernetes cluster. The implemented serverless service grows elastically, based on execution needs, and
terminates provisioned resources (scale to zero) when they are no longer needed, thus saving costs.

4 USE CASES

To evaluate the advantages of the proposed architecture in terms of jobs processed/time unit, several case studies of machine
learning models are proposed. In order to be able to integrate other models into the platform, a detailed study of the use of the
platform in the inference process of models that are pre-trained and publicly accessible is provided.
Three models from the DEEP Open Catalog and the Darknet model were integrated:
• Audio Classifier59: This model allows to perform audio classification with deep learning. It allows to classify through a

model previously trained with the AudioSet60 dataset of 527 high-level classes. To implement the prediction, the model
expects as input a URL or an audio file and as output a JSON file with the top 5 predictions is returned.

• Plants species classifier61: This model allows to classify plant images among 10 thousand species from the iNaturalist62
dataset. For the inference phase the model expects as input a URL or an RGB image and returns a JSON file with the top
5 predictions.

• Body Pose Detection63: This model allows real-time detection of body poses using deep neural networks. It can be used
to estimate single or multiple poses in images or videos. In our case it is used to detect body poses in images. To obtain
the prediction the model expects a URL or a RGB image and as a result returns as output the different key points of the
body with the corresponding coordinates. This case study obtains an image identifying each of the key points in addition
to a JSON file with the result of the classification.

AUTHOR ONE ET AL 9

Select a method
of deployment

and model
Upload

file

 input
storage

output
storage

Web User Interface (Figure 6)

Trigger
function

AWS Lambda AWS Batch

SCAR
FUNCTION Create environment

to process the file
according to the model

Get prediction
result

Save
result

Show
file

Download
prediction

result

User

Web User Interface (Figure 7)

OSCAR
FUNCTION

SCAR
FUNCTION

OSCAR
FUNCTION

Kubernetes Job

FIGURE 4 Simplified file processing workflow. Functions with different deployment methods selected, either on AWS or in a
local cluster with OSCAR.

• Darknet64: Darknet is an open-source neural network framework written in C and CUDA that supports CPU and GPU
computation. This example uses the YOLO (you only look once) library for real-time object detection, such as people,
cars, animals, etc.

Figure 4 shows, in a simplified way, the processing flow of the files. In the following points a more detailed explanation of
the process is made from when a file is uploaded until the prediction result is obtained.

• Authentication: The first step to access the classification models is to authenticate on the web. To do this, users can
authenticate through their Amazon Cognito credentials or through DEEP IAM, if they have credentials from this identity
provider.

• Method of deployment: Once the authentication process is completed, the user selects one of the available deployment
methods, AWSorOSCAR. In caseOSCAR is selected, it is necessary to configure theMinIO credentials in the SETTINGS
tab, Figure 5.

• Select Model: After selecting the deployment method, the user can select one of the available models. When a model is
selected, two links of interest to the user are displayed, Input example for models which shows an example input file and
Link to the model in the Catalog link where more information about the model can be obtained. This information allows
the user to have specific information about the selected model.

• Upload Files: At this point, the user can now upload files from the web interface, in order to trigger the execution of the
function corresponding to the selected model, to perform the processing of the file(s). The input and output files are stored
in the storage system specified in the function definition. In the storage process, a directory structure has been created
where the files are stored in folders named after the selected model and the user, allowing each user to access only her
information. This allows the development of a multi-tenant environment and the addition of an activation event for each
model independently.

• Job Status: The models that are executed in AWS Batch are generally long-running. Therefore, the web interface allows
the user to query the status of the jobs that are being processed and, thus, know when the result of the prediction has been
obtained.

• Download Result: Once the inference process has been performed, the prediction result is stored in the output storage
system. In the case of AWS the result is accessible from the web interface and in the case of OSCAR the result is stored
either in MinIO or in the EGI DataHub user space, accessible through a link from the web interface.

10 AUTHOR ONE ET AL

FIGURE 5 Settings tab to configure access to MinIO.

5 RESULTS

In order to test the different models integrated in the platform, different experiments were developed. This section analyzes the
results obtained in each of the deployment methods and execution modes. Remember that in the case of AWS, with SCAR, the
execution can be performed in AWS Lambda and AWS Batch, while in the case of the on-premises cloud OSCAR is used.
Concerning the models that are part of the DEEP Open Catalog, when using AWS the inference process is carried out with

the batch execution mode, since the size of the images is greater than the limit allowed by AWS Lambda (512 MB). The
Darknet model, which complies with AWS Lambda restrictions, runs in the lambda execution mode. Functions in OSCAR run
as Kubernetes jobs in an on-premises cloud, so they do not have any of these limitations.
Figure 6 shows the panel for selecting a deployment method, one of the available models, and the section for uploading the

files to the input storage system. Loading the file generates an event that automatically triggers the function corresponding to
the selected model. As mentioned before, the web interface automatically creates the directory structure taking into account the
selected model and the authenticated user on the web.
From the web interface it is possible to check the status of the jobs running in AWSBatch, as shown in Figure 7. It is important

to note that in AWS Batch the deployment of a compute environment can take several minutes because the EC2 instances need
to be provisioned and configured; hence the importance of querying the status of the jobs running in this service. The status of
the jobs is queried through a Lambda function that communicates with the AWS Batch API, as shown in Figure 8. This function
is triggered every time the job status is updated from the web interface. In the case of OSCAR, the job status is queried through
its API, for jobs in status: PENDING, RUNNABLE, STARTING, RUNNING, FAILED and SUCCEDED. This process allows the
user to monitor the life cycle of long-running jobs.
The prediction result is stored in the output storage system specified in the function definition. Like the input files, the pre-

diction result is stored taking into account the user and the selected model. Figure 7 also shows the section for interacting with
the input and output files of the selected deployment method and model. From this section it is possible to download the files or
delete them if they are no longer needed. Amazon S3 and EGI DataHub provide high availability, long-term preservation and
remote accessibility from anywhere. Alternatively, since MinIO is installed inside the Kubernetes cluster, it provides certain
storage capabilities limited to the lifespan of the cluster.
As an example, Figure 9 shows the prediction result for the case of the plant species classifier model. On the left (a) the

original image is shown and on the right (b) the result of the prediction in JSON format. Also in (c) an example of the search
result of the link indicated in red in (b) is shown.
An experiment was carried out that consisted of calculating the processing times for 10 images executed simultaneously in

both deployment methods (AWS and OSCAR) and using the batch and lambda execution modes in the case of AWS. One of the

AUTHOR ONE ET AL 11

FIGURE 6 Select Method of Deployment, Select Model and Upload Files panels of the Web Interface.

FIGURE 7 Panels to check the status of jobs and stored files.

fundamental elements to take into account in a serverless platform with scale to zero is cold start. In the case of AWS Batch, it
is important to analyze the startup time of the instances.
Figure 10 shows the processing times obtained for the case of the Darknet model in AWS Lambda. In this case, it can be seen

that the first execution is the one with the longest processing time, because the platform implements scale to zero, which refers
to the fact that while the platform is not used, there is no active function, which allows to save costs. Scale to zero introduces the
phenomenon of cold start, where in the first execution of the function, for SCAR, it is necessary to download the Docker image
that contains the application code, start a new execution environment, execute the initialization code and execute the function.
Once these steps have been carried out in the first execution, the following ones run faster since the unpacked Docker image may
be reused from the ephemeral, potentially shared /tmp space. It is important to note that cold start can be mitigated by keeping the
function always hot at a higher cost. After this first invocation where the function is already initialized, the rest of the executions
typically reuse the configuration mentioned above, which causes them to be processed in a similar time, around 13 seconds.
Figure 11 and Table 1 show the same experiment performed in AWS Lambda, but in this case the 10 executions are executed

taking into account the plant species classifier model, which has to be executed in AWS Batch (batch execution mode). In the
case of AWS Batch, the compute environment was defined with a maximum of 2 instances of 1CPU and 4GB of RAM. Jobs are
sent simultaneously and queued until the scheduler detects that there are resources available and sends them to be processed.
Therefore, the processing time is divided into execution time andwaiting time. In the graph, the blue bars represent the processing

12 AUTHOR ONE ET AL

Update
Job States

Check jobs
status

User Web
Interface

Lambda runs code.

AWS BATCH
API

Trigger

Send job
status

JOBS STATES

FIGURE 8 Check the status of jobs through a Lambda function.

c) Search result of the link marked in
red in figure b).

a) Original Image.

b) Prediction result in JSON format.

FIGURE 9 Example of the result obtained using the Plant Species Classifier Model. On the left (a) the original image, on the
right (b) the result of the prediction in JSON format, and (c) an example of the search result.

time of the file without taking into account the waiting time in the job queue that is displayed in the yellow bars. The processing
time is approximately equal to 14 seconds for each of the invocations.
In the first execution, it can be seen that the waiting time is considerably greater than in the rest of the executions. This behavior

is due to the fact that in the first invocation, there is no an active compute environment and, in the same way as the case of AWS
Lambda, it is necessary to configure the environment with the selected model. From this point on, the two virtual machines are
deployed to serve the workload and the jobs are queued until there are resources are available, hence the waiting times increase.
From the moment the jobs to be processed are sent, they go through various states (mentioned in previous sections).
Figure 12 and Table 2 show the times obtained for the same experiment performed in AWS Lambda and AWS Batch with

the plant species classifier model, but in this case implemented in an elastic Kubernetes cluster with the OSCAR framework.
The components used for the deployment of this cluster allow it to grow and decrease according to the number of nodes and
the workload. In order to have the same environment configured in AWS Batch, a maximum of 2 nodes with 1CPU and 4GB of
memory were defined. By default, only one of the nodes is active at startup, so there is one execution slot.
As in the case of AWS Batch the blue bar corresponds to the processing time and the yellow bar to the waiting time in the

job queue. The processing time includes the time to download the input file, the processing of the file and the time to upload
the result into the output storage system. In all executions, the processing time (blue bar) is approximately the same, since the
images to be processed have the same characteristics.
The deployment of a new node in OSCAR is done through CLUES65, an open-source modular elasticity system that allows

the introduction of horizontal elasticity capabilities (increase/reduce the number of compute nodes) for cluster-based computing.
Once CLUES detects that the workload increases, the new node is deployed (it takes 5 minutes approximately to configure the
node), to have more resources available for processing the jobs. Once the workload decreases (around 3 minutes later with no

AUTHOR ONE ET AL 13

1 2 3 4 5 6 7 8 9 10

10

15

20

25

30

35

40

45 43

12
13 13

12
13 13 13

12
13

Executions

T
im

e
(s
ec
on

d
s)

FIGURE 10 Execution times for 10 images with the Darknet model in AWS Lambda.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

272

22

84
114

141
171

202
232

262

294

Executions

T
im

e
(s
ec
on

d
s)

Run Time
Wait Time

FIGURE 11 Execution times for 10 images with the plant species classifier model in AWS Batch.

workload), the system itself takes care of shutting down the node that is no longer needed, thus saving electricity. In a cluster
with OSCAR by default there is always a node ready.
In the example implemented in this article, CLUES detects the increase in workload and powers on a new node. Due to

the time it takes CLUES to configure the new one, none of the executions run on the new node. When all jobs are submitted
simultaneously, they are queued and processed one by one as there is only one active execution slot until CLUES configures the
new node, so the waiting time increases from one execution to another. The wait time (yellow bar) of the first execution is due
to the pull of the Docker image used in the function. Therefore, between one execution and the next, the wait time increases by
the run time (blue bar) of the previous execution. The order of execution of each of the invocations depends on the Kubernetes
scheduler. The total execution time of the 10 jobs is similar to those obtained in Batch (300 seconds in AWS Batch and 261
seconds in OSCAR approximately).
The results obtained in each of the environments are different. In the case of AWS Lambda, the effect of the cold start can be

seen in the first execution and, from this moment on, the processing time is approximately the same in each of the invocations.
In the case of AWS Batch, the first invocation takes longer because there is no compute environment created and it needs to be
configured. From this point on the jobs are queued until compute resources are available. The processing time (not including the

14 AUTHOR ONE ET AL

TABLE 1 Execution times in AWS Batch, for 10 images using the plant species classifier model.
Execution Run Time (s) Wait Time (s) Total (s)

1 19 253 272
2 13 9 22
3 14 70 84
4 14 100 114
5 13 128 141
6 12 159 171
7 13 189 202
8 12 220 232
9 12 250 262
10 13 281 294

1 2 3 4 5 6 7 8 9 10
0

100

200

300

68
90

112
132

154
174

196
215

238
261

Executions

T
im

e
(s
ec
on

d
s)

Run Time
Wait Time

FIGURE 12 Execution times for 10 images with the plant species classifier model in an OSCAR cluster.

time spent waiting in the queue) is approximately the same for each of the executions but AWS Batch provides the ability to run
jobs on GPUs. Deploying in an on-premises cloud with OSCAR, saves budget by obtaining execution times similar to public
cloud platforms such as AWS and without the restrictions of certain environments such as Lambda. However, the parallelism
depends on the underlying computing capacity of said on-premises cloud.
Along with these experiments, an analysis of the costs generated in each of the environments: AWS Lambda, AWS Batch

and OSCAR is shown in Table 3. The table refers to all services used in AWS and the on-premises cloud. Amazon CloudWatch
is used for monitoring, providing the storage for log files. The prices indicated for Amazon S3 and Amazon CloudWatch are
general as they depend largely on the size of the files to be processed and the size of the logs generated. For example, to process
1000 images of an average size of 150KB, which are the ones used in this case study, the cost of Amazon S3 would be $0.0034
per month.
It is important to note that most services on AWS have a free usage tier, which would allow costs to be reduced to practically

zero, depending on the use of the platform. For example, in the case of AWS Lambda, the free tier includes one million free
requests per month and 400,000 GB per seconds of computing time per month, which would be sufficient for this use case.
Costs in an on-premises cloud are highly dependent on the volume and capacity of the platform. This analysis takes into

account the costs generated by electricity and the personnel required for the maintenance of the platform. The infrastructure
contemplates two nodes where the storage required for incoming and outgoing files is highly dependent on the expected usage of
the platform. Using the Azure Total Cost of Ownership (TCO) Calculator66 it is possible to determine the cost of an infrastructure

AUTHOR ONE ET AL 15

TABLE 2 Execution times in OSCAR, for 10 images using the plant species classifier model.
Execution Run Time (s) Wait Time (s) Total (s)

1 24 44 68
2 24 66 90
3 24 88 112
4 23 109 132
5 23 131 154
6 24 150 174
7 23 173 196
8 23 192 215
9 24 214 238
10 24 237 261

TABLE 3 Cost of the platform in a public (AWS) and an on-premises cloud.
Public Cloud (AWS) On-premises Cloud

Services AWS Lambda AWS Batch Amazon S3 Amazon CloudWatch OSCAR
Resources
Provided 2048 MB RAM m3.medium

(1vCPU 4GB) First 50TB Store and access
log files

2 nodes
(1vCPU 4GB)

Prices $0,0000000333/ms $0,000018611/s $0,023 per GB $0,50 per GB -

Free Tier
1M free requests per month.
400,000 GB-seconds of
compute time per month.

No additional charge
for AWS Batch.

EC2 resources 12 months free.
750 hours per month

12 months free.
5 GB of standard

storage.

CloudWatch stores logs
for free for most AWS services

(EC2, S3, Lambda, etc.)
-

Execution
Time (s) 15.7 294 - - 261
Cost
(per execution) $0,000000523 $0,005471667 - - $0,048

deployed in the Azure cloud or on an on-premises platform. In this case we use the values for an on-premises platform, and for a
computational environment with the same characteristics as those referenced above and taking as reference the 386 seconds of
the maximum execution of the 10 invocations (Figure 12) we obtain a cost of $0.048 per execution. As shown in Table 3 the costs
per execution in AWS Lambda are lower, but the limitations introduced by this environment have already been discussed. In the
case of AWS Batch there are no limitations as in the case of AWS Lambda, and it also allows the use of acceleration devices
like GPUs. In the local cloud we obtain the highest execution costs. However, we can avoid using a commercial public cloud
platform if we have access to computational resources such as those provided by EGI Federated Cloud for scientific computing.

6 DISCUSSION

The designed platform is based on several tools to perform the inference phase of machine learning and artificial intelligence
models from a web interface on multiple Clouds. From AWS, the deployment of the models is done through SCAR, which
allows the execution of Docker images as serverless functions, triggered by events such as uploading a file to an S3 bucket.
The execution modes supported by SCAR allow the execution of functions in AWS Lambda or AWS Batch according to the
execution characteristics of the application.
Through the lambda execution mode the workload can be handled by executing short-lived asynchronous functions. Requests

are queued until AWS Lambda provides the on-demand computing capabilities necessary to process invocations in parallel. The
batch execution mode also handles the processing of long-running resource-intensive tasks. Jobs are stored in the queue until
resources are available for processing. Computing environments are created from EC2 instances where applications have access
to accelerated resources such as GPUs.
The implementation ofmachine learning and artificial intelligencemodels on a serverless on-premises platform, withOSCAR,

bring some benefits. On the one hand, it avoids vendor lock-in from the use of resources and technologies from public Cloud

16 AUTHOR ONE ET AL

providers and, on the other hand, no hardware costs are incurred. The configuration in OSCAR allows infrastructures that grow
and shrink elastically, in addition to scaling the worker nodes to zero when not in use, which translates into energy efficiency.
Another interesting aspect of OSCAR is the integration with EGI Federated Cloud that provides computational services to
researchers under open standards.
The designed platform has included models that are not previously integrated into AWS. Even though they do not comply with

the limitations of AWS Lambda, they have been integrated with event-driven scalable services that provide access to computing
resources such as GPUs thanks to the batch execution mode. The use of the models is done in a simple way from a web interface,
so that users can obtain the result of the prediction without requiring previous skills in the use of AWS or machine learning
and artificial intelligence models. One of the main advantages of the proposed platform is the scaling to zero that allows you to
pay for services only when they are in use, in addition to automatic scaling when demand increases. The solution proposed in
this research facilitates the inference of previously trained machine learning models in the public and on-premises clouds at a
reduced cost.

7 CONCLUSIONS

This paper has focused on the development of a web-based scientific gateway for the inference of machine learning and artificial
intelligence models on serverless platforms, using the AWS public cloud and on-premises clouds with OSCAR, by using elastic
Kubernetes clusters. For deployment on AWS, SCAR is used, which runs applications packaged in Docker containers, such as
functions in AWS Lambda that are triggered in response to certain events. Models whose execution characteristics exceeded
AWS Lambda’s limits were integrated into AWS Batch. This allowed the use of accelerated devices such as GPUs, a feature not
yet available in Lambda.
The implemented development is a step forward in the adoption of the serverless model in the machine learning and artificial

intelligence environment. The platform, through the web interface, facilitates the use of the models by users, without the need
to define complex jobs. The level of abstraction introduced in this platform allows users with no experience in the AWS cloud
and machine learning models to interact without the complexity required.
The processing times obtained for this type of applications compared to other systems are acceptable. Depending on the

available resources, the user can select the deployment in the AWS cloud or in an on-premises cloudwith the OSCAR framework.
The inferences are obtained through serverless services, which implies cost reduction since costs are only generated when
resources are used. The designed system constitutes a step forward in the simplification and adoption of machine learningmodels
in serverless systems.
In the availability of machine learning and artificial intelligence models on serverless platforms, there are three fundamental

lines of action, in which we intend to continue our research. First, additional models will be incorporated. Second, adaptation
to other public Cloud providers will be included. Finally, we will address including GPU support in AWS Lambda by means of
remote GPU acceleration. These will allow a more thorough adoption of serverless technology in machine learning and artificial
intelligence applications.

8 ACKNOWLEDGEMENTS

Grant PID2020-113126RB-I00 funded by MCIN/AEI/10.13039/501100011033. This work has also been supported by the
project AI-SPRINT "Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum" that has received funding
from the European Union Horizon 2020 research and innovation programme under Grant Agreement No. 101016577. This work
was also previously supported by the project DEEP-Hybrid-DataCloud “Designing and Enabling E-infrastructures for intensive
Processing in a Hybrid DataCloud” that received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement number 777435.

References

1. Fox GC, Ishakian V, Muthusamy V, Slominski A. Status of Serverless Computing and Function-as-a-Service(FaaS) in
Industry and Research. arXiv 2017; abs/1708.08028.

AUTHOR ONE ET AL 17

2. Ellis A. OpenFaaS. https://www.openfaas.com/; 2020.
3. Google . Knative. https://github.com/knative/; 2020.
4. Apache . OpenWhisk - Open Source Serverless Cloud Platform. https://openwhisk.apache.org/; 2020.
5. West DM. The future of work: Robots, AI, and automation. Brookings Institution Press . 2018.
6. Shafiei H, Khonsari A, Mousavi P. Serverless Computing: A Survey of Opportunities, Challenges and Applications. arXiv

2019.
7. Carreira J, Fonseca P, Tumanov A, Zhang A, Katz R. A case for serverless machine learning. In: Workshop on Systems for

ML and Open Source Software at NeurIPS. Semantic Scholar; 2018.
8. Naranjo Diana M., Risco Sebastián, Moltó Germán, Blanquer Ignacio . A Serverless Gateway for the Execution of Open

Machine Learning Models on AWS. In: Gateways 2020. OSF; 2020.
9. NaranjoDelgadoDM. Serverless Computing Strategies on Cloud Platforms. PhD thesis. Universitat Politècnica deValència,

Valencia, Spain; 2021.
10. Spillner J, Mateos C, Monge DA. Faaster, better, cheaper: the prospect of serverless scientific computing and HPC. In:

Communications in Computer and Information Science. Springer, Cham; 2018: 154-168
11. Baldini I, Castro P, Chang K, et al. Serverless Computing: Current Trends and Open Problems. Research Advances in Cloud

Computing 2017: 1–20.
12. Jonas E, Pu Q, Venkataraman S, Stoica I, Recht B. Occupy the cloud: distributed computing for the 99%. In: 2017

Symposium on Cloud Computing - SoCC ’17. ACM Press; 2017; New York, New York, USA: 445–451
13. Shankar V, Krauth K, Pu Q, et al. Numpywren: Serverless Linear Algebra. arXiv 2018.
14. Eismann S, Scheuner J, Eyk vE, et al. A Review of Serverless Use Cases and their Characteristics. arXiv 2020.
15. Jindal A, Gerndt M, Chadha M, Podolskiy V, Chen P. Function delivery network: Extending serverless computing for

heterogeneous platforms. Software: Practice and Experience 2021: spe.2966. doi: 10.1002/spe.2966
16. Mahmoudi N, Khazaei H. SimFaaS: A Performance Simulator for Serverless Computing Platforms.

https://arXiv.org/abs/2102.08904; 2021.
17. Giménez-Alventosa V, Moltó G, Caballer M. A framework and a performance assessment for serverless MapReduce on

AWS Lambda. Future Generation Computer Systems 2019. doi: 10.1016/j.future.2019.02.057
18. Opara-Martins J, Sahandi R, Tian F. Critical analysis of vendor lock-in and its impact on cloud computing migration: a

business perspective. Journal of Cloud Computing 2016; 5(1): 4. doi: 10.1186/s13677-016-0054-z
19. Fission. https://fission.io/; 2020.
20. Nuclio. https://nuclio.io/; 2020.
21. Oracle . Fn Project. https://fnproject.io/; 2020.
22. Hendrickson S, Sturdevant S, Harter T, Venkataramani V, Arpaci-Dusseau AC, Arpaci-Dusseau RH. Serverless Compu-

tation with openLambda. In: 8th USENIX Conference on Hot Topics in Cloud Computing. USENIX Association; 2016:
33–39

23. Kaviani N, Kalinin D, Maximilien M. Towards serverless as commodity: A case of Knative. In: WOSC 2019 - Proceedings
of the 2019 5th International Workshop on Serverless Computing, Part of Middleware 2019. Association for Computing
Machinery, Inc; 2019: 13–18

24. Palade A, Kazmi A, Clarke S. An Evaluation of Open Source Serverless Computing Frameworks Support at the Edge. In:
. 2642-939X. 2019 IEEE World Congress on Services (SERVICES). ; 2019: 206-211

http://dx.doi.org/10.1002/spe.2966
http://dx.doi.org/10.1016/j.future.2019.02.057
http://dx.doi.org/10.1186/s13677-016-0054-z

18 AUTHOR ONE ET AL

25. Li J, Kulkarni SG, Ramakrishnan KK, Li D. Understanding open source serverless platforms: Design considerations and
performance. In: WOSC 2019 - Proceedings of the 2019 5th International Workshop on Serverless Computing, Part of
Middleware 2019. Association for Computing Machinery, Inc; 2019: 37–42

26. Benedetti P, Femminella M, Reali G, Steenhaut K. Experimental Analysis of the Application of Serverless Computing to
IoT Platforms. Sensors 2021; 21(3). doi: 10.3390/s21030928

27. Corral-Plaza D, Boubeta-Puig J, Resinas M. Un Recorrido por los Principales Proveedores de Servicios de Machine Learn-
ing y Predicción en la Nube. In: Actas de las XIV Jornadas de Ingeniería de Ciencia e Ingeniería de Servicios (JCIS 2018).
; 2018: 1–10.

28. Ishakian V, Muthusamy V, Slominski A. Serving Deep Learning Models in a Serverless Platform. In: 2018 IEEE
International Conference on Cloud Engineering (IC2E). ; 2018: 257-262

29. Rao Divate Kodandarama M, Danish Shaikh M, Patnaik S. SerFer: Serverless Inference of Machine Learning Models. tech.
rep., University of Wisconsin; Madison: 2019.

30. Bhattacharjee A, Chhokra AD, Kang Z, Sun H, Gokhale A, Karsai G. BARISTA: Efficient and Scalable Serverless Serving
System for Deep Learning Prediction Services. In: 2019 IEEE International Conference on Cloud Engineering (IC2E). ;
2019: 23-33.

31. Christidis A, Davies R, Moschoyiannis S. Serving machine learning workloads in resource constrained environments: A
serverless deployment example. In: 2019 IEEE 12th Conference on Service-Oriented Computing and Applications, SOCA
2019. Institute of Electrical and Electronics Engineers Inc.; 2019: 55–63

32. Christidis A, Moschoyiannis S, Hsu CH, Davies R. Enabling Serverless Deployment of Large-Scale AI Workloads. IEEE
Access 2020; 8: 70150–70161. doi: 10.1109/ACCESS.2020.2985282

33. Kurz MS. Distributed Double Machine Learning with a Serverless Architecture. arXiv 2021.
34. Chernozhukov V, Chetverikov D, Demirer M, et al. Double/Debiased Machine Learning for Treatment and Causal

Parameters. arXiv 2016.
35. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017; 60(6): 84–90. doi: 10.1145/3065386
36. DEEP Open Catalog. https://marketplace.deep-hybrid-datacloud.eu/; 2020.
37. SCAR: Serverless Container-aware ARchitectures (e.g. Docker in AWS Lambda). https://github.com/grycap/scar; 2020.
38. DEEPaaS: ARESTAPI to servemachine learning and deep learningmodels. https://github.com/indigo-dc/DEEPaaS; 2020.
39. Web Interface. https://github.com/grycap/scar-deepaas-ui; 2020.
40. López García Á. DEEPaaS API: a REST API for Machine Learning and Deep Learning models. Journal of Open Source

Software 2019; 4(42): 1517. doi: 10.21105/joss.01517
41. Sarzyniec L, Buchert T, Jeanvoine E, Nussbaum L. Design and Evaluation of a Virtual Experimental Environment for

Distributed Systems. In: 2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. ; 2013: 172-179

42. Kyoreva K. State of the Art JavaScript Application Development with Vue. js. In: International Conference on Application
of Information and Communication. ; 2017: 567–572.

43. AWS . Amazon Cognito User Pools. https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-
pools.html; 2020.

44. AWS . Amazon Cognito Idenity Pools. https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html;
2020.

http://dx.doi.org/10.3390/s21030928
http://dx.doi.org/10.1109/ACCESS.2020.2985282
http://dx.doi.org/10.1145/3065386
https://marketplace.deep-hybrid-datacloud.eu/
http://dx.doi.org/10.21105/joss.01517

AUTHOR ONE ET AL 19

45. Gomes J, Bagnaschi E, Campos I, et al. Enabling rootless Linux Containers in multi-user environments: The udocker tool.
Computer Physics Communications 2018; 232: 84 - 97. doi: https://doi.org/10.1016/j.cpc.2018.05.021

46. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLOS ONE 2017; 12(5):
e0177459. doi: 10.1371/journal.pone.0177459

47. Priedhorsky R, Randles T. Charliecloud: Unprivileged Containers for User-Defined Software Stacks in HPC. In: SC ’17.
International Conference for High Performance Computing, Networking, Storage and Analysis. Association for Computing
Machinery; 2017; New York, NY, USA

48. Jacobsen DM, Canon RS. Contain This, Unleashing Docker for HPC. tech. rep., NERSC; United States: 2015.
49. Gantikow H, Walter S, Reich C. Rootless Containers with Podman for HPC. In: Jagode H, Anzt H, Juckeland G, Ltaief H.,

eds.High Performance ComputingHigh Performance Computing. Springer International Publishing; 2020; Cham: 343–354.
50. Pérez A, Moltó G, Caballer M, Calatrava A. Serverless computing for container-based architectures. Future Generation

Computer Systems 2018; 83: 50–59. doi: 10.1016/j.future.2018.01.022
51. YAML. https://yaml.org/; 2020.
52. Risco S, Moltó G. GPU-Enabled Serverless Workflows for Efficient Multimedia Processing. Applied Sciences 2021; 11(4).

doi: 10.3390/app11041438
53. Pérez A, Risco S, Naranjo DM, CaballerM,Moltó G. Serverless Computing for Event-DrivenData ProcessingApplications.

In: 2019 IEEE International Conference on Cloud Computing (CLOUD 2019). ; 2019.
54. Naranjo DM, Risco S, de Alfonso C, Pérez A, Blanquer I, Moltó G. Accelerated serverless computing based on GPU virtu-

alization. Journal of Parallel and Distributed Computing 2020; 139: 32-42. doi: https://doi.org/10.1016/j.jpdc.2020.01.004
55. Reaño C, Silla F, Shainer G, Schultz S. Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. In: 16th

International Middleware Conference on ZZZ - Middleware Industry ’15. ACM Press; 2015; New York, New York, USA:
1–7

56. Reano C, Silla F. A Performance Comparison of CUDA Remote GPU Virtualization Frameworks. In: 2015 IEEE
International Conference on Cluster Computing. IEEE; 2015: 488–489

57. EGI DataHub. https://www.egi.eu/services/datahub/; 2020.
58. Integration with the EGI Federated Cloud - oscar documentation. https://o-scar.readthedocs.io/en/latest/egi-

integration.html; 2020.
59. DEEP Open Catalog - Model "Train an audio classifier". https://marketplace.deep-hybrid-datacloud.eu/modules/deep-oc-

audio-classification-tf.html; 2020.
60. Audioset. https://research.google.com/audioset/; 2020.
61. DEEP Open Catalog - Model "Plants species classifier". https://marketplace.deep-hybrid-datacloud.eu/modules/deep-oc-

plants-classification-tf.html; 2020.
62. A Community for Naturalists · iNaturalist. https://www.inaturalist.org/; 2020.
63. DEEP Open Catalog - Model "Body Pose Detection". https://marketplace.deep-hybrid-datacloud.eu/modules/deep-oc-

posenet-tf.html; 2020.
64. Darknet. https://pjreddie.com/darknet/yolo/; 2020.
65. CLUES - cluster energy saving (for hpc and cloud computing). https://www.grycap.upv.es/clues/es/index.ph; 2020.
66. Total Cost of Ownership (TCO) Calculator | Microsoft Azure. https://azure.microsoft.com/en-us/pricing/tco/calculator/;

2020.

http://dx.doi.org/https://doi.org/10.1016/j.cpc.2018.05.021
http://dx.doi.org/10.1371/journal.pone.0177459
http://dx.doi.org/10.1016/j.future.2018.01.022
http://dx.doi.org/10.3390/app11041438
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2020.01.004

