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Abstract

Urban Air Mobility (UAM) emerges as a promising solution to address transportation

congestion in overpopulated megacities. Yet, there is a common concern regarding the

prominent visual effects of these vehicles and the potential obstruction of clear skies.

To address this, this thesis introduces a method to measure the visual impact of flying

objects. Through specific Python algorithms, the research evaluates the visual annoyance

caused by various Urban Air Vehicles and offers tools for introducing this new field of study.

Furthermore, it proposes remote Visual Impact Assessments at multiple measurement

stations using a specially configured Raspberry Pi. As part of the research project, an

investigation was designed to explore the influence of a vehicle’s position within the human

Field of Vision (FOV) on its visual impact. Results show that the object’s placement does

not significantly change its perceived size and only its distance from the observer does.

Additionally, a study on color contrast, which incorporates atmospheric scattering, has been

conducted. This software-based approach does not need real-world scenarios, allowing

for the examination of various Unmanned Air Vehicles colors under differing atmospheric

conditions. Based on the investigated scenarios, an optimal color range for air vehicles

intending to operate on sunny days with minimal visual disruption is presented.



Acknowledgements

First and foremost, thanks to my tutor Katharina and her colleague Sila for giving me the

opportunity to work on this challenging project and to Horyzn Team at TUM for letting me

use their UAVs for my thesis.

Thank you to my parents and my sister Ana, for believing in me before I did in myself and

for continuously providing strength and love. Thanks for taking care of me, even from so far

away.

A big thank you to my colleagues and friends from Valencia and Munich with whom I

have shared so many library hours, worries, and dreams. A special mention to Jaime, for

his patience and kind words.

Lastly, thank you to my friend Ángela who has helped me so much in these four years of

intense study, making the pursuit of Aerospace Engineering always worthwhile.

You all have been my team and without you, I would have never achieved this.

Gracias.

iii



Statement of Academic Integrity

I,

Last name: Molina Aragón
First name: Cristina
ID No.: 03770263

hereby confirm that the attached thesis,

Investigation of Visual Environmental Effects of Urban Air Vehicles

was written independently by me without the use of any sources or aids beyond those cited,
and all passages and ideas taken from other sources are indicated in the text and given the
corresponding citation.
I confirm to respect the “Code of Conduct for Safeguarding Good Academic Practice and
Procedures in Cases of Academic Misconduct at Technische Universität München, 2015”,
as can be read on the website of the Equal Opportunity Office of TUM.
Tools provided by the chair and its staff, such as models or programs, are also listed. These
tools are property of the institute or of the individual staff member. I will not use them for
any work beyond the attached thesis or make them available to third parties.

I agree to the further use of my work and its results (including programs produced and
methods used) for research and instructional purposes.

I have not previously submitted this thesis for academic credit.

Munich, September, 30, 2023

iv



Declaration for the transfer of the thesis

I agree to the transfer of this thesis to:

– Students currently or in future writing their thesis at the chair:

□ Flat rate by employees

□ Only after particular prior consultation.

– Present or future employees at the chair

□ Flat rate by employees

□ Only after particular prior consultation.

My copyright and personal right of use remain unaffected.

Munich, September, 30, 2023

v



Contents

Abstract ii

Acknowledges iii

Statement of Academic Integrity iv

Declaration for the transfer of the thesis v

List of Figures x

List of Tables xi

List of Acronyms xii

1 Introduction 1

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Procedural Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theoretical Framework 3

2.1 Urban Air Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Introduction to Urban Air Mobility . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Environmental Impacts of Urban Air Mobility . . . . . . . . . . . . . . . 5

2.1.3 Social Acceptance of Urban Air Mobility . . . . . . . . . . . . . . . . . 8

2.2 Factors Affecting the Visual Perception of Urban Air Vehicles . . . . . . . . . 11

2.2.1 Estimation of Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Color Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Atmospheric Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Regression model to estimate visual thresholds . . . . . . . . . . . . . . . . . 20

2.4 Human Field of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methodology 23

vi



Contents

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Measurement Station . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Raspberry Pi Camera Configuration . . . . . . . . . . . . . . . . . . . 25

3.1.3 Scenario Planning for Data Collection . . . . . . . . . . . . . . . . . . 27

3.2 Determination of visual size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Detection and Recognition of the Air Vehicle . . . . . . . . . . . . . . 30

3.2.2 Obtaining the Distance-to-pixel Ratio . . . . . . . . . . . . . . . . . . . 32

3.2.3 Obtaining the Camera-Vehicle Distance . . . . . . . . . . . . . . . . . 33

3.2.4 Applying Visual Size Formula . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Determination of Absolute Color Difference . . . . . . . . . . . . . . . . . . . 35

3.3.1 Air Vehicle Isolation in Images Using GIMP . . . . . . . . . . . . . . . 36

3.3.2 Air Vehicle Isolation in Images Using Python . . . . . . . . . . . . . . 37

3.3.3 Compute LAB Mean Values . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Contrast Determination in the Presence of Atmospheric Scattering . . . . . . 40

3.5 Digital Simulations of Scenarios using GIMP . . . . . . . . . . . . . . . . . . 42

4 Results and Discussion 45

4.1 Visual Size Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Absolute Color Difference Variation using Flight Test Data . . . . . . . . . . . 52

4.3 Color Contrast and Atmospheric Scattering Evaluation. . . . . . . . . . . . . 57

4.4 Absolute Color Difference Simulation Results . . . . . . . . . . . . . . . . . . 59

4.5 Limitations of the Study and Future Work . . . . . . . . . . . . . . . . . . . . 62

5 Conclusion 64

A Python Codes 66

A.1 Raspberry Pi Camera Python Codes . . . . . . . . . . . . . . . . . . . . . . . 66

A.1.1 Raspberry Pi Camera - Code 1 . . . . . . . . . . . . . . . . . . . . . . 66

A.1.2 Raspberry Pi Camera - Code 2 . . . . . . . . . . . . . . . . . . . . . . 67

A.1.3 Raspberry Pi Camera - Code 3 . . . . . . . . . . . . . . . . . . . . . . 68

A.2 Visual Size Python Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2.1 Detection and scale computation - Code . . . . . . . . . . . . . . . . . 69

A.2.2 Distance calculation - Code 1 . . . . . . . . . . . . . . . . . . . . . . . 71

A.2.3 Distance Calculation - Code 2 . . . . . . . . . . . . . . . . . . . . . . . 72

A.2.4 Computation of visual size - Code . . . . . . . . . . . . . . . . . . . . 72

vii



Contents

A.3 Absolute Color Difference Python Codes . . . . . . . . . . . . . . . . . . . . . 73

A.3.1 Isolating object and background - Code . . . . . . . . . . . . . . . . . 73

A.3.2 Mean LAB values and ∆ E - Code . . . . . . . . . . . . . . . . . . . . 74

A.4 Cozman and Krotkov Formula Application Code . . . . . . . . . . . . . . . . . 75

B Flight Test Data Analysis 76

B.1 Visual Size Assessment Procedure . . . . . . . . . . . . . . . . . . . . . . . . 76

B.1.1 Photographs with 0º orientation camera and 2m altitude . . . . . . . . 76

B.1.2 Photographs with 0º orientation camera and 5m altitude . . . . . . . . 77

B.1.3 Photographs with 30º orientation camera and 2m altitude . . . . . . . 77

B.1.4 Photographs with 30º orientation camera and 2m altitude . . . . . . . 78

B.1.5 Photographs with 0º orientation camera and 5m altitude (UAV 2) . . . 79

B.2 Color Contrast Isolating object . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.3 Visual Size Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



List of Figures

1.1 Procedural Method overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 CO2 emissions by sector in the world from 1990 until 2020 . . . . . . . . . . . 5
2.2 Road transport emissions as a share of EU transport GHG emissions by

mode in EU-27, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Societal acceptance factors of UAM . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Distopic landscape full of urban air vehicles . . . . . . . . . . . . . . . . . . . 10
2.5 Visual size definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Minimum resolution of human eye. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Representation of LAB color space . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Evaluation of the intensity of a ray along its path . . . . . . . . . . . . . . . . 17
2.9 Comparison of different levels of visibility . . . . . . . . . . . . . . . . . . . . 19
2.10 Vertical and horizontal FOV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Human neck flexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Procedure to delete SSH Keys. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 UAVs provided by Horyzn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Scenario recreation seen from a lateral view. . . . . . . . . . . . . . . . . . . 29
3.5 Scenario recreation seen from the view and marks on the ground. . . . . . . 29
3.6 Methodology to obtain visual size. . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Reference image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Methodology to obtain color contrast. . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Comparison of isolated UAV and background using GIMP. . . . . . . . . . . . 37
3.10 Comparison of isolated UAV and background using Python. . . . . . . . . . . 39
3.11 Methodology to obtain atmospheric contrast. . . . . . . . . . . . . . . . . . . 41
3.12 Sample images to calculate color contrast at different depths. . . . . . . . . . 42
3.13 H-aero reference image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.14 Simulation of boundary colors in H-aero using GIMP. . . . . . . . . . . . . . . 44
3.15 Simulation of different blue colors in H-aero using GIMP. . . . . . . . . . . . . 44
3.16 H-aero reference sky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Photographs at 3 m ground distance, 2 m altitude and 0º orientation. . . . . . 45
4.2 Photographs at 20m ground distance, 2m altitude and 0º orientation. . . . . . 46
4.3 Relation between real distance and visual size. . . . . . . . . . . . . . . . . . 47
4.4 Relation between lateral distance and visual size at 2 m altitude. . . . . . . . 48
4.5 Relation between lateral distance and visual size at 5 m altitude. . . . . . . . 48
4.6 Relation between dimensions and lateral distance at 2 m altitude (UAV 1). . . 50
4.7 Relation between dimensions and lateral distance at 5 m altitude. . . . . . . . 51
4.8 UAV 1 with different backgrounds. . . . . . . . . . . . . . . . . . . . . . . . . 52
4.9 Comparison of ∆E GIMP Method results. . . . . . . . . . . . . . . . . . . . . 54
4.10 Difference in sky color due to atmospheric scattering - UAV 1. . . . . . . . . . 55
4.11 Difference in sky color due to atmospheric scattering - UAV 2. . . . . . . . . . 55
4.12 ∆E GIMP Method results for both UAVs. . . . . . . . . . . . . . . . . . . . . . 56

ix



List of Figures

4.13 Influence of distance and visibility on apparent contrast (UAV 1). . . . . . . . 57
4.14 Influence of distance and visibility on apparent contrast (UAV 2). . . . . . . . 58
4.15 Influence of higher distance and visibility on apparent contrast (UAV 2). . . . 58
4.16 Influence of higher distance and visibility on apparent contrast (UAV 2). . . . 59
4.17 Different colors and their associated apparent contrast at 10 m distance and

visibility of 16 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.1 Photographs at 3m ground distance, 2m altitude and 0º orientation. . . . . . . 76
B.2 Photographs at 10m ground distance, 2m altitude and 0º orientation. . . . . . 76
B.3 Photographs at 20m ground distance, 2m altitude and 0º orientation. . . . . . 76
B.4 Photographs at 10m ground distance, 5m altitude and 0º orientation. . . . . . 77
B.5 Photographs at 20m ground distance, 5m altitude and 0º orientation. . . . . . 77
B.6 Photographs at 3m ground distance, 2m altitude and 30º orientation. . . . . . 77
B.7 Photographs at 10m ground distance, 2m altitude and 30º orientation. . . . . 78
B.8 Photographs at 20m ground distance, 2m altitude and 30º orientation. . . . . 78
B.9 Photographs at 10m ground distance, 5m altitude and 30º orientation. . . . . 78
B.10 Photographs at 20m ground distance, 5m altitude and 30º orientation. . . . . 79
B.11 Photographs at 10m ground distance, 5m altitude and 0º orientation (UAV 2). 79
B.12 Case 1 isolating process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.13 Case 2 isolating process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.14 Case 3 isolating process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.15 Case 4 isolating process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.16 Case 5 isolating process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



List of Tables

2.1 Categories of factors affecting visibility and visual contrast. . . . . . . . . . . 11
2.2 Color representation systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Observer’s perception of color difference (∆E). . . . . . . . . . . . . . . . . . 16
2.4 Linear-logit models for each model category. . . . . . . . . . . . . . . . . . . 21

3.1 Selected colors and their HTML notations. . . . . . . . . . . . . . . . . . . . . 43

4.1 Weather data on flight campaigns . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Comparison of absolute color difference results for different cases. . . . . . . 53
4.3 ∆E results for different locations (UAV 1) using GIMP. . . . . . . . . . . . . . 55
4.4 ∆E results for different locations (UAV 2) using GIMP. . . . . . . . . . . . . . 55
4.5 Colors and their associated ∆E values. . . . . . . . . . . . . . . . . . . . . . 60
4.6 Colors and their associated color contrasts. . . . . . . . . . . . . . . . . . . . 61

B.1 Visual size analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



List of Acronyms

CMY Cyan, Magenta, Yellow

EASA European Union Aviation Safety Agency

EU European Union

eVTOL Electric Vertical Take-Off and Landing vehicle

FOV Field of View

GHG Greenhouse Gas Emissions

GIMP GNU Image Manipulation Program

HSL Hue, Saturation, Lightness

HTML HyperText Markup Language

LAB Luminosity, a, b

NASA National Aeronautics and Space Administration

PAV Personal Air Vehicle

RGB Red, Green, Blue

SBC Single-Board Computer

SSH Secure Shell

UAM Urban Air Mobility

UAS Unmanned Aircraft System

UAV Unmanned Aerial Vehicle

UTM Urban Air Traffic Management

VIA Visual Impact Assessment

VNC Virtual Network Computing

VTOL Vertical Takeoff and Landing

xii



1. Introduction

By 2050, it is expected that 70% of the European and 80% of the North American

population will reside in urban areas (United Nations, 2018). The rapid urbanization

has created significant challenges in mobility and infrastructure expansion, leading to

congestion, pollution, and conflicts that affect the environment and public health. Given

these challenges, there is an urgent need to explore innovative urban transportation

concepts. Urban Air Mobility (UAM) emerges as a promising solution to alleviate traffic

congestion, offering the potential for a more efficient and sustainable mode of transport.

However, the successful integration of UAM into landscapes requires a comprehensive

understanding of safety, noise, and visual disturbance. Predicting how this novel mobility

concept will transform urban life is crucial to creating suitable vehicles and regulations that

meet the needs and preferences of the public.

Among the many considerations to take into account, this thesis centres on the

visual impact. It goes beyond mere appearances, playing a crucial role in shaping

public perception and acceptance of this innovative transportation solution. Nonetheless,

evaluating visual annoyance poses a unique challenge due to the diverse factors that shape

it and its subjective characteristics.

1.1. Objective

The primary objective of this research is to determine the visual environmental impact

caused by Urban Air Vehicles. This work proposes methods to measure such effects, which

have never been explored previously. The initial step involves identifying the influential

variables, followed by the development of an automated and efficient measurement method,

by using software tools. To develop a Visual Impact Assessment of specific vehicles,

scenarios will be simulated where the user observes a vehicle in flight. During these

simulations, visual data will be collected using a Raspberry Pi1. Python will be employed

to configure this module and incorporate it into an existing portable and adaptable

measurement station.

1A Raspberry Pi Camera is a compact camera module designed for use with Raspberry Pi computers, which
are single-board computers.
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1. Introduction

Considering societal acceptance and the constraints of Urban Air Mobility, evaluating its

implications on the surrounding environment is crucial. The central research question is:

How will the integration of urban air vehicles into megacity mobility systems

affect the visual experience of the population?

In order to address the central research question, the following three questions must be

answered first:

1. How can the visual impact of an object in flight be measured?

2. Which factors determine the extent of visual annoyance?

3. How can these factors be adjusted to mitigate the adverse effects of UAM?

1.2. Procedural Method

This thesis starts with an introduction to UAM, highlighting its benefits and limitations.

Subsequent chapters deal with the theoretical framework surrounding factors influencing

visual impact and their effects on human perception. A detailed methodology to measure the

visual influence of flying vehicles follows. Finally, the findings of the research are presented,

together with conclusions and recommendations for further exploration in this domain. An

overview is presented in Figure 1.1.

Figure 1.1.: Procedural Method Overview.
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2. Theoretical Framework

This chapter provides an overview of the fundamentals of Urban Air Mobility, as well as the

key factors influencing the human visual perception of these new vehicles.

2.1. Urban Air Mobility

This section reviews the theoretical framework of Urban Air Mobility, examining its

current state of research, the challenges it must address before implementation, and the

environmental and societal impacts it is anticipated to have.

2.1.1. Introduction to Urban Air Mobility

The concept of Urban Air Mobility (UAM) is not new: it was first introduced in 1917 when

Glenn Curtiss developed what he called a "flying car". While many inventors pursued similar

dreams of flying automobiles, numerous technical limitations prevented them from achieving

commercial viability (Cohen, Shaheen, and Farrar, 2021: 2). In the 1940s, helicopters

began flying over urban areas and became the first vehicles with vertical take-off and

landing (VTOL) capabilities. Yet, in the present day, helicopters are predominantly used

for surveillance, emergency missions, and logistics but rarely for passenger transport due

to factors such as accidents, high noise levels, and costs (Straubinger et al., 2020: 1).

With advancements in power electronics, electric aviation, unmanned systems, and

high-performance batteries, numerous aerospace companies and startups have initiated

the race to develop new aerial vehicles. In the mid-2000s, the idea of using drones for

passenger transport began to be contemplated (NASA, 2001). By 2011, Thomas Senkel

flew the Volocopter VC1 prototype, which marked the first manned flight of an electric

multicopter (Volocopter, 2011). The potential of distributed electric propulsion has led to the

initiation of several UAM projects in European cities, and European Union Aviation Safety

Agency (EASA) promises that within 5 to 10 years, Urban Air Vehicles will populate the city’s

skies (EASA, 2021a: 1).
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2. Theoretical Framework

According to EASA (2021a: 2), UAM has the potential to achieve significant benefits.

This highlights the importance of developing a well-planned implementation strategy within

society and are the following:

– Reducing standard city trip duration by 30 to 75%.

– Eliminating local air pollution caused by UAM operations.

– Significantly lowering the risk of fatal accidents during city travel compared to

conventional road transport on a per passenger kilometer basis.

– Creating around 90,000 new job opportunities.

Additionally, UAM in the medical sector offers significant advantages by enabling rapid

and efficient response in rescue missions, ensuring quick delivery of critical medical

supplies, and facilitating the timely transportation of specialized medical personnel to areas

in need. This approach not only reduces response times but also enhances the accessibility

of vital medical resources in urban environments (Gillis et al., 2021: 417).

As this is a highly innovative field, no classification or regulation has been carried out by

the relevant authorities. However, Straubinger et al. (2020: 3) proposes a classification of

Urban Air Vehicles based on how they generate lift. It distinguishes between those with

rotary-wing in cruise and those with fixed-wing in cruise. The latters are more efficient and

faster during this phase of flight, and it states the requirements and important design drivers

affecting the aircraft design for UAM.

On the other hand, there are other classifications based on the specific mission of

the vehicle, such as Personal Air Vehicle (PAV)s like the two-passenger Volocopter by

(Volocopter GmbH, 2017) or the CityAirbus for up to 4 passengers (CityAirbus, 2021).

Furthermore, there are Air Taxi services available, offering on-demand aerial transportation

for either individual passengers or small groups of travelers (Rajendran and Srinivas, 2020).

Furthermore, when discussing UAM, it is essential to consider not only the vehicles

themselves but also all the necessary infrastructures for their implementation. This includes

ground infrastructure, such as vertiports enabling Vertical Takeoff and Landing (VTOL)

vehicles to take off and land in urban areas. Moreover, it deals with the establishment of a

robust communication network to efficiently manage air traffic distribution (EASA, 2021a: 3).

Therefore, a comprehensive set of regulations must be implemented to ensure the highest

levels of safety and security during UAM operations within cities.
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2. Theoretical Framework

To summarize, the potential benefits of UAM are extensive and diverse. While the full

extent of its transformative impact on urban air mobility is yet to be studied, the mobility of

the 21st century will be shaped by the convergence of aviation and technological innovation

in urban skies.

2.1.2. Environmental Impacts of Urban Air Mobility

Urban Air Mobility pretends to be a new transportation system and, therefore can potentially

bring numerous environmental impacts never studied before. This section examines the

environmental consequences of UAM, exploring both the positive and negative aspects,

and underlines the importance of striking a balance between technical innovation and

sustainability.

Concerning gas emissions, UAM vehicles are expected to be electric, reducing air

pollution, especially compared to vehicles powered by fossil fuels. In 2019, Energy Statistics

Data Browser (2022) estimated that around 8267 million tons of Greenhouse Gas emissions

(GHG) were caused by the transportation sector, accounting for approximately 24% of the

total emissions for that year worldwide. Figure 2.1 shows the progression of CO2 emissions

by sectors and time.

Figure 2.1.: CO2 emissions by sector in the world from 1990 until 2020 (Energy Statistics
Data Browser 2022).

In the EU, the transportation sector was responsible for about a quarter of total CO2

emissions, of which road transport accounted for 71.1% (European Environment Agency,

2021: 17), as shown in Figure 2.2. Therefore, there is a need to reduce road congestion

to reduce GHG emissions, and UAM will positively impact the environment by providing a

sustainable solution.
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2. Theoretical Framework

Figure 2.2.: Road transport emissions as a share of EU transport GHG emissions by mode
in EU-27, 2019 (European Environment Agency, 2021: 18).

Kasliwal et al. (2019: 3) studied the environmental impact of Electric Vertical Take-Off and

Landing vehicle (eVTOL)s in the United States in 2020. Their study found that an eVTOL

with only the pilot on board resulted in a 35% reduction in GHG emissions compared to a

gasoline-powered vehicle with a single occupant. However, the same study also revealed

that the eVTOL would produce 28% more emissions than a battery-powered electric vehicle.

Therefore, the key point is to increase the number of passengers in eVTOL flights to reduce

emissions, enhance efficiency, and make UAM more competitive.

Even though electric aircraft for UAM seem promising and are generally quieter than

traditional helicopters or airplanes, noise pollution is still a big concern. This concern

increases during take-off and landing (see Section 2.1.3 for more details). Managing

and reducing noise in natural environments is quite challenging because noise is a

complex concept that does not have a precise definition. It involves multiple dimensions

and variables, and its impact can vary greatly depending on the specific circumstances

and surroundings. To properly analyze noise in this context, it is important to consider

environmental and non-sound-related factors as well (Connors, 2019: 12).
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2. Theoretical Framework

Unlike conventional aircrafts, future air vehicles operate at lower altitudes and closer to

urban areas, potentially annoying residents. When establishing the noise acceptance of a

system, the level of “annoyance” is commonly used, and it is defined as “a global description

of a stimulus that is clearly perceived as negative but without analysis of the cause of the

negativity” by Connors (2019: 2). For instance, according to EASA (2021b: 3), noise

annoyance is proportional to the degree of familiarity with the sound. Therefore, sounds

commonly heard in urban environments at similar decibel levels tend to be more tolerable

by humans. Moreover, noise is closely linked to depression and anxiety and has been

investigated in commercial aviation (Beutel et al., 2016), but little research has been done

on the acoustic impact of UAM.

Conversely, Urban Air Vehicles may have a negative impact on animals. According to

EASA (2021b: 75), 62% of people are concerned about how drones can annoy wildlife.

Notably, as more such vehicles occupy the skies, there is a rising concern about them

colliding with birds and potentially upsetting ecological balances. Kwon, Kim, and Park

(2017: 8) conducted a study on how can Unmanned Aircraft System (UAS) disturb wildlife

and found that smaller UAS, electric engines and lawn-mower flight generally do not evoke

disturbances to birds and can be comparable to the hazard caused by natural predators.

However, when UAS collide directly and at close range with wildlife or sensitive structures

such as nests, they have the potential to cause greater disturbance to wildlife.

The visual impact of UAM is a significant aspect to consider. Introducing the eVTOL

aircraft into the urban airspace can potentially alter the skyline and traditional visual

landscape of cities. As with acoustic pollution from Urban Air Vehicles, the visual annoyance

aspect has received limited research attention and is intended to be the primary focus of

this thesis. In one of the few articles addressing this topic, Kwon, Kim, and Park (2017)

examined the general feeling towards drones. They found that possibly one of the causes

that make Unmanned Aerial Vehicle (UAV)s visually disturbing is the obstruction of the

field of view and the shadows they create. Very related to social acceptance, Yedavalli

and Mooberry (2019) shows that 45% of respondents are concerned about visual pollution,

considering the skies will be flooded with new and unfamiliar vehicles. The same study

recommends a phased introduction rather than an immediate influx of numerous aircraft in

the sky. Furthermore, a recent article by Thomas and Granberg (2023) found that a UAV is

equally visually disruptive in urban and rural areas, indicating that the type of environment

does not matter in this context.
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According to Said et al. (2021: 99) and Thomas and Granberg (2023), visual pollution

does not only involve environmental impacts but also has the potential to lead to health

concerns, including:

– Increased stress and anxiety levels.

– Distraction and diminished concentration.

– Overwhelming volume of simultaneous data.

– Hazardous distractions.

– Diminished productivity.

– A negative emotional state and mood disorders.

2.1.3. Social Acceptance of Urban Air Mobility

The social acceptance of UAM holds great significance in its integration into urban

transportation systems. As using aerial transportation within cities gains importance,

understanding the factors that drive social acceptance becomes crucial.

While it is true that UAM holds the promise of being a safe, reliable, and sustainable

solution to alleviate road congestion in densely populated cities, social acceptance may

serve as a potential barrier to the development of such vehicles. As unmanned aerial

vehicles are increasingly prevalent in our daily lives and utilized in various contexts, such as

search and rescue missions, aerial photography, and package delivery, many studies and

surveys have been conducted to assess societal response.

A study by Hasan (2019: 23, 85) concluded that almost half of the respondents supported

UAM as a delivery service, and more than 70% reported they would be comfortable with

others using air taxi services in the future. However, significant concerns revolved around

five categories: safety, privacy, loss of conventional jobs, environmental threats and noise,

and visual disruption.

On the other hand, Yedavalli and Mooberry (2019: 3) conducted a survey on the

perception of UAM in four geographies worldwide: Los Angeles, Mexico City, New Zealand,

and Switzerland. They revealed that 44.5% of respondents expressed support for UAM and

41.4% thought it was safe or very safe. Back then, these surveys suggested that the initial

impression of UAM was favourable.
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EASA (2021b: 63) published a study titled "Study on the societal acceptance of Urban

Air Mobility in Europe", which detailed the most important drivers of societal acceptance for

UAM across different cultures and regions within the European Union, including perceived

benefits and concerns. According to the report, 83% EU citizens initially demonstrated a

positive attitude and genuine interest in UAM, perceiving it as a new and possible form

of transportation. Furthermore, most individuals expressed willingness to experiment with

UAM. However, it also concludes that when they want to contemplate the outcomes of

possible UAM activities within their city, European Union residents desire to restrict their

personal exposure to various risks. Among these risks, safety, noise levels, security, and

environmental effects play an important role (EASA, 2021b: 3).

Given that it is a new field and its integration into the civilian world raises concerns,

Hasan (2019: 37) has proposed an "Air Traffic and Fleet Operations Management and

Community". This proposal outlines the regulations and responsibilities required for

successful implementation. These include "Operator certification", which is intended to be

an evolution of existing operator certifications, and "UAM traffic management and airspace

integration", which must address Urban Air Traffic Management (UTM), along with the

necessary technical specifications, operating protocols, and infrastructure required for these

vehicles to coexist in the sky. Additionally, mention is made of "Noise requirements" that

should be established by local and federal governments to define allowable noise levels.

These are just the potential implementations to which a component related to the visual

effects on urban and rural landscapes should be added.

EASA (2021b: 16) sets environmental impact as the fifth most significant challenge

(making up 7.5% of the total challenges) when it comes to implementing UAM. The term

"environmental impact" is commonly employed in the literature and encompasses a wide

range of subjects, including noise, visual pollution, air pollution, land utilization, and the

preservation of species. Regarding noise footprint and its concern to society, EASA (2021b:

76) concluded that 52% of the respondents were worried about noise pollution from drones,

and 53% were concerned about this impact from air taxis. This is shown in Figure 2.3, which

also shows that visual annoyance ranks among the top five factors causing concern.
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Figure 2.3.: Societal acceptance factors of UAM (EASA, 2021b: 18).

Based on EASA (2021b: 71), 19% of the people surveyed consider visual pollution as one

of their top three concerns regarding delivery drones, while 16% have air taxis in their top

three concerns. Additionally, the same research revealed that the visual impact, particularly

on cultural heritage sites in historic European cities, is a significant concern for many (EASA,

2021b: 76).

Moreover, social scientists argue that drones can be seen as usurpers that take over

people’s right to the city and the air (as represented in Figure 2.4). In popular literature and

the media, dystopian urban environments are often portrayed as spaces crowded with small

aircraft, which could influence public opinion and the acceptance of UAMs in the real world

(Shaw, 2016: 26). This perspective is similarly asserted by Chmielewski (2020), where it is

argued that a visual pollution is a form of spatial disorder.

Figure 2.4.: Distopic landscape full of urban air vehicles (Empire, 2016).
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Overall, comprehending the social acceptance of UAM is critical for its successful

integration. Safety, noise, and visual nuisance significantly influence general beliefs. By

thoroughly measuring and evaluating these factors, policymakers can address concerns

related to UAM, promote its acceptance, and facilitate its harmonious integration into urban

environments.

2.2. Factors Affecting the Visual Perception of Urban Air

Vehicles

Measuring visual impact is intricate, with minimal research dedicated to the subject.

However, earlier projects, such as wind turbines or solar panel installations, initiated the

concept of Visual Impact Assessment (VIA) in the early part of the century. These

assessments incorporated visual simulations, descriptions of potential impacts, and

mitigation measures to alleviate visual repercussions. In the aforementioned instances,

the landscape underwent permanent alteration. This contrasts Urban Air Vehicles, which

are constantly moving, further complicating visual impact assessment.

Firstly, the difference between visual contrast and visual impact defined by Sullivan and

Meyer (2014: 24) is crucial. Visual contrast refers to the changes observed by the viewer.

Nevertheless, visual impact combines the observed changes and the resulting human

response. Sullivan and Meyer (2014: 17) also outlined eight categories of factors affecting

the visibility and visual contrast of an introduced object in a landscape, as summarized in

Table 2.1.

Table 2.1.: Categories of factors affecting visibility and visual contrast.

Factor Description

Viewing geometry Refers to the viewer’s spatial relationship with the object,
incorporating both vertical and horizontal perspectives.

Distance The space separating the viewer and the object.

Object visual characteristics The object’s inherent visual properties.

Lighting factors Pertains to sunlight distribution on the object.

Backdrop Visual background against which the element is seen.

Atmospheric conditions Involves elements like haze and humidity.

Viewer characteristics Factors such as individual visual acuity and experience.

Viewshed limiting factors Variables that might compromise the precision of
identifying visible areas from a particular location.
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Within this thesis’s framework, the sections related to size estimation will explore viewing

geometry, distance, and object visual characteristics. Examining color contrast will assess

lighting factors, backdrop, and even atmospheric conditions. The exploration of atmospheric

scattering will cover atmospheric conditions. Lastly, an overview of the human field of view

and its thresholds will study viewer characteristics.

2.2.1. Estimation of Size

When determining an object’s visual effect, size is a critical component. Perceived size

naturally changes with distance and viewing angle. For instance, viewing an object from

above offers a complete view of its size and structure. Viewing the same item from a given

angle in its lateral perspective may distort its proportions and alter its apparent size. Also,

the further the objects move, the smaller they look and the less attention they capture.

Given these considerations, discussing visual size, also referred to as visual magnitude,

is more convenient than the object’s physical size. Visual size, denoted as S, refers to

the proportion of the human field of view taken up by an object. It is determined by

calculating the product of two angles, α and β, which lie on the horizontal and vertical

planes, respectively. Therefore, visual magnitude is an areal measurement shown in Figure

2.5 and is typically measured in square arc minutes (arcmin2).

Figure 2.5.: Visual size definition (I. D. Bishop, 2002: 3).

Measuring angles α and β can be a complex task. However, visual size can still be

computed by obtaining and using the horizontal and vertical dimensions of the target object,

as indicated in Equation 2.1 (Garnero and Fabrizio, 2015: 6). This equation considers

the distance from the observer to the object. Additionally, the viewing geometry (i.e. the

horizontal and vertical dimensions) and the object’s visual characteristics are accounted for.
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S = β · α =

(
1802 · 602

π2

)
· D ·H

d2
. (2.1)

For a noticeable object, the apparent size must surpass a specific visual magnitude,

also known as visual threshold. In order to assess the spatial resolution of the human

eye, visual acuity is employed as a measurement tool. Visual acuity quantifies a person’s

ability to discern fine details. It is merely a size measurement and does not consider target

contrast (see Section 2.2.2). This magnitude is generally measured under ideal lighting

conditions, and a value between 0.8 and 1.6 arc minutes is considered a normal human

acuity. Moreover, visual acuity also depends on the object structure, lines, lightning and

aberrations of the observer’s eye (Holladay, 2004: 3).

For two points to be perceived as distinct, at least one unstimulated cone must lie between

two stimulated cones on the human retina (ALPF, 2022). Knowing that the distance between

cones in the foveola is 5µ and that the focal length is 17 mm, the minimum resolution of a

human eye with normal vision is one minute of an arc and is represented in Figure 2.6

(Caltrider, Gupta, and Tripathy, 2023).

Figure 2.6.: Minimum resolution of human eye.

Although humans can perceive details of 1 minute of arc (1’), they cannot identify them,

and these details will not have a visual impact. To be recognized and have a noticeable

visual relevance, an object must typically exceed a visual magnitude of approximately 5.5

minutes of arc (5.5’). The visual magnitude required for recognition can vary depending on

factors such as the type of object and the viewing conditions (Foley and Matlin, 2009).
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On the other hand, the study conducted by I. D. Bishop (2002) investigates the perceived

size of an object undergoing continuous shape changes, specifically a wind turbine. This

wind turbine has a fixed structure and three rotating blades at a predetermined angular

velocity. In the report, Bishop conducted an online survey where participants were asked to

compare the size of objects in different positions. The objective of this survey was to gather

information on how the size of the wind turbine was perceived based on its configuration.

Based on the collected data, Bishop concluded that the most appropriate approach to

determining the perceived size of the wind turbine was to consider both the size of the

fixed part and the size of the moving part. Additionally, he proposed adding a rotation factor

equivalent to 20% of the size of the moving part, thus acknowledging the visual impact

of the rotating blades on size perception. The findings from this study provide valuable

insights into how the perceived size of an object undergoing continuous shape changes

can influence visual perception. These findings are also relevant for application in other

contexts, such as the case of aerial vehicles that may have a transforming configuration if

they possess blades.

2.2.2. Color Difference

The contrast between the introduced element in a landscape and its environment is a

significant object-dependent variable when discussing visual impact and can be determined

using image analysis. Contrast refers to the difference in lightness (or greyscale) between

two points. When hue and saturation are also considered, the most appropriate term is

color difference (Mokrzycki and Tatol, 2011: 4).

While the way individuals perceive the color of objects can differ and is influenced by

factors such as lighting and atmospheric conditions, the color contrast between an object

and its surroundings can still be determined by employing a relative difference calculation.

This calculation considers representative observers and the specific lighting conditions

present (Magill and Litton, 1986: 45-54).

To calculate the color difference, a color space model must first be chosen. A color model

is a mathematical or conceptual representation in space that describes how colors can

be created, mixed, and represented. A coordinate system is established to specify colors

objectively and reproducibly, assigning them a numerical value or combination of numerical

values. Different color descriptions are used in various applications, but the most common

ones are described in Table 2.2.
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Table 2.2.: Color representation systems (Skrok, 2022).

System Description

Red, Green, Blue (RGB) Colors are created by mixing different proportions
of the primary colors, and each component is
represented by a value ranging from 0 to 255,
indicating the intensity of each primary color.

Cyan, Magenta, Yellow (CMY) Colors are generated by subtracting amounts of cyan,
magenta, and yellow from a white light source. Each
component is represented by a value ranging from 0
to 100, indicating the amount of ink used.

Hue, Saturation, Lightness (HSL) Hue represents the chromatic position or hue,
saturation indicates color purity, and lightness
controls the amount of light. Hue values are typically
represented on a 360-degree circle, while saturation
and lightness values are represented on a scale from
0 to 100.

Luminosity, a, b (LAB) Luminosity (L) indicates brightness, while the
components a and b represent the color’s position on
the red-green and yellow-blue axes, respectively.

While the HSL model is intuitive, the preferred color description used in any VIA is LAB.

This model is based on human visual perception, making it highly reliable. Moreover,

LAB has been tested in landscape applications and has consistently shown superior

performance, especially in scenarios with low contrast levels (I. D. Bishop, 2021).

As mentioned earlier, in the LAB color system, the L component represents the lightness

of a sample, ranging from white to black. The variables a and b indicate the position of

the sample on the red-to-green and blue-to-yellow axes, respectively. Therefore, using

these three variables, the system creates a three-dimensional space with a specific color

represented by its (L, a, b) coordinates as shown in Figure 2.7. The color difference (E)

between two colors is measured as the distance between their respective points, (L1, a1, b1)

and (L2, a2, b2), and is calculated using a three-dimensional application of the Pythagoras’

theorem and seeing in Equation 2.2. Therefore, ∆E represents how far are the two colors.

∆E∗
ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (2.2)

A standard observer may not always perceive the difference in color. Based on verified

statistics (Mokrzycki and Tatol, 2011: 15), the thresholds described in Table 2.3 have been

achieved for human vision, where ∆E is a non-dimensional measure.
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Figure 2.7.: Representation of LAB color space (Jnido, Ohms, and Viöl, 2019: 3).

Table 2.3.: Observer’s perception of color difference (∆E).

Range Perceived Difference

0 < ∆E < 1 Observer does not notice the difference.

1 < ∆E < 2 Only experienced observer can notice the difference.

2 < ∆E < 3.5 Unexperienced observer also notices the difference.

3.5 < ∆E < 5 Clear difference in color is noticed.

∆E > 5 Observer notices two different colors.

2.2.3. Atmospheric Scattering

Atmospheric scattering is a natural occurrence arising from the interaction between sunlight

and particles in the atmosphere. During daylight hours, the sky predominantly appears

blue. However, during sunset, the color of the sky takes on a more reddish tone, particularly

near the horizon. Rayleigh (1871) and Mie (1908) have described the behaviour of the

light-particle interaction that produces these colors. Rayleigh scattering refers to the

behaviour of light when it interacts with microscopic particles, which make up the bulk

of particles in the atmosphere. On the other hand, Mie scattering is a phenomenon

that describes the behaviour of light when it interacts with any type of particle. Rayleigh

scattering is mainly responsible for the blue color of the sky, while Mie scattering is mostly

used to describe the interaction with larger particles such as haze (Lopes and Ramires

Fernandes, 2014).
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Because of the considerable distance between the sun and the earth, it is presumed

that light rays propagate in parallel and undisturbed through the vacuum until they reach

the earth’s atmosphere. Once they penetrate the atmosphere, these rays interact with

atmospheric particles, with scattering being the most significant interaction in terms of color.

Scattering occurs when a photon’s electromagnetic field encounters the electric field of

a particle in the atmosphere, causing the photon to be redirected in a different direction.

Figure 2.8 shows the beam’s path from entering the atmosphere to reaching the camera,

which explains the phenomenon of scattering.

Figure 2.8.: Evaluation of the intensity of a ray along its path (Lopes and Ramires
Fernandes, 2014: 2).

Figure 2.8 shows how some photons scatter in different direction and loose intensity

once light from the sun and particles in the atmosphere interact between each other.

While deflecting light into a specific direction (in this case, towards the camera) is called

in-scattering, the loss of intensity is called out-scattering and represents the scattering of

photons and their change in their original path. If the total intensity of light reaching a

specific position wants to be calculated, all the in-scattering contributions following that

direction must be summed up (Lopes and Ramires Fernandes, 2014: 2).

Particles in the atmosphere can be assumed to be spherical or very small, and therefore,

light is scattered symmetrically concerning incident rays of light (Klassen, 1987). In this way,

the portion of the light that is scattered will be a function of the angle between the incident

ray of light and the emanating ray of light, represented by θ in Figure 2.8 and the wavelength

of light, λ. This phenomenon is commonly called the angular scattering function (Connors,

2019).
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Nevertheless, according to Lopes and Ramires Fernandes (2014: 2), differences across

wavelengths are minimal and become distinctly noticeable only over vast distances. Thus, it

will be asserted that there is no dependency on wavelength. Finally, the formula computed

by Cozman and Krotkov (1997) for the measured intensity of an object is referred to as the

Cozman and Krotkov formula:

C
′
= C · exp (−β · d+ S · (1− exp(−β · d))) . (2.3)

Where C ′ is the measured intensity of an object, C is the intensity of the object without

scattering, S is the sky intensity, β is the extinction coefficient (which increases as scattering

increases), and d is the distance of the object from the viewer.

If the values for the intensity of the landscape and the object at a distance 0 are known

(C10 and C20), the initial contrast at d = 0 can be calculated. Knowing the possible range

(256), it can be calculated as a percentage:

Ci = (C10 − C20) ·
100

256
. (2.4)

Therefore, the perceived contrast is:

Cd = Ci exp(−β · d). (2.5)

Where Cd is the perceived contrast at depth d, Ci is the initial contrast at d zero, d is the

distance (m), and β is the extinction coefficient.

The extinction coefficient of light, denoted as β, is a scientific measure that characterizes

diminished visibility. It quantifies the decline of light for each unit of distance due to the

interplay of scattering and absorption by atmospheric gases and particulates from the light’s

source to its destination (Malm, 1983: 50). Although β values have been determined

for various fog conditions, they may not universally apply to all experimental conditions

(McCartney, 1976). Scattering varies significantly with the density and type of particles in

the atmosphere, making the precise measurement of β complex.
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According to the research conducted by (Chang, Song, and Liu, 2009: 3), visibility and

extinction coefficient exhibit an inverse relationship, which is ruled by the Koschmieder

constant, denoted as K. The value of K is influenced by factors such as the observer’s eye

sensitivity, the contrast between reference objects and the sky, and the presence of visual

targets (Chang, Song, and Liu, 2009: 3). In their study of visibility in Chinese cities, they

employed a specific value of K, namely 1.932, establishing the following relationship also

used by I. D. Bishop (2019) when studying the impact of wind turbines:

β = 1.932/visibility. (2.6)

As observed in Equation 2.6, visibility plays a vital role in estimating visual effects.

Visibility refers to the clarity or distinctness with which objects can be seen. The

presence of fine particles and gaseous air pollution in the atmosphere can create a visual

phenomenon known as haze, which can obscure landscapes. While natural factors such

as dust and wildfire smoke can contribute to its formation, it is predominantly caused by

human-generated air pollution (Malm, 1983). The adverse effects of haze on visibility are

attributed to its ability to scatter and absorb light within the atmosphere. Consequently,

haze can limit the distance at which objects are detected and diminish the ability to perceive

the vibrant colors, distinct shapes, and textures of a scenic vista, as compared in Figure

2.9. Therefore, visibility is shaped by both the tangible interactions of light with atmospheric

gases and particles and the psychological perceptions of human viewers, and it is of high

importance when assessing visual impact.

(a) Good level of visibility. (b) Reduced level of visibility.

Figure 2.9.: Comparison of different levels of visibility (Town, 2023).
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2.3. Regression model to estimate visual thresholds

Shang and Bishop (2000) investigated visual thresholds in landscape research in their paper

titled “Visual thresholds for detection, recognition, and visual impact in landscape settings”.

In this paper, they developed models that allow obtaining the visual thresholds by using

different physical properties.

They defined the visual threshold as the minimum amount an individual can notice.

That means, the threshold where one goes from not detecting something to detecting

it. Additionally, they distinguished between detection, recognition, and visual impact.

Detection refers to the ability to perceive a stimulus, recognition involves identifying its

nature, and visual impact relates to its influence on a scene, landscape, or the observer.

They considered visual size (explained in subsection 2.2.1) and visual contrast (explained

in subsection 2.2.2) as variables. They also classified the objects based on their shape,

using a transmission tower to represent a linear object shape and an oil refinery tank to

represent a square-to-round object shape.

Following Dember (1960), they established that regular shapes are easier to perceive

and provide a stronger stimulus to the observer. Consequently, they concluded that using

regular shapes would provide more conservative results regarding threshold distances. In

their report, they conducted two types of questionnaires for users:

• An uninformed detection test: where no information about the nature of the objects

was provided, and participants were asked if they found any difference between two

photos.

• An informed recognition test: where users were given information about the nature

of the objects and the visual experience they would undergo, and they were directly

asked if they detected an introduced element.

This led to four visual testings: uninformed detection, uninformed recognition, informed

recognition and informed visual impact. Using the obtained results, they conducted a series

of statistical models. In this case, it was a logistic regression analysis, as they aimed to

predict whether an event would occur or not, and the probability of its occurrence for multiple

variables. The linear logical model of this experiment is expressed as:

Z = B0 +B1(C · S) +B2(CD) +B3(SH) +B4(S) +B5(C) (2.7)
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Where C represents visual contrast, S visual size, CD visual contrast direction, SH object

type, and Bn the estimated coefficients obtained from the experiment.

Table 2.4.: Linear-logit models for each model category (Shang and Bishop, 2000: 9).

Model Category Linear-logit Model

Uninformed detection Zud = −16.02 + 0.0124(CS) + 12.75(D) + 1.525(H)

Uninformed recognition Zur = −7.56 + 0.0017(CS) + 5.014(D)− 1.623(H) + 0.037(S)

Informed recognition Zir = −30.7336 + 0.0089(CS) + 27.971(D)

Informed visual impact Zimp = −19.7861 + 0.0045(CS) + 14.457(D)

Where SH and CD are binary indicator variables: SH = 1 (tank); SH = 0 (tower); CD =

1 (positive contrast); CD = 0 (negative contrast).

Once the values of Z have been obtained, the linear-logit model formula can be applied

(Equation 2.8), expressing the probability that any individual detects an object. Finally,

Shang and Bishop (2000) defined the impact threshold as “the physical condition of an

object at which 50% of the viewers’ impact assessments, based on original and altered

scenes shown side-by-side, exceed the middle position between low and high visual impact

levels” and is defined by Equation 2.8.

P (event) =
1

1 + e−Z
(2.8)

2.4. Human Field of View

The Field of View (Field of View (FOV)) refers to the extent of visual area that can

be perceived instantly, measured in degrees of angles. For humans, the instantaneous

monocular (referring just to one eye) FOV is about 100° on the temporal side and about 60°

on the nasal side, due to the nose position and the sclera and iris of the eye (Ellis et al.,

2002: 9).

The binocular field refers to the area where the visual fields of both eyes overlap. It covers

around 120° and varies based on the observer’s visual capability. Within this area exists the

“central field”, which spans approximately the first 5 degrees from the fixation point. In

this specific area, vision is more precise and detailed, due to the high concentration of

photoreceptor cells in the fovea of the retina. Furthermore, there is the “Preferred Viewing

Area”, which covers around 30° (15° per eye) and an immediate FOV of 70° (35° per eye).
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Beyond these angles, the peripheral vision takes over (Torrejon, Callaghan, and Hagras,

2013: 8). All this data refers to the instantaneous field of view, which corresponds to the

human FOV without any movement, neither of the eyes nor the head.

Humans generally have a total field of vision of slightly over 200° when combining the

vision from both eyes and accounting for the overlap. This is depicted in Figure 2.10a, where

the monocular FOV are not simply summed because there is an overlap. The combination

of the temporal vision of one eye, the nasal vision of the other and the overlap determine

the total FOV (Roberts and Osborne, 2019: 7).

On the other hand, the vertical field of view is also relevant. The upper limit is 50° from the

standard line of sight, and the lower limit is 70°, as illustrated in Figure 2.10b. Summing both

numbers, the normal eye vision field oscillates between 120° and 135° since the anatomy

of the face constrains it. However, the limit of optimal color discrimination is located 25°

upwards and 30° downwards (Torrejon, Callaghan, and Hagras, 2013: 8).

(a) Horizontal Field of View (Roberts
and Osborne, 2019: 7)

(b) Vertical Field of View (Madhusanka
and Jayasekara, 2016: 4).

Figure 2.10.: Vertical and horizontal FOV.

While both the horizontal and vertical FOVs are important, the horizontal FOV is

frequently highlighted, as it is considered more significant according to Thorpe Davis (1997).

Moreover, any work that aims to reconstruct the visual field or present an item as “real”

should focus on the binocular area, especially in contexts such as virtual reality and visual

simulations, where virtual content is designed to interact with the consumer vision of the

real-world (Wang and Cooper, 2022).
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This section describes the methodology implemented to systematically analyze the visual

impact of different urban air vehicles in various locations. First, different scenarios are

recreated, and the human vision field is visualized through a camera. Raspberry Pi Camera

has been configured to provide a remote solution to control measurement campaigns from

a central place. Finally, a methodology was developed, including techniques to analyze the

previously introduced factors.

3.1. Experimental Setup

3.1.1. Measurement Station

A camera is used to visualize the human field of view. The measurement station consists

of a tripod with a camera above it. The tripod’s height has been fixed at 160 cm, as it falls

within the range of the average height from feet to eyes for both men (163 cm) and women

(151.5 cm), extracted from the anthropologic German study (Lange and Windel, 2017).

In order to assess the impact of viewing angles on the sky and the flying vehicle, a rotating

support has been implemented. This support holds the camera and replicates human head

movements. A human can flex their neck up to 60° backward and 60° forward, as shown

in Figure 3.1. Therefore, it was decided to position the camera at 0° (completely vertical)

to simulate the standard neck position. The camera was also orientated 30° backwards to

recreate the human movement to focus most of the attention and vision on the sky.

Figure 3.1.: Human neck flexion (Gilman, Dirks, and Hunt, 1979).
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In the future, a Raspberry Pi Camera1 will be used for data acquisition at different

locations. To create a portable measurement station capable of conducting data collection

campaigns at multiple locations controlled from a central place, remote access to the

Raspberry Pi is essential. To access the Raspberry Pi remotely, the most suitable approach

is through Secure Shell (SSH) 2. To use the SSH protocol, the Raspberry Pi and the external

computer must be connected to the same Wi-Fi network. Therefore, the Wi-Fi network’s

SSID, password, and country must be set during the OS installation on the SD card. Once

the Raspberry Pi is connected to the same Wi-Fi network as the external computer, it can be

accessed through the terminal using the user and password set during the OS installation

(Raspberry-Pi, 2020).

In the event that the SD card has been booted with the same name and password and

connected to the same PC, an error may occur that can be resolved by deleting the SSH

Keys and accessing them again. To do so, the code shown in Figure 3.2 must be written in

the terminal.

Figure 3.2.: Procedure to delete SSH Keys.

After the external computer has recognized the Raspberry Pi connected via SSH, the

Raspberry Pi Software Configuration Tool should be accessed through the terminal. From

this interface, remote access using Virtual Network Computing (VNC) should be enabled,

and it can be accessed from any other device by using RealVNC 3.

This type of connection to the Raspberry Pi is called the "Headless Setup". However,

users can configure the necessary settings by having direct access to the Raspberry Pi

through a monitor, keyboard, and mouse, including enabling the RealVNC remote access

right from the Raspberry Pi’s terminal interface. Once this setup is completed, RealVNC

can access the Raspberry Pi remotely.

Furthermore, a power bank will be available to power the Raspberry Pi, and a SIM card

will used to provide portable Wi-Fi connectivity. These will be inside a protective box on the

ground and next to the tripod.

1The Raspberry Pi is a small Single-Board Computer (SBC). It is an accessible, compact, and affordable
computer available in different models with varying processing capabilities.

2SSH is a protocol designed as a secure remote protocol using encrypted communication.
3RealVNC is a free software application that enables remote access and control of computers over a network.
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3.1.2. Raspberry Pi Camera Configuration

The Raspberry Pi Camera must be controlled using Python, and specific codes have been

developed to capture photos or videos while the vehicle is in flight. This will allow the user

to choose which option is better depending on the desired factors to study. Moreover, taking

videos has the advantage that screenshots can be made afterwards, selecting the specific

moment when the data is relevant. Three codes have been developed for this purpose:

1. The first code captures photos in a row every 3 seconds. A while True loop has

been created, which will run indefinitely until it is interrupted by the user pressing

the Ctrl+C key combination as shown in Code 3.1. Complete code can be found in

Appendix A.1.1.

Code 3.1: Loop to take photos every 3 seconds.

1 while True:

2 photo_filename = os.path.join(folder_path ,

3 f’image_{timestamp }.jpg’)

4 camera.capture(photo_filename)

5 print("Photo taken")

6 sleep (3)

2. The second code records a standard video that will start when the user wants to and

end once Ctrl+C is pressed. While the videos are captured, the command window

will show "Recording". The function is presented in Code 3.2, and the complete code

can be found in Appendix A.1.2.

Code 3.2: Function to record videos.

1 def start_video_recording ():

2 video_filename = os.path.join(folder_path ,

3 f’video_{timestamp }.h264’)

4 camera.start_recording(video_filename)

5 print("Recording")
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3. The third code records a video of the vehicle while simultaneously taking a photo

every 5 seconds. The code defines two functions for capturing images and recording

videos. The code 3.3 summarizes how it starts a loop that captures images at regular

intervals while simultaneously recording a video. The program stops execution upon

receiving a KeyboardInterrupt exception, by pressing Ctrl + C. Complete code can

be found in Appendix A.1.3.

Code 3.3: Function to simultaneously take photos and videos.

1 def start_recording(folder_path):

2 video_filename = os.path.join(folder_path ,

3 f’video_ \{ timestamp \}. h264’)

4 camera.start_recording(video_filename)

5 print("recording")

6 try:

7 while True:

8 interval = 5

9 capture_frame(folder_path , interval)

10 sleep (5)

11 print("photo taken")

Once any of the codes are executed, a preview is initiated, displaying exactly what the

camera captures in real time on the monitor. This allows users to adjust the camera setting

as needed manually. In the command window, users are asked to press Enter whenever

the camera is ready to start making videos or photos. This is done in the lines of Code 3.4.

Code 3.4: Code to start and end the preview.

1 camera.start_preview ()

2 input("Press enter to start recording")

3 camera.stop_preview ()

After pressing Enter, users are asked to input all the relevant information about the

specific data collection session (the command window shows "Relevant data for the .txt

file: "). For instance, they can specify details such as date and time of the data collection,

type of vehicle flight or the distance where the vehicle will take off. This will simplify the

analysis of the collected media. After providing all relevant details, another press on Enter

saves the input data into a .txt file named "data_media" (refer to Code 3.5).
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Code 3.5: Function to create a specific .txt file.

1 def save_txt_file(folder_path , content):

2 file_path = os.path.join(folder_path , "media_data.txt")

3 with open(file_path , "w") as file:

4 file.write(content))

Every code names the captured photos and videos with a timestamp representing the

date and time of capture. These files are stored in a folder that is automatically created with

its own date/time stamp, too. Notably, these folders will also contain the .txt file previously

explained. This part of the codes is shown in Code 3.6.

Code 3.6: Creation of folder and timestamp

1 import os

2 from datetime import datetime

3

4 root_folder = "root folder path"

5 timestamp = datetime.now().strftime("image_%Y%m%d_%H%M%S")

6 folder_path = os.path.join(root_folder , timestamp)

7 create_folder(folder_path)

3.1.3. Scenario Planning for Data Collection

For comprehensive data collection, videos and photos will be taken to simulate different

scenarios that might occur in real life.

UAVs will be flown at different distances and altitudes to analyze varying visual sizes. This

approach allows for an exploration of how distances and its position in the FOV can influence

the perceived size. The selected altitudes, however, depend on the particular urban vehicles

being examined. For instance, smaller vehicles meant for package deliveries might fly closer

to the population, while air taxis are projected to cruise at altitudes ranging between 100 m

and 300 m (Spain announces plans for flying taxi service in Barcelona 2020). As such, the

selected distances for study should align with the specific vehicle type.

On another note, as introduced in Section 3.1.1, a rotating device is positioned at the

measurement station to emulate human neck flexion. To capture various dimensions of the

vehicles in flight, the camera will be set at angles of 0° and 30°.
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Various vehicles will be examined to observe different visual sizes and study the influence

of color on visual impact and contrast against the background. A distinctive representative

color for each UAV is anticipated.

The first UAV, referred to as UAV 1 throughout the thesis, has a distinctive white color

and a structure similar to a commercial airplane. Its wingspan measures 128 cm, and its

maximum vertical dimension is 28 cm. An illustration of this UAV can be found in Figure

3.3b. The second UAV, labelled as UAV 2, has a more complex design. Colored in black,

it displays symmetry across both axes when viewed from a top perspective. This UAV

measures 76 cm horizontally and 30 cm vertically. Figure 3.3a presents an image of it.

(a) Horyzn UAV 1. (b) Horyzn UAV 2.

Figure 3.3.: UAVs provided by Horyzn.

Furthermore, capturing images and videos under varying weather and atmospheric

conditions is essential. This range is crucial for simulating potential scenarios with diverse

backgrounds and, most importantly, visibility levels. As discussed in the theoretical

framework, visibility plays a significant role in visual impact.

The data capture scenario for the two studied UAVs seen from a lateral view is illustrated

in Figure 3.44. Additionally, the selected lateral distances are shown in Figure 3.7, seen

from a top view. In this scenario:

1. Take-off Positions: Three distinct take-off positions are established at varying

distances from the camera: 3 m, 10 m, and 20 m.

2. Data Capture Process:

a. The UAV initiates take-off from the first position and ascends to a flight altitude of

2 m.

b. Once at this altitude, two photographs of the UAV are captured.

4Neither of the scenario recreation figures show scaled dimensions.
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c. The UAV then moves laterally to the second position. When reached,

photographs are taken again.

d. Similarly, the UAV moves laterally to the third position and photos are captured.

e. Without landing, the UAV adjusts its altitude to 5m and repeats the same path,

with photographs being taken at each of the three positions.

3. Repetition: The above data capture process is repeated for each take-off position

relative to the camera (i.e., 10 m and 20 m).

4. Camera Orientation: The entire procedure is conducted twice – once with the camera

oriented at 0° and once at 30°.

5. UAV tested: The process is repeated for the two UAV tested.

Figure 3.4.: Scenario recreation seen from a lateral view.

Figure 3.5.: Scenario recreation seen from the view and marks on the ground.
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3.2. Determination of visual size

As explained in the theoretical framework, visual size is an important variable to consider

when measuring an object’s visual impact. It depends on the vertical and horizontal

dimensions of the object. Therefore, it is evident that these dimensions also depend on

the observed object proportion. When the object is seen from a lower perspective, one

has a complete view of it, and it will occupy a different space in the visual field than if it is

observed from the side.

The study aims to investigate how an object’s position in relation to the observer and

the viewing angle influence what is being observed. However, a methodology must first

be developed to be able to measure this "visual size" from a picture using Python and the

distance camera object. This is presented in Figure 3.6.

Figure 3.6.: Methodology to obtain visual size.

Firstly, detecting an object in the image and afterwards recognising it as an air vehicle is

crucial. Once identified, its horizontal and vertical dimensions from that specific perspective

must be calculated. However, from a picture, one can only derive the actual dimension

of an object using a distance-to-pixel ratio. That means, how many centimeters a pixel

occupies. This needs the use of a reference dimension within the image. Therefore, the

third step involves calculating this scale. Determining the distance between the camera

and the vehicle in the image is essential. Finally, with all these informations, the formula to

compute the visual size of the vehicle can be implemented (Equation 2.1). Python will be

employed in each step.

3.2.1. Detection and Recognition of the Air Vehicle

To detect the object within an image, the Python library cvlib (Ponnusamy, 2021) was

employed together with created auxiliary functions. Cvlib is a superficial, high-level,

easy-to-use open-source Computer Vision Python library available in GitHub, developed

in 2021 by Arun Ponnusamy.
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The function image_object_detection belongs to cvlib and enables the detection of

common objects within an image. The function provides the coordinates of the bounding

boxes, associated labels, and confidence levels for objects identified within the image.

However, confidence levels are not needed in this case, and the function performs the

following tasks:

1. The algorithm reads the image and uses cvlib.detect_common_objects to identify

objects in it.

Code 3.7: Code for object detection.

1 def image_Object_Detection(image , scale_ratio=None):

2 img = cv2.imread(image)

3 bbox , labels , _ = cvlib.detect_common_objects(img)

2. From all the detected objects, it filters and selects only those labeled as ’airplane’ or

’kite’ and draws a rectangle around them:

Code 3.8: Code for filtering specific detected objects.

1 for (box , label) in zip(bbox , labels):

2 if label in [’airplane ’, ’kite’]:

3 x1, y1, x2, y2 = box

4 cv2.rectangle(output_image , (x1, y1), (x2, y2),

5 (0, 255, 0), 5)

3. Using the drawn rectangle, the algorithm calculates the horizontal and vertical

distances the vehicle covers in the image, expressed in pixels. Also, the exact location

of the introduced object in pixels is displayed (that means, the upper left corner and

the right down corner of the rectangle):

Code 3.9: Code for calculation of pixel dimensions.

1 def calculate_distance(x1, y1, x2, y2):

2 horizontal_dist = x2 - x1

3 vertical_dist = y2 - y1

4 return horizontal_dist , vertical_dist

4. Lastly, the function returns the image with highlighted air vehicles, the total number of

air vehicles detected in each image, and their coordinates and positions.
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3.2.2. Obtaining the Distance-to-pixel Ratio

To accurately determine the actual size of a vehicle in an image, two key pieces of

information are needed: the real-world dimension of the vehicle (such as its wingspan) and

its corresponding dimension in pixels within the image (how long it appears in the image).

These two measurements essentially create a scale that allows obtaining the vehicle’s size

in the image. By knowing the relationship between the real-world and pixel measurements,

this scale can be applied to measure or determine the size of other objects within the same

image

As explained in Section 3.1.1, the camera will remain fixed on a tripod, while the UAV will

move horizontally from left to right in front of it, consistently maintaining the same altitude.

The primary reference will be taken when the UAV is directly in front of the camera, providing

a clear rear view of the object. If the vehicle has a wingspan, this should be fully visible, as

shown in Figure 3.7.

Figure 3.7.: Reference image.

Hence, it becomes possible to establish a scale for reference by knowing the actual

wingspan measurement in centimeters and understanding the number of pixels it covers

in the picture. The calculate_scale_ratio function returns a ratio indicating how many

centimetres correspond to a pixel in the image.

When comparing the sizes of vehicles, using the correct scale is essential. Therefore, the

vehicle must maintain consistent horizontal and vertical distances as with other photographs

where the obtained scale is applied. If the reference vehicle is at a different distance

or height, the comparison will not be accurate and wrong results will be obtained. The

appropriate scale function will allow the extrapolate of the actual horizontal and vertical

dimensions for all examined images, and the change in dimensions is computed. Both

procedures are presented in Code 3.10 and Code 3.11 respectively.
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Code 3.10: Scale ratio function.

1 def calculate_scale_ratio(pixel_distance , real_distance_cm):

2 return real_distance_cm / pixel_distance

Code 3.11: Code for applying scale function.

1 if scale_ratio:

2 real_horizontal_distance = horizontal_dist * scale_ratio

3 real_vertical_distance = vertical_dist * scale_ratio

4 print(f’Real Dimensions: {real_horizontal_distance :.2f}

5 cm(horizontal),{real_vertical_distance :.2f}cm(vertical)’)

6 dimensions.append ([ real_horizontal_distance ,

7 real_vertical_distance ])

The object’s detection and the scale computation have been developed in the same

Python code available in Appendix A.4.

3.2.3. Obtaining the Camera-Vehicle Distance

To calculate the distance from a camera to a vehicle, two methods have been developed

based on the available data:

1. In the first method, at the moment the picture was taken, the coordinates of both the

camera and the vehicle are known.

2. In the second method, the vehicle first ascends from a position known relative to the

camera and rises to a specific height. After reaching that height, the UAV travels a

predetermined number of meters laterally (see Section 3.1.3 for more details).

Knowing the latitude and longitude coordinates where the camera is located and the exact

coordinates of the vehicle when the photo is taken, it is possible to obtain the horizontal

distance between the two points. Given their longitudes and latitudes, the Haversine formula

calculates the distance between two points on the Earth’s spherical surface. This is a

scenario calculated in Equation 3.1, where R is the Earth’s radius (6371 km5).

5For short distances like in this case, the Earth is assumed to be perfectly spherical being 6371 km its radius.
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)
,

d = R · c.

(3.1)

Once the horizontal distance is calculated, and knowing the altitude at which the vehicle

flies and the tripod’s height on which the camera is positioned, one simply needs to apply

Pythagoras’ theorem to determine the distance between the object and the observer. The

application of the function is shown in Code 3.12, but the complete code is available in

Appendix A.6.

Code 3.12: Application of Haversine formula.

1 for lat2 , lon2 in positions_obj2:

2 dist_hor = haversine_distance(lat1 , lon1 , lat2 , lon2)

3 dist = math.sqrt(dist_hor **2 + dist_ver **2)

4 distances.append(dist)

5 print(f"Distance from the camera to the air vehicle

6 {len(distances)}:", dist , "meters")

For the second approach, Pythagoras’ theorem is used twice. First, to find the ground

distance considering the distance between the camera and the starting position of the

vehicle as one leg of a triangle and the lateral movement of the vehicle as the other leg.

Then, for the following calculation, the previously found ground distance is used as one leg,

and the difference between the vehicle’s flying height and the camera’s height as the other

leg. This will give the total distance from the camera to the vehicle’s new position. The

complete developed code is shown in Appendix A.7.

3.2.4. Applying Visual Size Formula

Finally, the Visual Size Formula (Equation 2.1) can be used, making sure that both the

distance between the camera and the vehicle and the dimensions of the object are in the

same units. To do so, the created process_images function will manage the primary logic.
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Initially, a reference image will be defined, and a list of all other images to be processed

will be created. It will import the functions created in Section 3.2.1 to detect the vehicle in the

reference photo. Additionally, it will import the function calculate_scale_ratio explained

in Section 3.2.2 to calculate the scale ratio. These same functions will also be used to

detect the air vehicles in each loaded image and apply the calculated ratio. The functions

haversine_distance or calculate_distance will also be imported into the main processing

flow.

The visual size formula (Equation 2.1) is employed to get the real dimensions of all the

loaded pictures. This code is presented in Appendix A.8, and a summary is in Code 3.13.

Code 3.13: Code for obtaining visual size.

1 beta = (180**2 * 60**2) / math.pi**2

2 for (H, D), d in zip(dimensions , distances):

3 alpha = H * D / (d*100) **2

4 S = beta * alpha

5 S_values.append(S)

6 for i, S in enumerate(S_values):

7 print(f"Visual size {i + 1} = {S}")

3.3. Determination of Absolute Color Difference

To compute the color difference between two objects in an image, one must calculate each

object’s LAB values within the CIELAB color model. For this purpose, the method shown in

Figure 3.8 is proposed.

Figure 3.8.: Methodology to obtain color contrast.
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3.3.1. Air Vehicle Isolation in Images Using GIMP

Several image processing software facilitates object selection within an image. For instance,

Bishop (2000) utilized Adobe Photoshop to assess the visual impact of wind turbines. For

the purposes of this thesis, GIMP 2.10.34 6 was employed. This software features the

"Fuzzy Select Tool", analogous to the famous "Magic Wand Tool" in Photoshop. This

tool enables rapid selections based on color ranges, and its threshold can be adjusted

to determine how strict this color selection is. The following steps must be followed:

1. Photograph Insertion: The process starts by importing the desired photograph into

GIMP.

2. Using the "Fuzzy Select Tool": This tool is used to highlight the UAV

3. Copying the Selection: The chosen portion of the image is copied to the clipboard.

4. Creating a New Project: To maintain the same dimensions as the original image and

ensure consistency, a new project within GIMP is initiated.

5. Setting the Background to Transparency: This is achieved by navigating

through GIMP’s menu options: ’File » New » Advanced Options » Filled with:

transparency.’ The transparency setting is essential when superimposing one

image onto another while eliminating the original background.

6. Pasting the Copied Selection: The previously copied UAV selection is pasted into

the new project.

7. Preparing for Export and Analysis: The edited image is ready for further processing,

analysis, or export. This edited image will be employed for analysing the color

difference.

Consequently, the background must also be isolated from the object to get the LAB values

later. After selecting the UAV, this selection is inverted (Right click » Select » Invert) to

isolate the background. Another new project starts with a transparent background; the

selection is pasted here and then exported.

The more complex the object is, the more challenging its selection becomes, and finer

details of the object may be lost. However, this loss of detail is not critical since the primary

objective is to obtain the mean LAB values, emphasizing the focus on the ‘mean’ aspect.

6GIMP (GNU Image Manipulation Program) is an open-source and free image editing software.
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Below is an example (Figure 3.9): the first image displays the isolated UAV, while the

second shows the isolated background.

(a) Isolated UAV. (b) Isolated Background.

Figure 3.9.: Comparison of isolated UAV and background using GIMP.

3.3.2. Air Vehicle Isolation in Images Using Python

In an effort to improve efficiency and automate the previously described methodology, a

Python-based approach was considered. The primary aim is to eliminate the need to

use GIMP and manually analyze each picture. To achieve this, a Python code has been

developed using the OpenCV library7. The process involves loading an image, separating

the object from its background and saving both pictures transparently.

The developed code facilitates image segmentation by converting the input image to

grayscale and allowing the user to set a threshold value (as done in GIMP approach). It

categorizes pixels based on their grayscale intensity relative to the threshold: pixels above

the threshold are represented as white (255), indicating the object, while pixels below it

are set to black (0), indicating the background. Subsequently, two new images, mirroring

the original’s dimensions, are generated, featuring transparent backdrops. One image

highlights the object of interest. The other image showcases the background. Therefore,

establishing a correct threshold is essential. This relevant part of the algorithm is shown in

Code 3.14.

7OpenCV (Open Source Computer Vision) is an open-source library that contains tools and algorithms for
image processing and computer vision
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Code 3.14: Code for obtaining visual size.

1 def segment_image(image_path , save_object_path ,

2 save_background_path , threshold_value =100):

3 image = cv2.imread(image_path , cv2.IMREAD_COLOR)

4 gray = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

5 _, thresholded = cv2.threshold(gray , threshold_value , 255,

6 cv2.THRESH_BINARY)

7 mask = thresholded == 255

8 height , width , channels = image.shape

Once segmented, the isolated background and isolated vehicle are pasted into the

transparent new images and saved in a .png format. Code 3.15 represents this procedure

and the complete one is included in Appendix A.9.

Code 3.15: Code for obtaining visual size.

1 transparent_obj_img = np.zeros((height , width , 4),

2 dtype=np.uint8)

3 transparent_obj_img [:, :, :3] = image

4 transparent_obj_img[mask , 3] = 255

5 cv2.imwrite(save_object_path , transparent_obj_img)

6 transparent_bg_img = np.zeros((height , width , 4),

7 dtype=np.uint8)

8 transparent_bg_img [:, :, :3] = image

9 transparent_bg_img [~mask , 3] = 255

10 cv2.imwrite(save_background_path , transparent_bg_img)

The following example showcases the capabilities of the developed Python code for

image segmentation. The first image exhibits the isolated UAV, while the second image

presents the background isolated from the scene, all accomplished using the Python code.

This automated approach provides a convenient solution for object isolation, but it may

exhibit slightly less precision than manual segmentation using image processing software.

However, this minor trade-off in precision is offset by the significant time-saving advantage

it offers. Users can simply provide the base image, eliminating the need for meticulous

manual selection of relevant image components.
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In summary, both the manual GIMP procedure and the automated Python code yield

successful results. The GIMP procedure is better for precision but requires more

manual effort. However, the Python code offers an automated solution that simplifies the

segmentation process, balancing efficiency and precision.

(a) Isolated UAV (b) Isolated Background

Figure 3.10.: Comparison of isolated UAV and background using Python.

3.3.3. Compute LAB Mean Values

Several methods were considered when aiming to calculate an image’s LAB mean values.

Initially, the idea was to obtain these values using GIMP. The software allows the user to

get the color description of each pixel by selecting the ‘Colour picker’ tool (represented by

an eyedropper icon). This tool allows users to derive color values in different color models,

including CIELAB. However, GIMP does not offer an option to get the mean value among

all the non-transparent pixels in the image.

Given GIMP’s limitations, Python is an efficient alternative for this task. As a result, a

code was developed where both images are loaded. The function ‘get_mean_lab_values’

(Code 3.16) stands as the central part of the code and performs the following tasks:

1. Opens and displays the loaded image.

2. Converts the image into a NumPy matrix that will allow the correct manipulations.

3. Filters out the non-transparent pixels in the image by checking the alpha channel.

4. Converts the image matrix from RGB to LAB model.

5. Computes the mean L, A, and B values of the non-transparent pixels.
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Code 3.16: Function ’get_mean_lab_values’.

1 def get_mean_lab_values(image_path):

2 img = Image.open(image_path)

3 img_arr = np.asarray(img)

4 non_transparent_pixels = np.where(img_arr [..., -1] > 0)

5 img_arr = img_arr[:, :, :3]

6 lab_img = color.rgb2lab(img_arr)

7 L_mean = np.mean(lab_img[non_transparent_pixels ][:, 0])

8 A_mean = np.mean(lab_img[non_transparent_pixels ][:, 1])

9 B_mean = np.mean(lab_img[non_transparent_pixels ][:, 2])

10 return L_mean , A_mean , B_mean

This function is applied to the two pictures, and accordingly, the formula to calculate the

color difference is utilized (Equation 2.2). This part of the script is shown in Code 3.17, and

the complete algorithm is available in Appendix A.3.2.

Code 3.17: Color difference equation

1 E_abs = ( ( L_mean_background − L_mean_object ) * * 2 +

2 ( A_mean_background − A_mean_object ) * * 2 +

3 ( B_mean_background − B_mean_object ) * * 2) * * 0.5

4 p r i n t ( " Absolute co lour d i f f e r e n c e : " , E_abs )

3.4. Contrast Determination in the Presence of Atmospheric

Scattering

To calculate the contrast of an object and its background, considering the effects of

atmospheric scattering, the Cozman and Krotkov (equation 2.5) formula should be used.

I. D. Bishop (2002) employed this formula to model visual thresholds at varying depths and

under different haze conditions without needing an actual scenario image. As a result,

applying the Cozman and Krotkov formula when estimating contrast from an actual image

is unnecessary, given that a specific distance and haze apply in such cases. Nevertheless,

this formula proves relevance for computing color contrast without the need to visit the flight

field for measurements under various weather conditions.
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As discussed in Chapter 2.2.3, knowing the initial color difference is crucial. I. D. Bishop

(2002) suggests capturing a photograph very close to the object of interest (in his case, a

wind turbine). This approach helps establish a condition for the “absolute color difference”

at zero depth, after which the Cozman and Krotkov formula can be applied to study contrast

at diverse distances and on different haze conditions.

The recommended methodology (represented in Figure 3.11) involves capturing a very

close photograph of the studied vehicle and another one of the sky. The background color

can vary depending on lighting, visibility and weather conditions. Bishop recommends

using the worst-case scenario, which means a very sunny day when objects in the sky

are most discernible. Subsequently, a Python code has been developed to process these

photographs. In this algorithm, both images are loaded and converted to grayscale, and

their mean luminosity is computed, as I. D. Bishop (2002: 6) proposes.

Figure 3.11.: Methodology to obtain atmospheric contrast.

In order to get the mean lightness, the same function as in Code 3.16 is employed, but

in this case, only taking the Lightness value. This process allows for the calculation of the

initial contrast, i.e., contrast without the influence of atmospheric scattering. Finally, the

Python code integrates the Cozman and Krotkov formula, which can be employed when the

distance and visibility factors are known using Equation 2.6.

Visibility is conventionally measured at meteorological stations using an optical instrument

called a visiometer. These devices employ optical techniques to determine the maximum

distance at which a reference object is visible from an observation point under specific

atmospheric conditions. The results are commonly expressed in kilometres and can be

obtained from the websites of meteorological services (Time and Date AS, 2023).

For both UAVs tested, photographs were taken very near to the most representative color

of the object and no modifications to brightness or contrast were made on the camera.

These images are presented in Figure 3.12a and Figure 3.12b for each respective UAV.

On the other hand, due to the optimum weather on the data collection campaign day, it was

possible to capture a clear sky photograph from which the lightness could also be computed.
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(a) Close-up UAV 1. (b) Close-up UAV 2. (c) Clear sky.

Figure 3.12.: Sample images to calculate color contrast at different depths.

After calculating the initial contrast, the contrast for varying depths and visibilities can be

computed. In this way, the influence of the distance between the observer and the UAV can

be studied. Moreover, different visibility scenarios can be recreated. These will vary based

on factors like haze and atmospheric conditions. This allows for a study to be conducted

using these parameters and even by altering the colors of the UAVs. The Python code

formulated for this purpose can be found in Appendix A.4.

3.5. Digital Simulations of Scenarios using GIMP

Due to logistical limitations and challenges in accessing various scenarios and vehicles

needed for this thesis, the decision was made to utilize digital simulations generated

through image processing software. These simulations were conducted to recreate diverse

scenarios and analyze the influence of vehicle colors without physically fabricating them.

The simulations were created using GIMP. The H-aero zero vehicle served as the primary

model to assess the influence of color contrast. This is a sustainable, ecological, and

dynamic UAV designed for earth observation, live event recording, surveillance tasks, and

more. The vehicle has a shape similar to a balloon and a dimension of 200 x 80 cm.

Its distinctive kite shape, as shown in Figure 3.13, and vibrant colors make it particularly

relevant for this thesis. The manufacturer mentions that vehicle color depends on the

availability and emphasizes the importance of studying the difference in color contrast

that each color can produce (H-Aero, 2023). Therefore, it is vital to investigate the

potential differences in color contrast that each color can produce. For this purpose, Figure

3.13 served as a reference, and the vehicle was isolated from the background using the

procedure described in Section 3.3.2. The color of the vehicle was then changed using the

Bucket Fill Tool8 in GIMP allows a selected area to be filled with a specific color.

8The bucket fill tool in GIMP is used for filling areas of an image or selection with a specific color or pattern. It
is represented by an icon that looks like a paint bucket.
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Figure 3.13.: H-aero reference image (H-Aero, 2023).

Colors chosen for this study were green, red, blue, yellow, white and black, representing

the boundaries of the LAB color space model. Furthermore, as the absolute color difference

represents the distance between two colors in a 3D representation, it was also essential to

assess colors close to the sky color. Here, this difference was minimal, potentially leading

to reduced visual annoyance.

To utilize the Bucket Fill Tool, colors need to be specified in the HTML notation9. The

colors chosen for this study and their respective HTML notations are represented in Table

3.1 and are defined as described in Codes (2023).

Table 3.1.: Selected colors and their HTML notations.

(a) Basic Colors.

Color HTML Notation

Green #00FF00

Red #FF0000

Blue #0000FF

Yellow #FFFF00

White #FFFFFF

Black #000000

(b) Blue Shades.

Color HTML Notation

Blue Sky #87ceeb

Corn Flower Blue #6495ed

Light Blue #87cefa

Steel Blue #4682b4

Color Sky #71BCE1

Gray Sky #BCC8C6

9HTML color codes are sets of six hexadecimal digits representing the amounts of red, green, and blue in a
color (#RRGGBB).

43
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The first simulations are presented in Figure 3.14, where the primary colors are chosen

to be analyzed and in Figure 3.15, the blue shades.

(a) Red. (b) Green. (c) Blue.

(d) Yellow. (e) Black. (f) White.

Figure 3.14.: Simulation of boundary colors in H-aero using GIMP.

(a) Corn Flower Blue.(b) Light Blue. (c) Blue Sky.

(d) Steel Blue. (e) Sky Color. (f) Gray Sky.

Figure 3.15.: Simulation of different blue colors in H-aero using GIMP.

These figures can then be compared with the average LAB values of the background of

the reference image. This background, isolated using the methodology discussed in Section

3.3.1, is depicted in Figure 3.16.

Figure 3.16.: H-aero reference sky.
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Data collections were carried out on July 4th, August 22nd, and 23rd. During these three

days, the weather conditions were optimum, with visibilities up to 16 km and mostly sunny,

as shown in Table 4.1. This section presents the data obtained and the results assessed

after applying the methodology previously detailed for the different variables under study.

Date Wind Humidity Visibility Temperature

July 4th 13 km/h SW 84% 16 km 22 °C

August 22nd 10 km/h SSW 72% 16 km 27 °C

August 23rd 12 km/h N 54% 16 km 29 °C

Table 4.1.: Weather data on flight campaigns (Time and Date AS, 2023).

4.1. Visual Size Assessment

For the visual size evaluation, data collection for the test on August 23rd and white Horyzn

vehicle (UAV 1) is employed. Photographs were taken following the structure represented

in Figure 3.4 and Figure 3.5.

Annex B.1.1 contains pictures when the drone was at an altitude of roughly 2 m above

the ground. The drone was positioned directly over marked spots on the ground and the

camera is oriented at a 0°. These images highlight, with a green-colored rectangle, the area

of the detected UAV, which has been used to determine the exact dimensions of it.

As shown in Figure 4.1, which corresponds to a ground distance of 3 m and a lateral

distance of 2 m, the entire vehicle structure is not visible. This means that part of the UAV

is outside the camera’s field of view; thus, this result is not considered.

(a) 0 m lateral distance. (b) 1 m lateral distance. (c) 2 m lateral distance.

Figure 4.1.: Photographs at 3 m ground distance, 2 m altitude and 0º orientation.
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Furthermore, the algorithms developed in Python fail to detect the vehicle when

positioned 20 m away horizontally from the camera. The UAV is so far away that the

algorithm cannot distinguish details. However, zooming and cropping the image makes

detection possible because all the attention is focused on a specific part of the picture.

This is why Figure 4.2 displays a closer view of the object. The procedure does not alter

the precision of dimension measurements, as the image’s pixel resolution is also adjusted

proportionally.

(a) 0m lateral distance. (b) 4m lateral distance. (c) 8m lateral distance.

Figure 4.2.: Photographs at 20m ground distance, 2m altitude and 0º orientation.

Annex B.1.2 contains photographs taken and processed when the UAV is at an altitude

of approximately 5 m, and the camera is again oriented at a 0°. Images corresponding

to a horizontal distance of 3 m are not included, as, in that case, the UAV is outside the

camera’s field of view. On the other hand, annexes B.1.3 and B.1.4 display images captured

at altitudes of 2 m and 5 m, respectively, but this time with the camera tilted approximately

30°. Once again, specific images must be manually zoomed to allow the drone’s detection

by the algorithm. Images of the UAV at horizontal distances of 3 m and altitudes of 5 m are

not included for the same reasons previously mentioned.

After collecting and processing the data using Python, the exact dimensions of the UAV

are determined for each position, and the distance between the object and the camera is

calculated using the "Second Approach" method (see Section 3.2.3 for more details). Later

on, the visual size of the object is established. Table B.1, included in Appendix B.3, shows

all the variables that have been calculated to study visual size and the factors that influence

it. These variables include: camera rotation angle, flight altitude, ground distance, lateral

distance, distance between the camera and the object, centimeter-pixel ratio and horizontal

and vertical dimension of the vehicle. Hereafter, these will be analysed in more detail.
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4. Results and Discussion

Figure 4.3 displays a scatter plot generated in Python1, illustrating the relationship

between the distance from the "observer" to the UAV and the visual size, for different

altitudes and camera angles. In this graph, the visual size of every position is shown.

Figure 4.3.: Relation between real distance and visual size.

The results shown in Figure 4.3 agree with expectations: the visual size decreases as

the distance between the observer and the object increases. This means that the further

away it is, the less space it will occupy in the human field of vision; therefore, its impact

will be smaller. In this same graph, all the results can be grouped into 3 main groups:

one representing an observer-vehicle distance of approximately 3 m, another around 11 m

and the last 21 m. This corresponds to the three stations, and therefore, it can be seen

that the distance does not vary significantly when only the lateral distance and height are

modified, and the ground distance is kept constant. The visual size results obtained for

a ground distance of 3 m turned out to be extremely high (between 454339.022 arcmin2

and 719504.461 arcmin2). This was predictable since, at that distance, the UAV is so

close to the user that it practically occupies their entire field of view. This is merely a

simulation; such a situation is not expected in a natural environment. The oscillation is

less significant in the case of a ground distance of 10 m. There, the maximum visual

size is 78437.495 arcmin2, and the minimum is 27350.631 arcmin2. The same happens

with a ground distance of 20 m, where the values oscillate between 8937.488 arcmin2 and

14609.914 arcmin2. This slight variation in visual size suggests now that the position of the

UAV within the FOV does not significantly affect its perceived size, contrary to initial beliefs.

While this observation provides a preliminary conclusion, it will be further examined in detail

throughout this section.
1Every graph shown in "Results and Discussion" Section has been meticulously created using Python.
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Important to note is that, for the same altitude and horizontal distance (resulting in the

same actual distance), and when varying the rotation angle, the visual size maintains a

similar order of magnitude, and no substantial changes are observed. This suggests that

when the neck is bent to look directly at the sky and considering the specific structure of the

analyzed UAV, the relationship between its dimensions is similar and thus its annoyance is

also similar. Only at very small distances do relevant differences appear. This conclusion

has been achieved after analysing Figure 4.3 and the different results represented by an "x"

or point.

Two graphs are included that depict the relationship between the visual size and lateral

distance. Figure 4.4 illustrates this relationship for a height of 2 m, while Figure 4.5 for 5 m.

These figures are designed to explore how the perceived size of an object changes when it

is located at different horizontal locations within the human field of vision. Moreover, a linear

regression line has been drawn to study the tendencies.

Figure 4.4.: Relation between lateral distance and visual size at 2 m altitude.

Figure 4.5.: Relation between lateral distance and visual size at 5 m altitude.
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In Figure 4.4, the red points represent the scenario where the camera has no rotation (0°),

and the ground distance is 3 meters. In this case, the visual size varies between 680951.137

and 454339.022 arcmin2, depending only on the lateral distance. The respective regression

line illustrates how visual size decreases as lateral distance increases. The case where the

camera has a 30° rotation angle at the same 3-meter ground distance is depicted in red.

Here, the visual size again varies significantly, with values of 641324.887, 542072.726, and

719504.461 arcmin2. Notably, the regression line in this scenario exhibits a negative slope.

For the rest of the cases, the visual size results do not vary significantly, and they follow an

approximately horizontal regression line when the lateral distance is changed.

Observing Figure 4.5, one might perceive a significant change in visual size in the green

and blue cases (i.e., when the ground distance is 10 m). However, the values on the

vertical axis of Figure X are one order of magnitude lower than those in Figure 4.4. This

indicates that the visual size results do not vary dramatically in this case. Once again, as

the ground distance increases, the visual size values become more similar when only the

lateral distance is changed. This aligns with the conclusions drawn from Figure 4.4.

Therefore, after analyzing both graphs, only abrupt changes are evident in the initial tests,

where the distance between the user and the object is minimal and unrealistic. This scenario

is not possible due to security reasons since the vehicle cannot fly that close to the observer.

For the rest of the cases, the vehicle’s position inside the human field of view does not

change significantly its visual perception, and the conclusion achieved from Figure 4.3 is

confirmed.

During the data analysis, an observation was made that while the visual size decreased

with increasing distance, the actual dimensions did not consistently exhibit a decreasing

trend as distance increased. To better understand the relationship between the dimensions

and the variation in lateral distance, the following linear graphs are introduced (Figures

4.6 and 4.7). There, "real horizontal dimension" and "real vertical dimension" refer to the

horizontal and vertical dimensions of the vehicle in those specific locations, measured in

centimeters.
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(a) Horizontal dimension vs lateral distance.

(b) Vertical dimension vs lateral distance.

Figure 4.6.: Relation between dimensions and lateral distance at 2 m altitude (UAV 1).

In these figures, the absence of a linear trend in both the vertical and horizontal

dimensions with increasing distance is evident; fluctuations in perceived dimensions are

observed. Take, for instance, the violet points denoting the perceived vertical dimension

when the ground distance is 20 m, and the rotation angle is 0° (Figure 4.7). In this scenario,

the vertical dimension measures 25.71 cm at 0 m lateral distance, 31.18 cm at 4 m, and

32.82 cm at 8 m lateral distance. This variability in perceived dimensions can be primarily

attributed to the angle from which the UAV observes the object. Certain object parts become

more prominent depending on this angle, altering their perceived proportions. For example,

a lateral view of the UAV will emphasize its profile over its front view. These observations

help explain why the visual size, resulting from the combination of dimensions and distance,

does not show a significant decrease as the distance increases. It shows the significance of

considering perspective and angles when interpreting visual data in the context of distance.
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(a) Horizontal dimension vs lateral distance.

(b) Vertical dimension vs lateral distance.

Figure 4.7.: Relation between dimensions and lateral distance at 5 m altitude.

On another note, to calculate the scale, the image corresponding to a lateral distance

of 0 m was always used as a reference for each ground distance and altitude, where the

UAV’s wingspan is fully visible. However, consideration of potential human errors should

include instances where the drone, during piloting, did not maintain a perfectly horizontal

position, potentially introducing inaccuracies in the scale. Additionally, wind conditions play

an important role in these cases.

Moreover, while the distance calculation provides a reasonable initial estimation, it might

not be entirely accurate. This is due to potential discrepancies in the altitude and lateral

distances used in the calculations and the ones really achieved by the UAV pilot. To address

this limitation, the "First Approach" that uses the exact geographical coordinates of both the

camera and the vehicle might get more accurate results.
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As a final point, the study of the visual size of UAV 2 has not been estimated because

it was considered irrelevant. This is due to its symmetrical structure along both axes when

viewed from above and the results obtained for UAV 1. This means that, regardless of its

position in the visual field, as long as the drone flies horizontally, it will maintain proportional

horizontal and vertical dimensions. Appendix B.1.5 shows an example of this.

4.2. Absolute Color Difference Variation using Flight Test Data

An analysis is conducted on the contrast between UAV 1 (colored white and physically

similar to a commercial airplane) against diverse backgrounds. Six photographs,

represented in Figure 4.8, are chosen to assess the influence of varying meteorological

conditions. Notably, not only does the background change, but the UAV’s color also alters

depending on the light’s angle in each instance, resulting in distinct shadow patterns on the

structure. Additionally, several of these photos are cropped versions where the UAV was

situated at a significant distance from the camera, explaining the difference in quality among

them.

(a) Case 1. (b) Case 2. (c) Case 3.

(d) Case 4. (e) Case 5. (f) Case 6.

Figure 4.8.: UAV 1 with different backgrounds.

As delineated in the methodology section, isolating the object to obtain two distinct

images is the preliminary step in studying the absolute color difference between an object

and its background. Within that section, two strategies were proposed: one utilizing the

GIMP software, and the other deploying a Python algorithm specifically developed for this

research.
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As previewed in Section 3.3, the method employing GIMP yields more exact results but

needs an individual manual analysis of each photo. Conversely, the Python algorithm is

faster but less precise. This difference can be clearly observed in Appendix B.2, where the

images previously introduced in Figure 4.8 are shown together with the outcomes derived

from both methodologies.

The outcomes from the Python algorithm, elaborated upon in Section 3.3.3 for

applying the absolute color difference2 formula after the object-background separation

are catalogued in Table 4.2. This table presents the results of both methodologies. A

relevant point to consider is that improper object isolation may leave portions of it still in

the background image, causing the algorithm to misinterpret these pixels. This calculation

results in inaccurate average LAB values, influencing the final results, as observed from the

differences between the columns.

∆E Python Method ∆E GIMP Method

Case 1 52.593 48.235

Case 2 15.548 35.213

Case 3 45.755 42.200

Case 4 46.046 47.027

Case 5 28.216 31.247

Case 6 46.368 36.963

Table 4.2.: Comparison of absolute color difference results for different cases.

Table 2.3 indicates that ∆E differences less than 2 are not visible to the human eye.

Using this value as a reference, the difference between the results obtained using the two

approaches is especially big in cases 2 and 6. Thus, it has been decided to use the data

from the GIMP method over the Python code due to its higher precision when isolating the

object.

Analyzing the results obtained from the GIMP method and presented in the bar chart of

Figure 4.9, the lowest contrast corresponds to the image with a cloud-covered background,

Case 5 (being its value 31.247 and using GIMP approach). This reflects that the difference

in color is smaller when the background is white. It is consistent with expectations since the

drone is white and its color closely resembles that of clouds more than a clear sky. Indeed,

the highest contrast, and therefore the most significant impact, occurs when the sky exhibits

a very intense blue color (Case 1 with ∆E = 48.235).

2∆E is an adimensional measure since L, a and b components of the CIELAB Model also are.
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Figure 4.9.: Comparison of ∆E GIMP Method results.

Analyzing Figure 4.9, Case 2 also features a sky with lighter tones, resulting in low

contrast (35.213). However, Case 4 is surprising. Although the drone is positioned against

a white background, its color difference is among the highest. The drone’s hue appears

considerably darker in this image than in others. This could be attributed to the lighting

at that moment, the angle at which the photo was taken, or even the camera’s resolution.

Cases 4 and 1 show similar color differences, even though they initially seem distinct from

each other. This phenomenon can be attributed to variations in the background color and

the object’s perceived colour in each case. In the CIELAB color space model, the object

color and background color positions are markedly different for these two cases—however,

the Euclidean distance metric yields similar values for both of them.

In Figure 4.10, three images of UAV 1 are presented, taken from the same position with

just seconds between each shot. These images are specifically chosen to illustrate the

noticeable variation in the sky’s color at that moment. Near the horizon, the sky exhibits a

lighter hue, while at the top of the image, its blue is more vibrant. This chromatic variation

is explained by the phenomenon of atmospheric scattering, by which small particles and

molecules in Earth’s atmosphere scatter sunlight in all directions (see Section 2.2.3 for more

detail). The ∆E results are also presented in Table 4.3, where the difference is notable.
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(a) Case 7. (b) Case 8. (c) Case 9.

Figure 4.10.: Difference in sky color due to atmospheric scattering - UAV 1.

Case 7 Case 8 Case 9

∆E 43.560 15.672 9.288

Table 4.3.: ∆E results for different locations (UAV 1) using GIMP.

In Cases 7, 8, and 9, significantly different ∆E results are evident despite consistent

atmospheric conditions and the same vehicle. When the UAV is near the horizon, the

color contrast is reduced because the sky appears whiter and more similar to the vehicle’s

color. However, the magnitude of the color difference is unexpectedly large. Conducting a

dedicated analysis of color differences in the specific locations where the vehicle is expected

to fly becomes essential for deeper insights. This analysis will be closely linked to the UAV’s

flying altitude

The same comparison is carried out with UAV 2 provided by Horyzn and the same

background and time. Figure 4.11 shows the three studied photographs. Again, results

shown in Table 4.4 show big differences in color contrast.

(a) Case 10. (b) Case 11. (c) Case 12.

Figure 4.11.: Difference in sky color due to atmospheric scattering - UAV 2.

Case 10 Case 11 Case 12

∆E 64.787 65.433 57.891

Table 4.4.: ∆E results for different locations (UAV 2) using GIMP.
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The color contrast results for cases 10, 11, and 12 do not exhibit as much variation as

observed with the white UAV. This can be attributed to the black color of UAV 2 being

positioned further away from any blue shade in the CIELAB color space model (refer to

Figure 2.7 in Section 2.2.2). Therefore, location in the sky field is less crucial for darker

vehicle colors compared to lighter ones.

Results from Table 4.3 and 4.4 also provide a basis for comparing the two UAVs. These

UAVs have entirely different colors, one being black and the other white, representing the

two extremes of the Lightness parameter in the LAB color space model. While blue is also

an extreme value for the ’b’ component of this color space, it represents a primary color.

On the other hand, the sky does not have such an intense blue shade, making it closer to

white. This explains why UAV 1 exhibits significantly less color contrast with its background

than UAV 2. Refer to Figure 4.12 for a visual representation of this comparison.

Figure 4.12.: ∆E GIMP Method results for both UAVs.

Thus, it can be concluded that not only is the color of the UAV significant, but also

its position within the human field of vision, as well as atmospheric conditions and the

background. On a sunny day, due to atmospheric scattering, the sky appears lighter closer

to the horizon. Consequently, vehicles with light colors will have a reduced visual impact in

these areas compared to higher positions in the visual field.
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4.3. Color Contrast and Atmospheric Scattering Evaluation.

In this section, apparent color contrast is calculated and discussed, taking into account

atmospheric scattering and using only an initial condition. As explained in Section 3.4, this

approach requires only a close-up photograph of the object and a photograph of a clear sky.

For this analysis, an image of both Horyzn UAVs are used as samples (Figure 3.12 detailed

in Section 3.4).

Using the code detailed in Section 3.4, the influence of different distances and visibilities

on color contrast for these UAVs is explored. A visibility of 16 km, corresponding to the day

of the Flight Test, was selected. Additionally, visibilities of 9 km, representing a partly sunny

day, and 7 km, indicating a cloudy day, are analyzed.

Distances ranging from 10 meters to 40 meters (from the observer to the flying object)

are initially chosen to calculate the associated color contrast in percentage terms. The

results for these distances can be found in Figure 4.13 for UAV 1 and in Figure 4.14 for

UAV 2. However, within this range of distance, there appears to be no significant contrast

difference. In fact, the difference in apparent contrast of UAVs between a distance of 10

m and 40 m is only 0.0389% when visibility is 16 km, 0.069% with 9 km of visibility, and

0.088% with 7 km, all of which are completely irrelevant. For UAV 2, these values change

to 0.027%, 0.071%, and 0.091%, respectively, for the same visibility magnitudes and the

same conclusion is driven.

Figure 4.13.: Influence of distance and visibility on apparent contrast (UAV 1).
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Figure 4.14.: Influence of distance and visibility on apparent contrast (UAV 2).

The evaluation is then expanded to include distances of 1 km, 2 km, and 3 km. Given

the small size of the selected UAVs, these distances may not offer realistic scenarios since

UAVs would likely remain unseen at such lengths and, therefore, have no significant impact

on observers. Nonetheless, these results can be extrapolated to more oversized vehicles

with the same colours. The results are illustrated in Figures 4.15 and 4.16 for each UAV.

Figure 4.15.: Influence of higher distance and visibility on apparent contrast (UAV 2).
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Figure 4.16.: Influence of higher distance and visibility on apparent contrast (UAV 2).

Figure 4.15 and Figure 4.17 display a more comprehensive range of apparent contrast

values on the vertical axis. At these greater distances, a noticeable decrease in contrast

becomes evident as the range increases. When examining UAV 1 and considering a 3 km

increase in distance, the apparent contrast decreases by 3.258% for 16 km visibility, 5.088%

for 9 km visibility, and 6.032% for 7 km visibility. Similarly, for UAV 2, the contrast reduction

is 3.365%, 5.255%, and 6.229% for the same 3 km increase in distance and corresponding

visibilities. Compared to the earlier cases, the significant change in apparent contrast as

distance increases becomes clear.

Interestingly, the contrast percentages for both UAVs show remarkable similarity. This

is somewhat unexpected, given that white and black colors are far from each other in the

CIELAB space model. A potential reason for this outcome might be the use of the difference

in lightness rather than ∆E (see Section 3.4 for more details). In conclusion, it might be

beneficial to apply a similar methodology emphasizing the absolute color difference instead

of lightness for future research.

4.4. Absolute Color Difference Simulation Results

As detailed in Section 3.5, a different color for the H-aero vehicle was relevant to simulate to

study their influence on the absolute color difference. This allows to analyze color contrast

without real photographs.
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The basic colors represent the boundaries of the CIELAB color space model. The results,

obtained from the codes developed and explained in Section 3.3.3, are presented in Table

4.5a. Analyzing the results, the notably large values become evident. As said before, the

color difference is determined using a clear sky background contrasted against the most

distant points in the chosen color space. Since ∆E represents this distance, the results

show meaningful values.

On another note, various shades of blue are applied to the vehicle, attempting to emulate

colors like the background being “Gray Sky” color chosen to simulate a cloudy day with

haze. Table 4.5 shows the corresponding absolute colour difference results.

From Table 4.5b, it is clear that the values are substantially smaller than those in Table

4.5. This suggests that the selected UAV colors are more similar to the background, thus

making it challenging to discern differences, consequently diminishing visual annoyance.

Notably, "Blue Steel" and "Sky Color" exhibit minimal ∆ E values.

Therefore, it can be concluded that to minimize the visual impact of a vehicle flying in the

sky, its representative color has to be as similar to the background as possible. However,

as elaborated in the Theoretical Framework, sky does not always maintain a similar hue

due to the scattering of light coming from the sun. Apart from the reddish color of sunrise

and sunset or the grays on cloudy days, clear skies can also exhibit various shades of blue.

Atmospheric aerosols can influence these tones, sometimes even giving the sky a white

appearance during a sunny day.

Table 4.5.: Colors and their associated ∆E values.

(a) Basic Colors.

Basic Color ∆E

White 47.136

Black 64.984

Blue 121.494

Red 125.095

Yellow 125.757

Green 137.830

(b) Blue Shades.

Blue Shade Color ∆E

Steel Blue 10.797

Sky Color 15.492

Light Blue 21.024

Blue sky 21.935

Corn Flower Blue 28.580

Gray Sky 31.079
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Even though this procedure shows relevant results, these are just simulations where

atmospheric scattering has not been considered. In order to get color contrast as a

percentage and have atmospheric scattering in mind, the approach shown in Section 3.4

must be followed. The results of applying the Cozman and Krotkov formula are shown in

table 4.4 when the distance is 10 m and the visibility 16 km. Additionally, a lineal graph

shows the apparent contrast of each color under these conditions.

Table 4.6.: Colors and their associated color contrasts.

Color Initial Contrast (%) Apparent Contrast (%)

Red 2.643 2.640

Blue 10.825 10.811

Green 10.832 10.819

Yellow 14.505 14.488

White 15.623 15.604

Black 23.440 23.412

Blue Corn 0.750 0.749

Blue Steel 2.946 2.942

Sky Color 5.010 5.004

Blue Sky 7.500 7.491

Blue Light 7.702 7.693

Gray 7.676 7.667

Figure 4.17.: Different colors and their associated apparent contrast at 10 m distance and
visibility of 16 km.
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4. Results and Discussion

Nevertheless, Table 4.6 presents inconsistent results. While the ’Blue Corn’ color is set

as the one generating the least visual impact, it is worth noting that red is indicated as

the second least annoying. This conclusion may not appear intuitive, considering the big

difference between the sky color and red. Additionally, the primary colors blue, green

and yellow contrast less with the transparent sky background than white. This is not

obvious since blue, green, yellow and white are limit points in the CIELAB space model

representation, but the blue sky color was thought to be closer to white than the rest

of the shades. Conversely, black is rated as the most annoying color, which aligns with

its extreme position in the CIELAB space model representation. On another note, the

difference between initial and apparent contrast is minimal and sometimes imperceptible.

One might question the need to calculate apparent contrast based on this observation.

However, these findings contrast with the conclusions of I. D. Bishop (2002: 8), where

the difference was consistently at least 0.1%, and atmospheric scattering always played a

significant role in color difference.

As a result, determining the suitability of this method for obtaining the visual contrast of a

flying object is in question. As previously discussed in Section 4.3, the algorithm should be

adjusted to account for differences in color contrast and not just variations in lightness.

4.5. Limitations of the Study and Future Work

There are several aspects that this study does not cover due to the no existing research

about Visual Impact Assessment of UAM available and the given time. Moreover, some

aspects had to be simplified in order to make this research possible.

One major limitation was the inability to utilize the Raspberry Pi Camera for the data

campaign. The Measurement Station was not ready in time, requiring the use of a standard

camera as a substitute. Future work could benefit from the Raspberry Pi module, offering

a more automated data collection method. However, a disadvantage could be the poorer

quality of the images. The effect on data analysis should have to be investigated in detail.

A further limitation was the reliance on the flight vehicle’s known altitudes, ground,

and lateral distances during the data campaign to calculate the distances between the

UAV and the viewer. This was done instead of utilizing the specific UAV coordinates.

Since the UAV’s position was manually controlled, ensuring consistency was sometimes

challenging. The wind conditions and difficulty piloting specific UAVs play an essential role.
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4. Results and Discussion

For improved accuracy in future studies and if the data is available, specific coordinates are

recommended.

Regarding possible future work, the Python code developed for object detection exhibited

challenges, mainly when the UAV was significantly distant. Future efforts could focus on

improving this algorithm and the isolating code to have more precise results.

For UAV 1, visual size evaluations were conducted only from its tail perspective. Other

viewpoints could get different outcomes. Thus, future research could investigate how the

visible face of the UAV influences its perceived size. Furthermore, assessing the visual size

of UAV 2 would confirm conclusions regarding symmetry.

Lastly, while the two UAVs served as foundational references for this study’s methodology,

extending the assessments to UAVs of varied sizes, structures, and colors would be

beneficial to come to more comprehensive conclusions. Once this is done, the regression

model to estimate visual thresholds developed by Shang and Bishop (2000) could also be

applied since it was not possible in this thesis due to the obtained results.

63



5. Conclusion

This thesis examines the impact of Urban Air Vehicles on the human field of view and

visual experience. Factors such as FOV obstruction, perceived size, and distinctive color

contrast have been identified as key determinants of social acceptance. This research

introduces an innovative Visual Impact Assessment of Urban Air Vehicles approach. Unlike

previous studies that relied on image processing software like GIMP and Adobe Photoshop,

this study pioneers an automated methodology primarily utilizing Python—an approach

previously unexplored in this context.

Three distinct Python codes were developed to configure a Raspberry Pi Camera for

use in a portable measurement station. These codes enable data acquisition at multiple

locations, all managed centrally. They offer users the capability to capture photos, videos,

or both simultaneously, as well as to efficiently record and organize pertinent data.

The algorithms formulated for evaluating the influence of the different variables

demonstrated efficiency and simplicity of implementation. Codes applying absolute color

difference equation, Cozman and Krotkov and distance calculation were notably successful.

However, certain challenges emerged when trying to recognize distance objects, requiring

manual zoom adjustments. Similarly, the process to isolate the vehicle from its background

was only not successful when the image quality was not optimal.

In terms of visual size, this study has yielded pertinent conclusions. Firstly, as anticipated,

visual magnitude decreases with distance. Contrary to expectations, the visual size showed

minimal variance when Horyzn UAVs were used as a reference. This occurred even as the

UAV maintained a consistent altitude and moved solely in a horizontal plane with different

camera orientations. The results obtained from the employed UAVs indicate that its visual

size only changes by approximately 15% inside the FOV but by around 300% when its flying

distance is doubled. Furthermore, altitude does not appear to be a relevant factor when

estimating visual size, except when the flight height is so substantial that the vehicle exits

the FOV, in which case it no longer impacts human perception. This finding suggests that

the UAV’s position within the primary human field of view is insignificant; only its distance

from the observer influences it.
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5. Conclusion

Regarding color contrast, the research concludes that the similar the object color is to the

background color, the closer these two colors are in the CIELAB color space and therefore,

the minimum contrast and impact. Nevertheless, the variable sky shades, influenced by

factors such as atmospheric scattering, weather conditions, and lighting, significantly affect

this perception. When considering only the color difference, a range of colors is proposed

as the least distracting (from #4682b4 to #71BCE1 in the HTML color system) for flying on

a clear and sunny day. Additionally, the importance of understanding the flying parameters

is emphasized, as the ideal vehicle color may vary depending on its expected position in the

sky.

This thesis also assessed the Cozman and Krotkov formula’s application, which considers

atmospheric scattering and different depths. The results revealed inconsistencies, mainly

when applied to UAVs with contrasting colors. Previous literature often used the difference in

lightness to address apparent contrast. However, it was concluded that using the Euclidean

distance between colors would yield a more logical outcome in such cases.

To summarize, this research has demonstrated that visual size and color contrast are

closely linked to the vehicle’s specific characteristics, implying that findings might differ

based on its specific dimensions and intended flying parameters. Most importantly, this

study introduces the first methodology for measuring the visual effects of such Urban Air

Vehicles. It sets the foundation for further investigations, allowing for a wide range of

possibilities.
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A. Python Codes

A.1. Raspberry Pi Camera Python Codes

In this appendix are the developed Python codes that allow for the remote control of a
Raspberry Pi Camera intuitively.

A.1.1. Raspberry Pi Camera - Code 1

Code A.1: Raspberry Pi Camera code to take pictures in a row.
1 from picamera impor t PiCamera
2 from t ime impor t sleep , t ime
3 impor t os
4 from datet ime impor t datet ime
5

6 def c r e a t e _ f o l d e r ( path ) :
7 t r y :
8 os . makedirs ( path )
9 except OSError as e :

10 p r i n t ( f " E r ro r c rea t i ng f o l d e r { e } " )
11

12 def s a v e _ t x t _ f i l e ( fo lder_pa th , content ) :
13 f i l e _ p a t h = os . path . j o i n ( fo lder_pa th , " media_data . t x t " )
14 wi th open ( f i l e _ p a t h , "w" ) as f i l e :
15 f i l e . w r i t e ( content )
16

17 def take_photos ( ) :
18 r o o t _ f o l d e r = " roo t f o l d e r path "
19 t imestamp = datet ime . now ( ) . s t r f t i m e ( " image_%Y%m%d_%H%M%S" )
20 f o l de r_pa th = os . path . j o i n ( r o o t _ f o l d e r , timestamp )
21 c r e a t e _ f o l d e r ( f o lde r_pa th )
22 user_content = i npu t ( " Relevant data f o r the . t x t f i l e : " )
23 s a v e _ t x t _ f i l e ( fo lder_pa th , user_content )
24

25 t r y :
26 whi le True :
27 t imestamp = datet ime . now ( ) . s t r f t i m e ( "%Y%m%d_%H%M%S" )
28 photo_f i lename = os . path . j o i n ( fo lder_pa th ,
29 f ’ image_ { timestamp } . jpg ’ )
30 camera . capture ( photo_f i lename )
31 p r i n t ( " Photo taken " )
32 sleep ( 3 )
33 except Keyboard In te r rup t :
34 camera . c lose ( )
35 p r i n t ( " I n t e r r u p t e d " )
36 camera = PiCamera ( )
37 camera . r e s o l u t i o n = (1600 , 900)
38 #camera . r e s o l u t i o n = (2592 , 1944) #Maximum r e s o l u t i o n f o r photos
39 camera . s ta r t_p rev iew ( )
40 i npu t ( " Press enter to s t a r t t ak ing p i c t u r e s " )
41 camera . stop_preview ( )
42 take_photos ( )
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A.1.2. Raspberry Pi Camera - Code 2

Code A.2: Raspberry Pi Camera code to take videos.
1 from picamera impor t PiCamera
2 from t ime impor t s leep
3 impor t os
4 from datet ime impor t datet ime
5

6 camera = PiCamera ( )
7

8 def c r e a t e _ f o l d e r ( path ) :
9 i f not os . path . e x i s t s ( path ) :

10 os . makedirs ( path )
11

12 def s a v e _ t x t _ f i l e ( fo lder_pa th , content ) :
13 f i l e _ p a t h = os . path . j o i n ( fo lder_pa th , " media_data . t x t " )
14 wi th open ( f i l e _ p a t h , "w" ) as f i l e :
15 f i l e . w r i t e ( content )
16

17 def star t_camera_preview ( ) :
18 camera . s ta r t_p rev iew ( )
19 i npu t ( " Press enter to s t a r t record ing " )
20 camera . stop_preview ( )
21

22 def s ta r t _v i deo_ reco rd ing ( ) :
23 r o o t _ f o l d e r = " roo t f o l d e r path "
24 t imestamp = datet ime . now ( ) . s t r f t i m e ( " video_%Y%m%d_%H%M%S" )
25 f o l de r_pa th = os . path . j o i n ( r o o t _ f o l d e r , timestamp )
26 c r e a t e _ f o l d e r ( f o lde r_pa th )
27 user_content = i npu t ( " Relevant data f o r the . t x t f i l e : " )
28 s a v e _ t x t _ f i l e ( fo lder_path , user_content )
29 v ideo_f i lename = os . path . j o i n ( fo lder_pa th , f ’ v ideo_ { timestamp } . h264 ’ )
30 camera . s t a r t _ r e c o r d i n g ( v ideo_f i lename )
31 p r i n t ( " Recording " )
32

33 t r y :
34 whi le True :
35 pass
36 except Keyboard In te r rup t :
37 camera . s top_record ing ( )
38 camera . c lose ( )
39 p r i n t ( " I n t e r r u p t e d " )
40

41 star t_camera_preview ( )
42 s ta r t _v ideo_ reco rd ing ( )
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A.1.3. Raspberry Pi Camera - Code 3

Code A.3: Raspberry Pi Camera code to simultaneously take pictures and videos.
1 from datet ime impor t datet ime
2 from picamera impor t PiCamera
3 from t ime impor t sleep , t ime
4 impor t os
5

6 def c r e a t e _ f o l d e r ( path ) :
7 t r y :
8 os . makedirs ( path )
9 except OSError as e :

10 p r i n t ( f " E r ro r c rea t i ng f o l d e r { e } " )
11

12 def s a v e _ t x t _ f i l e ( fo lder_pa th , content ) :
13 f i l e _ p a t h = os . path . j o i n ( fo lder_pa th , " media_data . t x t " )
14 wi th open ( f i l e _ p a t h , "w" ) as f i l e :
15 f i l e . w r i t e ( content )
16

17 def capture_frame ( fo lder_pa th , i n t e r v a l ) :
18 t imestamp = datet ime . now ( ) . s t r f t i m e ( "%Y%m%d_%H%M%S" )
19 image_fi lename = os . path . j o i n ( fo lder_pa th , f ’ capture_ { timestamp } . jpg ’ )
20 camera . capture ( image_fi lename )
21

22 def s t a r t _ r e c o r d i n g ( fo lde r_pa th ) :
23 t imestamp = datet ime . now ( ) . s t r f t i m e ( "%Y%m%d_%H%M%S" )
24 folder_name = datet ime . now ( ) . s t r f t i m e ( " v ideo_capture_%Y%m%d_%H%M%S" )
25 f o l de r_pa th = os . path . j o i n ( ’ r oo t f o l d e r path ’ , folder_name )
26 c r e a t e _ f o l d e r ( f o lde r_pa th )
27 user_content = i npu t ( " Relevant data f o r the . t x t f i l e : " )
28 s a v e _ t x t _ f i l e ( fo lder_path , user_content )
29 v ideo_f i lename = os . path . j o i n ( fo lder_pa th , f ’ v ideo_ { timestamp } . h264 ’ )
30 camera . s t a r t _ r e c o r d i n g ( v ideo_f i lename )
31 p r i n t ( " Recording " )
32 t r y :
33 whi le True :
34 i n t e r v a l = 5
35 capture_frame ( fo lder_pa th , i n t e r v a l )
36 sleep ( i n t e r v a l )
37 p r i n t ( " Photo taken " )
38 except Keyboard In te r rup t :
39 camera . s top_record ing ( )
40 camera . c lose ( )
41 p r i n t ( " I n t e r r u p t e d " )
42

43 camera = PiCamera ( )
44 camera . r e s o l u t i o n = (1600 , 900) # c loses t r e s o l u t i o n to human eye
45 #camera . r e s o l u t i o n =(1920 ,1080) #maximum r e s o l u t i o n f o r v ideos
46

47 camera . s ta r t_p rev iew ( )
48 i npu t ( " Press enter to s t a r t record ing " )
49 camera . stop_preview ( )
50

51 f o l de r_pa th = ’ roo t f o l d e r path ’
52

53 s t a r t _ r e c o r d i n g ( fo lde r_pa th )
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A.2. Visual Size Python Codes

This section includes the complete Python Codes developed to compute the visual size of
an object within an image.

A.2.1. Detection and scale computation - Code

Code A.4: Detection and scale computation (Part 1).
1

2 impor t cv2
3 impor t c v l i b
4 from c v l i b . ob jec t_de tec t i on impor t draw_bbox
5 impor t m a t p l o t l i b . pyp lo t as p l t
6

7 def ca l cu la te_d i s tance ( x1 , y1 , x2 , y2 ) :
8 h o r i z o n t a l _ d i s t = x2 − x1
9 v e r t i c a l _ d i s t = y2 − y1

10 r e t u r n h o r i z o n t a l _ d i s t , v e r t i c a l _ d i s t
11

12 def c a l c u l a t e _ s c a l e _ r a t i o ( p i xe l_d is tance , real_distance_cm ) :
13 r e t u r n real_distance_cm / p i xe l _d i s t ance
14

15 dimensions = [ ]
16

17 def image_Object_Detect ion ( image , s c a l e _ r a t i o =None ) :
18 img = cv2 . imread ( image )
19 bbox , labe ls , _ = c v l i b . detect_common_objects ( img )
20

21 output_image = img . copy ( )
22 ai rp lane_box = None
23

24 f o r ( box , l a b e l ) i n z ip ( bbox , l a b e l s ) :
25 i f l a b e l i n [ ’ a i r p l ane ’ , ’ b i r d ’ ] :
26 x1 , y1 , x2 , y2 = box
27 cv2 . rec tang le ( output_image , ( x1 , y1 ) , ( x2 , y2 ) ,
28 (0 , 255 , 0) , 5)
29

30 h o r i z o n t a l _ d i s t , v e r t i c a l _ d i s t = ca l cu la te_d i s tance
31 ( x1 , y1 , x2 , y2 )
32 p r i n t ( f ’ { l a b e l } a t ( { x1 } , { y1 } ) to ( { x2 } , { y2 } ) : ’ )
33 p r i n t ( f ’ Distance ( h o r i z o n t a l ) : { h o r i z o n t a l _ d i s t } p i x e l s ’ )
34 p r i n t ( f ’ Distance ( v e r t i c a l ) : { v e r t i c a l _ d i s t } p i x e l s ’ )
35

36 i f not a i rp lane_box :
37 ai rp lane_box = ( x1 , y1 , x2 , y2 )
38

39 i f s c a l e _ r a t i o :
40 r e a l _ h o r i z o n t a l _ d i s t a n c e = h o r i z o n t a l _ d i s t * s c a l e _ r a t i o
41 r e a l _ v e r t i c a l _ d i s t a n c e = v e r t i c a l _ d i s t * s c a l e _ r a t i o
42 p r i n t ( f ’ Real Dimensions : { r e a l _ h o r i z o n t a l _ d i s t a n c e : . 2 f }cm
43 ( h o r i z o n t a l ) , { r e a l _ v e r t i c a l _ d i s t a n c e : . 2 f } cm ( v e r t i c a l ) ’ )
44 dimensions . append ( [ r ea l_ho r i zon ta l _d i s t ance ,
45 r e a l _ v e r t i c a l _ d i s t a n c e ] )
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Code A.5: Detection and scale computation (Part 2).
1

2 output_image = cv2 . cv tCo lo r ( output_image , cv2 .COLOR_BGR2RGB)
3

4 r e t u r n output_image , sum(1 f o r l a b e l i n l a b e l s i f l a b e l i n
5 [ " a i r p l ane " , " k i t e " ] ) , a i rp lane_box
6

7 def process_images ( ) :
8 main_image = ’ main image path ’
9 other_images = [

10 ’ s tud ied image paths ’
11 ]
12

13 main_output , main_count , a i rp lane_detected_box =
14 image_Object_Detect ion ( main_image )
15 p r i n t ( f " Reference image : { main_count } a i r veh i c l e ( s ) detected " )
16

17 i f a i rp lane_detected_box :
18 x1 , _ , x2 , _ = ai rp lane_detected_box
19 r e f _ h o r i z o n t a l _ d i s t , _ = ca l cu la te_d i s tance ( x1 , 0 , x2 , 0)
20 else :
21 p r i n t ( "No ’ a i r p l ane ’ detected i n main_image ! " )
22 r e f _ h o r i z o n t a l _ d i s t = 0
23

24 s c a l e _ r a t i o = c a l c u l a t e _ s c a l e _ r a t i o ( r e f _ h o r i z o n t a l _ d i s t , 128)
25 p r i n t ( f " Scale : 1 p i x e l = { s c a l e _ r a t i o : . 2 f } cm" )
26

27 p l t . imshow ( main_output )
28 p l t . t i t l e ( ’ Reference Image ’ )
29 p l t . show ( )
30

31 f o r idx , img i n enumerate ( other_images , 1) :
32 output_image , detected_count = image_Object_Detect ion ( img ,
33 s c a l e _ r a t i o = s c a l e _ r a t i o ) [ 0 : 2 ]
34 p r i n t ( f " Image { idx } : { detected_count } a i r veh i c l e ( s ) detected " )
35

36 p l t . imshow ( output_image )
37 p l t . t i t l e ( f ’ Image { idx } ’ )
38 p l t . show ( )
39

40 i f __name__ == " __main__ " :
41 process_images ( )
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A.2.2. Distance calculation - Code 1

Code A.6: Distance calulation using Haversine Equation (Approach 1).
1 impor t math
2

3 def havers ine_d is tance ( la t1 , lon1 , l a t2 , lon2 ) :
4 r = 6371
5 l a t1_ rad = math . rad ians ( l a t 1 )
6 lon1_rad = math . rad ians ( lon1 )
7 l a t2_ rad = math . rad ians ( l a t 2 )
8 lon2_rad = math . rad ians ( lon2 )
9

10 d e l t a _ l a t = la t2_ rad − la t1_ rad
11 de l t a_ lon = lon2_rad − lon1_rad
12

13 a = math . s in ( d e l t a _ l a t / 2 ) * *2 + math . cos ( la t1_ rad )
14 * math . cos ( l a t2_ rad ) * math . s in ( de l t a_ lon / 2 ) **2
15 c = 2 * math . atan2 ( math . s q r t ( a ) , math . s q r t (1 − a ) )
16

17 d is tance = r * c * 1000
18 r e t u r n d is tance
19

20 l a t 1 = # l a t i t u d e of the camera p o s i t i o n
21 lon1 = # long i t ude of the camera p o s i t i o n
22

23 pos i t i ons_ob j2 = [ ’ d i f f e r e n t UAV coord ina tes ’ ]
24

25 he igh t_ob jec t = # a i r veh i c l e he igh t i n meters
26 height_camera = #camera he igh t i n meters
27 d i s t _ v e r = he igh t_ob jec t − height_camera
28

29 d is tances = [ ]
30

31 f o r l a t2 , lon2 i n pos i t i ons_ob j2 :
32 d i s t _ho r = havers ine_d is tance ( la t1 , lon1 , l a t2 , lon2 )
33 d i s t = math . s q r t ( d i s t _ho r **2 + d i s t _ v e r * * 2 )
34 d is tances . append ( d i s t )
35 p r i n t ( f " Distance from the camera to the a i r veh i c l e { len ( d is tances ) } :
36 " , d i s t , " meters " )
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A.2.3. Distance Calculation - Code 2

Code A.7: Distance calculation using Pythagoras’ Theorem twice (Approach 2).
1 impor t math
2

3 def ca l cu la te_d i s tance ( dist_cam_land_0 , height , d i s t _ l a t ) :
4 dist_cam_land = math . s q r t ( dist_cam_land_0 **2 + d i s t _ l a t * * 2 )
5 r e t u r n math . s q r t ( dist_cam_land **2 + he igh t * * 2 )
6

7 dist_cam_land_0 = # d is tance tak ing o f f −camera
8 he igh t = # f l i g h t he igh t
9 height_camera = 1.60

10 r ea l _he igh t = height −height_camera
11 d i s t _ l a t s = [ l a t e r a l 1 , l a t e r a l 2 , l a t e r a l 3 , l a t e r a l 4 ]
12

13 d i s t 0 =math . s q r t ( dist_cam_land_0 **2 + rea l_he igh t * * 2 )
14 p r i n t ( f " Distance from the camera to the a i r veh i c l e 0 : " , d i s t0 , " meters " )
15

16 d is tances = [ ]
17

18 f o r d i s t _ l a t i n d i s t _ l a t s :
19 d i s t = ca l cu la te_d i s tance ( dist_cam_land_0 , rea l_he igh t , d i s t _ l a t )
20 d is tances . append ( d i s t )
21 p r i n t ( f " Distance from the camera to the a i r veh i c l e f o r l a t e r a l
22 d is tance from the land ing p o s i t i o n { d i s t _ l a t } m: { d i s t : . 2 f } meters " )

A.2.4. Computation of visual size - Code

Code A.8: Visual size formula application.
1 impor t math
2 from de tec t ion_sca le impor t dimensions , process_images
3 from obta in_d is tance impor t d is tances
4

5 process_images ( )
6

7 S_values = [ ]
8

9 beta = (180**2 * 60**2) / math . p i * *2
10

11 f o r (H, D) , d i n z ip ( dimensions , d is tances ) :
12 alpha = H * D / ( d*100) **2
13 S = beta * alpha
14 S_values . append (S)
15

16 f o r i , S i n enumerate ( S_values ) :
17 p r i n t ( f " V isua l s i ze { i + 1} = {S} " )
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A.3. Absolute Color Difference Python Codes

In this appendix are presented the needed Python algorithms to isolate the air vehicle from
the sky and compute the specific absolute color difference formula.

A.3.1. Isolating object and background - Code

Code A.9: Isolate object and background.
1 impor t cv2
2 impor t numpy as np
3

4 def segment_image ( image_path , save_object_path , save_background_path ,
5 th resho ld_va lue =100) :
6 image = cv2 . imread ( image_path , cv2 .IMREAD_COLOR)
7 gray = cv2 . cv tCo lo r ( image , cv2 .COLOR_BGR2GRAY)
8 _ , thresho lded = cv2 . th resho ld ( gray , threshold_va lue , 255 ,
9 cv2 .THRESH_BINARY)

10 mask = thresho lded == 255
11 height , width , channels = image . shape
12

13 t ransparent_ob j_ img = np . zeros ( ( height , width , 4) , dtype=np . u i n t 8 )
14 t ransparent_ob j_ img [ : , : , : 3 ] = image
15 t ransparent_ob j_ img [ mask , 3 ] = 255
16 cv2 . imwr i te ( save_object_path , t ransparent_ob j_ img )
17

18 t ransparent_bg_img = np . zeros ( ( height , width , 4) , dtype=np . u i n t 8 )
19 t ransparent_bg_img [ : , : , : 3 ] = image
20 t ransparent_bg_img [~mask , 3 ] = 255
21 cv2 . imwr i te ( save_background_path , t ransparent_bg_img )
22

23 image_path = ’ image path ’
24 outpu t_ob jec t_path = ’ output ob jec t path ’
25 output_background_path = ’ output background path ’
26 segment_image ( image_path , output_ob ject_path , output_background_path )
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A. Python Codes

A.3.2. Mean LAB values and ∆ E - Code

Code A.10: Absolute color difference computation.
1

2 from PIL impor t Image
3 impor t numpy as np
4 from skimage impor t co l o r
5 impor t m a t p l o t l i b . pyp lo t as p l t
6

7 ref_image_path = ’ re ference image path ’
8 ref_image = Image . open ( ref_image_path )
9 p l t . imshow ( ref_image )

10 p l t . show ( )
11

12 def get_mean_lab_values ( image_path ) :
13 img = Image . open ( image_path )
14 p l t . imshow ( img )
15 p l t . show ( )
16 img_arr = np . asarray ( img )
17 non_t ransparen t_p ixe ls = np . where ( img_arr [ . . . , −1] > 0)
18 img_arr = img_arr [ : , : , : 3 ]
19 lab_img = co lo r . rgb2lab ( img_arr )
20 L_mean = np . mean( lab_img [ non_t ransparen t_p ixe ls ] [ : , 0 ] )
21 A_mean = np . mean( lab_img [ non_t ransparen t_p ixe ls ] [ : , 1 ] )
22 B_mean = np . mean( lab_img [ non_t ransparen t_p ixe ls ] [ : , 2 ] )
23 r e t u r n L_mean , A_mean , B_mean
24

25 ob jec t_path = ’ ob jec t image path ’
26 background_path = ’ background image path ’
27

28 L_mean_object , A_mean_object , B_mean_object =
29 get_mean_lab_values ( ob jec t_path )
30 p r i n t ( " L_mean_object : " , L_mean_object )
31 p r i n t ( " A_mean_object : " , A_mean_object )
32 p r i n t ( " B_mean_object : " , B_mean_object )
33

34 L_mean_background , A_mean_background , B_mean_background =
35 get_mean_lab_values ( background_path )
36 p r i n t ( " L_mean_background : " , L_mean_background )
37 p r i n t ( " A_mean_background : " , A_mean_background )
38 p r i n t ( " B_mean_background : " , B_mean_background )
39

40 E_abs = ( ( L_mean_background − L_mean_object ) * * 2 +
41 ( A_mean_background − A_mean_object ) * * 2 +
42 ( B_mean_background − B_mean_object ) * * 2) * * 0.5
43 p r i n t ( " Absolute co lour d i f f e r e n c e : " , E_abs )
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A. Python Codes

A.4. Cozman and Krotkov Formula Application Code

Here is presented the formulated algorithm to apply Cozman and Krotkov Formula that
enables to study color contrast at different depths and visibilities taking into account
atmospheric scattering.

Code A.11: Raspberry Pi Camera code to simultaneously take pictures and videos.
1 from PIL impor t Image
2 impor t numpy as np
3 from skimage impor t co l o r
4 impor t m a t p l o t l i b . pyp lo t as p l t
5 impor t math
6

7 def get_mean_luminosi ty ( image_path ) :
8 img = Image . open ( image_path )
9 p l t . imshow ( img )

10 p l t . show ( )
11 img_arr = np . asarray ( img )
12 non_t ransparen t_p ixe ls = np . where ( img_arr [ . . . , −1] > 0)
13 img_arr = img_arr [ : , : , : 3 ]
14 lab_img = co lo r . rgb2lab ( img_arr )
15 L_mean = np . mean( lab_img [ non_t ransparen t_p ixe ls ] [ : , 0 ] )
16 r e t u r n L_mean
17

18 ob jec t_path = ’ ob jec t image path ’
19 background_path = ’ backrgound image path ’
20

21 L_mean_object_0 = get_mean_luminosi ty ( ob jec t_path )
22 p r i n t ( " L_mean_ob jec t_ in i t i a l : " , L_mean_object_0 )
23

24 L_mean_background_0 = get_mean_luminosi ty ( background_path )
25 p r i n t ( " L_mean_background_in i t ia l : " , L_mean_background_0 )
26

27 v i s i b i l i t y = # v i s i b i l i t y value i n meters
28 d = # d is tance between ob jec t and observer i n meters
29 c_ i = abs ( ( L_mean_object_0 − L_mean_background_0 ) ) * (100/256)
30 p r i n t ( f " I n i t i a l Cont rast i s { c_ i } %" )
31 beta = 1.932 / v i s i b i l i t y
32 p r i n t ( f " Beta i s { beta } " )
33 c_d = ( c_ i ) * math . exp( − beta *d )
34 p r i n t ( f " The con t ras t a t a d is tance of { d } m i s { c_d } %" )
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B. Flight Test Data Analysis

B.1. Visual Size Assessment Procedure

In this appendix, photographs of UAV 1 taken during the Flight Campaign on the 23rd
of August are presented. These images have been processed using Python to estimate
variations in visual size. Additionally, an example of UAV 2 visual size measurement is also
presented.

B.1.1. Photographs with 0º orientation camera and 2m altitude

(a) 0m lateral distance. (b) 1m lateral distance. (c) 2m lateral distance.

Figure B.1.: Photographs at 3m ground distance, 2m altitude and 0º orientation.

(a) 0m lateral distance. (b) 2m lateral distance. (c) 4m lateral distance.

Figure B.2.: Photographs at 10m ground distance, 2m altitude and 0º orientation.

(a) 0m lateral distance. (b) 4m lateral distance. (c) 8m lateral distance.

Figure B.3.: Photographs at 20m ground distance, 2m altitude and 0º orientation.
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B.1.2. Photographs with 0º orientation camera and 5m altitude

(a) 0m lateral distance. (b) 2m lateral distance. (c) 4m lateral distance.

Figure B.4.: Photographs at 10m ground distance, 5m altitude and 0º orientation.

(a) 0m lateral distance. (b) 4m lateral distance. (c) 8m lateral distance.

Figure B.5.: Photographs at 20m ground distance, 5m altitude and 0º orientation.

B.1.3. Photographs with 30º orientation camera and 2m altitude

(a) 0m lateral distance. (b) 1m lateral distance. (c) 2m lateral distance.

Figure B.6.: Photographs at 3m ground distance, 2m altitude and 30º orientation.
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B. Flight Test Data Analysis

(a) 0m lateral distance. (b) 2m lateral distance. (c) 4m lateral distance.

Figure B.7.: Photographs at 10m ground distance, 2m altitude and 30º orientation.

(a) 0m lateral distance. (b) 4m lateral distance. (c) 8m lateral distance.

Figure B.8.: Photographs at 20m ground distance, 2m altitude and 30º orientation.

B.1.4. Photographs with 30º orientation camera and 2m altitude

(a) 0m lateral distance. (b) 2m lateral distance. (c) 4m lateral distance.

Figure B.9.: Photographs at 10m ground distance, 5m altitude and 30º orientation.
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B. Flight Test Data Analysis

(a) 0m lateral distance. (b) 4m lateral distance. (c) 8m lateral distance.

Figure B.10.: Photographs at 20m ground distance, 5m altitude and 30º orientation.

B.1.5. Photographs with 0º orientation camera and 5m altitude (UAV 2)

(a) 0m lateral distance. (b) 2m lateral distance. (c) 4m lateral distance.

Figure B.11.: Photographs at 10m ground distance, 5m altitude and 0º orientation (UAV 2).

B.2. Color Contrast Isolating object

(a) Case 1. (b) Python. (c) Python. (d) GIMP. (e) GIMP.

Figure B.12.: Case 1 isolating process.

(a) Case 2. (b) Python. (c) Python. (d) GIMP. (e) GIMP.

Figure B.13.: Case 2 isolating process.
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B. Flight Test Data Analysis

(a) Case 3. (b) Python. (c) Python. (d) GIMP. (e) GIMP.

Figure B.14.: Case 3 isolating process.

(a) Case 4. (b) Python. (c) Python. (d) GIMP. (e) GIMP.

Figure B.15.: Case 4 isolating process.

(a) Case 5. (b) Python. (c) Python. (d) GIMP. (e) GIMP.

Figure B.16.: Case 5 isolating process.

B.3. Visual Size Numerical Results

80



B. Flight Test Data Analysis

D
eg

re
es

A
lti

tu
de

(m
)

G
ro

un
d

D
is

t(
m

)
La

te
ra

lD
is

t(
m

)
D

is
ta

nc
e

(m
)

S
ca

le
(c

m
/p

x)
H

or
iz

on
ta

lD
im

en
si

on
(c

m
)

Ve
rt

ic
al

D
im

en
si

on
(c

m
)

V
is

ua
lS

iz
e

(a
rc

m
in

2
)

0
2

3
0

3
.0
3

0.
08

12
8.
00

41
.2
3

68
0
95

1
.1
3
2
6

0
2

3
1

3
.1
9

0.
08

11
5.
18

33
.9
1

4
54

3
39

.0
2
15

0
2

10
0

10
.0
1

0.
26

12
8.
00

29
.8
2

45
0
30

.0
09

1
8

0
2

10
2

10
.2
1

0.
26

12
6.
46

27
.2
4

39
0
91

.2
0
1
24

0
2

10
4

10
.7
8

0.
26

13
0.
31

36
.7
6

4
8
73

0
.0
0
0
16

0
2

20
0

20
.0
0

0.
55

12
8.
00

25
.7
1

97
18

.8
75

7
74

0
2

2
0

4
20

.4
0

0.
55

12
6.
91

31
.1
8

11
2
36

.6
9
2
49

0
2

20
8

21
.5
4

0.
55

13
4.
56

32
.8
2

1
1
24

4
.8
7
51

0
5

10
0

10
.5
6

0.
29

12
8.
00

26
.8

36
3
36

.3
00

7
8

0
5

1
0

2
10

.7
5

0.
29

12
0.
02

35
.0
6

43
0
38

.2
5
9
22

0
5

10
4

11
.2
9

0.
29

12
3.
44

41
.6
2

4
7
59

9
.3
7
6
55

0
5

20
0

20
.2
9

0.
56

12
8.
00

27
.8
3

1
0
2
27

.6
70

1
8

0
5

2
0

4
20

.6
8

0.
56

10
0.
17

32
.2
8

89
37

.4
87

82
3

0
5

20
8

21
.8
1

0.
56

11
8.
54

36
.7
3

1
0
82

0
.0
7
4
56

30
2

3
0

3
.0
3

0.
09

12
8.
00

38
.8
3

6
41

3
24

.8
87

30
2

3
1

3
.1
9

0.
09

11
9.
74

38
.9
2

54
2
07

2
.7
25

9

30
2

3
2

3
.6
3

0.
09

15
3.
97

52
.0
3

7
1
9
5
0
4
.4
6
08

30
2

10
0

10
.0
1

0.
25

12
8.
00

26
.9
5

4
0
6
9
8
.6
28

9
8

3
0

2
1
0

2
10

.2
1

0.
25

10
9.
79

21
.9
6

27
3
50

.6
31

1
1

30
2

10
4

10
.7
8

0.
25

12
4.
01

33
.9
3

4
2
81

2
.6
0
6
42

30
2

20
0

20
.0
0

0.
55

12
8.
00

29
.9
2

1
1
3
1
1
.3
85

6
8

3
0

2
2
0

4
20

.4
0

0.
55

12
8.
55

31
.5
8

11
5
30

.4
49

8
4

30
2

20
8

21
.5
4

0.
55

13
4.
10

34
.3
5

1
1
72

9
.5
9
6
95

30
5

10
0

10
.5
6

0.
31

12
8.
00

57
.8
5

7
8
4
3
7
.4
95

4
4

3
0

5
1
0

2
10

.7
5

0.
31

12
6.
15

45
.5
4

58
7
51

.5
16

6
9

30
5

10
4

11
.2
9

0.
31

14
0.
62

57
.5
4

7
4
95

9
.0
9
5
88

30
5

20
0

20
.2
9

0.
56

12
8.
00

34
.9
6

1
2
84

9
.9
1
8
6
6

3
0

5
20

4
20

.6
8

0.
56

12
1.
23

36
.6
5

12
2
82

.0
46

5
4

30
5

20
8

21
.8
1

0.
56

12
1.
23

48
.4
9

1
4
60

9
.9
1
1
44

Ta
bl

e
B

.1
.:

V
is

ua
ls

iz
e

an
al

ys
is

re
su

lts

81



Bibliography

United Nations (2018). World Urbanization Prospects. URL: https://population.un.org/
wup/Download/ (cit. on p. 1).

Cohen, Adam P., Susan A. Shaheen, and Emily M. Farrar (2021). “Urban Air Mobility:
History, Ecosystem, Market Potential, and Challenges”. In: IEEE Transactions on
Intelligent Transportation Systems 22.9, pp. 6074–6087. DOI: 10 . 1109 / tits . 2021 .
3082767 (cit. on p. 3).

Straubinger, Anna et al. (2020). “An Overview of Current Research and Developments in
Urban Air Mobility – Setting the Scene for UAM Introduction”. In: Journal of Air Transport
Management 87, p. 101852. DOI: 10.1016/j.jairtraman.2020.101852 (cit. on pp. 3, 4).

NASA (2001). SATS: A bold vision: NASA-led technology development aimed at increasing
mobility, access for smaller communities. FS-2001-03-59-LaRC. URL: https : / / www .
nasa.gov/centers/langley/news/factsheets/SATS.html (cit. on p. 3).

Volocopter (Oct. 2011). Manned First Flight Writes Aviation History. Karlsruhe, Germany in
October 2011. URL: https://www.volocopter.com/newsroom/manned-first-flight-
writes-aviation-history/ (cit. on p. 3).

EASA (2021a). Urban Air Mobility (UAM) - Frequently Asked Questions. Tech. rep.
European Union Aviation Safety Agency (EASA). URL: https://www.easa.europa.
eu/sites/default/files/dfu/uam_-_faqs.pdf (cit. on pp. 3, 4).

Gillis, Dominique et al. (Sept. 2021). “Urban Air Mobility: A State of Art Analysis”. In:
pp. 411–425. ISBN: 978-3-030-86959-5. DOI: 10.1007/978- 3- 030- 86960- 1_29 (cit.
on p. 4).

Volocopter GmbH (2017). Volocopter. URL: http : / / www . volocopter . com (visited on
07/20/2017) (cit. on p. 4).

CityAirbus (2021). Technology. URL: https://www.airbus.com/en/newsroom/press-
releases/2021-09-airbus-reveals-the-next-generation-of-cityairbus (visited on
09/21/2021) (cit. on p. 4).

Rajendran, Sivaprasad and Sushma Srinivas (2020). “Air taxi service for urban mobility:
A critical review of recent developments, future challenges, and opportunities”. In:
Transportation Research Part E: Logistics and Transportation Review 143, p. 102090.
DOI: 10.1016/j.tre.2020.102090 (cit. on p. 4).

Energy Statistics Data Browser (2022). Accessed on July 3, 2023. International Energy
Agency. URL: https://www.iea.org/data- and- statistics/data- tools/energy-
statistics-data-browser (cit. on p. 5).

European Environment Agency (2021). Decarbonising road transport – the role of vehicles,
fuels and transport demand. Tech. rep. European Environment Agency. URL: https://
www.eea.europa.eu/publications/transport-and-environment-report-2021 (visited
on 06/29/2023) (cit. on pp. 5, 6).

Kasliwal, A. et al. (Dec. 2019). “Role of flying cars in sustainable mobility”. In: Nature
Commun. 10.1, p. 1555. DOI: 10.1038/s41467-019-09344-7 (cit. on p. 6).

Connors, M. M. (2019). Factors that Influence Community’s Acceptance of Noise: An
Introduction for Urban Air Mobility. Tech. rep. NASA Ames Research Center. URL: https:
//ntrs.nasa.gov/api/citations/20190032256/downloads/20190032256.pdf (cit. on
pp. 6, 7, 17).

EASA (2021b). Study on the societal acceptance of Urban Air Mobility in Europe. Tech. rep.
European Union Aviation Safety Agency (cit. on pp. 7, 9, 10).

82

https://population.un.org/wup/Download/
https://population.un.org/wup/Download/
https://doi.org/10.1109/tits.2021.3082767
https://doi.org/10.1109/tits.2021.3082767
https://doi.org/10.1016/j.jairtraman.2020.101852
https://www.nasa.gov/centers/langley/news/factsheets/SATS.html
https://www.nasa.gov/centers/langley/news/factsheets/SATS.html
https://www.volocopter.com/newsroom/manned-first-flight-writes-aviation-history/
https://www.volocopter.com/newsroom/manned-first-flight-writes-aviation-history/
https://www.easa.europa.eu/sites/default/files/dfu/uam_-_faqs.pdf
https://www.easa.europa.eu/sites/default/files/dfu/uam_-_faqs.pdf
https://doi.org/10.1007/978-3-030-86960-1_29
http://www.volocopter.com
https://www.airbus.com/en/newsroom/press-releases/2021-09-airbus-reveals-the-next-generation-of-cityairbus
https://www.airbus.com/en/newsroom/press-releases/2021-09-airbus-reveals-the-next-generation-of-cityairbus
https://doi.org/10.1016/j.tre.2020.102090
https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser
https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser
https://www.eea.europa.eu/publications/transport-and-environment-report-2021
https://www.eea.europa.eu/publications/transport-and-environment-report-2021
https://doi.org/10.1038/s41467-019-09344-7
https://ntrs.nasa.gov/api/citations/20190032256/downloads/20190032256.pdf
https://ntrs.nasa.gov/api/citations/20190032256/downloads/20190032256.pdf


Bibliography

Beutel, M. E. et al. (2016). “Noise Annoyance Is Associated with Depression and Anxiety
in the General Population - The Contribution of Aircraft Noise”. In: PLoS ONE 11.5,
e0155357. DOI: 10.1371/journal.pone.0155357 (cit. on p. 7).

Kwon, J., Y. Kim, and Park (2017). “Applying LSA text mining technique in envisioning social
impacts of emerging technologies: the case of drone technology”. In: Technovation. DOI:
10.1016/j.technovation.2017.01.001 (cit. on p. 7).

Yedavalli, Pavan and Jessie Mooberry (2019). “An Assessment of Public Perception of
Urban Air Mobility (UAM)”. In: Airbus UTM: Defining Future Skies, pp. 1–28 (cit. on pp. 7,
8).

Thomas, Kilian and Tobias A. Granberg (2023). “Quantifying Visual Pollution from Urban
Air Mobility”. In: Drones 7.6. ISSN: 2504-446X. URL: https://www.mdpi.com/2504-
446X/7/6/396 (cit. on pp. 7, 8).

Said, Mohamed et al. (Aug. 2021). “Visual pollution manifestations negative impacts on
the people of Saudi Arabia”. In: International Journal of ADVANCED AND APPLIED
SCIENCES 8, pp. 94–101. DOI: 10.21833/ijaas.2021.09.013 (cit. on p. 8).

Hasan, Shahab (2019). “Urban Air Mobility (UAM) Market Study”. In: NASA, pp. 1–148 (cit.
on pp. 8, 9).

Shaw, I. (2016). “The urbanization of drone warfare: policing surplus populations in the
dronepolis”. In: Geograph. Helv. DOI: 10.5194/gh-71-19-2016 (cit. on p. 10).

Chmielewski, S. (2020). “Chaos in motion: Measuring visual pollution with tangential view
landscape metrics”. In: Land 9, p. 515. DOI: 10.3390/land9120515. URL: https://www.
mdpi.com/2073-445X/9/12/515 (cit. on p. 10).

Empire, Understanding (2016). The Urbanization of Drone Warfare: Policing Surplus
Populations in the Dronepolis. URL: https://understandingempire.wordpress.com/
2016/02/03/the-urbanization-of-drone-warfare-policing-surplus-populations-
in-the-dronepolis/ (cit. on p. 10).

Sullivan, Robert and Mark Meyer (Aug. 2014). Guide To Evaluating Visual Impact
Assessments for Renewable Energy Projects. DOI: 10.13140/2.1.3216.5767 (cit. on
p. 11).

Bishop, I. D. (2002). “Determination of Thresholds of Visual Impact: The Case of Wind
Turbines”. In: Environment and Planning B: Planning and Design 29.5, pp. 707–718. DOI:
10.1068/b12854. URL: https://doi.org/10.1068/b12854 (cit. on pp. 12, 14, 40, 41, 62).

Garnero, G. and E. Fabrizio (2015). “Visibility analysis in urban spaces: a raster-based
approach and case studies”. In: Environment and Planning B: Planning and Design 42.4,
pp. 688–707. DOI: 10.1068/b130119p (cit. on p. 12).

Holladay, Jack T. (Feb. 2004). “Visual acuity measurements”. In: Journal of Cataract &
Refractive Surgery 30.2, pp. 287–290. DOI: 10.1016/j.jcrs.2004.01.014 (cit. on
p. 13).

ALPF (2022). Uncorrected and Corrected Visual Acuity. https://www.alpfmedical.info/
visual-acuity/basic-knowledge-itx.html. Accessed June 5 2023 (cit. on p. 13).

Caltrider, D., A. Gupta, and K. Tripathy (2023). “Evaluation of Visual Acuity”. In: StatPearls
(cit. on p. 13).

Foley, H. J. and M. W. Matlin (2009). Sensation and Perception. New York: Pearson College
Division (cit. on p. 13).

Mokrzycki, Wojciech and Mirosław Tatol (2011). Color difference Delta E - A survey. https:
//www.researchgate.net/publication/236023905_Color_difference_Delta_E_-
_A_survey (cit. on pp. 14, 15).

Magill, A. W. and R. B. J. Litton (1986). “A color measuring system for landscape
assessment”. In: Landscape J. 5.1, pp. 45–54 (cit. on p. 14).

Skrok, Daniel (2022). What are Color Modes? Accessed: 03-05-2023. URL: https://www.
interaction-design.org/literature/article/what-are-color-modes (cit. on p. 15).

83

https://doi.org/10.1371/journal.pone.0155357
https://doi.org/10.1016/j.technovation.2017.01.001
https://www.mdpi.com/2504-446X/7/6/396
https://www.mdpi.com/2504-446X/7/6/396
https://doi.org/10.21833/ijaas.2021.09.013
https://doi.org/10.5194/gh-71-19-2016
https://doi.org/10.3390/land9120515
https://www.mdpi.com/2073-445X/9/12/515
https://www.mdpi.com/2073-445X/9/12/515
https://understandingempire.wordpress.com/2016/02/03/the-urbanization-of-drone-warfare-policing-surplus-populations-in-the-dronepolis/
https://understandingempire.wordpress.com/2016/02/03/the-urbanization-of-drone-warfare-policing-surplus-populations-in-the-dronepolis/
https://understandingempire.wordpress.com/2016/02/03/the-urbanization-of-drone-warfare-policing-surplus-populations-in-the-dronepolis/
https://doi.org/10.13140/2.1.3216.5767
https://doi.org/10.1068/b12854
https://doi.org/10.1068/b12854
https://doi.org/10.1068/b130119p
https://doi.org/10.1016/j.jcrs.2004.01.014
https://www.alpfmedical.info/visual-acuity/basic-knowledge-itx.html
https://www.alpfmedical.info/visual-acuity/basic-knowledge-itx.html
https://www.researchgate.net/publication/236023905_Color_difference_Delta_E_-_A_survey
https://www.researchgate.net/publication/236023905_Color_difference_Delta_E_-_A_survey
https://www.researchgate.net/publication/236023905_Color_difference_Delta_E_-_A_survey
https://www.interaction-design.org/literature/article/what-are-color-modes
https://www.interaction-design.org/literature/article/what-are-color-modes


Bibliography

Bishop, I. D. (2021). “Analysis and visualization of temporal variation in visual impacts”. In:
Landscape and Urban Planning 210, p. 104068. DOI: 10.1016/j.landurbplan.2021.
104068. URL: https://doi.org/10.1016/j.landurbplan.2021.104068 (cit. on p. 15).

Jnido, Ghiath, Gisela Ohms, and Wolfgang Viöl (July 2019). “Deposition of TiO2 Thin Films
on Wood Substrate by an Air Atmospheric Pressure Plasma Jet”. In: Coatings 9, p. 441.
DOI: 10.3390/coatings9070441 (cit. on p. 16).

Rayleigh (Feb. 1871). “XV. On the light from the sky, its polarization and colour”. In:
Philosophical Magazine Series 4 41.271, pp. 107–120 (cit. on p. 16).

Mie, G. (Jan. 1908). “Beitrage zur optik trüber medien, speziell kolloidaler metallösungen”.
In: Ann. Phys. 330.3, pp. 377–445 (cit. on p. 16).

Lopes, Diogo and António Ramires Fernandes (Nov. 2014). “Atmospheric Scattering -State
of the Art”. In: (cit. on pp. 16–18).

Klassen, R. V. (July 1987). “Modeling the effect of the atmosphere on light”. In: ACM
Transactions on Graphics 6.3, pp. 215–237 (cit. on p. 17).

Cozman, F and E Krotkov (June 1997). “Depth from scattering”. In: Proceedings of
Computer Vision and Pattern Recognition. IEEE Computer Society, Washington, DC,
pp. 801–806 (cit. on p. 18).

Malm, William (1983). “Introduction to Visibility”. In: National Park Service, Air and Water
Quality Division, Air Research Branch, pp. 1–70 (cit. on pp. 18, 19).

McCartney, E. J. (1976). Optics of the Atmosphere. New York: John Wiley and Sons, Inc.
(cit. on p. 18).

Chang, D., Y. Song, and B. Liu (2009). “Visibility trends in six megacities in China
1973–2007”. In: Atmospheric Research 94.2, pp. 161–167. DOI: 10.1016/j.atmosres.
2009.05.006. URL: https://doi.org/10.1016/j.atmosres.2009.05.006 (cit. on p. 19).

Bishop, I. D. (2019). “The implications for visual simulation and analysis of temporal variation
in the visibility of wind turbines”. In: Landscape and Urban Planning 184, pp. 59–68. DOI:
10.1016/j.landurbplan.2018.12 (cit. on p. 19).

Town, Mountain (2023). I-70 EB closed at MM-255. Accessed: 09-06-2023. URL: https:
//mymountaintown.com/forum/46- scanner- emergency- info- weather- forecasts/
332060-i-70-eb-closed-at-mm-255-left-lane-wb-closed-due-to-accident (cit. on
p. 19).

Shang, Haidong and Bishop (2000). “Visual thresholds for detection, recognition and visual
impact in landscape settings”. In: Journal of Environmental Psychology 20, pp. 125–140
(cit. on pp. 20, 21, 63).

Dember, W. N. (1960). The Physiology of Perception. New York: Holt, Rhinehart and
Winston (cit. on p. 20).

Ellis, Stephen et al. (Oct. 2002). “Augmented Reality in a Simulated Tower Environment:
Effect of Field of View on Aircraft Detection”. In: (cit. on p. 21).

Torrejon, Alfonso, Victor Callaghan, and Hani Hagras (Nov. 2013). “Panoramic Audio and
Video: towards an Immersive Learning experience”. In: (cit. on p. 22).

Roberts, Beth and Juliet Osborne (May 2019). “Testing the efficacy of a thermal camera as
a search tool for locating wild bumble bee nests”. In: Journal of Apicultural Research 58,
pp. 1–7. DOI: 10.1080/00218839.2019.1614724 (cit. on p. 22).

Madhusanka, Achintha and Buddhika Jayasekara (Dec. 2016). “Design and Development
of Adaptive Vision Attentive Robot Eye for Service Robot in Domestic Environment”. In:
DOI: 10.1109/ICIAFS.2016.7946529 (cit. on p. 22).

Thorpe Davis, E. (1997). “Visual Requirements in HMDs: What can we see and what do we
need to see?” In: Head-mounted displays: designing for the user. Ed. by J.E. Melzer and
K. Moffit. New York: Mc Graw-Hill, pp. 208–252 (cit. on p. 22).

84

https://doi.org/10.1016/j.landurbplan.2021.104068
https://doi.org/10.1016/j.landurbplan.2021.104068
https://doi.org/10.1016/j.landurbplan.2021.104068
https://doi.org/10.3390/coatings9070441
https://doi.org/10.1016/j.atmosres.2009.05.006
https://doi.org/10.1016/j.atmosres.2009.05.006
https://doi.org/10.1016/j.atmosres.2009.05.006
https://doi.org/10.1016/j.landurbplan.2018.12
https://mymountaintown.com/forum/46-scanner-emergency-info-weather-forecasts/332060-i-70-eb-closed-at-mm-255-left-lane-wb-closed-due-to-accident
https://mymountaintown.com/forum/46-scanner-emergency-info-weather-forecasts/332060-i-70-eb-closed-at-mm-255-left-lane-wb-closed-due-to-accident
https://mymountaintown.com/forum/46-scanner-emergency-info-weather-forecasts/332060-i-70-eb-closed-at-mm-255-left-lane-wb-closed-due-to-accident
https://doi.org/10.1080/00218839.2019.1614724
https://doi.org/10.1109/ICIAFS.2016.7946529


Bibliography

Wang, Minqi and Emily A. Cooper (Nov. 2022). “Perceptual Guidelines for Optimizing Field
of View in Stereoscopic Augmented Reality Displays”. In: ACM Trans. Appl. Percept. 19.4.
DOI: https://doi.org/10.1145/3554921 (cit. on p. 22).

Lange, Karl-Heinz and Klaus Windel (2017). Kleine Ergonomische Datensammlung. 16th.
Colonia: Editorial de Colonia (cit. on p. 23).

Gilman, Samuel, Donald Dirks, and Steven Hunt (Jan. 1979). “Measurement of head
movement during auditory localization”. In: The Journal of the Acoustical Society of
America 11, pp. 37–41. DOI: 10.3758/BF03205429 (cit. on p. 23).

Raspberry-Pi (2020). Raspberry Pi Remote Access Documentation. Accessed: 15-06-2023.
URL: https://www.raspberrypi.com/documentation/computers/remote-access.html
(cit. on p. 24).

Spain announces plans for flying taxi service in Barcelona (Nov. 2020). Accessed:
[2023-08-15]. The Guardian. URL: https://www.theguardian.com/world/2020/nov/
05/spain-announces-plans-flying-taxi-service-barcelona (cit. on p. 27).

Ponnusamy, Arun (2021). cvlib Python Library. URL: https : / / www . github . com /
arunponnusamy/cvlib (cit. on p. 30).

Time and Date AS (2023). Weather in Garching, Bavaria, Germany: Historic Data.
Accessed: May-July-August 2023. URL: https : / / www . timeanddate . com / weather /
@2922582/historic (cit. on pp. 41, 45).

H-Aero (2023). Zero Plus. Accessed: [15th August 2023]. URL: https://h-aero.com/en/
products/zero-plus (cit. on pp. 42, 43).

Codes, HTML Color (2023). Blue Color Codes. Accessed: 12-08-2023. URL: https://html-
color.codes/color-names (cit. on p. 43).

85

https://doi.org/https://doi.org/10.1145/3554921
https://doi.org/10.3758/BF03205429
https://www.raspberrypi.com/documentation/computers/remote-access.html
https://www.theguardian.com/world/2020/nov/05/spain-announces-plans-flying-taxi-service-barcelona
https://www.theguardian.com/world/2020/nov/05/spain-announces-plans-flying-taxi-service-barcelona
https://www.github.com/arunponnusamy/cvlib
https://www.github.com/arunponnusamy/cvlib
https://www.timeanddate.com/weather/@2922582/historic
https://www.timeanddate.com/weather/@2922582/historic
https://h-aero.com/en/products/zero-plus
https://h-aero.com/en/products/zero-plus
https://html-color.codes/color-names
https://html-color.codes/color-names

	Titel
	Abstract
	Acknowledges
	Statement of Academic Integrity
	Declaration for the transfer of the thesis
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Objective
	1.2 Procedural Method

	2 Theoretical Framework
	2.1 Urban Air Mobility
	2.1.1 Introduction to Urban Air Mobility
	2.1.2 Environmental Impacts of Urban Air Mobility
	2.1.3 Social Acceptance of Urban Air Mobility

	2.2 Factors Affecting the Visual Perception of Urban Air Vehicles
	2.2.1 Estimation of Size
	2.2.2 Color Difference
	2.2.3 Atmospheric Scattering

	2.3 Regression model to estimate visual thresholds
	2.4 Human Field of View

	3 Methodology
	3.1 Experimental Setup
	3.1.1 Measurement Station
	3.1.2 Raspberry Pi Camera Configuration
	3.1.3 Scenario Planning for Data Collection

	3.2 Determination of visual size
	3.2.1 Detection and Recognition of the Air Vehicle
	3.2.2 Obtaining the Distance-to-pixel Ratio
	3.2.3 Obtaining the Camera-Vehicle Distance
	3.2.4 Applying Visual Size Formula

	3.3 Determination of Absolute Color Difference
	3.3.1 Air Vehicle Isolation in Images Using GIMP
	3.3.2 Air Vehicle Isolation in Images Using Python
	3.3.3 Compute LAB Mean Values

	3.4 Contrast Determination in the Presence of Atmospheric Scattering
	3.5 Digital Simulations of Scenarios using GIMP

	4 Results and Discussion
	4.1 Visual Size Assessment
	4.2 Absolute Color Difference Variation using Flight Test Data
	4.3 Color Contrast and Atmospheric Scattering Evaluation.
	4.4 Absolute Color Difference Simulation Results
	4.5 Limitations of the Study and Future Work

	5 Conclusion
	A Python Codes
	A.1 Raspberry Pi Camera Python Codes
	A.1.1 Raspberry Pi Camera - Code 1
	A.1.2 Raspberry Pi Camera - Code 2
	A.1.3 Raspberry Pi Camera - Code 3

	A.2 Visual Size Python Codes
	A.2.1 Detection and scale computation - Code
	A.2.2 Distance calculation - Code 1
	A.2.3 Distance Calculation - Code 2
	A.2.4 Computation of visual size - Code

	A.3 Absolute Color Difference Python Codes
	A.3.1 Isolating object and background - Code
	A.3.2 Mean LAB values and Delta E - Code

	A.4 Cozman and Krotkov Formula Application Code

	B Flight Test Data Analysis
	B.1 Visual Size Assessment Procedure
	B.1.1 Photographs with 0º orientation camera and 2m altitude
	B.1.2 Photographs with 0º orientation camera and 5m altitude
	B.1.3 Photographs with 30º orientation camera and 2m altitude
	B.1.4 Photographs with 30º orientation camera and 2m altitude
	B.1.5 Photographs with 0º orientation camera and 5m altitude (UAV 2)

	B.2 Color Contrast Isolating object
	B.3 Visual Size Numerical Results


