
Microprocessors and Microsystems 98 (2023) 104824

A
0

T
e
R
I

A

K
F
D
H
E
S

1

n
a
r
a
e
e
a
i
c

w
o

t
d
v
m
a
t
A
a
t

s

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

ask parallelism-based architectures on FPGA to optimize the energy
fficiency of AI at the edge
afael Gadea-Gironés ∗, Jorge Fe, Jose M. Monzo

nstitute for Molecular Imaging Technologies (I3M), Universitat Politècnica de València, Valencia, 46022, Spain

R T I C L E I N F O

eywords:
PGA
eep neural network
ardware co-design
nergy efficiency
ystolic architectures

A B S T R A C T

In the world of artificial intelligence (AI) at the edge, we need to focus primarily on the energy efficiency with
which we approach deep neural network (DNN) applications. In many applications, the speed of obtaining
an inference can be critical; but many applications easily meet their time requirements, and the energy
needed to calculate the huge numbers of multiplication and addition operations of DNNs becomes the essential
element. We have provided systolic architectural solutions written in C++ and OpenCL that are highly flexible
and easily tunable to take full advantage of the resources of programmable devices and achieve superior
energy efficiencies. We focused on low-cost solutions with soft macro microprocessors (Nios2) and hard macro
microprocessors (ARM cortex A9).
. Introduction

Bringing artificial intelligence (AI) to electronic devices is a growing
eed. This type of machine-learning solution could be used for many
pplications: Predictive maintenance of machines where the device can
ecognize its status, detect anomalies or loss of calibration, and act
ccordingly within a few milliseconds. Food sorting in the supply chains
ither by artificial vision or other types of sensing (impedance analyz-
rs). Non-invasive medical instrumentation to determine anomalies in
scan can alter the patient’s quality of life. Smoke and fire detection

n forested areas. Hand gesture recognition using low-power radar,
apacitive touch sensors, or accelerometers.

The choice of the electronic device will depend on many factors, but
e will summarize them in three: performance, cost and a compendium
f size, weight and power consumption (SWaP).

In this choice, field-programmable gate arrays (FPGAs) are an in-
eresting alternative, but they usually have a fourth factor that can be
etrimental, which is the difficulty of design. FPGA manufacturers pro-
ide a series of applications to their customers so that the developments
ade in frameworks dedicated to AI (i.e., Tensorflow, Caffe, Pytorch)

nd have been used to train these learning machines can easily transfer
o the devices that will host the AI and perform the inference tasks.
lthough they communicate easily with training environments and
llow heterogeneity of technological alternatives (CPU, GPU, FPGA),
hey lack architectural vision when dedicated to FPGA solutions.

For instance, OpenVINO (Intel FPGA), Vitis AI (AMD Xilinx), Lattice
ensAI (Lattice), and Smart embedded Vision (Microsemi) provide a

∗ Corresponding author.
E-mail address: rgadea@eln.upv.es (R. Gadea-Gironés).

direct implementation for FPGA-based solutions. Developments from
the first two manufacturers (Intel FPGA and AMD Xilinx) are not
intended for low-cost devices such as the ones we focus on in this article
(Cyclone V SoC and Zynq-7000 SoC).

In the opposite direction (bringing the hardware world closer to
the software), the use of high-level compilers that can create hardware
(based on FPGA) from a software language very close to C++ is also
interesting. In this line, we have compilers that work from OpenCL,
DPC++, C++, or SystemC. In principle, this option was not created with
AI applications in mind, but it is now also the focus of many resources
and studies.

Against this background, the contribution of this article is to put
energy efficiency in the first place when assessing neural network im-
plementations in inference actions. We want to demonstrate the validity
of fully configurable FPGA-based solutions in which both the soft macro
microprocessor and the accelerator coexist. The study will focus on
low-cost devices that allow us to create intelligent, autonomous, and
energy-efficient sensors.

Methodologically, we will use high-level compilers combined with
the creation of register transfer level (RTL)-based libraries, thus com-
bining the experience of low-level design and the power of new en-
vironments based on high-level synthesizers. FPGA, traditionally, has
been programmed using low-level ‘‘Hardware Description Languages’’
(HDL) such as VHDL or SystemVerilog. However, in the last few years,
‘‘High-Level Synthesis’’ (HLS) tools have been developed and popular-
ized. HLS tools convert behavioral C/C++ algorithms descriptions into
low-level descriptions.
vailable online 27 March 2023
141-9331/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2023.104824
eceived 25 August 2022; Received in revised form 13 March 2023; Accepted 23 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

arch 2023

https://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:rgadea@eln.upv.es
https://doi.org/10.1016/j.micpro.2023.104824
https://doi.org/10.1016/j.micpro.2023.104824
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2023.104824&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
HLS tools infer parallelism from the sequential C/C++ described
algorithms and exploit it to achieve higher throughput and low la-
tency. HLS tools provide different options and pragmas to drive the
C/C++ code conversion into RTL description. Proper use of these
HLS options and pragmas is essential to achieve an optimal hardware
implementation in speed and area.

Architecturally, our contribution will be based on the implemen-
tation of a systolic architecture with two main objectives: to exploit
the advantage of implementing two chained layers of neurons through
alternative projections that facilitate communication between them and
to have the possibility of folding internally to be able to implement
the number of layers we want without resorting to global memory and
without the microprocessor intervening in the successive call.

The rest of this paper is organized as follows: AI-at-the-edge design
infrastructures currently used with FPGA as the target technology are
reviewed in Section 2. In Section 3, the elements used in the proposed
methodology and architecture are determined. In Section 4, the ob-
tained implementation results for a multilayer perceptron (MLP) are
analyzed and compared with other available solutions. The conclusions
are presented in Section 5.

2. State of the art

The first thing we must do in this review of the state of the art
is focus clearly on the type of implementations we are interested in
to not become lost in a huge number of implementations that have
proliferated in recent years.

We are interested in DNN implementations that can be hosted on
low-cost FPGA devices. We will focus primarily on those SOC-type tech-
nology families based on 28 nm process devices and will, of course, look
for hardware–software co-design solutions where a microprocessor and
accelerator hardware work collaboratively within the same package.
We believe that this type of device is the most suitable to deal with AI
at the edge.

In general terms, we are talking about FPGA devices with a limited
number of arithmetic resources (mainly represented by hard macros
called digital signal processors (DSP)) and whose raison d’être is far
from the handling of floating point data types. These limited resources
lead to solutions based on the reuse of an accelerator by means of
successive calls exercised and controlled by a microprocessor to meet
the sizes of existing networks within the DNN typology.

Of course, we will focus on solutions of the inference phase, and
although we will demonstrate that we can change the type of data
used in the operations, we will take as a base reference the operations
in IEEE754 single precision. This last aspect is important because the
handling of other types of data (fixed point of different precisions
for activations, weights, pixels, etc.) would lead us to greatly com-
plicate the goodness of the architectural solutions and to perform
an exhaustive accuracy analysis of the solved applications (whether
classifications, regressions, compressions, or predictions).

We begin our review of solutions with the work of Coutinho
et al. [1]. They use processing units (PEs) that compute the basic
neural operations, and from a weight communication point of view,
they use a systolic architecture based on streamings. It is a low-level
RTL implementation with very specific fixed-point data types. Its results
are very good both in terms of throughput and energy efficiency, but
the type of FPGA used is not low-cost, and its low energy efficiency
is striking. A solution using the same type of device (Virtex 6) can
be found at [2]. Also implemented with HDL and with impressive
throughput performance (working with fixed points less than 18 bits),
and although we cannot know its energy efficiency, we can suspect
from its computational efficiency that it will not be good.

In a similar line of not using a low-cost device, we have the studies
of Maria et al. [3]. In this case, very high values of MAC operations
per second are obtained. The energy efficiency can be improved, but
in their favor, we must consider that they strictly measure the power
2

consumed by the host and the FPGA device. The use of OpenCL is
introduced in this work, which we also do in some of our proposals.
However, we use the existing ARM in the Cyclone V family as host
so there is the possibility of performing the inference completely au-
tonomously without the need for a host computer connected with a
peripheral component interconnect (PCI). We cannot end this review
of large FPGA devices without the study of Westby et al. [4], which is
currently the fastest in processing a single digit image as it only requires
1.55 μs. The implementation is done in RTL Verilog, and although the
network is an MLP with only one hidden layer (784-12-10), it achieves
an accuracy of 93.5% and beats all records in throughput. However,
the computational efficiency (it uses 604 DSPs) and energy efficiency
results are not very convincing.

In the arena of low-cost family devices, we can highlight the studies
of Acosta et al. [5] using a Cyclone IV. They use the largest device of the
series, and their throughput results are very remarkable. Acosta et al.
design It works with a 32-bit fixed point precision, and it is not possible
to know both the energy and computational efficiency of the solution.
The design flow is by means of a proprietary framework, as is that of
Mazouz et al. [6], which must use the largest device size (Zynq 7100)
within the Zynq FPGA family. The energy efficiency of this solution
is moderate. It is clear in these examples that either high-performance
families are used, or the largest devices of the families classified as low
power and low cost are used, resulting in implementations that are far
from being suitable for AI edge computing.

Considering solutions closer to our proposal, the works of Belabed
et al. [7,8], Wang et al. [9] and Jorge Fe et al. [10] are worth
mentioning. All use devices from the Zynq family; the first two work
with a 7020, and the last one works with a 7010. The underlying idea
is to reuse certain functional blocks using hardware–software co-design
techniques to tackle deeper neural networks. The results [9] obtained
with an RTL design flow are quite modest in terms of throughput values
and computational and energy efficiency values. The results on [10]
stand out when working with 32-bit fixed point; as we have already
mentioned, fixed point solutions must be carefully evaluated for the
effects on the limited precision of the solution. In the case of [7,8], we
have the best results for a fixed point in terms of throughput, albeit at
the cost of lower computational efficiency and energy efficiency based
on unrealistic consumption figures.

3. Methodology and architecture

3.1. Methodology

The following methodological aspects must be described:

1. Generation of the systolic architectures: From this point of view,
a classic systolization system is used;

2. Transfer the obtained architecture to C++ code compatible with
the HLS compiler of Intel FPGA and to OpenCL compatible with
the OpenCL compiler of Intel FPGA;

3. Function implementation refinement using RTL libraries.

Fundamental contributions in these three areas have already been
provided by our group, as follows:

1. Systolic generation

• The first contribution is the implementation of the dense
layers in pairs rather than individually. Both multilayer
perceptrons and the dense layers of CNNs require at least
two layers based on matrix–vector multiplication. With this
technique, we can improve the communication between
layers by performing it internally in the developed IP.

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
• The second contribution is to demonstrate the implemen-
tation of a larger number of dense layers by means of
a looped data flow within IP. With this approach, we
have solved the MLP implementation of two hidden layers
and one output layer or the final stages of CNN (LeNet,
AlexNet, VGGNet).

• Projections are needed to allow several processing ele-
ments (PEs) to be executed by the same kernel. This fact
will help save resources in the hardware implementation
of the systolic array generation. The best projections are
chosen based on their efficiency in layer-to-layer commu-
nication.

2. Implementation of the systolic architecture using C++ and
OpenCL:

• C++: Use of a system of tasks implementation, in which
the projected processing units are assumed by a function
with the property launch_always_run. From now on, this
element will be referred to as the projected processing
element (PPE). In the case of OpenCL, we use autorun
kernels.

• Use of functions for data entry and data extraction based
on two techniques: buffers and queues.

• Use of two control units from which it will distribute its
control signals to the remaining functions (C++) or kernels
(OpenCL).

• Use of control flow and data flow through pipes or stream-
ing interfaces (C++) and through channels (OpenCL) that
will play a key role in the synchronization of all processing
units.

3. RTL refinement:

• Implementation of the activation functions by means of
embedded memories, and

• Implementation by direct instantiation of the operations
output = A × B + C and Accu = A × B + Accu using the
embedded DSPs.

• Both techniques are common in low level, working with
HDL and performing manufacturer’s own ip instantiations.
Incorporating these techniques in the flow with HLS and
OpenCL is possible, but requires a correct parameterization
according to the streaming interface handled by the RTL
libraries used.

3.2. Systolic generation

A systematic method was applied for the design of systolic ar-
rays [11] to obtain the architecture of two adjacent dense layers. This
method is suitable for algorithms that can be expressed as a set of uni-
form recurrence equations on a convex set of whole D coordinates [11].
Once the recurring equations have been obtained, the method follows
two steps: (1) finding a plan for the operations (schedule) that is
compatible with the dependencies introduced by the equations, and
(2) mapping the D domain within another finite set of coordinates.
Each of these coordinates will represent a processor of the systolic
array. As a consequence, the concurrent operations are mapped within
different processors (allocation). The schedule and allocation functions
must fulfill conditions that allow the method to be fully automated.
This fact enables the transition to a systolic array of equations that
intervene in the operation of the MLP.

The resulting architecture was obtained using different procedures
than the ones shown in [12–14]. The latter procedures start from the
dependency network and conduct a mapping operation on a systolic ar-
ray. Projection operations in a certain direction are carried out for each
PPE. The proposed architecture is called an ‘‘alternative orthogonal sys-
tolic array’’, and the complete method of extraction can be seen in [15],
3

Fig. 1. Multilayer perceptron.

although it is not systematic and is, therefore, difficult to transfer to
other cases. In the case presented herein, the systematic procedure seen
in [11] is used. Even though the same configuration already obtained
by Murtagh, Tsoi, and Bergmann is achieved here, this methodology
can be executed for the computation of different configurations and
can be applied to other types of problems (algorithms).

3.2.1. Multilayer perceptron

An MLP with the same layer structure as the one shown in Fig. 1
is used. In turn, this structure is shared by several CNNs in their final
stage (LeNet, AlexNet, VGGNet).

Here, the layer connection between 𝑗 (neuron source layer) and 𝑖
(neuron destination layer) is discussed. Throughout the text, we will
use the terms DESTINATION for the number of neurons in the target
layer and ORIGIN for the number of neurons in the source layer.

Uniform recurrence equations. From Eqs. (1) and (2), uniform iterative
Eqs. (3), (4), (5), (6), (7) and (8) can be obtained:

𝑢𝑙𝑖 =
𝑂𝑅𝐼𝐺𝐼𝑁+1

∑

𝑗=0
𝑤𝑙

𝑖𝑗𝑦
𝑙−1
𝑗 (1)

𝑦𝑙𝑖 = 𝑓 (𝑢𝑙𝑖) (2)

1 ≤ 𝑖 ≤ 𝐷𝐸𝑆𝑇𝐼𝑁𝐴𝑇𝐼𝑂𝑁, 1 ≤ 𝑙 ≤ 𝐿,

where 𝑦 stands for activation, 𝑤 for weight, 𝑓 for nonlinear function,
and j, i for the indexes in the source and destination layers.

1. Layer 1

𝑙𝑎𝑦𝑒𝑟1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[𝑙]𝑥𝑙(𝑖, 𝑗) = 𝑥𝑙(𝑖, 𝑗 − 1) +𝑤𝑙(𝑖, 𝑗) ⋅ 𝑦𝑙−1(𝑖 − 1, 𝑗)
𝑦𝑙−1(𝑖, 𝑗) = 𝑦𝑙−1(𝑖 − 1, 𝑗)
𝑦𝑙(𝑖,𝑁 + 2) = 𝑓 (𝑥𝑙(𝑖,𝑁 + 1))
1 ≤ 𝑖 ≤ 𝑀
1 ≤ 𝑗 ≤ 𝑁 + 1

(3)

and the boundary conditions:

𝑙𝑎𝑦𝑒𝑟1

⎧

⎪

⎨

⎪

𝑦𝑙−1(0, 𝑗) = 𝑖𝑛𝑝𝑢𝑡𝑠 for j = 1....N
𝑦𝑙−1(0, 𝑁 + 1) = 1 Bias
𝑙

(4)
⎩

𝑥 (𝑖, 0) = 0 for i = 1....M

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Fig. 2. Multi layer interconnection.
2. Layer 2

𝑙𝑎𝑦𝑒𝑟2

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥𝑙(𝑖, 𝑗) = 𝑥𝑙(𝑖 − 1, 𝑗) +𝑤𝑙(𝑖, 𝑗) ⋅ 𝑦𝑙−1(𝑖, 𝑗 + 1)
𝑦𝑙−1(𝑖, 𝑗) = 𝑦𝑙−1(𝑖, 𝑗 + 1)
𝑦𝑙(𝑀 + 2, 𝑗) = 𝑓 (𝑥𝑙(𝑀 + 1, 𝑗))
1 ≤ 𝑖 ≤ 𝐾
1 ≤ 𝑗 ≤ 𝑀 + 1

(5)

and the boundary conditions:

𝑙𝑎𝑦𝑒𝑟2

⎧

⎪

⎨

⎪

⎩

𝑦𝑙−1(𝑖, 0) = 𝑓 (𝑥𝑙−1(𝑖,𝑁 + 1)) for i = 1....M
𝑦𝑙−1(𝑀 + 1, 0) = 1 Bias
𝑥𝑙(0, 𝑗) = 0 for i = 1....K

(6)

3. Layer 3

𝑙𝑎𝑦𝑒𝑟3

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥𝑙(𝑖, 𝑗) = 𝑥𝑙(𝑖, 𝑗 − 1) +𝑤𝑙(𝑖, 𝑗) ⋅ 𝑦𝑙−1(𝑖 − 1, 𝑗)
𝑦𝑙−1(𝑖, 𝑗) = 𝑦𝑙−1(𝑖 − 1, 𝑗)
𝑦𝑙(𝑖, 𝐾 + 2) = 𝑓 (𝑥𝑙(𝑖, 𝐾 + 1))
1 ≤ 𝑖 ≤ 𝐿
1 ≤ 𝑗 ≤ 𝐾 + 1

(7)

and the boundary conditions:

𝑙𝑎𝑦𝑒𝑟3

⎧

⎪

⎨

⎪

⎩

𝑦𝑙−1(0, 𝑗) = 𝑓 (𝑥𝑙−1(𝑀 + 1, 𝑗)) for j = 1....K
𝑦𝑙−1(0, 𝐾 + 1) = 1 Bias
𝑥𝑙(𝑖, 0) = 0 for i = 1....L

(8)

The geometry of the domain and the interconnection are shown
in Fig. 2.
4

Resulting systolic array. The final result of the systolization procedure
for layer 1 with a direction (1,0) projection is the systolic array shown
in Fig. 3. The same applies to layer3 in Fig. 4.

• The number of functional blocks called ‘‘vertical synapses’’ equals
the number of neurons in the source layer. Those functional
blocks basically perform the function 𝐹 = 𝐴 × 𝐵 + 𝐶, and

• The number of functional blocks (neurons) is 1. This functional
block implements the activation function.

The final result of the systolization procedure with a direction (1,0)
projection of the systolic array of layer 2 is shown in Fig. 5.

The fundamental projection characteristics for an interconnection
layer are:

• The number of functional blocks, called ‘‘horizontal synapses’’,
equals the number of neurons in the target layer. Those functional
blocks basically perform the function Accu = A ×B + Accu; and

• The number of functional blocks (neurons) equals the number of
neurons in the target layer. This functional block implements the
activation function.

3.3. Architecture

We will list the developed architectures.

1. V-H-V

• Non flexible (VHV)
• Flexible(F-VHV)

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Fig. 3. Systolic array layer 1.
• Batch Flexible(BF-VHV)

2. V-H folded

• Non flexible (VH)
• Flexible(F-VH)
• Batch Flexible(BF-VH)

The most significant architectural solutions are described below.

3.3.1. Alternative V-H-V
The first proposed architecture is shown in Fig. 6.
These architectures are the combination of layers 1, 2, and 3 dis-

cussed in the previous subsection:

• All the data streams have been implemented by channels(OpenCL)
or pipes(C++). Those channels perform two important tasks: the
transmission of data and control signals and the synchroniza-
tion of the systolic architecture. Each processing unit (synapses
and neurons) can only operate when all of the data and con-
trol channels have data available. Otherwise, these processing
units are blocked while queues (channels or pipes) are empty.
Therefore, all of the processing units (synapses and neurons) act
5

autonomously and do not need to be commanded by the host.
The difficulty in this approach lies in making the systolic network
adaptable to different numbers of inputs, outputs, and neurons in
the hidden layers without having to hardware recompile the ori-
gin code (C++ or OpenCL). This task is performed by the control
generation units that distribute control commands through the
associated queues (see 7).

• The layers are constructed based on a BLOCK-SIZE parameter (Bs1
and Bs2 in Fig. 6). The Bs1 parameter is used several times to
cover the number of inputs, and the Bs2 parameter is used to
cover the number of hidden2 neurons, as shown in Fig. 6. In our
experiments, both parameters will have the same value (BLOCK-
SIZE), and given the size limitation of the used devices, we will
test values of 8, 16, and 32, which respectively provide 24, 48,
and 96 floating point DSPs. For a neural network such as the
one depicted in Fig. 1, this architectural solution requires that
the number of inputs and the number of neurons in the second
hidden layer are multiples of BLOCK-SIZE.

• All the operations are in single precision format. We have also
made implementations with other data types of 16 bits (FPHalf

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Fig. 4. Systolic array layer 3.
and Bfloa16) to evaluate occupancy and throughput values with-
out loss of accuracy. The results are interesting, and we will
include some of these architectures with these types of data.

• There is the possibility of a distributed control in each of the
PPEs (see [16]) that would allow us to improve the performance
characteristics. However, any change in the topology (changes in
the number of inputs, outputs, and neurons of each layer) would
force us to recompile the hardware.

3.3.2. Alternative V-H folded
The second proposed architecture is shown in Fig. 8.

• The main advantage of this architecture over the first one is the
saving of resources. By making Bs1 and Bs2 the same, we can infer
that layer 1 can be reused, making the datapath much simpler
(because we save a layer) and also lightening the control, which
is now governed only by two functions that handle four control
flows instead of three (see Fig. 9).
6

3.3.3. Alternative flexible
As indicated above, the main drawback of the folded V-H-V and V-

H alternatives is that the dimension of the number of inputs and the
number of neurons of the second hidden layer must be multiples of
Bs1 and Bs2, respectively. We needed a mechanism to overcome this
limitation. Let us see this mechanism on an architecture V-H folded as
an example; but it is equally applicable to the V-H-V architecture.

From a control point of view, we needed the control units in Fig. 11
to generate a new char type signal that we will call rest, which should
be transmitted as shown in Fig. 11. Each processing unit has an ID
that indicates its position in the systolic array so that when it is hit by
a control signal resting with that identifier, it stops transmitting data
and control line flow to the successive processing units. This technique
is sufficient for the horizontal layer; however, for the vertical layer,
it is necessary that each vertical synapse has a bypass mechanism to
the vertical neuron (see Fig. 10). This bypass mechanism cannot be
solved with a single channel or pipe because in both compilers (HLS and
OpenCL SDK), these communication mechanisms can only be written
or read from a single kernel (or function); therefore, it is necessary
to have BLOCK-SIZE channels that must be read by the PPE vertical

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Fig. 5. Systolic array layer 2.
Fig. 6. Systolic architecture data flow with vertical–horizontal–vertical combination.
neuron through non-blocking reads with the intention of choosing the
first channel that is not empty (see Algorithm 1).

The implementation details of the vertical and horizontal synapses
can be seen in Fig. 12.

3.3.4. Alternative batch
The latter mechanism affects both the control blocks and the so-

called ‘‘producer’’ blocks. The main idea is to take full advantage of
the pipeline capabilities of the systolic architecture by introducing
successive inputs into the input layer in a number that we will call
from now on batch size. Evidently in the world of inference, this
succession of inputs is not usual due to its dependence on the sensing
and acquisition system. However, in the training world, it is quite
common, given the mini-batch concept of most learning algorithms.
Another reason that pushes us to this type of mechanism is to be able
to adapt in the future this systolic architecture to convolutional layers
in which the input instead of being a vector is a matrix. In any of the
7

Algorithm 1 Vertical Neuron
1: 𝑒𝑥𝑖𝑡𝑜 ⇐ 𝑓𝑎𝑙𝑠𝑒;
2: while 1 do
3: while 𝑒𝑥𝑖𝑡𝑜 ≠ 𝑡𝑟𝑢𝑒 do
4: for 𝑖 = 0 to 𝐵𝐿𝑂𝐶𝐾_𝑆𝐼𝑍𝐸 do
5: if 𝑒𝑥𝑖𝑡𝑜 = 𝑡𝑟𝑢𝑒 then
6: 𝑖𝑛𝑝𝑢𝑡 ⇐ 𝑟𝑒𝑎𝑑_𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑛𝑏_𝑖𝑛𝑡𝑒𝑙(𝑏𝑦𝑝𝑎𝑠𝑠[𝑖],&𝑠𝑢𝑐𝑐𝑒𝑠𝑠[𝑖]);
7: end if
8: 𝑒𝑥𝑖𝑡𝑜 ⇐ 𝑒𝑥𝑖𝑡𝑜 or 𝑠𝑢𝑐𝑐𝑒𝑠𝑠[𝑖];
9: end for

10: end while
11: 𝑜𝑢𝑡𝑝𝑢𝑡 ⇐ 𝑡𝑎𝑛ℎ(𝑖𝑛𝑝𝑢𝑡);
12: 𝑤𝑟𝑖𝑡𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑖𝑛𝑡𝑒𝑙(𝑠𝑎𝑙, 𝑜𝑢𝑡𝑝𝑢𝑡);
13: 𝑒𝑥𝑖𝑡𝑜 ⇐ 𝑓𝑎𝑙𝑠𝑒;
14: end while

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Fig. 7. Systolic architecture control flow with vertical–horizontal–vertical combination.
Fig. 8. Systolic architecture data flow with vertical–horizontal–folded combination.
cases we have checked in this way the throughput limits that can be
reached by this type of architectures.

3.4. RTL tuning

3.4.1. Introduction of the nonlinear function inside the kernel
Our experience in designing backpropagation (BP) algorithm ac-

celerators [17,18] along with other works [19] indicates that one
of the most effective means of achieving acceleration is usually to
replace the software implementation of the hyperbolic tangent with a
hardware implementation.

The processing units depicted in Figs. 6, 8, and 10, called neurons,
necessarily include the nonlinear activation function. The proposed
hardware implementation uses lookup tables (LUTs) with a memory
capacity that could be implemented using the Cyclone V devices’
8

embedded memories. An organization of 210×20 is used in the proposed
implementation.

For instance, when the hyperbolic tangent is used as the activation
function, a direct implementation through the HLS compiler or OpenCL
compiler is highly unsatisfactory in terms of area and speed. To ob-
serve this effect, we will take a vertical layer like the one in Fig. 6
with BLOCK_SIZE = 3, and we will implement it using the libraries
hls_float_math using Eq. (9) or our RTL IP (LUT based). Latency results
are obtained when this vertical layer implements layer 3.

𝑡𝑎𝑛ℎ = (𝑒2𝑥 − 1)∕(𝑒2𝑥 + 1) (9)

Our results regarding the resources being used and speed perfor-
mance (latency) are shown in the row labeled ‘‘RTL IP tanh’’ in Table 1.
This approach is outstanding in terms of area and speed; moreover,
it has no impact on the inference mode of the trained MLP from the
precision point of view.

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Fig. 9. Systolic architecture control flow with vertical–horizontal–folded combination.

Table 1
Comparison between the implementations of the vertical layer.

ALM Register Memory MLAB DSP Latency
20 Kb Blocks Cycles

HLS tanh 7568 15941 86 86 23 1123
RTL IP tanh 4803 9421 56 46 5 1061

Table 2
Resource comparison between 𝐹 = 𝐴 × 𝐵 + 𝐶 implementations of the vertical layer.

ALM Register Memory MLAB DSP Latency
20 Kb Blocks Cycles

HLS inference 4803 9421 56 46 5 1061
RTL IP 5407 11005 57 47 5 1177

3.4.2. Instantiation of DSPs versus direct inference
The same procedure used for the implementation of hyperbolic

tangent functions inside PPE neurons was applied to PPE synapses to
achieve further refinement based on RTL libraries written in Verilog-
SystemVerilog.

Results in Table 2 demonstrate that for the 𝐹 = 𝐴×𝐵+𝐶 function’s
implementation, the RTL code-based instantiation versus HLS code
inference has no remarkable impact in terms of efficiency. We can see
the results in Table 2, where we show the implementation differences
of the vertical layer with size BLOCK_SIZE=3.

However, in the case of the function 𝐴𝑐𝑐𝑢 = 𝐴 × 𝐵 + 𝐴𝑐𝑐𝑢, the
number of resources saved by using direct instantiations of horizontal
synapses is remarkable. The major contribution of these IPs is to
perform the operation with a throughput of 1. In the case of more
modern and powerful technologies such as Arria 10, the internal DSPs
can be configured to achieve this property natively when working with
floating point and single precision. However, in the case of the Cyclone
V family that is the subject of this work, the only way to achieve it is
with IP RTL instantiation in HLS by means of a fixed-point accumulator
kernel. This leads to problems in layers with a very large number of
source neurons (as in the case of the first interconnection layer with
784 neurons).

An overall improvement in both area and performance can be
observed for alternative flex V_H folded with 784-100-50-10 topology
(Tables 3 and 4). The improvements in terms of performance are
9

Table 3
Comparison between two implementations of MLP (784-100-50-10) with flex V-H folded
architecture and BLOCK-SIZE = 8.

ALM Register Memory MLAB DSP Latency
20 Kb Blocks Cycles

HLS inference 27465 55020 246 275 22 42119
RTL IP 19186 36721 145 214 22 37813

Table 4
Performance comparison between two implementations of MLP (784-100-50-10) with
flex V-H folded architecture and BLOCK-SIZE = 8.

Thra Thrb Energy efficiency Comput. efficiency
Mps FPS mW/Mps Mps/DSP

HLS inference 199.197 2374.2 5.72 9.05
RTL IP 221.881 2644.6 4.91 10.085

aThroughput in mega parameters per second.
bThroughput in frames per second.

not remarkable, but in the case of resources, it may mean that our
accelerator may or may not fit in our device.

4. Results and performance evaluation

4.1. Performance evaluation

In AI-at-the-edge applications, system latency and, derivatively, ap-
plication throughput are often some of the most requested performance
metrics.

Because most studies focus on computer vision applications, it is
not surprising that frames per second is widely used as the throughput
measurement. This measure has been used in the present work to
compare our results with other works, but it is essential to keep in mind
that this measurement parameter is very dependent on the network
topology, which includes the input layer that would have the size of
the starting image.

It is more interesting and independent of the topology to calculate
the throughput as a function of the number of network parameters
calculated per second, given that it is generally understood that each
synaptic connection involves one parameter (one MAC operation).

However, it should be noted that results using these throughput
metrics are often masked by the programmable device architecture
characteristics (granularity, number of variables per LUT, and DSP
characteristics), and, fundamentally, by resources available and used in
the chosen FPGA. To avoid this drawback, our solution’s computational
efficiency goodness is measured as network parameters per second per
DSP (which corresponds to a MAC operation on almost all manufactur-
ers’ FPGA families). Comparing solutions on the same device family will
be a very valuable measure, but comparing solutions between families
or between vendors is almost meaningless considering the different
characteristics of the DSPs.

Nevertheless, whether these operations are done in fixed or floating
point, and exactly the type of representation used should be made clear.
We can evaluate the accuracy impact at different accuracies, but it
would always depend on the application used.

Energy efficiency is also very important when AI-at-the-edge pro-
cessing is performed in limited battery capacity embedded devices [20].
Energy efficiency is often reported as the number of operations per
joule, but in this work, mW/Mps, or energy per operation, is used.
It is a very significant value when comparing different manufacturers.
The only problem with this measurement is knowing how the power
has been evaluated (estimated or measured); the values found in many
works are estimates of the design environments with FPGAs (Vivado or
Quartus), and it can often be difficult to discern what has been done

with the power consumed by the PS in SOCs.

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Fig. 10. Systolic architecture data flow with flexible vertical–horizontal–folded combination.
w
p
h
p
o

a
a
i
o
T
e

h
w
o
c
a
r
a
c

p
e
3
I
m

𝑟

H
w
t

Fig. 11. Systolic architecture control flow with flexible vertical–horizontal–folded
combination.

Finally, it is necessary to include two last aspects that our imple-
mentation perfectly fulfills and that cannot be ignored: flexibility and
architectural adaptation. Some other implementations are unbeatable
at the previous metrics but at the cost of hardware time compilation
for these specifically implemented topologies. This means that any
topology change requires a time-consuming hardware recompilation.
Some implementations with dependency on group size (as the NDrange
kernel-based OpenCL implementations), even if they do not require
recompilation, have an efficiency that is very dependent on the ex-
act size of the layers. These implementations, derived from fantastic
implementations of matrix multiplication, are very efficient with a
batch of input vectors, but in inference, such an input situation is very
10

unrealistic.
4.2. Results and discussion

First, we will establish a comparison with the implementations
reviewed and referenced in the literature (Table 5). We will highlight
the implementation identified as VH, which represents our solution

ith the alternative flexible V-H folded 3.3.3 architecture. This im-
lementation has been achieved with a BLOCK = 8. We achieve the
ighest computational efficiency working with 32-bit floating point
recision. In terms of energy efficiency, it is only surpassed by the work
f Coutinho [1] and Belabed [7] but has throughputs 50% lower.

At this point, it is important to establish that many of these results
re obtained with the tools of the design environment: in our case,
n Intel HLS compiler in collaboration with Quartus (to obtain the
mplementation results and power analysis) and with Questasim (to
btain the clock cycles necessary to drive the designed accelerator).
herefore, we are talking about results obtained by cosimulation and
stablishing that the input of 784 inputs is unique (there is no batch).

In Table 6 we already introduce performance values obtained in
ardware verifications of the proposed architectures. For this purpose
e build a complete system in which the proposed accelerator is one
f many necessary elements: memories, embedded, external memory
ontrollers, profiling peripherals (performance counters) and, above
ll, the system that controls the accelerator (a microprocessor). These
esults show situations that only physical verification can provide
nd that are often masked in the results of the co-simulators. These
ircumstances can be:

• The implementation does not fit directly into the device.
• The latency values obtained by co-simulation by the HLS compiler

are reduced when working with the final system.
• Power consumption values are not complete.
• The use of inputs in batch mode.

An example of the first point above is included in Table 5. The im-
lementation identified as VHV is the most energy and computationally
fficient and has been achieved with variants of the alternative V-H-V
.3.1 architecture that allow us to have a different Bs1 and Bs2 (16-8).
n addition, the granularity of each PPE of the vertical layer has been
odified to implement Eq. (10).

𝑒𝑠𝑢𝑙𝑡 = 𝐴 × 𝐵 + 𝐶 ×𝐷 + 𝐹 (10)

owever, when we introduce the whole system (accelerator together
ith the microcontroller and necessary peripherals), it is not possible

o fit this implementation into the device.

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.

w
D

u
C
v
w
t
D
r
t
e
m
p
p
t

Fig. 12. Detail of the synapses.
For the second and third situations, we include Table 6. In this table,
e observe different implementations of the MNIST problem on board
E10-nano, equipped with a Cyclone V of size A6.

In this table, we seek to evaluate our solution with the HLS compiler
sing the Intel soft macro (NIOS2) as host and with the OpenCL SDK
ompiler using the ARM cortex-A9 as host. In either case, the inter-
ention of the microprocessor is merely a testimonial to the inference
ork of the neural network because the only thing it does is configure

he accelerator. In both cases, due to the size of the weights, the
DR3 memory must be shared with the microprocessor. In HLS, the

eading of the weights will be in charge of a soft DMA defined in
he accelerator, and in the case of OpenCL, we will make use of the
xisting base infrastructure in the board support package of the board
anufacturer in which the action of the existing hard DMA in the
rocessing subsystem (PS) stands out. There is a considerable loss of
erformance in both cases. In the case of working with NIOS2 and
11

he Avalon master defined in the accelerator HLS itself, we include
some implementation derived from version VH in which we have
modified the characteristics of the interface with the RAM and the
sequentiality of the weight readings by changing the granularity of
the processing units (row 2 version VH-256) to achieve better results.
However, the results are still far from the performance estimated by the
high-level synthesis environment. This degradation of measured versus
co-simulated throughput makes more conventional solutions, such as
the one in row 4, better in computational efficiency and similar in
energy efficiency, even though the throughput is far from 836.44 Mps,
which is our best result for the NIOS2-Systolic array with HLS.

Undoubtedly, the main problem in the evaluation of energy-efficient
architectures for neural network inference is the evaluation of the
power consumed. Many authors use the estimates of the FPGA syn-
thesis and implementation tools without mentioning the value of the
toggle rates used and how they were obtained. In many of the articles
reviewed, no mention is made of the power consumed by the control
element, even if it is in the same package as the FPGA, and of course,

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Table 5
Comparison with other implementations.

Topology Device Clk
MHz

Data
types

Thra

Mps
Thrb

FPS
Energy
efficiency
mW/Mps

Comput.
efficiency
Mps/DSP

R. Acosta
et al. [5]

LeNet-5 CycloneIV-
115LE

100 32-bit
Fixed

368.28 926

Westby
et al. [4]

784-12-10 Kintex
Ultrascale

100 32-bit
Float

6147.1 645161 92.72 10.17

C. Wang
et al. [9]

784-256-256-10 Zynq 7020 200 32-bit
Float

3.346 12.45 69.93

Maria
et al. [3]

3072-2000-750-10 Stratix V 32-bit
Float

345.34 45 46.33

Suzuki
et al. [2]

24-10-24 Virtex 6 242 18-bit
Fixed

856.5 1784375 1.142

Mazouz
et al. [6]

1-2-4 Zynq 7100 16-bit
Fixed

21.93 526 26.35

Coutinho
et al. [1]

784-100-50-10 Virtex 6 100 12-bit
Fixed

105.06 1250 2.855

Belabed
et al. [8]

784-100-50-10 Zynq 7020 100 32-bit
Float

97.948 1160 3.89 2.129

J. Fe
et al. [10]

784-100-50-10 Zynq7010 100 32-bit
Fixed

213.14 2540 1.24 21.31

J. Fe
et al. [10]

784-100-50-10 Zynq7010 100 32-bit
Float

45.84 545.4 9.69 9.63

Our
CycloneV
RTL(VHV)

784-100-50-10 Cyclone V
A6

100 32-bit
Float

416.26 4922 2.63 10.954

Our
CycloneV
RTL (VH)

784-100-52-10 Cyclone V
A6

100 32-bit
Float

225.86 2671 4.46 10.266

Our
CycloneV
RTL(VHV)

784-100-52-10 Cyclone V
A6

100 16-bit
Float

462.177 5465.67 2.13 12.162

aThroughput in mega parameters per second.
bThroughput in frames per second.
the power consumption measured at the chip or board level is rarely
included. To make a quick overview of this situation, we focus on
raw 5 of Table 6. If we do not include the power consumed by the
ARM, it seems a faster, more computationally and energy efficient
solution than the same solution (architecture VH) implemented with
NIOS2 (raw 1). If we include the power consumed by the PS, the
energy efficiency does not improve the performance obtained with a
NIOS2 and that accelerator architecture (52.38 mW/Mps versus 34.97
mW/Mps). However, we have measured the power consumption at the
board level and it seems evident that the ARM consumption, even when
not used, makes this board with this embedded hard macro lose energy
efficiency.

Regarding the fourth aspect mentioned above, it is where we can
observe the most promising results. The one in row 7 of Table 6 stands
out above all of them, where the 3.26 mW/Mps exceeds, working with
32-bit float and performing power estimation, any work referenced in
Table 5. This estimated power consumption then corresponds to about
15 mW/Mps measured at the board level. This aspect corroborates
the notion that the implemented systolic architecture reaches its full
efficiency when we can take advantage of all its pipeline features. In
order to explore the performance characteristics of our BF-VH and BF-
VHV architectural solution, we have modified the sizes of the different
layers and the Batch to see how it behaves with different topologies and
compared it with the ARM solution with the Neon SIMD extension (see
Figs. 13–16). Our base topology on which we have made variations
has been 784-100-50-10 with a batch size of 2000, and all these
implementations have been tested and measured on the DE10-nano
board. Several interesting aspects can be observed in these figures:

• The BF-VH and BF-VHV architectures compared have similar
characteristics from a throughput point of view and also from
12
an energy efficiency point of view. In both architectures, there
is a performance drop when the number of inputs or the number
of neurons of the second hidden layer are not multiples of the
corresponding BLOCK_SIZE. These results may make the necessity
of the folded architecture debatable. It uses less resources but
this circumstance does not seem in principle exploitable because
implementations with higher BLOCK_SIZE are only efficient if
they are suited to the characteristics of the connection port with
the global RAM (8 and 16 for example) and unfortunately with
BLOCK_SIZE of 16 not fit in the programmable device working
with 32-bit floating point.

• It is also evident that RTL tuning is absolutely necessary to extract
all the possibilities of the proposed architecture. We had already
anticipated this with the results of the Table 4; but now it is much
more evident. If we let the HLS compiler infer the use of DSPs,
the throughput drops below even by using the ARM with its Neon
SIMD extension. This behavior can be seen in the Figs. 13–16 in
the implementation called FB VH bs=8 without RTL.

• Finally, we would like to highlight the characteristics of our
architecture working with half-precision floating point format
(fp16). With this precision and with the DE10-nano board we
have surpassed 1000 Mps and energy efficiency below 6 mW/Mps
as can be seen in Fig. 15. In this case, the usefulness of the folded
architecture (FB V-H) has been demonstrated, since it is the only
one that allows an implementation with BLOCK_SIZE of 16 for
both the vertical and horizontal layers.

5. Conclusions

In the article, we have developed an architecture based on task

parallelism that allows us to achieve efficient systolic architectures for

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Table 6
Comparison of implementations.

Version Topology
batch size

Clk
MHz

Data
types

Thra

Mps
Thrb

FPS
Energy
efficiency
mW/Mps

Comput.
efficiency
Mps/DSP

1 Our NIOS2
CycloneV
(VH)

784-100-52-10
1

100 32-bit
Float

35.83 423.72 34.97c

109.69e
1.628

2 Our NIOS2
CycloneV
(VH-256)

784-100-52-10
1

100 32-bit
Float

69.157 826.44 22.16c

96.88e
1.686

3 Our NIOS2
CycloneV
(conventional)

784-100-52-10
1

100 32-bit
Float

37.80 450.450 23.25c

97.98e
6.30

4 Our NIOS2
CycloneV
(BF-VH)

784-100-50-10
10

100 32-bit
Float

70.150 836.44 21.60c

95.08e
2.598

5 Our ARM
CycloneV
(VH)

784-100-52-10
1

105 32-bit
Float

57.40 678.886 27.86c

52.38d

87.10e

2.609

6 Our ARM
CycloneV
(BF-VHV)

784-100-50-10
1

103 32-bit
Float

47.08 561.14 35.08c

64.7d

169.8e

1.8

7 Our ARM
CycloneV
(BF-VH)

784-100-50-10
2000

103 32-bit
Float

527.59 6288.31 3.28c

5.92d

15.02e

20.29

8 Our ARM
CycloneV
(BF-VHV)

784-100-50-10
2000

103 32-bit
Float

510.17 6080.69 3.24c

5.975d

15.68e

19.62

9 ARM 784-100-50-10
2000

—- 32-bit
Float

21.17 252.32 299e —-

10 ARM
Neon

784-100-50-10
2000

—- 32-bit
Float

360.1 4292.01 17.16e —-

aThroughput in mega parameters per second.
bThroughput in frames per second.
cPredicted power without a PS.
dPredicted power with a PS.
ePower measured at the board level.
Fig. 13. Throughput and Energy Efficiency with batch size changes.
the implementation of MLP-type networks with two hidden layers in
a simple way based on a block_size parameter. We have achieved a
measured energy efficiency of 15 mW/Mps at the board level that has
not been achieved so far in other work. The systolic architectures have
two remarkable particularities: the ability to have a folded structure
and to achieve total flexibility in the topology of each of the layers.
All this is achieved by means of a completely systolic data and control
flow.

The possibilities of developing these architectures both in C++
based on communications through streaming and pipes and in OpenCL
based on channels have been demonstrated. We have optimized the
13
use of the corresponding compilers through the use of RTL libraries
written in HDL that make optimal use of the existing DSPs in the
programmable device and optimal implementation of the nonlinear
activation functions in this type of network.

From a co-design point of view, we have opened a line of discussion
on the use of hard macro and soft macro microprocessors that we wish
to deepen in future work by means of RISC-V or similar. We have also
not forgotten to explore new floating-point accuracies (fp16) and even
though the DSPs of the technology family evaluated were not primarily
designed for this type of data, we have achieved throughputs of 1000
Mps.

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
Fig. 14. Throughput and Energy Efficiency with input size changes.
Fig. 15. Throughput and Energy Efficiency with hidden1 size changes.
Fig. 16. Throughput and Energy Efficiency with hidden2 size changes.
Finally, we try to indicate that energy efficiency must be one of the
priority objectives in the application of AI at the edge; the means used
to measure the values involved must be described in more detail than
those in most of the existing contributions.

Funding

This research received no external funding.

CRediT authorship contribution statement

Rafael Gadea-Gironés: Conceptualization, Software, Methodology,
14

Validation, Investigation, Writing – original draft, Writing – review &
editing. Jorge Fe: Software, Methodology, Writing – review & editing.
Jose M. Monzo: Methodology, Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Microprocessors and Microsystems 98 (2023) 104824R. Gadea-Gironés et al.
References

[1] M.G. Coutinho, M.F. Torquato, M.A. Fernandes, Deep neural network hardware
implementation based on stacked sparse autoencoder, IEEE Access 7 (2019)
40674–40694, http://dx.doi.org/10.1109/ACCESS.2019.2907261.

[2] A. Suzuki, T. Morie, H. Tamukoh, A shared synapse architecture for efficient
FPGA implementation of autoencoders, PLoS One 13 (3) (2018) http://dx.doi.
org/10.1371/journal.pone.0194049.

[3] J. Maria, J. Amaro, G. Falcao, L.A. Alexandre, Stacked autoencoders using low-
power accelerated architectures for object recognition in autonomous systems,
Neural Process. Lett. 43 (2) (2016) 445–458, http://dx.doi.org/10.1007/s11063-
015-9430-9.

[4] I. Westby, X. Yang, T. Liu, H. Xu, FPGA acceleration on a multi-layer per-
ceptron neural network for digit recognition, J. Supercomput. 77 (12) (2021)
14356–14373, http://dx.doi.org/10.1007/s11227-021-03849-7.

[5] M. Rivera-Acosta, S. Ortega-Cisneros, J. Rivera, Automatic tool for fast generation
of custom convolutional neural networks accelerators for FPGA, Electronics 8 (6)
(2019) http://dx.doi.org/10.3390/electronics8060641, URL https://www.mdpi.
com/2079-9292/8/6/641.

[6] A. Mazouz, C.P. Bridges, Automated offline design-space exploration and online
design reconfiguration for CNNs, in: 2020 IEEE Conference on Evolving and
Adaptive Intelligent Systems, EAIS, 2020, pp. 1–9, http://dx.doi.org/10.1109/
EAIS48028.2020.9122697.

[7] T. Belabed, M.G.F. Coutinho, M.A.C. Fernandes, C.V. Sakuyama, C. Souani,
User driven FPGA-based design automated framework of deep neural networks
for low-power low-cost edge computing, IEEE Access 9 (2021) 89162–89180,
http://dx.doi.org/10.1109/ACCESS.2021.3090196.

[8] T. Belabed, V. Ramos Gomes da Silva, A. Quenon, C. Valderamma, C. Souani,
A novel automate python edge-to-edge: From automated generation on cloud to
user application deployment on edge of deep neural networks for low power IoT
systems FPGA-based acceleration, Sensors 21 (18) (2021) http://dx.doi.org/10.
3390/s21186050, URL https://www.mdpi.com/1424-8220/21/18/6050.

[9] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, X. Zhou, DLAU: A scalable deep learning
accelerator unit on FPGA, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
36 (3) (2016) 513–517.

[10] J. Fe, R. Gadea-Gironés, J.M. Monzo, Á. Tebar-Ruiz, R. Colom-Palero, Improving
FPGA based impedance spectroscopy measurement equipment by means of HLS
described neural networks to apply edge AI, Electronics 11 (13) (2022) http:
//dx.doi.org/10.3390/electronics11132064, URL https://www.mdpi.com/2079-
9292/11/13/2064.

[11] P. Quinton, The systematic design of systolic arrays, in: Centre National de
Recherche Scientifique on Automata Networks in Computer Science: Theory and
Applications, Princeton University Press, USA, 1987, pp. 229–260.

[12] H. Kung, Leiserson, Systolic Arrays for (VLSI), CMU-CS- Carnegie-Mellon Uni-
versity, Department of Computer Science, 1978, URL https://books.google.es/
books?id=pAKfHAAACAAJ.

[13] D.I. Moldovan, On the design of algorithms for VLSI systolic arrays, Proc. IEEE
71 (1) (1983) 113–120, http://dx.doi.org/10.1109/PROC.1983.12532.

[14] M. Zargham, Computer Architecture: Single and Parallel Systems, in: Prentice
Hall International Series in, Prentice Hall, 1996, URL https://books.google.es/
books?id=_7d5QgAACAAJ.

[15] P. Murtagh, A.C. Tsoi, N. Bergmann, Bit-serial array implementation af a
multilayer perceptron, IEEE Proc.-E 140 (5) (1993) 277–288.

[16] R. Gadea-Gironés, V. Herrero-Bosch, J. Monzó-Ferrer, R. Colom-Palero, Imple-
mentation of autoencoders with systolic arrays through openCL, Electronics 10
(1) (2021) http://dx.doi.org/10.3390/electronics10010070, URL https://www.
mdpi.com/2079-9292/10/1/70.
15
[17] R. Gadea-Gironés, V. Herrero, A. Sebastia, A.M. Salcedo, The role of the
embedded memories in the implementation of artificial neural networks, in: Pro-
ceedings of the The Roadmap to Reconfigurable Computing, 10th International
Workshop on Field-Programmable Logic and Applications, FPL ’00, Springer-
Verlag, London, UK, 2000, pp. 785–788, URL http://portal.acm.org/citation.cfm?
id=647927.739394.

[18] R. Gadea-Gironés, R. Colom-Palero, V. Herrero-Bosch, Optimization of deep
neural networks using SoCs with openCL, Sensors (Switzerland) 18 (5) (2018)
http://dx.doi.org/10.3390/s18051384.

[19] P. Kumar Meher, An optimized lookup-table for the evaluation of sigmoid
function for artificial neural networks, in: 2010 18th IEEE/IFIP International
Conference on VLSI and System-on-Chip, 2010, pp. 91–95.

[20] V. Sze, Y.-H. Chen, T.-J. Yang, J.S. Emer, How to evaluate deep neural network
processors: TOPS/W (alone) considered harmful, IEEE Solid-State Circuits Mag.
12 (3) (2020) 28–41, http://dx.doi.org/10.1109/MSSC.2020.3002140.

Rafael Gadea-Gironé is currently an Associate Professor
with Universitat Politecnica de Valencia, Valencia, Spain.
He has authored/coauthored around 45 refereed papers in
journals and high-ranked conferences, has guided 5 doctoral
theses, and has participated in more than 30 research
projects. His research interest focuses on microelectronic
design, implementation of artificial neural networks, design
and verification of FPGA-based systems. GadeaGirones has a
Ph.D. in industrial engineering from’ Universitat Politecnica
de Valencia. Contact him at rgadea@eln.upv.es.

Jorge Fe is currently a Ph.D. candidate from Universitat Po-
litecnica de Valencia. His research interests include artificial
intelligence, digital signal processing, embedded systems,
reconfigurable hardware and the implementation of artificial
neural networks in FPGA-based systems. Contact him at
jorfe@posgrado.upv.es.

Jose M. Monzo is currently an Associate Professor with
Universitat Politecnica de Valencia, Valencia, Spain. He has
authored/coauthored around 30 refereed papers in journals
and high-ranked conferences, and has participated in more
than 16 research projects. His research interest focuses on
FPGA based data acquisition systems for instrumentation,
digital signal processing, and microelectronic design. Monzo
has a Ph.D. in telecommunication engineering from Uni-
versitat Politecnica de Valencia. Contact him at jmonfer@
upvnet.upv.es.

http://dx.doi.org/10.1109/ACCESS.2019.2907261
http://dx.doi.org/10.1371/journal.pone.0194049
http://dx.doi.org/10.1371/journal.pone.0194049
http://dx.doi.org/10.1371/journal.pone.0194049
http://dx.doi.org/10.1007/s11063-015-9430-9
http://dx.doi.org/10.1007/s11063-015-9430-9
http://dx.doi.org/10.1007/s11063-015-9430-9
http://dx.doi.org/10.1007/s11227-021-03849-7
http://dx.doi.org/10.3390/electronics8060641
https://www.mdpi.com/2079-9292/8/6/641
https://www.mdpi.com/2079-9292/8/6/641
https://www.mdpi.com/2079-9292/8/6/641
http://dx.doi.org/10.1109/EAIS48028.2020.9122697
http://dx.doi.org/10.1109/EAIS48028.2020.9122697
http://dx.doi.org/10.1109/EAIS48028.2020.9122697
http://dx.doi.org/10.1109/ACCESS.2021.3090196
http://dx.doi.org/10.3390/s21186050
http://dx.doi.org/10.3390/s21186050
http://dx.doi.org/10.3390/s21186050
https://www.mdpi.com/1424-8220/21/18/6050
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb9
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb9
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb9
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb9
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb9
http://dx.doi.org/10.3390/electronics11132064
http://dx.doi.org/10.3390/electronics11132064
http://dx.doi.org/10.3390/electronics11132064
https://www.mdpi.com/2079-9292/11/13/2064
https://www.mdpi.com/2079-9292/11/13/2064
https://www.mdpi.com/2079-9292/11/13/2064
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb11
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb11
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb11
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb11
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb11
https://books.google.es/books?id=pAKfHAAACAAJ
https://books.google.es/books?id=pAKfHAAACAAJ
https://books.google.es/books?id=pAKfHAAACAAJ
http://dx.doi.org/10.1109/PROC.1983.12532
https://books.google.es/books?id=_7d5QgAACAAJ
https://books.google.es/books?id=_7d5QgAACAAJ
https://books.google.es/books?id=_7d5QgAACAAJ
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb15
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb15
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb15
http://dx.doi.org/10.3390/electronics10010070
https://www.mdpi.com/2079-9292/10/1/70
https://www.mdpi.com/2079-9292/10/1/70
https://www.mdpi.com/2079-9292/10/1/70
http://portal.acm.org/citation.cfm?id=647927.739394
http://portal.acm.org/citation.cfm?id=647927.739394
http://portal.acm.org/citation.cfm?id=647927.739394
http://dx.doi.org/10.3390/s18051384
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00070-4/sb19
http://dx.doi.org/10.1109/MSSC.2020.3002140
mailto:rgadea@eln.upv.es
mailto:jorfe@posgrado.upv.es
mailto:jmonfer@upvnet.upv.es
mailto:jmonfer@upvnet.upv.es

	Task parallelism-based architectures on FPGA to optimize the energy efficiency of AI at the edge
	Introduction
	State of the art
	Methodology and architecture
	Methodology
	Systolic generation
	Multilayer perceptron

	Architecture
	Alternative V-H-V
	Alternative V-H folded
	Alternative flexible
	Alternative batch

	RTL tuning
	Introduction of the nonlinear function inside the kernel
	Instantiation of DSPs versus direct inference

	Results and performance evaluation
	Performance evaluation
	Results and discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

