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Abstract 

In this paper three formulations based on an Eulerian approach are presented to obtain the dynamic 

response of an elastic solid of revolution, which rotates around its main axis at constant angular 

velocity. The formulations are especially suitable for the study of the interaction of a solid with a non-

rotating structure, such as occurs in the coupled dynamics of a railway wheelset with the track. With 

respect to previous publications that may adopt similar hypotheses, this paper proposes more compact 

formulations and eliminates certain numerical problems associated with the presence of second-order 

derivatives with respect to the spatial coordinates. Three different models are developed depending 

the basis function that represents the displacements associated with the deformation; these basis 

functions are: (1) the shape functions that are used in the three dimensional finite element (FE) 

method; (2) the undamped mode shapes of the solid; (3) the shape functions that are adopted in the 

axisymmetric FE approach. Comparisons are shown of calculations carried out using these models. 

These show the existence of modal veering when analysing the Campbell diagram for a railway 

wheel. 
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1. INTRODUCTION 

Wheels, shafts, brake discs and many other rotating solids are widely used in all fields of industry. 

Consequently, there has been considerable research effort to include the inertial effects associated 

with the rotation in computationally efficient models. Simplified formulations from the beginning of 

the last century, in particular Jeffcott rotors (zero-dimensional domain through lumped parameters) 

and rotating Rayleigh beams (one-dimensional), have been widely adopted in the literature. These 

show the frequency shift of the resonance peaks of the rotating structure with the angular velocity 

(see monographs in [1,2]). Whereas one- and two-dimensional models can be studied by means of a 

non-rotating frame of reference, the leap to three-dimensional solids with arbitrary geometry would 

require a reference frame that rotates with the solid (Lagrangian approach). This method can be 

followed by describing small displacements with respect to a non-deformed configuration (see Refs. 

[3,4]) or adopting the Finite Element (FE) method, an option that has been consolidated due to the 

rapid growth of computational performance in the last few decades [5,6]. 

Nevertheless, Lagrangian coordinates are not particularly suitable for rotating structures when 

interacting with non-rotating ones, where the interaction force is applied at a fixed spatial point; there 

is thus a relative motion between the load and the rotating solid, hence requiring frequent remeshing 

operations and leading to high computational effort and numerical issues. This has motivated 

researchers in recent years to investigate techniques to adapt the FE approach to more numerically 

efficient models.  

In Ref. [7], nonlinear Arbitrary Lagrangian-Eulerian (ALE) coordinates [8] were implemented for 

solids in rolling contact, allowing large distortions in rotating tyres to be handled with a modified FE 

formulation; this describes their stationary motion in a fixed-reference frame through which the 

rotating material particles flow. This method is characterised by the use of an arbitrary reference 

configuration which is neither fixed in space nor connected with the material particles; the boundaries 

of the domain are moving like the material boundaries. This formulation was extended to modal 

coordinates (Modal-ALE approach, see Ref. [9]) in the low frequency range by means of solving the 

eigen-problem from the FE code and applying the modal coordinate transformation to account for the 

tyre rotation. 

For rotating solids undergoing small distortions (e.g. railway wheelsets which are much stiffer than 

tyres), Ref. [10] proposed an Eulerian approach initially based on Shabana's formulation [4] by using 
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a non-rotating reference frame. Using this model it is possible to take advantage of the properties of 

the solids of revolution since their mode shapes in a fixed coordinate frame do not depend on the 

rotation of the solid; they can hence be used as basis functions to define a generic displacement of 

any spatial point of the rotating solid, leading to great reductions of the computational cost. Following 

this methodology, Eulerian-modal coordinates were introduced in Ref. [11] by adopting the mode 

shapes of the non-rotating solid as basis functions. The formulation of the models published in Refs. 

[10,11], both of which adopt Cartesian coordinates, includes a volumetric integral term that contains 

a second-order derivative. This leads to a numerical problem since the discretisation of the domain 

of a three-dimensional solid (i.e. the FE discretisation) is not able to guarantee the C1-continuity of 

functions (i.e. continuity of their first derivatives) between its subdomain edges. Therefore, it cannot 

be guaranteed that the second-order derivative is bounded (see Ref. [12]); the associated integral term 

can also diverge or give greater numerical errors when the mesh is refined.  

The present work describes a methodology to study the dynamics of solids of revolution that is based 

on an Eulerian approach. The paper presents three different models described by a closed-form 

formulation in cylindrical coordinates in which the small displacements due to the deformations are 

expressed by means of separation of variables: a set of basis functions that depends on space, and the 

corresponding generalised coordinates that depend on time. This general formulation can be found in 

section 2.1 of the present work; it is more compact than that published in Refs. [10,11] and solves the 

numerical problem associated with the presence of second-order derivatives. 

The general formulation of the rotating solid is then adopted in order to obtain equations of motion 

(EOM) for the rotating solid when the basis functions are: (i) the shape functions of the FE method 

(section 2.2); (ii) the undamped mode shapes (section 2.3); or (iii) based on the axisymmetric FE 

approach (section 2.4). All three formulations are especially useful to assess the dynamics of railway 

wheels and wheelsets, and the results presented in section 3 focus on studies performed for this type 

of structure. The results compare different calculations carried out using these three formulations. A 

special case concerns the presence of mode veering in the Campbell diagram, which was studied in 

Ref. [13] in simplified gyroscopic systems. 

2. DYNAMIC MODELS OF THE ROTATING SOLID 

2.1  General equation of motion  

In order to define the kinematics of the rotating solid, a non-rotating inertial frame of reference is 

defined (see Fig. 1). The third axis of the frame is the axis of revolution of the solid and has the 
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direction of the angular velocity vector Ω . Let u  be an Eulerian position vector that is associated 

with a spatial point of the undeformed configuration of the solid. The position vector r  of a particle 

that is at u  at time t  in the undeformed configuration can be formulated as follows 

 ),( tuwur  , (1) 

where w  contains the displacements associated with flexibility and the small rigid body 

displacements.  

 

 

Fig. 1: Frame of reference and coordinates. In solid colour is represented a generic deformed 
configuration of the wheelset. The mesh corresponds to the undeformed configuration.  

 

The velocity of the particle due to the rigid body rotation is 

   uuJv ~T
321 ΩΩvvv  , (2) 

where   is the third component of the angular velocity vector Ω , 
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and  T12 0~ uuu . Assuming that the angular velocity is constant, the velocity of the particle is 

computed through the material derivative of r , and that is 
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The kinetic energy of the solid is 
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where V  is the undeformed volume of the solid and the matrix J
~

 is given by 
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At this point, separation of variables is adopted and the displacements associated with the deformation 

are written as follows 

 )()(),( tt quSuw  , (7) 

where )(uS  is a set of basis functions and )(tq  is the corresponding coordinate (or amplitude) vector. 

Through this approach, by differentiation of Eq. (5), the inertial terms of the EOM can be written as 

follows 



6 
 

 

.d2

dd
~

d2d
D

D

2
2

2

1
2
1

21

2

212
1

2
2
2

T2

2
2

1
1

T2T2

2
1

1
2

TT

TT

q
SSS

S

q
SS

SuJS

q
SS

SqSS
qq



















































































V

VV

VV

u
uu

uu
uu

u
uΩ

u
u

u
uΩΩ

u
u

u
uΩ

TT

t





 


 (8) 

 

By performing a coordinate transformation from Cartesian to cylindrical coordinates, this yields 

 1 cos ,u r   (9) 

 2 sin .u r   (10) 

Thus 
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By means of this coordinate change, Eq. (8) results in 

 

,dd

d
~

d2d
D

D

2
T2T22

T2TT

TT

qSSqSS

uJSqSSqSS
qq















































VV

VVV

rΩ
r

rΩ

rΩrΩr
TT

t









 


 (15) 



7 
 

where 3dddd ur  . The last term in Eq. (15) contains second-order derivatives, and this would 

produce convergence problems when the domain of integration is discretised into subdomains (e.g. 

finite elements). The basis S  that will be adopted in this work uses quadratic shape functions for 

these subdomains, the continuity at its interfaces being 0C . Consequently, the integration can only be 

evaluated properly if the maximum order of differentiation is 1. Note that, as detailed in section 3.2, 

page 59 of Ref. [12] as convergence requirement, if the integrand has derivatives up to order n , then 

the interpolation has to guarantee that its 1n-  derivatives are continuous ( 1Cn-  continuity). 

Therefore, the second-order derivative is unbounded in the last integral of Eq. (15). In order to reduce 

the order of the derivatives, the last term in Eq. (15) is integrated by parts, giving 
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V  being the external surface of the volume V . The integrand in the surface integral is zero and, 

consequently, the inertial terms of the EOM can be written as follows 
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2.2  FE model through Eulerian coordinates (Model 1) 

Following the FEM, the coordinates that will be adopted in Eq. (7) are the Eulerian displacements

FEw  at the nodes of the FE mesh, and the basis functions are the FE shape functions N . By means 

of this approach, Eq. (7) can be rewritten as follows 

 )()(),( tt FEwuNuw  .  (18) 

Through this change, Eq. (17) results in 

 

.d
~

dd

d2d
D

D

T2

T
2T22

TT
TT












































V

FE

V

FE

V

FE

V

FE

V
FEFE

rΩ

rΩ
r

rΩ

rΩr
TT

t













uJN

w
NN

w
N

N

w
N

NwNN
ww




 (19) 



8 
 

The FEM requires the discretisation of the domain in finite elements, so the integrals over the domain 

V  are separated in sums of the integrals over the volume of each finite element eV , which gives 
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where E  is the number of elements in the FE mesh. The matrices of the elements in this equation, 

which are  
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are integrated through Gauss quadrature, and the resulting element matrices are assembled into global 

matrices following the standard FEM procedure. The matrix in Eq. (21) is the ordinary mass matrix 

in FEM. 

2.3  Eulerian modal coordinates (Model 2) 

Modal approaches are extensively adopted in vibration studies. The standard method adopts the mode 

shapes that are calculated with respect to a mobile reference frame that is associated with the non-

deformed configuration of the solid. Since the undeformed solid has symmetry of revolution, in this 
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work the mode shapes of the solid are adopted in this work as basis functions in a non-rotating frame 

of reference. Consequently, Eq. (7) becomes 

 )()(),( tt quΦuw  , (26) 

with )(uΦ  being the modal matrix and )(tq  the Eulerian modal coordinates. The modal matrix can 

be obtained through standard FE models, and it can be calculated as follows 

 FEΦuNuΦ )()(  , (27) 

where FEΦ  is the matrix that contains the mode shape displacements at the nodes of the FE mesh. By 

means of this approach, the EOM becomes 
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The matrices of the elements in this equation, which are  
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The EOM matrices can be calculated following the same steps as in the preceding subsection (the 

matrices are obtained by pre- and post-multiplying Eqs. (21) to (25) by the modal matrix). Although 

the number of computations is slightly larger, the resulting EOM contains a reduced number of 

coordinates if a proper number of modes are considered.  

2.4  Eulerian axisymmetric model (Model 3) 

The displacements due to the deformations of the solid can be obtained by means of the following 

Fourier series 
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where H  is the number of spatial harmonics, and hw~  and hw  are the amplitudes of the harmonics 

(the index h  can be interpreted as the number of nodal diameters). The functions hw~  and hw  can be 

formulated by means of the spatial harmonics at the nodes in a two-dimensional FE mesh of the solid 

section ( FE
hw~  and FE

hw ), as follows 
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It must be highlighted that the shape functions that are adopted in the present subsection ),( 3urN  are 

associated with two-dimensional elements of the cross-section. The displacement vector is formulated 

as follows 
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The displacements can be rewritten as follows 
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where  

  HH scsc NNNNNS 11   (41) 

and  
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1

1

0


. (42) 

Through this formulation, the general formulation in Eq. (17) that is based on Eq. (7) can be adopted. 

The first integral in the EOM in Eq. (17) is 

 
V

urr 3
T ddd SSM . (43) 

When performing the integral with respect to the angular coordinate  , all the cross terms are zero, 

resulting in 

 

ˆ2

ˆ

ˆ

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ë û

m 0 0

0 m 0
M

0 0 m




   


, (44) 

where 0  is the null matrix of appropriate dimensions (its dimensions are not indicated in this and the 

following equations for readability), and matrix m̂  is calculated as follows 
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 T
3

ˆ d d
A

r r up r= òm N N , (45) 

A  being the cross-section of the solid.  

The second matrix in the EOM is 

 T
3d d d

V

r r u 






S
G S . (46) 

The derivative of the basis matrix S  with respect to   is 

  HH cHsHcs NNNN0
S





11
. (47) 

By calculating the integrals with respect to   in Eq. (46), all the blocks are zero except for the ones 

that couple the same-order sine and cosine harmonics, resulting in 

 

ˆ

ˆ

ˆ2

ˆ2

ˆ

ˆ

H

H

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú= ê ú-ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

-ê úë û

0 0 0 0 0 0 0

0 0 m 0 0 0 0

0 m 0 0 0 0 0

0 0 0 0 m 0 0
G

0 0 0 m 0 0 0

0 0 0 0 0 0 m

0 0 0 0 0 m 0







       



. (48) 

Following the same methodology, the next matrices in the EOM are 

 2 T
1

ˆ2

ˆ
d

ˆ
V

r
r

r J

é ù
ê ú
ê ú¶ ê ú= = ê ú¶ ê ú
ê ú
ê úë û

ò

b 0 0

0 b 0S
B S

0 0 b




   



, (49) 
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2T

2 2

2

2

ˆ

ˆ

ˆ2
d

ˆ2

ˆ

ˆ

V

r

H

H

r J
q q

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú¶ ¶ ê ú= = ê ú¶ ¶ ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

ò

0 0 0 0 0 0 0

0 m 0 0 0 0 0

0 0 m 0 0 0 0

0 0 0 m 0 0 0S S
B

0 0 0 0 m 0 0

0 0 0 0 0 m 0

0 0 0 0 0 0 m







       



, (50) 

and 

    
AV

urrr 3
T2T dd0012d

~
00NuJSc  .  (51) 

where matrix b̂  is 

 2 T
3

ˆ d d
A

r r u
r

p r
¶

=
¶ò
N

b N . (52) 

The integrals in Eqs. (45), (51) and (52) are used to develop the EOM, following the procedure that 

was carried out in the preceding subsections.  

2.5  Equation of motion 

Whichever approach is adopted, the resulting EOM for the rotating solid can be written in a matrix 

form as follows 

    QcqBBKqGqM  2
21

22   , (53) 

where Q  is the generalised force vector, G  is the skew-symmetric gyroscopic matrix, 1B  and 2B  

are the stiffening matrices, and the vector c  is a constant generalised-force vector that is responsible 

for the centrifugal “forces”. Bearing in mind that the elastic energy expression does not depend on 

whether the standard Lagrangian or the Eulerian approach is adopted, the matrix K  is the stiffness 

matrix, which is either the standard one in FEM, or the diagonal matrix containing the squared natural 

frequencies in the modal approach. The resulting EOM is linear since the angular velocity of the solid 

is supposed to be constant (which is plausible for a railway wheelset) and the constitutive relationship 

is linear.  
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The dimensions of Eq. (53) depend on the model. Model 1 has the same dimensions as a standard 

FEM; the dimensions for Model 2 are the number of vibration modes that have been considered; and 

for Model 3 it is the number of degrees of freedom of the two-dimensional FE mesh times H  (the 

number of harmonics). 

The influence of the rotation on the results can be explained mathematically by the terms in the EOM 

that contain  . The gyroscopic term contains the product of the generalised-velocity vector and 

. In addition there are two terms that contain the product of 2  and the generalised-displacement 

vector, the sum of which produces the total stiffening matrix due to rotation. 

Since the formulation of the generalised force Q  has to satisfy that the virtual work associated with 

the external forces is qQ δδ TW , which only depends on displacements, the generalised-force 

expression is the same as for the corresponding Lagrangian approach. 

When adopting the axisymmetric model, the block matrices that couple the different harmonics 

(number of nodal diameters) are zero, as can be seen in Eqs. (44), and (48) to (50). Consequently, Eq. 

(53) can be analysed for each harmonic separately. The EOM for the h -th harmonic when h >0 is   

 
2

2

2

ˆˆ ˆ ˆ
,

ˆ ˆ ˆ ˆ

FEFE FE
hh h

h hFEFE FE
hh h

h h

h h
W

æ öé ùì ü ì ü ì üé ù é ùï ï ï ï - ï ï÷çï ï ï ï ï ïê ú÷çê ú ê ú+ + + =÷í ý í ý í ýç ê ú÷ê ú ê ú çï ï ï ï ï ï- ÷ç -ë û ë û ê úï ï ï ï ï ïè øî þî þ î þ ë û

m 0 0 m b m 0 ww w
K Q

0 m m 0 ww w 0 b m

   
 

 (54) 

and the corresponding EOM when h =0 is  

 ( )2 2 2 T
0 0 0 3 0

1
ˆˆ2 2 2 0 d d ,

0

FE FE

A

r r uW W p r

ì üï ïï ïï ïï ï+ + = +í ýï ïï ïï ïï ïî þ
òm w K b w N Q   (55) 

hQ  and hK  being the generalised force vector and the stiffness matrix associated with the h -th 

harmonic. 

The formulation obtained in this work is adequate to calculate the dynamic coupling between the 

rotating solid (the wheelset) and a non-rotating structure (the railway track). Eq. (53) is linear with 

constant matrices, which is not an exclusive advantage of Eulerian methods (see an example in Ref. 

[14], where a total Lagrangian approach is adopted for tire modelling). As will be studied in the 

following section, the EOM also allows to solve the eigenvalue problem, which provides the 

equivalent natural frequencies and mode shapes of the rotating solid.  
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3. RESULTS 

The present section presents some results that allow the different approaches to be compared. 

Additionally, some effects of rotation are shown that can be simulated with the approaches presented 

in the preceding section. The basis of this study is a railway wheel, which is considered boundary-

free in all the calculations. The wheel diameter is 853 mm.  

3.1  Modes and mode coupling 

Two FE models are adopted. The first is a two-dimensional mesh that is shown in Fig. 2, which is 

used for Model 3. The mesh is formed of 4-node quadrilateral elements and has 1026 degrees of 

freedom (DOF). The second is a three-dimensional (3-D) mesh of the wheel, meshed with 8-node 

brick elements (135432 DOF), which is obtained through angular extrusion of the two-dimensional 

mesh. This is shown in Fig. 3(a) and is used for Models 1 and 2. Fig. 3 also presents examples of the 

non-rotating mode shapes; these are associated with natural frequencies between 2900 and 3300 Hz, 

which will be analysed below. These are examples of modes with 0, 2, 3 (two cases) and 5 nodal 

diameters. The calculation of the modal properties is approximately 30000 times faster when the 

axisymmetric model is adopted than with the 3-D model. The differences between the non-rotating 

natural frequencies from the axisymmetric and 3-D models are less than 1% for all modes below 5 

kHz.  

 

 

Fig. 2: Two-dimensional FE mesh of the wheel section. 

 

Fig. 4 represents a map of the magnitudes of the terms in the gyroscopic matrix and the total stiffening 

matrix, when only the modes in Fig. 3 are considered. The calculation is done by means of the model 
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based on Eulerian modal coordinates (Model 2). The figure shows the values of the 99 matrices, 

which are associated with one mode of multiplicity 1 (i.e. with 0 nodal diameters, plotted in Fig. 3(e)) 

and four modes with multiplicity 2 (modes b, c, d and f in Fig. 3). The rows and columns have been 

marked with letters (b to f) referring to the notation of the modes in Fig. 3. From this result the 

following conclusions can be deduced: 

- There is strong coupling between the modes with the same number of nodal diameters. E.g., 

the maps show coupling between modes b and f in Fig. 3, which both have 3 nodal diameters. 

- Eq. (48) presents skew-symmetric components in the gyroscopic matrix that can be seen in 

the map of Fig. 4(a).  

- Eqs. (49) and (50) present self-coupling terms that are found as diagonal terms in Fig. 4(b).  

- The gyroscopic matrix in Eq. (48) has zero components for modes with zero nodal diameters. 

The diagonal component associated with mode e is zero (or close to zero) in Fig. 4(a).  

 

 

 

 

 

 

 

Fig. 3: Three-dimensional FE mesh of the wheel and five examples of non-rotating mode shapes: 
a) Undeformed FE mesh; b) 2950 Hz, 3 nodal diameters, radial mode; c) 3084 Hz, 5 nodal 

diameters, 0 nodal circles; d) 3142 Hz, 2 nodal diameters, 1 nodal circle; e) 3218 Hz, 0 nodal 
diameters, radial mode; f) 3286 Hz, 3 nodal diameters, 1 nodal circle. 
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These conclusions are in line with the axisymmetric model. There are, however, differences with the 

axisymmetric model such as the small components of the matrices that couple modes with different 

numbers of nodal diameters. 

 

a) 

 

b) 

 

Fig. 4: Map of the gyroscopic (a) and the stiffening (b) matrices, calculated by means of the 

Eulerian modal model when only the modes in Fig. 3 are considered. The greyscale is in 

logarithmic scale. 

3.2  Influence of rotation on the modal properties 

Fig. 5 presents the Campbell diagram, which shows the natural frequencies of the rotating solid versus 

the angular velocity of the solid (in the present case, the speed of the vehicle that produces such 

angular velocity). The calculations compare results from the Eulerian modal coordinate model and 

the axisymmetric model. The agreement is good in general, and the differences must be associated 

with the FE discretisation error and the simplification adopted in Eq. (34) in the axisymmetric model 

(where the influence of the angular coordinate is separated from the other coordinates). It must be 

pointed out that the discretisation error affects the different models in a different manner; as an 

obvious example, the number of elements in the circumferential direction just affects the three-

dimensional model, and can be observed when the pair of modes with multiplicity 2 at zero angular 

velocity are calculated at different frequencies using the 3-D model (there is a significant example at 

4150 Hz, where natural frequencies are calculated at 4130 and 4152 Hz). Regarding the 

computational time, both modal and axisymmetric models have similar computational cost (the figure 

can be generated in a few seconds) whereas the calculation of the full 3-D rotating FE model cannot 

be achieved by using a Matlab program on a conventional personal computer.  

From Ref [15], the natural frequencies of the rotating wheelset can be approximated from the non-

rotating ones n  by means of the following formulae 
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  hnnb  , (56) 

 
 hnnf 

, (57) 

nb  being the frequency of the backward mode (which rotates in the opposite direction to the angular 

velocity), and nf  the frequency of the forward mode (which rotates in the same direction). Table 1 

presents the natural frequencies of the rotating and non-rotating wheel; the former have been 

calculated through the axisymmetric model, and Eqs. (56,57). The columns marked ‘Difference for 

backward/forward’ indicate the difference between the FE result and Eqs (56,57).  

 

Table 1: Natural frequencies of the wheel below 5 kHz of modes with 1 or more nodal diameters.  

Natural 
frequency  

n  

[Hz] 

Number of 
nodal 

diameters 
h  

Backward 
frequency at 

300 km/h 

nb  

[Hz] 

Backward 
formula 

 hn   

[Hz] 

Difference 
for 

backward 
[%] 

Forward 
frequency at 

300 km/h 
[Hz] 

nf  

Forward 
formula

 hn   

[Hz] 

Difference 
for forward  

[%] 

449.99 2 393.54 387.79 1.46 517.93 512.18 1.11 
952.36 1 923.25 921.26 0.22 985.44 983.46 0.20 

1158.09 3 1067.47 1064.80 0.25 1254.06 1251.38 0.21 
1722.92 2 1660.37 1660.73 0.02 1784.76 1785.12 0.02 
2065.55 4 1942.80 1941.16 0.08 2191.58 2189.94 0.07 
2116.03 2 2053.89 2053.83 0.00 2178.29 2178.22 0.00 
2435.29 1 2407.18 2404.19 0.12 2469.38 2466.38 0.12 
2747.87 1 2721.25 2716.77 0.16 2783.44 2778.97 0.16 
2950.14 3 2856.78 2856.85 0.00 3043.36 3043.43 0.00 
3078.71 5 2924.40 2923.22 0.04 3235.37 3234.19 0.04 
3158.75 2 3096.43 3096.56 0.00 3218.79 3220.95 0.07 
3296.85 3 3235.37 3203.56 0.98 3389.97 3390.14 0.01 
3697.72 2 3635.20 3635.52 0.01 3759.59 3759.91 0.01 
3760.97 4 3636.56 3636.58 0.00 3885.34 3885.36 0.00 
4141.57 4 4016.99 4017.18 0.00 4265.77 4265.96 0.00 
4455.68 1 4433.90 4424.58 0.21 4496.10 4486.78 0.21 
4584.77 5 4429.31 4429.28 0.00 4740.28 4740.26 0.00 
4895.91 3 4802.40 4802.61 0.00 4988.98 4989.20 0.00 
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Fig. 5: Campbell diagram of the wheel. The abscissa shows the speed of the vehicle that produces 
the corresponding angular velocity of the wheel. The blue crosses correspond with calculations 
carried out with the axisymmetric model (Model 3). The red solid lines were calculated with the 

Eulerian modal coordinates (Model 2).  

 

Fig. 6 plots a section of the Campbell diagram calculated by means of the model that adopts Eulerian 

modal coordinates with only the modes shown in Fig. 3 implemented. The modal assurance criterion 

(MAC, see Ref. [16]) is used in this calculation in order to relate the modes that are calculated at 

different angular speeds with each other. The modes that, according to the MAC index, are found to 

be the same, are plotted in the same colour and line style in this figure.  
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The variation of the natural frequencies of the rotating solid with the angular velocity may cause two 

natural frequencies to be coincident, which can be detected in the Campbell diagram through the 

apparent intersection of two lines associated with different modes. According to Ref. [17], the 

crossing point in the Campbell diagram has important consequences in being responsible for rail 

corrugation growth in curves. Through simulation, in that reference it is shown that when 

implementing the conditions of curve negotiation, periodic wear occurs on the inner rail of the track 

if two natural frequencies in the Campbell diagram are approximately coincident. However, a more 

detailed analysis of the Campbell diagram shows that the crossing points are actually mode veering.  

The mode veering has been described for simplified gyroscopic models in [13]. The details of this 

behaviour can be assessed by means of the results in Figs 7 and 8.  

 

 

 

Fig. 6: Campbell diagram of the wheel when only the modes plotted in Fig. 3 are considered.  

 

Fig. 7 corresponds to a zoomed view of Fig. 6. The figure shows the veering associated with modes 

c and d (as in the previous case, the notation c and d refers to Fig. 3). Instead of crossing, the modes 
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change rapidly, with mode c changing into mode d, and vice versa. Nevertheless it should be noted 

that the range of speeds over which this phenomenon occurs is very small. 

 

 

 

Fig. 7: Zoomed view of the veering zone in the Campbell diagram shown in Fig. 6.  

 

 

 

Fig. 8: Modal orbits that are calculated for the speed range where the veering takes place. a) 
Mode plotted in continuous green trace in Fig. 7. b) Mode plotted in dashed blue trace in Fig. 7. 

 

Fig. 8 presents different modal orbits for a point located on the wheel tread at 70 mm from the flange-

back. These trajectories are ellipses showing how the vibration varies during a cycle; they have been 

calculated for a set of vehicle speeds and they are plotted in different colours, according to the colour 
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bar of the figure. Fig. 8(a) presents the orbits associated with the natural frequency that is plotted as 

a solid green line in Fig. 7, whereas the corresponding orbits of the natural frequency plotted as a 

dashed blue line are shown in Fig. 8(b). This result shows how the modes veer when the vehicle speed 

changes by just 0.0005 km/h. Modes c and d have different numbers of nodal diameters and 

consequently this behaviour cannot be predicted by means of the axisymmetric model.  

 

4. CONCLUSIONS 

Three closed-form formulations are presented for the study of the dynamics of rotating solids with 

axisymmetric geometry. The methodology is based on a general equation of motion in which the 

displacements due to the small deformations are written by means of a basis that adopts an Eulerian 

approach. The resulting Eulerian coordinates reduce the computational cost when the solid interacts 

with a non-rotating structure, and enable the natural frequencies and the frequency response functions 

of the rotating solid to be obtained. The general formulation in cylindrical coordinates is compact and 

avoids numerical issues since it only contains first-order derivatives with respect to the coordinates. 

Three different sets of basis functions (FEM shape functions, undamped mode shapes and 

axisymmetric FE shape functions) are adopted, producing three formulations. The formulation based 

on FEM generates a very large number of degrees of freedom, but its modelling cost is small since it 

follows the general FEM procedure for building the equations of motion. The models that adopt 

Eulerian modal coordinates and axisymmetric coordinates have similar (and reduced) computational 

costs. The Eulerian modal approach allows the weak coupling to be calculated that produces the mode 

veering, which has been associated in the literature with the wavelength fixing mechanism in certain 

rail corrugation problems. The axisymmetric model can in general reduce the discretisation problems 

occurring when a coarse mesh is adopted, and it avoids the need for a complex three-dimensional FE 

model with a high number of degrees of freedom.  
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