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Abstract
We present a discriminative learning algorithm for the probabilistic estimation of two-dimensional probabilistic context-free 
grammars (2D-PCFG) for mathematical expressions recognition and retrieval. This algorithm is based on a generalization 
of the H-criterion as the objective function and the growth transformations as the optimization method. For the develop-
ment of the discriminative estimation algorithm, the N-best interpretations provided by the 2D-PCFG have been considered. 
Experimental results are reported on two available datasets: Im2Latex and IBEM. The first experiment compares the proposed 
discriminative estimation method with the classic Viterbi-based estimation method. The second one studies the performance 
of the estimated models depending on the length of the mathematical expressions and the number of admissible errors in 
the metric used.

Keywords  Discriminative learning · Two-dimensional probabilistic context-free grammars · Mathematical expression 
retrieval · Probabilistic indexing

1  Introduction

Syntactic models have been demonstrated to be a funda-
mental formalism for pattern recognition since they intro-
duce effective restrictions in the solution search space for 
structured interpretation problems. Thus, finite-state lan-
guage models provide a prior probability in many current 
applications, like automatic speech recognition (ASR) [1], 
machine translation (MT) [2], and handwritten text recogni-
tion (HTR) [3], that makes the decoding problem feasible. 
A noticeable characteristic of syntactic models is that they 
can provide efficiently a possible interpretation for a given 

input or a sorted set of N-best alternative interpretations for 
the same input. The computation of N-best solutions for sto-
chastic finite-state models [4] and probabilistic context-free 
grammars (PCFG) has been studied in the past [5]. These 
N-best solutions can be represented as a word graph [6] or 
a hypergraph [7] that can generalize and provide alternative 
hypotheses not previously included in the N-best solutions.

The word graphs obtained from stochastic finite-state 
models are meaningful representations used in ASR [6], MT 
[8], and HTR [9] since they can obtain confidence measures 
at the word or sentence levels. Hypergraphs computed from 
PCFG can be used for the same purpose, and they have been 
used in the past for interactive parsing [10] and mathemati-
cal expression recognition [7]. Probabilistic training from 
data is usually performed by optimizing a goal function and 
using some statistical optimization framework. It is of para-
mount importance to take profit as much as possible of the 
data in the case of a limited amount of training samples. 
Probabilistic training of PCFG has been researched using the 
maximum likelihood criterion and optimizing this function 
in the optimization framework based on growth transforma-
tions [11].

PCFGs are a powerful formalism for parsing mathemati-
cal expressions (ME) since they are suitable for capturing 
long-term dependencies among the different elements in a 
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ME and hierarchical dependencies on large regions of the 
ME. This paper considers a two-dimensional extension of 
PCFG (2D-PCFG) [12, 13] that deals with the inherent spa-
tial ambiguity of ME. The syntactic rules of a 2D-PCFG 
can be defined manually in a heuristic way. However, the 
probabilities of the rules can fit the task and be learned 
automatically. There are few datasets for training 2D-PCFG 
[14]. Recently, large datasets have been made publicly avail-
able that can be used for training the models [15]. However, 
even with these datasets, more training data are needed to 
represent the considerable variability in ME. Additionally, 
more efficient methods that take more profit from the train-
ing data have to be devised. This paper researches the use 
of discriminative techniques for the probabilistic estima-
tion of 2D-PCFG [16, 17]. This approach combines correct 
and incorrect interpretations in a discriminative way [18], 
in contrast to classical estimation methods, where incorrect 
interpretations are not explicitly used. This usually allows 
us to get better results and speeds up the training process.

Current results on ME recognition are far from being 
perfect for searching purposes in large image datasets, and 
having accurate enough results may be impossible given the 
intrinsic ambiguity present in ME. Therefore, more flexible 
approaches for searching ME have to be devised. Similar 
problems have been researched for HTR [9], and the adopted 
solution is based on getting an adaptive list of hypotheses for 
each word image obtained from word graphs. This solution 
is based on probabilistic indexing (PrIx) [9]. In this paper, 
we intend to follow a similar PrIx research approach for ME 
searching. In this sense, it is relevant to consider the types 
of queries that users could make for searching ME. The con-
cept of “word” is not defined for ME, and we assume in this 
paper that users may be interested in searching for the whole 
ME and subexpressions contained in that whole expression. 
Therefore, evaluating the recognition system at the whole 
ME level and a sub-expression level is essential.

This paper extends [19] by introducing new demonstra-
tions of the theoretical fundamentals of the discriminative 
probabilistic estimation algorithm introduced in Sect. 3 and 
by presenting more comprehensive and consolidated experi-
ments in Sect. 5.

2 � Related work

Past and recent surveys from 2011 [20] to 2020 [21] and 
competitions of ME recognition and retrieval like CROHME 
[22] and OffRaSHME [23] show most teams divide the 
problem in several steps, namely, (1) symbols segmentation 
and recognition where convolutional and recurrent neural 
networks (CRNN) are used for online strokes or convolu-
tional neural networks (CNN) for offline symbols [24], (2) 
layout analysis to determine spatial relationships, and (3) 

syntactical analysis of the structure with grammars, trees, or 
rule-based approaches [20]. Many teams have recently tried 
end-to-end solutions that can generate LaTeX directly from 
the image, merging all steps in an CRNN or bidirectional 
long short-term memory (BLSTM) NN [21], and introduc-
ing new architectures like adversarial networks [25], graph 
networks [26], or transformers [27].

One disadvantage of most end-to-end NN is that they do 
not provide solutions to generate the syntactic tree struc-
ture that is inherent to the ME. Given the ambiguity within 
ME and the language used to describe them like LaTeX, the 
retrieval problem greatly benefits from knowing the syn-
tactic (and semantic) structure of the expression. For this 
reason, teams interested in recognition as a previous step 
to search usually try different types of graphs [28] or other 
structures [29] to compare between MEs. A study done to 
measure the effectiveness of ME search solutions shows that 
users search for mathematical information differently than 
textual searches, and current solutions still need to be inves-
tigated before being used [30].

2D-PCFGs have been proposed for ME recognition [13] 
since they allow the generation of a hierarchical structure 
that accounts for mathematical symbols and relationships 
among different parts of a ME. The inherent ambiguity asso-
ciated with the ME recognition process can be overcome 
by considering a set of N-best parse trees if 2D-PCFGs are 
used. Regarding the probabilistic estimation of PCFG, a pre-
vious work [7] has studied this problem using the likelihood 
function as the merit function to be optimized. However, a 
recent research has demonstrated that better results can be 
achieved by considering a discriminative function as a merit 
function [18].

3 � Problem formulation and notation

The input domain in the printed mathematical expression 
recognition and retrieval is the set of images or regions of 
an image that can contain a ME. Given an input image, the 
first step is to define a representation function that maps the 
image to another representation more suitable for solving the 
problem. The selected representation for printed document 
images is usually based on connected components. Figure 1 
shows an input ME and its representation in terms of con-
nected components.

As shown in Fig. 1, this ME consists of 11 connected 
components, most of which represent a single symbol of 
the ME. However, there are also symbols formed by more 
than one connected component (e.g., i and = ). Further-
more, the connected components alone are insufficient to 
address the problem of ME recognition. For instance, the 
connected components associated with the symbols x and 
2 do not explain by themselves the relationship between 
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them to define the subexpression x2 . Therefore, the ultimate 
purpose should not only be the recognition of the symbols 
but should also include the recognition of the structure that 
relates them. For this reason, many approaches to ME rec-
ognition and retrieval were based on probabilistic grammar 
models [13, 31, 32] because they constitute a natural way to 
model this kind of problems.

We pose the ME recognition and retrieval as a structural 
parsing problem, in which the main goal is to obtain the 
set of symbols and the structure that defines their relation-
ships from an input image. Formally, let x = {x1,… , x∣x∣} 
be a set of connected components from an input ME to be 
recognized or as a search query, where |x| is the number of 
connected components associated with the input image. The 
aim is to obtain the most likely sequence of mathematical 
symbols s ∈ S related among them according to the most 
likely syntactic parse t ∈ T  given x . S is the set of all pos-
sible sequences of (pre-terminal) symbols, and T  represents 
the set of all possible syntactic parses, such that s = yield(t) . 
We can describe it as follows:

p(s ∣ x) represents the observation (symbol) likelihood and 
p(t ∣ s) represents the structural probability. We consider 
Eq. (1) a holistic search problem, where symbol segmenta-
tion, symbol recognition, and the structural analysis of the 
input expression are globally achieved [13].

In this paper, we will focus on the parsing problem asso-
ciated with the computation of the structural probability 
p(t ∣ s) and especially on estimating the grammatical models 
used to tackle Eq. (1). We first introduce the notation used 
in this paper.

Definition 1   A context - f ree  g rammar  (CFG), 
G = (N,Σ, S,P) , is a tuple where N  is a finite set of non-
terminal symbols, Σ is a finite set of terminal symbols 
( N ∩ Σ = � ), S ∈ N  is the start symbol of the grammar, 
and P is a finite set of rules: A → � , where A ∈ N  and 
� ∈ (N ∪ Σ)+.

(1)

(t̂, ŝ) ≈ argmax

t ∈ T, s ∈ S

s = yield(t)

p(t, s ∣ x) ≈ argmax

t ∈ T, s ∈ S

s = yield(t)

p(s ∣ x) p(t ∣ s)

A CFG in Chomsky Normal Form (CNF) is a CFG in 
which the rules are of the form A → BC or A → a , where 
A,B,C ∈ N  and a ∈ Σ.

Definition 2  A probabilistic CFG (PCFG) is defined 
as a pair (G,  p), where G is a CFG and p ∶ P →]0, 1] 
is a probability function of rule application such that 
∀A ∈ N ∶

∑nA
i=1

p(A → �i) = 1, where nA is the number of 
rules associated with non-terminal symbol A.

Definition 3  A two-dimensional PCFG (2D-PCFG), �, is a 
generalization of a PCFG, where terminal and non-terminal 
symbols describe bi-dimensional regions. This grammar in 
CNF results in two types of rules: terminal and binary rules.

The terminal rules, A → a , represent the mathemati-
cal symbols that are ultimately the terminal symbols of 
2D-PCFG. The probability p(A → a) , therefore, depicts the 
probability that A is the solution to the elementary problem 
a . The binary rules, A

r
����→ BC , have an additional parameter 

(r) representing the given spatial relationship between the 
B and C subproblems. Moreover, this means that A is the 
solution to the subproblems associated with B and C regions 
compatible with the spatial relationship r . This work consid-
ers six spatial relationships: right, below, subscript, super-
script, inside, and nth root [13]. The probability of the binary 
rule, A

r
����→ BC , is defined by

p(BC ∣ A) is the probability of the binary rule of a PCFG, 
and p(r ∣ B,C) is the probability that regions encoded by 
non-terminals B and C are arranged according to the spatial 
relationship r.

Let � be a 2D-PCFG and let x be a set of connected 
components. We denote Tx as the set of all possible parse 
trees for x . The expression N(A → �, tx)

1 represents the 
number of times that the rule A → � has been used in the 
parse tree tx ∈ Tx, and N(A, tx) is the number of times that 
the non-terminal A has been used in tx . It should satisfy that 
N(A, tx) =

∑nA
i=1

N(A → �i, tx) . With all that, we define the 
following expressions:

•	 Probability of the parse tree tx of x

•	 Probability of x

(A
r
����→ BC)

def
= p(BC, r∣A) ≈ p(BC∣A) p(r∣BC)

P(x, tx) =
∏

∀(A→�)∈P

p(A → �)N(A→�,tx)

Fig. 1   Input image example for the math expression �
x2
+ xi = 0 and 

its set of associated connected components

1  To reduce the complexity of the notation, we will henceforth use 
(A → �) instead of (A

r
����→ �).
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•	 Probability of the best parse tree of x

•	 Best parse tree of x

Expressions  (2) and (3) can be calculated, respectively, 
using modified versions of the well-known inside [33] and 
Viterbi [34] algorithms for 2D-PCFG [7]. We can also cal-
culate the N-best parse trees for 2D-PCFG [7]. Furthermore, 
given Δx ⊆ Tx, a finite subset of derivations of x , we can 
also define:

•	 Probability of x with respect to Δx

•	 Probability of the best parse tree of x with respect to Δx

These expressions, respectively, coincide with expres-
sions (2) and (3) when Δx = Tx.

4 � Discriminative learning of 2D‑PCFGs

Given a representative training sample Ω and a particular 
model defined by its set of parameters �, the problem of esti-
mating the parameters � of the model can state as follows:

where f�(.) is the objective function to be optimized. Two 
issues should be considered: the optimization method and 
the objective function selection. In this paper, we consider 
an optimization method based on the growth transformation 
(GT) framework [35, 36] and an objective function derived 
from a generalization of the H-criterion [17, 37].

In this section, we present the original H-criterion and 
then propose the generalized H-criterion as an objective 
function for discriminative training of a 2D-PCFG. Next, 
we develop the method of growth transformations for the 
generalized H-criterion and define some related discrimina-
tive algorithms.

(2)P(x) =
∑

∀tx∈Tx

P(x, tx)

(3)P̂(x) = max
∀tx∈Tx

P(x, tx)

t̂x = arg max
∀tx∈Tx

P(x, tx)

(4)P(x,Δx) =
∑

∀tx∈Δx

P(x, tx)

(5)P̂(x,Δx) = max
∀tx∈Δx

P(x, tx)

�̂ = argmax
�

f�(Ω)

4.1 � H‑criterion

The H-criterion-based learning framework was proposed 
by Gopalakrishnan et al. in [37] as a generalization of the 
estimators of maximum likelihood (ML), maximum mutual 
information (MMI), and conditional maximum likelihood 
(CML). We can state it in this way: let Ω = {(xi, yi)}

N
i=1

 be 
the training sample, where xi are the input observations, and 
yi are the reference interpretations; and let � be the model’s 
parameters to be estimated. An H-estimator, �̂(a, b, c) , can be 
obtained by minimizing the H-criterion as follows:

Parameters a, b and c are constants, and a > 0 is fulfilled. 
Therefore, the ML estimator can be represented by �̂(1, 0, 0) , 
the MMI estimator by �̂(1,−1,−1) , and the CML estimator 
by �̂(1, 0,−1) [37].

4.2 � Generalized H‑criterion for 2D‑PCFGs

In this section, we propose a new criterion function for the 
discriminative estimation of parameters (probabilities of the 
rules) of a 2D-PCFG. This new function is a generalization 
of the H-criterion mentioned above [17, 37].

Given a training sample Ω = {(xi, ti)}
N
i=1

, where xi are 
the input sequences of connected components and ti are the 
reference parse trees, a 2D-PCFG, � (Def. 3), where the 
model parameters to be estimated are the probabilities of 
the terminal and binary rules, and a set of parse trees Δx, 
obtained by a parsing process from the � model, we propose 
a new method of estimating the parameters of � using the 
generalized H-criterion by minimizing the following expres-
sion (see Eq. (6)):

where 0 ≤ h < 1 and Δr
x
⊂ Δc

x
 must be fulfilled. The set Δr

x
 

must contain only the correct parse trees of sentence x . In 
contrast, the set Δc

x
 must contain competing parse trees of 

sentence x . If h > 0 , then the generalized H-criterion can be 
viewed as a discriminative learning method. The exponent 
h aims to establish the degree to which the competing parse 
trees discriminate against the correct parse trees. Optimiz-
ing the generalized H-criterion attempts simultaneously to 
maximize the numerator term P(x,Δr

x
) and to minimize the 

denominator term P(x,Δc
x
)h for each observation x ∈ Ω of 

the training sample.

(6)Ha,b,c(�; Ω) = −
1

n

n∑

i=1

log pa
�
(xi, yi) pb

�
(xi) pc

�
(yi)

(7)

H1,−h,0(�,Ω) = −
1

|Ω|
log F̃h(�,Ω) = −

1

|Ω|
log

∏

x∈Ω

P(x,Δr
x
)

P(x,Δc
x
)h
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4.3 � Growth transformations for generalized 
H‑criterion

The objective function, obtained from the generalization of 
the H-criterion according to Eq. (7), can be optimized using 
growth transformations for rational functions. The growth 
transformations were initially developed for a homogeneous 
polynomial with positive coefficients [35]. Gopalakrishnan 
et al. extended in [16] this result to optimize rational func-
tions. Since F̃h(⋅, ⋅) is a rational function (see Eq. (7)), the 
reduction of the case of rational functions to polynomial 
functions proposed in [16] can be applied:

Expression 
(
F̃h(�,Ω)

)

�
 is the constant that results from 

evaluating F̃h(�,Ω) at point � [16], where � is a point of the 
domain (in our case, � represents the probabilities of the 
rules of 2D-PCFG). Applying the growth transformation 
method for rational functions to the objective function, 
stated in expressions (7) and (8), is possible to find an opti-
mum local value. The complete development can be found 
in Appendix A and in [17], and the final expression is as 
follows:

Term C̃ must be a constant sufficiently large [16], and the 
expressions DA→�(Δx) and DA(Δx) are given by

Following Gopalakrishnan et al. in [16], the development to 
obtain the expression that allows us to calculate the optimal 
value of the constant C̃ can be found in Appendix A and in 
[17], being its final expression:

where � should be a small positive constant.

(8)

Q�(�,Ω) =
∏

x∈Ω

P(x,Δr
x
) −

(
F̃h(�,Ω)

)

�

∏

x∈Ω

P(x,Δc
x
)h

(9)

p̄(A → 𝛼) =
DA→𝛼(Δ

r
x
) − hDA→𝛼(Δ

c
x
) + p(A → 𝛼) �C

DA(Δ
r
x
) − hDA(Δ

c
x
) + �C

(10)DA→�(Δx) =
∑

x∈Ω

1

P(x,Δx)

∑

tx∈Δx

N(A → �, tx) P(x, tx)

(11)DA(Δx) =
∑

x∈Ω

1

P(x,Δx)

∑

tx∈Δx

N(A, tx) P(x, tx)

C̃ =max

{
max
p(A→�)

{
−

[
DA→�(Δ

r
x
) − hDA→�(Δ

c
x
)
]

p(A → �)

}

�

, 0

}
+ �

4.4 � Discriminative algorithms based on generalized 
H‑criterion

From transformations (9), (10), and (11), a broad family 
of discriminative learning algorithms for 2D-PCFGs can 
be defined. This family of algorithms depends on how the 
respective sets of correct trees Δr

x
 and competing trees Δc

x
 

are obtained and the values of the parameter h . In any case, 
it must be satisfied that Δr

x
⊂ Δc

x
.

The first issue to address is how to compute the set of 
competing parse trees, Δc

x
 . In this paper, Δc

x
 will be the set 

of N-best parse trees calculated from the algorithm proposed 
in [5] and adapted to the 2D-PCFG in [7]. The second issue 
to consider is how to compute the set of correct parse trees 
Δr

x
 . In this paper, Δr

x
 , will be the set of N-best parse trees by 

considering only the parse trees compatible with the ground 
truth.

Below we will show the experiments carried out with 
the estimation algorithm derived from the implementation 
of Eqs. (9), (10), and (11) of discriminative learning of 
2D-PCFGs based on the generalized H-criterion. We will 
also study the effect of the h parameter on the result of the 
proposed discriminative learning algorithm.

5 � Experimentation

In this section, we will conduct an empirical assessment to 
analyze the effectiveness of the discriminative learning of 
2D-PCFG and their possible application in PrIx extraction 
tasks.

5.1 � Datasets and assessment measures

The experiments conducted in this paper were performed 
with two datasets of different characteristics. First, the 
Im2Latex-100k dataset [14], built for ME recognition tasks, 
consists of approximately 100 000 LaTeX formulas collected 
from published articles aggregated in the KDD Cup data-
sets.2 The MEs were extracted with regular expressions, 
filtering out expressions that did not compile or did not fall 
within the length of 40–1024 characters.

Second, the IBEM dataset [15] features ground truth (GT) 
at different levels, allowing for various types of experiments, 
such as ME detection and extraction, ME recognition, and 
ME retrieval. Due to how the IBEM dataset has been built 
by extracting the GT from complete documents of the KDD 
Cup collection, the MEs compiled in this corpus feature no 
length restrictions. The ground truth distinguishes between 
ME embedded into the text (referred to as in-line) and 

2  KDD Cup:  https://​kdd.​org/​kdd-​cup.

https://kdd.org/kdd-cup
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isolated ME (referred to as displayed). The dataset consists 
of approximately 137 000 in-line MEs and 29 000 displayed 
MEs, with a total of more than 166 000 LaTeX formulas, 
extracted from over 8 200 pages contained in 600 STEM 
documents.

In LaTeX, the same ME can be written in several ways. 
To reduce this structural ambiguity and thus reduce the 
complexity of the ME recognition task, we have developed 
two normalizations and filtering processes carried out on 
both the Im2Latex-100k and IBEM collections. In the first 
filtering process (step-1 in Table 1), we implemented a ME 
LaTeX parser that converts the ME LaTeX markup into an 
abstract syntax tree (AST) for normalization purposes. An 
example of this filtering process is shown in Fig. 2. In this 
step, ME that featured complex elements such as arrays, 
matrices, tables, or images was filtered out.

The ME parser is based on the LuaTeX package node-
tree,3 that traverses and visualizes the structure of ME as 
parsed by the LuaTeX engine.4 In this AST representa-
tion, the inner nodes represent the structural relationships 
of the ME, and the leaves represent the glyphs to be ren-
dered, which are mapped to LaTeX commands/symbols. It is 
essential to mention that when parsing ME, all user-defined 

macros used to abbreviate the formal notation and simplify 
typesetting are entirely expanded. This expansion of mac-
ros is significant for the ME compiled in the IBEM dataset, 
given that user-defined macros were frequent as entire docu-
ments were processed.

Besides font normalization, sub- and superscript order 
fixing, and flattening of the optional grouping of symbols, 
shown in Fig. 2, the different user-defined horizontal spacing 
commands were mapped to the ∖hspace command. These 
normalization steps aim to reduce the inconsistencies and 
noise in the ME LaTeX markup.

The second filtering process (step-2 in Table 1) is related 
to the fact that our original 2D-PCFG cannot process all the 
expressions in the Im2Latex-100k and IBEM datasets. The 
expressions that could not be parsed were filtered out from 
the training and validation sets. However, this second filter 
was not applied to the test set. Table 1 shows the number 
of samples of the training, validation, and test sets for the 
original partitions proposed by the authors of the datasets 
and after the filtering processes step-1 and step-2. Onward, 
all experiments performed in this paper have been carried 
out with the suggested normalization and filtering process.

The recognition process considered in this paper is 
restricted by 2D-PCFG, which takes as input a whole ME. 
It is important to note that in other recognition problems 
like automatic speech recognition, the recognition process 
is restricted by local information conveyed by n-grams (or, 
equivalently, by finite-state automata). Since 2D-PCFG takes 
as input a whole ME, it makes sense to provide informa-
tion about the size distribution of the ME. Providing correct 
solutions to small (usually in-line) ME is more accessible 
than to large ME.

Next, we analyze the average length of the MEs in the 
training set. Figure 3 shows the histogram indicating the 
number of MEs in the different length (number of connected 
components or symbols) intervals. As can be seen in this his-
togram, the two datasets have very different characteristics. 
The MEs compiled in the Im2Latex-100k dataset are large 
displayed expressions extracted to train and evaluate ME 

Fig. 2   Simplification of an AST obtained by parsing a LaTeX 
ME. The inputs of the normalization process are two equivalent 
LaTeX  markup expressions that render the same ME. The normal-
ized LaTeX  markup language is generated by traversing the AST 
in a depth-first root-left-right-root order. In this example, three nor-
malization steps are undertaken: font normalization (node colored 
in magenta), sub- and superscript fixed order (nodes colored blue 
and green), and flattening unnecessary elements of the ME structure 
(nodes colored in red)

Table 1   The table represents the number of samples in each partition, 
separated by dataset

Numbers in boldface show the amount of data used in this paper

Dataset Filter Train Validation Test

Original partitions 
[14]

83 883 9 319 10 354

Im2Latex-100k step-1 71 099 7 908  � ���
step-2 �� ��� � ��� –
Original partitions 103 938 18 370 44 384

IBEM step-1 100 667 17 776  �� ���
step-2 �� ��� �� ��� –

3  Nodetree: https://​ctan.​org/​pkg/​nodet​ree?​lang=​en.
4  LuaTeX: http://​www.​luatex.​org/​docum​entat​ion.​html.

https://ctan.org/pkg/nodetree?lang=en
http://www.luatex.org/documentation.html
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recognition systems. In contrast, the IBEM dataset features 
many in-line shorter expressions, besides a similar distribu-
tion for large displayed expressions. This characteristic of 
the IBEM dataset introduces a real-world scenario for ME 
retrieval tasks, in which complete documents are processed, 
and all MEs are considered, either in-line or displayed. Fig-
ure 3 shows that there are very few expressions with more 
than 70 symbols in the training set. This same behavior was 
also observed in the validation set.

For the evaluation of the impact of the estimation algo-
rithms on 2D-PCFG and the viability of our proposal, we 
consider three different metrics:

•	 Exact Accuracy (ExAcc): This metric measures the num-
ber of MEs in which the generated hypothesis (1-best or 
N-best) is an exact match with the ground truth (LaTeX 
expression) of the dataset. Note that this metric is very 
pessimistic given the average size of the MEs (see Fig. 3) 
and that we evaluated at the character level. For example, 
the edit distance between reference “ �_{�} ̂ {�} ” and 
hypothesis “ �_{�} ̂ {�} ” is two deletions.

•	 Bleu: Bleu score [38] measures the difference between 
the best model prediction and the reference in terms of 
n-gram precision. This metric measures how far the pre-
dictions are from the reference. It is important to remark 
that we performed tokenization on the ME. This tokeni-
zation means that a ME like a2

i
 has the GT as “ �_{�} ̂ 

{�} ” and not as “ �_{�} ̂ {�} .” This measure may be very 

relevant in PrIx because it measures the precision at the 
sub-expression level.5

•	 Levenshtein Distance (LevD): This distance measures 
the number of insertions, deletions, and substitutions 
required to match a hypothesis to the reference.

The LevD can be confidently computed because of the nor-
malization process that converts any ME in its associated 
AST. Bleu and LevD are used in this paper because, in the 
PrIx context, it is very relevant to evaluate at the sub-expres-
sion level, as we mentioned in Sect. 1.

5.2 � Estimation of 2D‑PCFG and parameter setting

We started from the first model (2D-PCFG) obtained from 
the SESHAT system [13].6 Considering the particular char-
acteristics of the considered datasets, Im2Latex-100k and 
IBEM, we extended this first model to include the necessary 
rules to account for all symbols and relations appearing in 
the training sets (see Sect. 5.1). We defined the probabilities 
of these new rules as equiprobable. The resulting model was 
our initial baseline model ( �i).

Next, we estimated �i using the discriminative learn-
ing algorithm based on the generalized H-criterion. As 
discussed in Sect. 4, this estimation algorithm implements 
Eqs. (9), (10), and (11). In order to carry out this estimation 
process, it is necessary first to describe how to calculate 
the set of correct parse trees Δr

x
, and the set of competing 

parse trees Δc
x
 . To obtain Δc

x
, , we used a new version of the 

N-best parsing algorithm of 2D-PCFG described in [7]. The 
experiments reported in this research were carried out for 
N = 50 . To get Δr

x
, , we developed a forced version of the 

parsing algorithm that uses the GT expression and the ME 
image to generate the most likely reference parse tree using 
the estimated 2D-PCFG. The estimated model was our final 
model ( �d ). We now discuss several aspects of the estima-
tion algorithm.

The first experiment analyzes the quality of N-best parse 
trees, for different values of N, on the estimated 2D-PCFG 
�d . To do this, we calculated the Bleu and ExAcc scores in 
each iteration of the estimation algorithm for a subset of 
10 000 randomly selected ME of the Im2Latex dataset. This 
subset was obtained to execute multiple small experiments in 
a faster way. Figure 4 shows the results of Bleu and ExAcc in 
the validation set for N = {1, 5, 10, 25, 50} generated by the 
estimated model ( �d ). The Bleu and ExAcc scores reported 
in the figure are the minimum among the reference and one 
of the N-best solutions. We report the results for N-best 
hypotheses because this is relevant in the PrIx context: The 
1-best solution could not be the correct solution, but it could 

5 15 25 35 45 55 65 75 85 95
0

10,000

20,000

30,000

40,000

50,000

60,000

|x|

N
Im2Latex-100k

IBEM

Fig. 3   Histogram representing the frequency of MEs (N) in training 
set as a function of the different sizes of the MEs ( ∣ x ∣ ). The MEs 
have been grouped into consecutive intervals of length 5

5  It is usual in MT to compute the Bleu up to 4 grams when deal-
ing with words. We consider an open problem to be researched in the 
future to decide the appropriate n of the Bleu score for ME evaluation 
because of the misconception of “word” in ME recognition. 6  https://​github.​com/​falva​ro/​seshat.

https://github.com/falvaro/seshat
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be included in one of the following N-best hypotheses. As 
can be seen, the general results improved significantly from 
the 5-best hypotheses. These results show that considering 
at least the 5-best hypotheses would be good enough for 
further use in PrIx. It is also important to remark that only 
few iterations were needed to get good results, which is one 
advantage of using discriminative estimation techniques. We 
observe a parallel behavior for large values of N. We suspect 
that this happens because the N-best solutions include many 
similar solutions with small changes in the leaves of parse 
trees.

The second experiment aims to optimize the parameters 
that regulate the discriminative estimation process, h and � 
(see Sect. 4). For this, we use the previously selected sub-
set of the Im2Latex dataset to be able to analyze the effect 

of different values for h and � . From the initial grammar 
( �i ), we obtain different discriminatively estimated gram-
mars for different values of h (0.01, 0.001, 0.0001) and � 
(0.0001, 0.00001, 0.000001). As shown in Fig. 5, the conver-
gence of the training process does not change significantly 
for either exact accuracy or log likelihood. Similar results 
were obtained by varying the parameter � . Furthermore, it 
can also be seen that the algorithm converges in less than 5 
steps. In our opinion, this effect is due to the small size of 
the considered 2D-PCFGs (around 450 rules).

The purpose of the third experiment was to estimate the 
2D-PCFG parameters. To do this, we selected the values of 
h = 0.01 and � = 0.00001 and considered all training data 
of both datasets (Im2Latex and IBEM). For comparison 
purposes, we also implemented a Viterbi-based estimation 
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Fig. 4   Exact accuracy and Bleu score considering a set of N-best hypotheses ( {1, 5, 10, 25, and 50}-best) in each iteration i in the estimation pro-
cess. Figure from [19]
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1579Pattern Analysis and Applications (2023) 26:1571–1584	

1 3

algorithm. In both cases, we ran 10 iterations for each of 
the algorithms. Figure 6 shows the evolution of the exact 
accuracy score in the validation set during the convergence 
process for the discriminative estimation algorithm and the 
Viterbi-based estimation algorithm, both for the Im2Latex 
and the I IBEM datasets. As can be seen, the discrimina-
tive estimation approach provides better performance since 
it uses much more information from the training samples. 
This result is consistent for both datasets. It is important to 
note the difference in the ExAcc score in the two datasets. 
This difference is due to the size distribution on the ME: 
IBEM contains a large amount of small ME that are correctly 
recognized. This issue is analyzed in the following section.

Finally, we present comparative experiments with other 
authors on the same corpus. Table 2 shows the results 
reported by other approaches on the Im2Latex corpus 
together with those obtained by our estimated models with 
1-best and 5-best for both the Im2Latex corpus and the 
IBEM corpus. As can be seen, the results of our approach 
are not competitive against the state-of-the-art approaches 
on the Im2Latex corpus.7 These state-of-the-art approaches 
are based on the end-to-end neural networks technique, 
which obtains the LaTeX transcript directly from the input 
image. In our approach, we obtain the LaTeX transcrip-
tion and generate the syntactic structure associated with 
said transcription of the ME. This structure is helpful in 
retrieval problems for searching math subexpressions and 
for semantic comparisons of formulas where two different 
MEs could represent the same structure but with different 
variable names.

5.3 � Experiments depend on the length of MEs

To analyze the ME size’s effect on our models’ perfor-
mance, we calculated the ExAcc score for different expres-
sion lengths in the Im2Latex and IBEM datasets. Figure 7 
shows the obtained results. In all cases, we compared the 
performance of the discriminatively estimated model ( �d ) 
with the initial model ( �i ). Furthermore, we also analyzed 
the results considering the 1-best and the 50-best hypoth-
eses. As can be seen, the results of the estimated models 
( �d ) are consistently better than those of the initial model 
( �i ). As might also be expected, the results considering the 
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Fig. 6   2D-PCFG estimation process by discriminative and Viterbi-based learning on Im2Latex (Left) and IBEM (Right) datasets. Evolution of 
the exact accuracy score in the validation set during 10 iterations

Table 2   The table represents the main experimental results on de 
Im2Latex and IBEM datasets. It shows the Bleu score normalized 
respect to the size of the formulas (Bleu), the exact accuracy score 
after deleting whitespace (Match), and the normalized edit distance 
(LevD)

Dataset Model Bleu Match LevD

INFTY [39] 66.65 26.66 –
CTC [3] 30.36 9.16 –
CAPTION [40] 75.01 55.72 –

Im2Latex-100k IM2TEX-TOK [14] 73.97 77.04 –
IM2TEX [14] 87.73 79.88 –
I2L-STRIPS [41] 88.19 68.03 0.0725
OURS 1-Best 81.26 34.62 0.1336
OURS 50-Best 83.80 40.54 0.1140

IBEM OURS 1-Best 71.23 53.06 0.1651
OURS 50-Best 77.16 60.14 0.1348

7  Note that this could be conditioned by our method to tokenize the 
GT of the ME.



1580	 Pattern Analysis and Applications (2023) 26:1571–1584

1 3

50-best hypotheses consistently improve those obtained with 
the 1-best hypothesis. Similar results were obtained with the 
Bleu score.

Figure 7 shows a generalized drastic decrease in the per-
formance of our models as the length of the expressions 
increases. This result is unsatisfactory for ME recognition 
systems. However, in problems of information retrieval or 
indexing and searching for ME, these results do not seem all 
that discouraging. In indexing and search problems, we can 
reasonably assume that the queries will be short expressions 
or parts of a longer expression.

5.4 � Error‑dependent precision

As mentioned above, ExAcc is a very harsh metric requir-
ing an exact comparison symbol by symbol and at the same 
positions. Note that this measure is also very dependent on 
the way of preparing the GT. Since we aim to address search 
problems, we could consider some relaxation on this meas-
ure. For this purpose, we explored the Levenshtein distance 
as a measure that allows us to analyze the number of admis-
sible errors. Figure 8 shows the precision of the discrimi-
natively estimated model ( �d ) and the initial model ( �i ), 
varying the number of admissible errors for the Im2Latex 

and IBEM datasets. As in previous cases, these results have 
been obtained with the 1-best and the 50-best hypotheses. 
The plots show how most results, even for very long expres-
sions, are very close to the reference when we allow a certain 
number of admissible errors. These results reinforce the pos-
sible practical use of admissible errors to optimize a search 
engine’s precision–recall. To illustrate this reasoning, Fig. 9 
provides one example of a long expression where the model 
hypothesis is incorrect but only by one relationship error. In 
classic search problems, most of the queries (subexpressions 
of this expression) could still find the reference.

To conclude, we present the final experiments on the 
test set of the Im2Latex dataset. We selected this corpus as 
our models reported worse performance with it (see Fig. 6 
and 7). Figure 10 shows the precision with the estimated 
model ( �d ) varying the number of admissible errors. As 
can be seen, the results are reasonable, although somewhat 
worse than those reported on the validation set. However, 
it should be noted that the step-2 filter is not applied to the 
test set (see Table 1).

Fig. 7   Results of ExAcc score 
for the �i and �d models, 
considering MEs of differ-
ent lengths in the Im2Latex 
dataset (Left) and the IBEM 
dataset (Right) using only the 
1-best hypothesis (Top) and 
the 50-best (Bottom). The dot-
ted lines represent the global 
accuracy of each model for all 
lengths
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6 � Conclusions

This paper presents a discriminative learning algorithm 
to estimate a 2D-PCFG based on a generalization of the 
H-criterion as the objective function and the growth trans-
formations as the optimization method. Several experiments 
have been reported on two well-known datasets. In the 
experiments that analyze the convergence of the estimation 
algorithm, the results improve significantly from the 5-best hypotheses. These results would be enough to compose a 

hypergraph for further use in PrIx.

Fig. 8   Precision results for the 
�i and �d models, considering 
the different maximum number 
of admissible errors in the 
Im2Latex dataset (Left) and the 
IBEM dataset (Right) using only 
the 1-best hypothesis (Top) and 
the 50-best (Bottom)
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Fig. 10   Precision results of the �d model on the test set of the 
Im2Latex dataset for different error values in the LevD using the 
1-best and 50-best on the test set. Figure from [19]
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In the experiments related to the length of the MEs, the 
model precision drops significantly beyond a ME length of 
|30|. However, using a structural model allows us to easily 
generate multiple hypotheses and decompose large expres-
sions into all their correct subexpressions. Thanks to this 
and given that queries in PrIx may be of short length (less 
than 20 LaTeX symbols), the mistakes produced by the 
model could not affect the majority of queries. Consider-
ing all these, our model provides a good approximation to 
the PrIx problem in massive collections of digitized scien-
tific documents. We expect to research this PrIx framework 
in future work.

Extending the results of our previous work [19], we 
introduced a comparison of the discriminative estimation 
algorithm with Viterbi estimation in the Im2Latex corpus 
and a new IBEM corpus with different characteristics. This 
experiment shows that our proposal obtains better results 
for the task of mathematical expression recognition than 
the Viterbi baseline. Further experiments in the model 
training also showed that the small grammar converges in 
a few iterations and is not significantly affected by changes 
in h and � . After optimizing hyperparameters, the final 
results are displayed beside previous models, showing that 
the model obtains similar results to other models that are 
not end-to-end neural networks.

A Appendix: optimization by growth 
transformations for generalized H‑criterion

In this appendix, we will develop in detail the estima-
tion process of the model parameters (rules probabilities, 
p(A → �) ∈ P of �, see Def. (3)) until reaching expres-
sion (9). To begin with, we present the growth transforma-
tion optimization framework and how to optimize Eq. (8) 
by applying the growth transformations for rational func-
tions [16]. In each iteration of the optimization process, 
the update parameters p(A → �) are obtained using the 
following expression:

nA is the number of rules with the non-terminal A as the left 
side of the rule, and � = (�A1

,�A2
,… ,�A|N|

) : Ai ∈ N  , 
1 ≤ i ≤ |N| i s  a  vec to r  de f ined  a s  fo l lows : 
�Ai

= (p(Ai → �i1), p(Ai → �i2),… , p(Ai → �inAi
)) . Further-

more, Q�(�,Ω) (see Eq. (8)) is a polynomial function. As it 
was demonstrated in [16], for every point of the domain � , 
there is a constant C such that the polynomial P� + C has 
only non-negative coefficients. Following a similar 

(12)p̄(A → 𝛼) =

p(A → 𝛼)
�
𝜕Q𝜋 (�,Ω)

𝜕 p(A→𝛼)
+ C

�

𝜋

∑nA
i=1

p(A → 𝛼i)
�
𝜕Q𝜋 (�,Ω)

𝜕 p(A→𝛼i)
+ C

�

𝜋

development to that used in [11], we will allow us to obtain 
p̄(A → 𝛼) from Eq. (12).

First of all, let us define an auxiliary function

then expression (12) can be rewritten as

We will begin by developing the expression Dh
A→�

(Δx) as a 

preliminary step to evaluating the expressions D1
A→�

(Δr
x
) and 

D
h
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Given the expression F̃h(�,Ω) in Eq. (7) and substituting 
expressions (14) and (15) in transformation (13), we get 
the final expression after simplifying 

∏
x∈Ω P(x,Δr

x
) in the 

numerator and denominator.

D
h
A→�

(Δx) = p(A → �)

�
�
∏

x∈Ω P(x,Δx)
h

� p(A → �)

�

�

(13)

p̄(A → 𝛼) =

D
1
A→𝛼

(Δr
x
) −

�
�Fh(�,Ω)

�

𝜋
D

h
A→𝛼

(Δc
x
) + p(A → 𝛼) C

∑nA
i=1

D
1
A→𝛼i

(Δr
x
) −

�
�Fh(�,Ω)

�

𝜋

∑nA
i=1

D
h
A→𝛼i

(Δc
x
) + p(A → 𝛼i)C

(14)

D
h
A→�

(Δx) =

= p(A → �)

�
h
�

x∈Ω

P(x,Δx)
h−1

�
∏

x∈Ω P(x,Δx)

� p(A → �)

�

�

= h

�
�

x∈Ω

P(x,Δx)
h
�

x∈Ω

p(A → �)

P(x,Δx)

�P(x,Δx)

� p(A → �)

�

�

= h

�
�

x∈Ω

P(x,Δx)
h
�

x∈Ω

1

P(x,Δx)

�

tx∈Δx

N(A → �, tx)P(x, tx)

�

�

(15)

nA∑

i=1

D
h
A→�i

(Δx) =

=

nA∑

i=1

h

[
∏

x∈Ω

P(x,Δx)
h
∑

x∈Ω

1

P(x,Δx)

∑

tx∈Δx

N(A → �i, tx)P(x, tx)

]

�

= h

[
∏

x∈Ω

P(x,Δx)
h
∑

x∈Ω

1

P(x,Δx)

∑

tx∈Δx

nA∑

i=1

N(A → �i, tx)P(x, tx)

]

�

= h

[
∏

x∈Ω

P(x,Δx)
h
∑

x∈Ω

1

P(x,Δx)

∑

tx∈Δx

N(A, tx)P(x, tx)

]

�

(16)

p̄(A → 𝛼) =

DA→𝛼(Δ
r
x
) − hDA→𝛼(Δ

c
x
) + p(A → 𝛼)

C∏
x∈Ω P(x,Δr

x
)

DA(Δ
r
x
) − hDA(Δ

c
x
) +

C∏
x∈Ω P(x,Δr

x
)



1583Pattern Analysis and Applications (2023) 26:1571–1584	

1 3

The auxiliary functions DA→�(Δx) and DA(Δx) will be given 
by

Gopalakrishnan et al. in [16] suggest that to obtain a fast 
convergence and to guarantee the conditions of the growth 
transformations theorem for rational functions, the constant 
C should be calculated as follows:

where � is a small positive constant. Considering the expres-
sion Q�(�,Ω) in Eq. (8) and carrying out a development 
similar to the one we have done to obtain Eq. (16), expres-
sion (18) is as follows:

Substituting this expression in Eq. (18) allows us to calculate 
a C maximum, ( ̃C ), as:

Finally, expression (16) becomes

This expression and auxiliary expressions (17) coincide with 
expressions (9), (10), and (11) as we had proposed.
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