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Abstract Let Lip0(M) be the space of Lipschitz functions on a complete metric space M that vanish at
a base point. We prove that every normal functional in Lip0(M)∗ is weak* continuous; that is, in order to
verify weak* continuity it suffices to do so for bounded monotone nets of Lipschitz functions. This solves
a problem posed by N. Weaver. As an auxiliary result, we show that the series decomposition developed
by N. J. Kalton for functionals in the predual of Lip0(M) can be partially extended to Lip0(M)∗.
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1. Introduction

Let (M,d) be a complete metric space with a selected base point, which we shall denote
by 0. Then the space Lip0(M) of all real-valued Lipschitz functions on M that vanish at

0 is a Banach space when endowed with the norm given by the Lipschitz constant

‖f‖L = sup

{
|f(x)−f(y)|

d(x,y)
: x �= y ∈M

}

(the requirement that f(0) = 0 gets rid of the constant functions; otherwise, ‖·‖L is merely
a seminorm). Moreover, Lip0(M) is a dual Banach space. Its canonical predual F(M),

usually called Lipschitz-free space or Arens-Eells space over M , can be realised as the

closed subspace F(M) = span{δ(x) : x ∈M} of Lip0(M)
∗
, where δ(x)∈Lip0(M)

∗
denotes

the evaluation functional on x ∈ M . Note that δ is an isometric embedding of M into

Lip0(M)
∗
, so F(M) contains a linearly dense and linearly independent isometric copy

of M .
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The Lipschitz spaces Lip0(M) are in many ways the metric counterparts of the classical

C(K) spaces of real-valued continuous functions on Hausdorff compacts, so their study

is interesting in its own right; for a detailed analysis of their properties, see the reference
monograph [13] by Weaver. However, they currently attract a lot of attention due to

their applications to the nonlinear geometry of Banach spaces. These usually involve

the following extension property satisfied by Lipschitz-free spaces: any Lipschitz mapping
from M into a Banach space X can be extended to a linear operator from F(M) into

X whose norm is the Lipschitz constant of the original mapping (here, each x ∈ M is

identified with its associated evaluation functional δ(x) ∈ F(M)). In [6], Godefroy and
Kalton famously used this to prove that the bounded approximation property of Banach

spaces is stable under Lipschitz isomorphisms. Since then, numerous other applications

to nonlinear functional analysis have been found; see, for example, the recent survey [5]

by Godefroy.
The weak∗ topology induced by F(M) on Lip0(M) coincides with the topology of

pointwise convergence on norm-bounded subsets of Lip0(M). Therefore, by a straightfor-

ward application of the Banach-Dieudonné theorem, a functional φ ∈ Lip0(M)
∗
is weak∗

continuous (i.e., it belongs to F(M)) precisely when it satisfies the following condition:

given any norm-bounded net (fi) in Lip0(M) that converges pointwise to f ∈ Lip0(M),

one has that 〈fi,φ〉 converges to 〈f,φ〉.
In [12], Weaver considered the following weaker notion, by analogy with the correspond-

ing notion for von Neumann algebras.

Definition 1. A functional φ ∈ Lip0(M)
∗
is normal when it satisfies the following: given

any norm-bounded net (fi) in Lip0(M) that converges pointwise and monotonically to

f ∈ Lip0(M), one has that 〈fi,φ〉 converges to 〈f,φ〉.

Equivalently, φ is normal if 〈fi,φ〉→ 0 for any net (fi) of nonnegative functions in BLip0(M)

that decreases pointwise to 0.

By a well-known theorem, states on a von Neumann algebra are normal if and only
if they belong to its predual (see, e.g., [10, Theorem 1.13.2]). In particular, because

normality only depends on the order structure of the von Neumann algebra, this implies

that von Neumann algebras have unique preduals [10, Corollary 1.13.3]. In our setting,
any weak∗ continuous element of Lip0(M)

∗
is obviously normal. Weaver asked in [12,

Open problem on p. 37] whether the converse is also true. He first gave an affirmative

answer for the very specific case of evaluation functionals on elements of the Stone-Čech

compactification of M [12, Proposition 2.1.6] and for weak∗ limits of nets of elementary
molecules [13, Theorem 3.43]. Later, he extended the result to all positive functionals

[14, Theorem 2.3]; that is, those φ ∈ Lip0(M)
∗
such that 〈f,φ〉 ≥ 0 for any nonnegative

f ∈ Lip0(M). This allowed him to show, similar to von Neumann algebras, that the
Lipschitz-free space F(M) is in fact the unique predual of Lip0(M) when M is bounded

or geodesic [14]. It is currently an open problem whether this holds for all metric spacesM .

In this short note, we settle the question about normality in the general case.

Theorem 2. Let M be a complete pointed metric space and φ ∈ Lip0(M)
∗
. Then φ is

normal if and only if it is weak∗ continuous.
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Let us note that Theorem 2, besides being an analogue of the corresponding von Neumann
algebra result, can also be considered as an abstract version of the Radon-Nikodým

theorem for Lipschitz-free spaces; compare, for example, to [11, Theorem 8.7]. The

classical Radon-Nikodým theorem implies that L1 is 1-complemented in its bidual L∗∗
1

(see, e.g., [1, Proposition 6.3.10]). Therefore, because F(R) is isometric to L1(R), we

obtain that F(R) is complemented in its bidual Lip0(R)
∗
. In a deep paper [4], Cúth,

Kalenda and Kaplický extended this result and proved that the Lipschitz-free space over

any finite-dimensional Banach space is complemented in its bidual. This is, however, not
true in general in the infinite-dimensional case; for instance, F(c0) is not complemented

in its bidual because it contains a complemented copy of c0 by the lifting property [6,

Theorem 3.1]. It remains an important open problem to decide for which metric spaces M
the Lipschitz-free space F(M) is complemented in its bidual. Of particular interest is the

case when M = �1, because the complementability would imply that �1 is determined by

its Lipschitz structure (see, e.g., [7, Problem 16]). Based on the similarity to the Radon-
Nikodým theorem, one might try to investigate whether Theorem 2 could be helpful in

addressing this problem.

In order to give the proof of Theorem 2 in Section 3, we first establish some auxiliary

results concerning series decomposition of functionals on Lipschitz spaces in Section 2.
Let us now briefly introduce the notation used in this note. BX will stand for the closed

unit ball of a Banach space X. The closed ball with radius r around x∈M will be denoted

B(x,r). We will use the notation

d(x,A) = inf {d(x,a) : a ∈A}
rad(A) = sup{d(0,a) : a ∈A}

for x ∈M and A⊂M . Lip0(M)+ will be the set of all nonnegative functions in Lip0(M).
The pointwise maximum and minimum of real-valued functions f and g will be written

as f ∨ g and f ∧ g, respectively. We will also denote f+ = f ∨0 and f− = (−f)∨0. Note

that f = f+−f−. By the support of f we mean the set

supp(f) = {x ∈M : f(x) �= 0},

and we will put ‖f‖∞ = sup{|f(x)| : x ∈M}, which can be infinite.

Let us recall that for any two Lipschitz functions f,g on M we have

‖fg‖L ≤ ‖f‖L ‖g‖∞+‖g‖L ‖f‖∞ .

It follows that for any Lipschitz function h on M with bounded support, the mapping

Th : f 
→ f ·h

is a linear operator on Lip0(M) whose norm is bounded by

‖Th‖ ≤ ‖h‖∞+rad(supp(h))‖h‖L . (1)

Moreover Th is weak∗-weak∗-continuous; that is, its adjoint Th
∗ : φ→ φ◦Th takes F(M)

into F(M). See [2, Lemma 2.3] for the proof of these facts. We will be using these operators

with weighting functions h such that h= 1 on some region of interest A⊂M and h= 0 on
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some region B ⊂M that is to be ignored and takes intermediate values in some transition
region. In particular, we will consider the functions Λn for n ∈ Z defined by

Λn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if d(x,0)≤ 2n−1

2−(n−1)d(x,0)−1 if 2n−1 ≤ d(x,0)≤ 2n

2−2−nd(x,0) if 2n ≤ d(x,0)≤ 2n+1

0 if 2n+1 ≤ d(x,0)

and Πn for n ∈ N, defined by

Πn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if d(x,0)≤ 2−(n+1)

2n+1d(x,0)−1 if 2−(n+1) ≤ d(x,0)≤ 2−n

1 if 2−n ≤ d(x,0)≤ 2n

2−2−nd(x,0) if 2n ≤ d(x,0)≤ 2n+1

0 if 2n+1 ≤ d(x,0)

for x ∈M . Notice that

Πn =
n∑

k=−n

Λk (2)

for any n ∈ N. Moreover, ‖Λk‖∞ , ‖Πn‖∞ ≤ 1, and we have

rad(supp(Λk))≤ 2k+1, ‖Λk‖L ≤ 2−(k−1)

rad(supp(Πn))≤ 2n+1, ‖Πn‖L ≤ 2n+1
(3)

for every k ∈ Z and n ∈ N. In particular, (1) yields ‖TΛk
‖ ≤ 5.

2. Series decomposition in Lip0(M)
∗

In Section 4 of [9], Kalton established that elements of F(M) admit a decomposition as

a series with terms whose action is limited to annuli around the base point. Let us prove
that this decomposition is also valid for normal functionals in Lip0(M)

∗
. We will use a

slightly different version of the decomposition, based on the functions Λn instead of the

original ones because they make computations easier.

Lemma 3. For any φ ∈ Lip0(M)
∗
we have∑

n∈Z

‖φ◦TΛn
‖ ≤ 45‖φ‖ . (4)

Hence,

n∑
k=−n

φ◦TΛk
= φ◦TΠn

converges in norm as n→∞ to a functional in Lip0(M)
∗
.
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Proof. Fix ε > 0 and a finite set F ⊂ Z. For i = 0,1,2, let Fi be the set of those n ∈ F
that are congruent with i modulo 3. We will show that∑

n∈Fi

‖φ◦TΛn
‖< 15‖φ‖+ ε,

and this will be enough to prove (4). The second part of the statement is then obvious in
view of (2).

Fix i, and for n ∈ Fi choose fn ∈BLip0(M) such that

‖φ◦TΛn
‖− ε

|Fi|
< 〈fn,φ◦TΛn

〉= 〈fnΛn,φ〉 .

Notice that ‖fnΛn‖L ≤ ‖TΛn
‖ ≤ 5 by (1) and (3). Now define g =

∑
n∈Fi

fnΛn and let us

estimate ‖g‖L. Fix x ∈ supp(g), then x ∈ supp(Λn) for some n ∈ Fi. If y ∈ supp(Λm) for

m ∈ Fi \{n}, assume m> n without loss of generality, then d(x,y)≥ d(x,0) and

|g(x)−g(y)|≤ |fn(x)Λn(x)|+ |fm(y)Λm(y)|
≤ 5(d(x,0)+d(y,0))

≤ 5(2d(x,0)+d(x,y))≤ 15d(x,y).

Otherwise,

|g(x)−g(y)|= |fn(x)Λn(x)−fn(y)Λn(y)| ≤ 5d(x,y).

So we get ‖g‖L ≤ 15. Therefore,∑
n∈Fi

‖φ◦TΛn
‖<

∑
n∈Fi

〈fnΛn,φ〉+ ε= 〈g,φ〉+ ε≤ 15‖φ‖+ ε

as was claimed.

Lemma 4. If φ ∈ Lip0(M)
∗
is normal, then

φ=
∑
n∈Z

φ◦TΛn
= lim

n→∞
φ◦TΠn

(5)

with respect to the norm convergence in Lip0(M)
∗
.

Proof. It will suffice to show that (φ ◦TΠn
) converges weak∗ to φ, because Lemma 3

implies that the sequence converges in norm. That is, we need to show that 〈f,φ◦TΠn
〉→

〈f,φ〉 for any f ∈ Lip0(M); we may assume that f ≥ 0, and the general case then follows

by expressing f = f+−f−.
So fix f ∈ Lip0(M)+. For n ∈ Z define the function hn by

hn(x) =

⎧⎪⎨
⎪⎩
1 if d(x,0)≤ 2n

2−2−nd(x,0) if 2n ≤ d(x,0)≤ 2n+1

0 if 2n+1 ≤ d(x,0)

for x∈M , which satisfies ‖Thn
‖ ≤ 3 by (1). Now notice that Πn = hn(1−h−(n+1)); hence,

TΠn
= Thn

◦ (I−Th−(n+1)
), where I is the identity operator on Lip0(M), and

‖TΠn
‖ ≤ ‖Thn

‖
∥∥I−Th−(n+1)

∥∥≤ 12
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for any n ∈ N. Then ‖TΠn
(f)‖L ≤ 12‖f‖L, and TΠn

(f)(x) converges pointwise and

monotonically (increasing) to f(x) for every x ∈M . By the normality of φ we have

lim
n→∞

〈f,φ◦TΠn
〉= lim

n→∞
〈TΠn

(f),φ〉= 〈f,φ〉 .

This ends the proof.

Moreover, each term in the decomposition series and in the limit in (5) is also normal:

Lemma 5. Let h be a nonnegative Lipschitz function on M with bounded support. If

φ ∈ Lip0(M)
∗
is normal, then φ◦Th is normal.

Proof. Let (fi) be a bounded net in Lip0(M) that decreases to 0 pointwise. Then ‖fih‖L ≤
‖Th‖‖fi‖L is bounded by (1), so (fih) is also a bounded net that decreases to 0 pointwise.
Because φ is normal, we have

lim
i
〈fi,φ◦Th〉= lim

i
〈fih,φ〉= 0.

It follows that φ◦Th is normal, too.

3. Proof of Theorem 2

In addition to the above decomposition result, another essential ingredient for our proof
is the following simple but powerful lemma from [3], which is itself based on a weaker

version found in [8]. We include a short proof for the sake of completeness. In fact, the

same argument yields a stronger statement than the one in [3]. Recall that a series
∑

nxn

in a Banach space X is weakly unconditionally Cauchy if
∑

n |〈xn,x
∗〉| < ∞ for every

x∗ ∈X∗.

Lemma 6 ([3, Lemma 1.5]). Let (fn) be a bounded sequence in Lip0(M). Suppose that the

supports of the functions fn are pairwise disjoint. Then
∑

n fn is a weakly unconditionally

Cauchy series. In particular, (fn) is weakly null.

Proof. Let (fn) be a sequence in BLip0(M) with disjoint supports and let (tn)∈ �∞. Then

k∑
n=1

tnfn =
k∑

n=1

(tnfn)
+−

k∑
n=1

(tnfn)
− =

k∨
n=1

(tnfn)
+−

k∨
n=1

(tnfn)
−.

Hence,
∥∥∥∑k

n=1 tnfn

∥∥∥
L
≤ 2‖(tn)‖∞ for every k ∈N and

∑∞
n=1 fn is weakly unconditionally

Cauchy by [15, Proposition II.D.4].

We can now finally prove our main result. The sufficiency part of Theorem 2 is obvious.
To prove the necessity, let φ ∈ Lip0(M)

∗
be a normal functional. Lemma 4 says that

φ = limn→∞φ ◦TΠn
with respect to the norm convergence, so it suffices to show that

φ◦TΠn
, for any n ∈N, is weak∗ continuous. Moreover, by Lemma 5, such φ◦TΠn

for any

n∈N is also normal. Therefore, for the rest of the proof we will assume that φ∈Lip0(M)
∗

is a normal functional with norm 1 and that there exist real numbers 0< r <R such that

〈f,φ〉= 0 whenever f ∈ Lip0(M) equals 0 on the set

K = {x ∈M : r ≤ d(x,0)≤R} .
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We will repeatedly make use of the function

e(x) =

(
1− 4

r
d(x,K)

)
∨0 for all x ∈M,

the support of which is contained in

K ′ =

{
x ∈M :

3

4
r ≤ d(x,0)≤R+

r

4

}

and which equals 1 on K, and the function

e′(x) =

(
1− 4

r
d(x,K ′)

)
∨0 for all x ∈M,

the support of which is contained in

K ′′ =
{
x ∈M :

r

2
≤ d(x,0)≤R+

r

2

}

and which equals 1 on K ′. (We think of them as the ‘unit on K’, which will be used

to restrict functions, and the ‘unit on K ′’, which will be used to translate functions,

respectively.) Note that e,e′ ∈ Lip0(M)+ with ‖e‖L , ‖e′‖L ≤ 4
r ; in particular,

|〈e′,φ〉| ≤ 4

r
. (6)

For brevity, denote

α= 2+(R+1)
4

r
.

We will proceed by contradiction. Suppose that φ /∈ F(M). By the Hahn-Banach
theorem, there exists ψ ∈ BLip0(M)∗∗ such that 〈φ,ψ〉 = c > 0 and that 〈μ,ψ〉 = 0 for

every μ ∈ F(M). Our argument relies on a construction presented in the following claim:

Claim 1. With the notation as above, for a given nonempty finite set A ⊂ K ′ and an

ε ∈
(
0,min{1, rc48}

)
, there exists a function g :M → R satisfying the following:

(i) g ∈ Lip0(M)+ with ‖g‖L ≤ α.

(ii) g(x)≤ 2ε for every x ∈A.

(iii) g(x)≥ ε for every x ∈K ′.

(iv) g(x) = εe′(x) for every x ∈ M \K ′; in particular, supp(g) ⊂ K ′′ and therefore
‖g‖∞ ≤ α(R+ r

2 ).

(v) |〈g,φ〉| ≥ c
4 .

Proof. Consider the weak∗ neighbourhood U of ψ in Lip0(M)
∗∗

given by

U =
{
� ∈ Lip0(M)

∗∗
: |〈φ,�−ψ〉|< c

3
and |〈δ(x),�〉|< ε for all x ∈A

}

(notice that 〈δ(x),�−ψ〉 = 〈δ(x),�〉). Thanks to the weak∗ density of BLip0(M) in

BLip0(M)∗∗ , we may find an f ∈ BLip0(M) ∩ U , which means that 〈f,φ〉 > 2
3c and
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|f(x)| = |〈δ(x),f〉| < ε for every x ∈ A. By replacing f with f+ or f−, we obtain

f ∈BLip0(M)∩Lip0(M)+ such that

|〈f,φ〉|> c

3
(7)

and f(x)< ε for every x ∈A.

Now, put

g = Te(f)+ εe′.

Then g ∈ Lip0(M)+ and by (1) we have

‖g‖L ≤ 1+
(
R+

r

4

) 4

r
+ ε

4

r
≤ α,

so g satisfies (i). Moreover, supp(Te(f)) ⊂ supp(e) ⊂ K ′, which establishes (iv). In
particular, the bound on ‖g‖∞ then follows from (i) and the definition of K ′′. Properties
(ii) and (iii) are straightforward to verify. Finally, because the evaluation of φ only depends

on the restriction of a function to the set K and because g�K = (f + εe′)�K , we get by
(7) and (6) that

|〈g,φ〉|= |〈f + εe′,φ〉| ≥ |〈f,φ〉|− ε |〈e′,φ〉|> c

3
− c

12
=

c

4
;

thus, (v) also holds.

To proceed with the main proof, fix a decreasing sequence (εn)
∞
n=1 ⊂

(
0,min

{
1, cr48,

r
2

})
such that εn → 0 and

(2+α)εn+1 < εn (8)

for every n ∈ N.

Let F be the family of all nonempty finite subsets of K ′, and for every A ∈ F let

FA = {B ∈ F :A⊂B}. Note that the sets F and FA are directed by inclusion. We will
now construct a net (gA)A∈F in Lip0(M) that satisfies conditions (i)–(iv) above with

ε= ε|A| (where |A| denotes the cardinality of A), and also these two:

(vi) |〈gA,φ〉| ≥ c
8 .

(vii) If E ⊂A then gA(x)≤ gE(x) for every x ∈M .

This will be enough to end the proof. Indeed, (gA)A∈F decreases pointwise to 0 because

gA(x)≤ 2εn whenever |A| ≥ n and either x∈A or x∈M \K ′ by (ii) and (iv), respectively,

but |〈gA,φ〉| ≥ c
8 for every A ∈ F, contradicting the normality of φ.

We proceed by induction on n= |A|. For n=1 – that is, singletons A= {x} with x∈K ′–
let gA be the function g given by Claim 1 for ε= ε1. It clearly satisfies (i)–(vi) and also

(vii) by vacuity. Now let n > 1, assume that the functions gA have been constructed for
all nonempty subsets A ⊂K ′ with fewer than n elements and fix A ⊂K ′ with |A| = n.

To complete the induction, it suffices to prove that there exists gA satisfying (i)–(iv) and

(vi)–(vii) with ε= εn.
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To this end, denote h =
∧

E�A gE , which satisfies conditions (i)–(iv) with A and ε =

εn−1. Next, for any B ∈ FA let gB be the function given by Claim 1 for the set B and

ε = εn. Notice that the function gB ∧h satisfies conditions (i)–(iv) for ε = εn and set A
because it is bounded by gB , and also condition (vii) because it is bounded by h. We

will show that gA can be found among the functions gB ∧h; that is, at least one of the

functions gB∧h satisfies also condition (vi). The proof will proceed by contradiction, and
we will need the following claim.

Claim 2. With the notation as above, if |〈gB ∧h,φ〉| < c
8 for every B ∈ FA, then there

is a constant β > 0 with the following property: for any B ∈ FA, there exist E ∈ FB and
f ∈ Lip0(M)+ such that

(a) ‖f‖L ≤ β.

(b) supp(f)⊂
( ⋃

x∈E

B(x,εn)

)
\
( ⋃

x∈B

B(x,εn)

)
.

(c) |〈f,φ〉| ≥ c
16 .

Proof. Fix B ∈FA and define f =Te (gB − (gB ∧h)). Clearly, f ≥ 0 and, moreover, ‖f‖L ≤
2α

(
2+ 4

rR
)
by (1). Suppose that x ∈ B(b,εn) for some b ∈ B. If x /∈K ′, then e(x) = 0,

and if x ∈K ′, then by (8) we have

gB(x)≤ gB(b)+ |gB(x)−gB(b)| ≤ 2εn+αεn < εn−1,

whereas h(x) ≥ εn−1, so gB(x) ≤ h(x). In any case f(x) = 0 for all x ∈
⋃

b∈BB(b,εn).
Moreover,

|〈f,φ〉|= |〈gB − (gB ∧h),φ〉| ≥ |〈gB,φ〉|− |〈gB ∧h,φ〉|> c

4
− c

8
=

c

8
.

Similar to functions e and e′ introduced above, for a given E ∈ FB define the function

eE(x) =

(
1− 1

εn
d(x,E)

)
∨0 for all x ∈M,

which clearly satisfies that supp(eE) ⊂
⋃

x∈EB(x,εn). Then the net (TeE (f))E∈FB
is a

norm-bounded increasing net in Lip0(M)+ converging pointwise to f . Indeed, by (1) we

have ‖TeE (f)‖L ≤ β, where

β =

(
1+

1

εn

(
R+

r

4

))
·2α

(
2+

4

r
R

)

does not depend on B or E, and the rest is immediate from the definition. Hence, the

normality of φ implies that 〈TeE (f),φ〉 converges to 〈f,φ〉, and in particular there exists
E ∈ FB such that

|〈f,φ〉−〈TeE (f),φ〉|<
c

16
.

The function TeE (f) satisfies the requirements of the claim. Indeed, we have already

verified (a), (b) follows from supp(TeE (f))⊂ supp(f)∩ supp(eE) and we get (c) from
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|〈TeE (f),φ〉| ≥ |〈f,φ〉|− |〈f,φ〉−〈TeE (f),φ〉|>
c

8
− c

16
=

c

16
.

This ends the proof of Claim 2.

To conclude our main argument, suppose that |〈gB ∧h,φ〉| < c
8 for every B ∈ FA. We

then construct sequences (Bn)⊂ FA and (fn)⊂ Lip0(M)+ as follows: Take B0 = A, and

for any n ∈ N let Bn and fn be the set E and function f , respectively, given by Claim 2
for B =Bn−1. Then the sequence (fn) is norm-bounded by (a) and has pairwise disjoint

supports by (b). However, it is not weakly null due to (c), which is in contradiction with

Lemma 6. This ends the proof of Theorem 2.
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