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Abstract
Skeletonization algorithms are used as basic methods to solve tracking problems, pose estimation, or predict animal group
behavior. Traditional skeletonization techniques, based on image processing algorithms, are very sensitive to the shapes of
the connected components in the initial segmented image, especially when these are low-resolution images. Currently, neural
networks are an alternative providing more robust results in the presence of image-based noise. However, training a deep
neural network requires a very large and balanced dataset, which is sometimes too expensive or impossible to obtain. This work
proposes a new training method based on a custom-generated dataset with a synthetic image simulator. This training method
was applied to different U-Net neural networks architectures to solve the problem of skeletonization using low-resolution
images of multiple Caenorhabditis elegans contained in Petri dishes measuring 55mm in diameter. These U-Net models
had only been trained and validated with a synthetic image; however, they were successfully tested with a dataset of real
images. All the U-Net models presented a good generalization of the real dataset, endorsing the proposed learning method,
and also gave good skeletonization results in the presence of image-based noise. The best U-Net model presented a significant
improvement of 3.32% with respect to previous work using traditional image processing techniques.
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1 Introduction

Extracting the central line or skeleton of a worm from images
is not an easy task, andmuch less so in low-resolution images
when there are aggregations between worms or the worms
aggregate with plate noise. We use the word “noise” to refer
to dark objects or segmentations, residues, stains or worm
shapes, which are not actually worms. All these cases cause
classical skeletonization algorithms to fail, leading to erro-
neous results.Asdemonstrated inLayanaCastro et al. (2020),
compared to classical skeletonization techniques, improved
techniques can better locate and identify worms in the afore-
mentioned cases, facilitating the automation of monitoring
tasks, posture recognition, behavioral studies, etc.
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Over the years, many applications have been developed
for automatic monitoring and inspection of C. elegans using
classical image processing techniques. Many of these appli-
cations solve this problem by identifying the central line or
skeleton of the C. elegans. Skeleton identification basically
reduces the shape of the worms without losing informa-
tion about their posture. In order to identify the worms
within images, some methods have been implemented to
extract characteristics of the worm from the skeleton. The
best-known characteristics include endpoints Tsibidis and
Tavernarakis (2007), smoothness Rizvandi et al. (2008a, b),
lengthWöhlby et al. (2012), previous segmentationUhlmann
and Unser (2015); Winter et al. (2016), or a combination
of these Layana Castro et al. (2021). Other applications for
extracting worm skeletons use neural network techniques
Chen et al. (2020); Li et al. (2020b); Hebert et al. (2021).

Methods that use neural networks are becomingmore reli-
able and precise, helpingmany professionals and researchers
to achieve their goals in many fields of science. However, a
problem implicit to using these techniques is having a dataset
large enough to train and validate the model, in addition to
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testing the results. Moreover, creating a labeled dataset is
usually a time-consuming manual task. In this context, some
neural network applications have proven that the use of syn-
thetic data can solve this problem either partially (mixing real
and synthetic data) or completely (purely synthetic data).

Generally, inC. elegans assays, these applications are per-
formed using high-resolution images where there is only one
worm or very few worms per plate. The advantage is that
better processing results are obtained due to the number of
pixels and that overlaps or aggregations between worms are
avoided. A recent work Hebert et al. (2021) proposes a sim-
ulator to generate purely synthetic high-resolution images
using reverse skeletonization, this technique employs small
rectangular image patches to generate worm images.

We present a new convolutional neural network skele-
tonizationmethod trainedusingpurely synthetic low-resolution
images. The convolutional network architecture used is the
U-Net Plebani et al. (2022). We take advantage of this
U-shaped architecture with an encoder and decoder to pro-
duce encoded images of worm skeletons from low-resolution
grayscale images. Instead of generating new synthetic frames
of individual poses with rollings and self-intersections as in
Hebert et al. (2021), our simulator generates new synthetic
frames of multi-worm poses with intersection behaviors and
parallel contacts. The results show a significant improvement
of 3.32% compared to a previous work Layana Castro et al.
(2020) which improved classical skeletonization methods.

Highlights:

• A C. elegans skeletonization method is proposed based
on U-Net type neural networks with low-resolution
images and noise.

• A new method for generating low-resolution synthetic
images is proposed to easily generate a custom-labeled
dataset for different C. elegans behaviors.

• A neural network has been trained with a low-resolution
synthetic image and successfully tested in the domain of
real images.

• Different U-Net architectures have been compared with
an algorithm based on traditional image processing tech-
niques.

2 RelatedWork

In this section, we review the state of the art of various works
related to different network architectures and neural network
techniques applied to C. elegans.

2.1 Caenorhabditis elegans and Neural Networks

Caenorhabditis elegans is one of the most widely studied
organisms and has acquired great importance in the field of

biology Biron and Haspel (2015). Its genome has been anno-
tated in great detail, and research shows that many human
diseases have homologues in the genome of this nematode
Olsen and Gill (2017), making it an attractive animal model
for the study of human pathologies. The advantages offered
by this organism with respect to others include its short life
cycle (around 21 days), short reproductive period, small size
(around 1mm long), and feeding based on bacterial strains
such as Escherichia coli; all of which facilitate its large-scale
culture Conn (2017).

In the past, C. elegans assays were monitored manually
but nowadaysmany researchers choosemore automatic tech-
nologies, thus reducing both processing times and the fatigue
of technicians, who would otherwise spend hours looking
through the microscope daily. This is where computer-vision
applications have a great advantage over these manual prac-
tices. Due to the flexible body and the different poses that C.
elegans can adopt, many automatic applications use skele-
tonization techniques to solve problems related to healthspan
(Hahm et al., 2015; Le et al., 2020; Di Rosa et al., 2020),
lifespan (Jung et al., 2014; Kumar et al., 2019; Puchalt et al.,
2020), tracking (Javer et al., 2018; Koopman et al., 2020),
behavior monitoring (Yu et al., 2014; Pitt et al., 2019), etc.
These techniques are very useful inmicroscopic imageswith-
out noise, but low-resolution and noisy images present a
challenge difficult to overcome. Other automatic methods
use neural networks (NN), which are more robust against
these problems.

Neural networks have different topologies and these can
perform tasks of classification, segmentation, detection, and
so on. All these architectures can automatically extract fea-
tures, withwhichC. elegans applications are developed, such
as skeletonizationHebert et al. (2021), extreme segmentation
Mane et al. (2020), and others (Wiehman and de Villiers,
2016; Wang et al., 2019, 2020; Yu et al., 2021). Further-
more, networks that have an encoder and a decoder have
proven capable of solving more complex tasks such as pos-
ture classification Javer et al. (2019), skeleton definition in
microscope images Chen et al. (2020) or patch acquisition to
resolve aggregation Mais et al. (2020).

2.2 U-Nets

TheU-Net is a neural networkwith an encoder and a decoder.
Since it first appeared, the U-Net Ronneberger et al. (2015)
has been widely used not only in medical applications, for
which it was first introduced, but also in the segmentation
of animals (Han et al., 2019; Padubidri et al., 2021), objects
(Zhao et al., 2019; Wiles & Zisserman, 2019), etc. Various
authors have taken this network architecture as a reference
and have modified it to achieve greater convergence in train-
ing. These modifications consist of adding, removing, or
replacing convolutional layers with others, thereby increas-
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ing or decreasing the size of the network. However, making
the network deeper (increasing the number of convolution
layers) or increasing thewidth of the network does not always
result in a better prediction, it all depends on our dataset.

SmaAt-UNet Trebing et al. (2021) proposes reducing the
size of the base U-Net Ronneberger et al. (2015) by adding
spatial-channel attention, and shows that it can achieve simi-
lar precision values, this leads to reducing the inference time
or the resources needed during the exploitation phase. On the
other hand, UMF U-Net Plebani et al. (2022) modifies the
U-Net standard by adding BatchNorm and dropOut layers
and shows that careful choice of hyperparameters and other
training configurations play a very important role in network
development. As well as these cases, there are other more
recent modifications (Alexandre, 2019; Moradi et al., 2019;
Tang et al., 2019; Tschandl et al., 2019; Li et al., 2020a; Liu et
al., 2020; Qamar et al., 2020; Baheti et al., 2020; McManigle
et al., 2020; Huang et al., 2020; Cao et al., 2020; Isensee et
al., 2021) that present significant improvements in the pre-
cision of their respective datasets compared to the standard
U-Net.

When working with neural networks, it is problematic
to obtain a well-labeled and balanced dataset. This can be
a very expensive or even an impossible task; therefore, to
alleviate this problem, different data augmentation methods
have been developed, as well as simulators for generating
synthetic images.

2.3 Data Augmentation and Synthetic Images

The use of synthetic data can help attain network conver-
gence, avoid overfitting, and improve data generalization. On
the one hand, the mixture of synthetic data with real data has
been shown to help improve the training of neural networks
(Pashevich et la., 2019; Doshi, 2019; Bargsten & Schlae-
fer, 2020; Dewi et al., 2021), even in applications with C.
elegans García Garví et al. (2021). In general, these types
of techniques convert synthetic images to the domain of real
images, in order to achieve similar distributions. This domain
change is achieved thanks to architectures such as GAN Li
et al. (2020b), encoders, and decoders Chen et al. (2021).

On the other hand, applications that only use synthetic
images also provide good results in the domain of real
images, (Schraml, 2019; Hinterstoisser et al., 2019; May-
ershofer et al., 2021). The use of simulators to create purely
synthetic images pave the way to being able to create larger
and more variable datasets, thus being able to generate cases
or events that occur infrequently in real images. The simula-
tion ofC. elegans in low-resolution images is a challenge that,
to our knowledge, has not been addressed before. Accord-
ingly, Hebert et al. (2021) uses a high-resolution synthetic
image simulator of a single worm to train a neural network.

In this work, we aim to generate low-resolution synthetic
images to train a segmentation neural network ofworm skele-
tons from 20 to 40 points. Our method obtains outstanding
results, outperforming previous skeletonization work that
improved classical image processing techniques.

3 Methods

3.1 Strain and Culture Conditions of C. elegans

The C. elegans used were wild type (N2) and CB1370, daf -
2(e1370) young adults, obtained from worm eggs incubated
at 20◦C in 55mm diameter NGM plates at the Caenorhab-
ditis Genetics Center (CGC), University of Minnesota.
Escherichia coli strain OP50 was used as food. To prevent
reproduction, FUdR (0.2 mM) was used, and to prevent con-
tamination by fungi, fungizone (1µg/mL) was added and the
plates were closedwith a lid. The standardmethod Stiernagle
(2006) was followed to remove those plates with contami-
nation. Plates with 10, 15, 30, 60, and 90 nematodes were
cultured to obtain greater variability and analyze different
types of behavior (aggregation of two or more C. elegans,
aggregations with plate noise and occlusions).

3.2 Real-Image Acquisition Method

Images of complete 55mm diameter Petri dishes were cap-
tured. Image acquisition was performed by a laboratory
operator at a temperature of 20◦C using the hardware and
software described in Puchalt et al. (2021). To capture the
images, the laboratory operator removed the plates from the
incubator and placed them in the capture system (Fig. 1)
where the system proceeded to capture a sequence of images
of 1944×1944 pixels at a frequency of 1Hz. TheEscherichia
coli (E. coli)OP50 strain was seeded in the center of the plate
to prevent C. elegans from moving out of the field of view,
either by climbing up the edges of the plates or by positioning
themselves near the plate edges. Those plates with condensa-
tion on the cover were withdrawn from the image acquisition
process.

The abovementioned system Puchalt et al. (2021) was
developed with open hardware and software, using a Rasp-
berry Pi v1.3 RGB camera, OmniVision OV5647 with reso-
lution of 2592× 1944 pixels, and pixel size of 1.4×1.4μ m,
field of view of 53.50 ◦ ×41.41◦, with 1/4” optical size and
2.9 focal ratio, a lighting system based on a 7” Raspberry
Pi screen with a resolution of 800 × 480 at 60 fps, 24-bit
RGB color and as processing unit a Raspberry Pi 3, (Fig. 1).
The mounting process and image capture are detailed in
Puchalt et al. (2021). The lighting technique used was active
backlighting. This technique has been shown effective for
low-resolution C. elegans applications for both the afore-
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Fig. 1 Image capture system. Location of the Petri dishes, as well as
the other parts of the capture system Puchalt et al. (2021)

mentioned Puchalt et al. (2019) and Puchalt et al. (2022)
capture systems. Active backlighting consists of reducing
the variability of the captured images by keeping gray scales
more constant. Thismade it possible to differentiate the back-
ground of C. elegans easily in all images. To capture the
real image sequences, our object of interest (Petri dish with
worms) was placed between the illumination system and the
camera, as described in Puchalt et al. (2021). With this con-
figuration the nematodes have a maximum size of 40 × 4
pixels and a minimum of 20 × 3 pixels. In reality, the worms
measure 1mm. Working with low resolutions may compli-
cate the problem in some cases, but it has advantages in terms
of computational and memory efficiency. This resolution is
sufficient to automate assays such as lifespan, healthspan,
etc.

3.3 Image SimulationMethod

A simulator has been designed capable of generating new
sequences both of aggregation behaviors between worms
(parallel behaviors and intersections) and of augmenting
individual behaviors (free motion, coiling) with geometric
transformations. Figure2 shows a conceptual outline of the
synthetic imagegenerationprocess. The simulator starts from
a database containing manually labeled real C. elegans paths
and images of Petri dishes without worms. The labels contain
the location (X,Y) of each of the points of the skeleton, as
well as the color and width of each point of the skeleton. The
process to simulate a sequence consists of selecting K paths
randomly, applying rotation and translation transformations
to them, and combining them to obtain the desired behaviors,
thus obtaining an integrated sequence. To generate the paral-
lel aggregation behavior, one path is randomly selected and
a new path is generated by modifying its color and XY posi-
tion. The XY position of the first worm is at NR, while the
second worm is at NR +W1. W1 is the smallest width of the
worm body (1 or 2 pixels). The simulator generates two types
of parallel behaviors, in the first, both worms navigate in the
same direction, while in the second one of them navigates in

Fig. 2 Conceptual outline of the synthetic image generation process

Fig. 3 Development of synthetic images. a Random generation of the
track of a worm. b Synthetic image with 16 worms on the plate

the opposite direction. To achieve the second case the path
of one of the two worms is rotated 180◦, i.e., the worm of the
rotated path starts at the end of the path and navigates in par-
allel with the other worm approximately in the middle of the
path. To generate the intersection aggregation behavior, two
paths are randomly selected, the intersection point will be a
random point on the skeleton of each worm from a random
pose of each path. Each path has 30 poses and each worm can
have between 20 and 40 skeleton points.We have observed in
the real dataset that aggregation behaviors (intersection and
parallel) are accompanied by speed changes and pauses, so
we randomly added these interactions within the simulator.
Pauses are simulated by repeating poses for two instants of
time. Speed changes are obtained by skipping a pose in the
path.

The trajectory simulation consisted of applying a rotation
angle (θ ) to all the skeletons of a worm sequence andmoving
that sequence to a random X-Y point inside the plate. The
values of N, θ and CC the centroid of the Petri dishes (pre-
process info) were needed to calculate the new X-Y position
of the worm trajectory (Eqs. 2 and 3), Fig. 3a and b. The
angle θ and NR were randomly generated between 0 − 2π
and 0 − R, respectively. The value of R was obtained from
the difference between the plate radius (P) and the diameter
of the trajectory found in the pre-process info file (2T), Eq.1.

R = P − 2T (1)

Nx = CCx + N cos θ (2)

Ny = CCy + N sin θ (3)
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To rotate the worm skeletons, a random angle (α) between
0−2π was generated. The rotation operation was performed
bymultiplying each skeletonpixel (Eq. 5) by a rotationmatrix
(Eq.4):

Ma =
[
cosα sin α

− sin α cosα

]
(4)

Pi =
[
Px
Py

]
(5)

Then, using the integrated sequence, the image sequence is
generated by drawing the paths on an empty Petri dish image.
The paths are drawn by inserting circles of diameter equal to
the width value of the skeleton point stored in the database
into each of the pixels of the skeletons. To color the circle,
the value of the skeleton point is used and also averaged with
the background. Finally, a blur filter (3 × 3) is applied to
the images. This filter was essential to bring the synthetic
image domain closer to the real image domain. In addition,
it favored convergence in the training of the networks. In this
step, in addition to the gray image sequence, ground-truth
masks are also generated. This simulator, which has been
designed to obtain sequences of behaviors, allows an image
to be selected from the generated sequence as input to the
network. The details of the code implementation have been
added to Appendix 1.

3.4 Classical SkeletonizationMethod

Classical skeletonization techniques have proven easy-to-
implement for extracting shapes and predicting worm behav-
iors, which are problematic when worms coil or aggregate
with each other, or with plate noise. When this happens, part
of the skeleton is absent or displaced, and this is because these
skeletonization techniques reduce the segmentation pixels
until they achieve the central line. In these cases, skeleton
prediction errors occur, as shown in Fig. 4. If the aggregation
occurs in a large part of the worm body it can lead to a large
error.

3.5 SkeletonizationMethod Using Improved
Skeleton

Thismethod involves obtaining improved skeletons (Fig. 5a–
c) from the width and length characteristics. These charac-
teristics are obtained when the worms are free and not coiled
during a previous preprocessing Layana Castro et al. (2020).
The advantage of this technique, unlike classical skeletoniza-
tion techniques, is that it can separate connected or coiled
worms through new skeletons. In general, other applications
cancel tracks where aggregation between worms, aggrega-

Fig. 4 Classical skeletonization of problematic cases. a Grayscale
image of worm aggregated with noise. bGrayscale image of twoworms
aggregated at one end and part of the body. cGray image of worm coiled
upon itself. d, e, f Result of classical skeletonization of images a, b,
c, respectively. The white pixels show the segmentation using a thresh-
old of 35, while the blue pixels show the result of skeletonizing that
segmentation

Fig. 5 Skeletonization with enhanced algorithm (ISA) Layana Castro
et al. (2020). a, b, c Skeletonization result with an improved algorithm
(ISA) of the gray images from Fig. 4a, b, c, respectively. The white
pixels show the segmentation using a threshold of 35, while the blue
pixels show the result of skeletonizing that segmentation

tion with noise, and coiling occur; however, the improved
technique is very useful in these cases, recognizing skele-
tons (poses) and predicting behaviors. Layana Castro et al.
(2020) showing that an improved skeleton together with
worm-specific features such as color and temporal image
features can solve problems of aggregation between worms
or with noise in image sequences.
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Fig. 6 Image pipeline through U-Net architecture. The blocks of the U-Net architecture were made using the PlotNeuralNet tool Iqbal (2018). The
image is divided into 4 parts, each part enters the network and the result is reassembled to form a single image

3.6 Proposed SkeletonizationMethod

The model used for the segmentation of worm skeletons was
the convolutional neural network U-Net. Different U-Net
architectures were analysed to compare their performance.
Comparison was made of the models U-Net standard Ron-
neberger et al. (2015), Alexandre’s U-Net Alexandre (2019),
SmaAt-UNet, U-Net with DSC, U-Net with CBAM, U-Net
with DSC, CBAMTrebing et al. (2021), UMFU-Net Plebani
et al. (2022) and all showed good results.

Figure 6 shows all the blocks usedwith the different archi-
tectures. For the standard U-Net Ronneberger et al. (2015),
the Doubleconv block does not have the white BatchNorm2d
block and the yellow CBAM blocks and the purple Down4
block does not have the Dropout blocks. Alexandre’s U-
Net Alexandre (2019) is the same as the standard U-Net
but includes the BatchNorm2d block inside the Doubleconv
block. UMF U-Net Plebani et al. (2022) is the same as
Alexandre’s U-Net but on the purple Down4 block it does
have the Dropout blocks. SmaAt-UNet Trebing et al. (2021)
on the other hand has the spatial-channel attention blocks, it
also has no dropout blocks in the purple Down4 block, and
the models with DSC instead of the Doubleconv blocks have
depthwise-separable convolutions blocks.

These models predict three classes: background, worm
ends, and worm body. The background class (red pixels in
Fig. 6) are all those pixels that do not correspond to the worm
skeletons, such as the plate edge and interior of the Petri dish,
dark spots, residues inside the dish, etc. The worm-ends class
(green pixels in Fig. 6) includes those pixels corresponding
to the head and tail of theworm skeleton. These vary between
5 and 10 pixels at each end, they are generally lighter pix-
els (higher grayscale intensity). And finally, the worm-body

class (blue pixels inFig. 6) are pixels in the center of the skele-
ton and are darker than the worm-end pixels (less grayscale
intensity).

Given the dimensions of the input image and the limita-
tions of the hardware to train and validate the architecture,
both the input image and the ground-truth imagewere divided
into 4 equal parts. To reconstruct the prediction image, each
output prediction part of the network was joined in the same
order as the input image, as shown in Figs. 6 and 7.

4 EvaluationMethod

To evaluate all the U-Net models, two datasets were used, a
synthetic dataset that was used in the training and validation
stages of the networks, and a dataset of real images to test the
results in the cases of coiling, aggregation between worms,
and aggregation with noise (Fig. 8).

To evaluate the real dataset, the Jaccard index, also known
as intersection over union (IoU), and euclidean distance were
used. The IoU coefficient measures the accuracy of a predic-
tion with respect to a ground-truth Koul et al. (2019). And
as its name indicates, it is obtained by dividing the total area
of the intersection by the union of these areas, Eq. 6. On the
other hand, the euclidean distancemeasures the average error
in pixels of a prediction with respect to a ground-truth, Eq. 7

I oU =
∑

Pw1
⋂

Pw2∑
Pw1

⋃
Pw2

(6)

E .D. =
nw∑
i=1

√
(X1i − X2i )2 + (Y1i − Y2i )2

nw
(7)
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Fig. 7 Coding of the output image from the network. a, b, c Resulting
skeletons using the UMF U-Net Plebani et al. (2022), network from the
gray images in Fig. 4a, b, c respectively. d, e, f Pixel encoding using
the maximum value of the RGB channels. Red pixels are background
pixels, blue pixels are worm body pixels, and green pixels are worm-end
pixels. The results obtained with the rest of the models are similar to
these

Fig. 8 Synthetic and real dataset pipeline. The synthetic dataset was
used to train and validate theU-Net neural network. The trained network
was used to test the real image domain

The Precision and Recall metrics were used to evaluate
the results of the detection experiment, and the MOTA met-
ric was used to evaluate the results of tracking experiment.
To obtain Precision (Eq.8) and Recall (Eq.9) metrics, three
parameters were used: TP (true positives), FP (false pos-
itives), FN (false negative). On the other hand, to obtain
MOTA metric (Eq. 10), the FN, FP, IDS and GT parame-
ters were used. GT was the total number of worms in the
aggregation, IDS value was increased by 1 when the body of
a predicted worm overlapped more with another worm than
with its respective GT. For the overlap, the IoU value and a
threshold of 0.5 were considered.

Precision = T P

T P + FP
(8)

Recall = T P

T P + FN
(9)

MOT A = 1 −
∑

t FNt + FPt + I DSt∑
t GTt

(10)

The synthetic dataset labels (ground-truth) were obtained
automatically from the simulator, while the real dataset labels
(ground-truth) were obtained by manually labeling worm
skeletons. This task was performed using a pixel labeling
application. The pixels of each worm skeleton were selected
one by one until the skeleton was complete.

The predictions are not always exact for all the pixels,
usually, one or more pixels are displaced with respect to the
real label (ground-truth), thus obtaining low measurement
errors and incorrect skeleton indicators. When the worm is 3
pixels in diameter, the skeleton pixel is the center pixel, but
if the worm has an even number of pixels, it is impossible
to select the center pixel, which may result in false errors
between manual labeling and pixel predictions of the skele-
ton. To solve this problem and obtain a better measurement
of results, we decided to use the worm body to obtain a more
significant IoU value that would better reflect the prediction
of the skeleton. To recover the shape and body of the worm,
a dilation operation was performed on all the pixels of the
skeleton with a disk of radius 2 (approximate diameter of the
worm). This operation was performed for all manual labels.
IoU and Euclidean distance metrics have been calculated for
the following classes: worm ends, worm body and worm
(fusion of body and ends).

5 Experiments and Results

5.1 Method Comparison

In this experiment, different U-Net architectures were com-
pared to find the most accurate one for our case. In addition,
it was compared with the results of a method based on tradi-
tional computer vision techniques.

As previously mentioned, a synthetic dataset was used to
train and validate the networks and a real dataset to test all the
results. For the synthetic dataset, 400 sequences of 30 images
were simulated, giving a total of 12000 images, 70%wasused
to train the network (8400) and the other 30% was used for
the validation stage (3600). Each image of the sequence had
16 worms per plate, in which different cases of aggregation
were simulated. The hardware used for training and vali-
dation of the different networks was a Gigabyte Technology
Z390 AORUS PROmachine, Intel(R) Core (TM) i9-9900KF
CPU @ 3.60GHz x16 with 32GB of RAM, and NVIDIA
GeForce RTX 2080 Ti graphics card with 4352 Cuda cores,

123



International Journal of Computer Vision

Table 1 Synthetic dataset loss and IoU results

Avg. worm-ends class Avg. worm-body class Total average worm class

Model loss IoU E.D IoU E.D IoU ± IC 95% E.D. ± IC 95%

U-Net 6.47E-06 0.8883 0.1875 0.9315 0.0747 0.9322±2.40E-04 0.1067±5.12E-04

U-Net A 3.05E-04 0.8179 0.1262 0.8573 0.1269 0.8597±1.24E-03 0.1270±1.06E-03

UMF U-Net 1.54E-06 0.9317 0.0019 0.9371 0.0006 0.9361±9.30E-04 0.0009±6.99E-05

SmaAt DS 2.16E-05 0.9153 0.0241 0.9297 0.0184 0.9287±1.09E-03 0.0199±3.68E-04

SmaAt DS AT 1.60E-05 0.9191 0.0226 0.9305 0.0112 0.9295±1.03E-03 0.0141±3.38E-04

SmaAt DS AT 4C 1.23E-04 0.8120 0.1263 0.8625 0.1073 0.8615±1.07E-03 0.1123±7.15E-04

SmaAt AT 3.06E-06 0.9324 0.0017 0.9364 0.0011 0.9355±9.42E-03 0.0012±9.44E-05

Both columns show the average for the results of the 3600 evaluation images of the synthetic dataset. The loss function usedwas CrossEntropyLoss(),
the IoU index, and the euclidean distance (E.D.) were the ones described in the evaluation method

Table 2 Average IoU results of the actual dataset

Avg. aggregation Avg. Agg. with noise Avg. rolled Total average worm

Model N parameters IoU E.D IoU E.D IoU E.D IoU ± CI 95% E.D. ± CI 95%

ISA 0.7625 0.5659 0.6421 2.1726 0.8122 0.5540 0.6936±0.0125 1.6185±0.1517

U-Net 17.2576M 0.7634 0.5551 0.6510 0.9001 0.7600 0.6678 0.6923±0.0134 0.8092±0.0466

U-Net A 17.2664M 0.6858 0.7822 0.6980 0.6712 0.7172 0.6089 0.6977±0.0105 0.6274±0.0277

UMF U-Net 17.2664M 0.6992 0.6090 0.7313 0.7259 0.7622 0.5686 0.7279±0.0066 0.6097±0.0276

SmaAt DS 3.9536M 0.6339 0.5737 0.7133 0.6562 0.7481 0.5905 0.6993±0.0086 0.6529±0.0323

SmaAt DS AT 4.0320M 0.5759 0.5870 0.6849 0.6505 0.7004 0.6150 0.6613±0.0107 0.6642±0.0347

SmaAt DS AT 4C 3.9986M 0.5713 0.7471 0.7193 0.7032 0.7497 0.6053 0.6884±0.0125 0.6240±0.0194

SmaAt AT 17.3447M 0.6767 0.8359 0.7338 0.6459 0.7610 0.6146 0.7240±0.0082 0.6476±0.0232

Average IoU values of problematic cases using the encoding of the maximum value of RGB channels

Ubuntu 19.04 64bits operating system. The implementation
was carried out in a Python version 3.7.5 environment, using
thePytorch 1.18,OpenCV4.5.4, andSWIG3.2 libraries.Dif-
ferent U-Net architectures were compared and the training
for each of these took about 48h with the abovementioned
hardware. The hyper-parameters used for the training and
validation phase were Batch_size = 1, num_workers = 1,
maximum epoch = 10. The optimizer used was ADAM with
a learning rate = 0.0001, betas = [0.95, 0.999], eps = 1e-8,
CrossEntropyLoss() as the loss function, and the ReduceL-
ROnPlateau scheduler with hyper-parameters mode = ’min,
and patience = 2. All the U-Net architectures used were
trained and evaluated using the same training and valida-
tion dataset. After each training, the model with the lowest
loss value in the validation phase was selected to evaluate all
the results. The average loss resulting from the loss function
CrossEntropyLoss() and average IoU values for each model
are shown in Table 1.

For the real dataset, 4500 images of Petri dishes were
analyzed and those difficult cases were selected in which the
worms coiled on themselves, aggregated to each other, or
presented noise from the dish, in 90, 157, and 417 images,
respectively. In order to obtain all this variability, the images
contained 10, 15, 30, 60, and 90 worms.

The output images of all U-Net models were encoded
using the maximum RGB channel value. Once the coded
images of prediction and ground-truth were obtained, the
pixels of the worm body and the worm ends were joined to
form a single skeleton, then the shape of thewormwas recov-
ered as indicated in the evaluation method and the precision
result was obtained using the IoU index. Table 2 shows the
total parameters of each model and the average of the results
obtained from the evaluationwith thesemodels and for all the
cases analyzed. Appendix 2 shows the metrics obtained for
each of the problematic cases: aggregation between worms
(Table 4), aggregation with noise (Table 5) and rolled cases
(Table 6).

As shown, the results of the networks were also compared
with the values obtained in a previous work (ISA) Layana
Castro et al. (2020). The average results showed that for the
real dataset UMF U-Net is the best skeletonization method,
showing a statistically significant difference with the previ-
ous work Layana Castro et al. (2020) Fig. 9. It should be
noted that for cases of aggregation with noise it is the best
option. Figure10 compares the previous work with respect
to the UMF U-Net architecture using a box plot. Figure11
shows the results obtained in an image section of the different
architectures used. Although the results are similar, Fig. 11d
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Fig. 9 Statistical analyses. a Normality test on the difference of meth-
ods (ISA-UMF U-Net). The p-value obtained was 5.88E-61 less than
the significance value of 0.05, thus the null hypothesis was rejected and
the alternative hypothesis H1 was accepted (the data did not come from
a normal distribution). Once the alternative hypothesis was accepted,
the Wilcoxon signed-rank test was used to evaluate both methods. b
The Wilcoxon signed-rank test table shows the difference between two
related samples across positive, negative and tied ranks. c The p-value
obtained with the Wilcoxon rank test was 0.0040 less than the signifi-
cance value of 0.05, thus concluding there was a statistically significant
difference between both models

Fig. 10 Comparison of previous work Layana Castro et al. (2020) with
UMF U-Net Plebani et al. (2022). The green line indicates the mean in
both graphs and the gray line indicates the median. ISA N = 664, mean
= 0.6936, median = 0.7635, standard deviation = 0.1649, variance =
0.0272.UMFU-NetN=664,mean=0.7279,median=0.7430, standard
deviation = 0.0871, variance = 0.0076

of the UMF U-Net predicts more connected skeletons than
the other architectures.

5.2 Real Versus Synthetic Image Training

To demonstrate the need to use a simulator, an experiment
was performed comparing the results of training with syn-
thetic images alone versus training with the real dataset
available using standard data augmentations. The labeling
effort required to generate the starting database for the sim-
ulator was also analyzed. For this purpose, we compared the
accuracy obtained by the network when training with differ-
ent numbers of startingworms togenerate the simulation.The
model trained in all cases was the UMF U-Net. The network

Fig. 11 Comparison of skeletons obtained with the different U-Net
architectures. An image was selected and results were obtained coded
for all the different architectures, then the same section was cropped
in all the images. a Grayscale image. b Result with U-Net standard
Ronneberger et al. (2015), c Result with Alexandre’s U-Net Alexandre
(2019), d Result with UMF U-Net Plebani et al. (2022), e, f, g, h Result
with SmaAt-UNet Trebing et al. (2021) (SmaAT Ds, SmaATDs At,
SmaATDs At 4CBAMs and SmaAT, respectively)

was trained for 20 epochs using the same hyperparameters as
in the UNets comparison test. The training with real images
only used data augmentation based on affine transformations
(rotations (90,180 and 270 degree angles), vertical (1–30
pixels up/down) and horizontal (1–30 pixels left/right) trans-
lations, brightness and contrast changes). Table 3 shows the
results obtained using the IoUmetrics andEuclidean distance
between skeleton points broken down by the different cases
(aggregation, aggregation with noise and rolled). As can be
seen in the results, the trainingwith real images obtainsworse
results than all themodels trained with synthetic images.This
result justifies simulator use since training with only 30 base
poses already gives good results (IoU = 0.6850), which are
much better than those obtained with the training with real
image by increasing data (IoU= 0.4265). Regarding the com-
parison between the different models trained with synthetic
images, we find that the higher the number of base poses of
the simulator, the better the results obtained.We also observe
that the higher the number of base poses, the lower the num-
ber of epochs required for model convergence. However,
these differences are not highly significant. This means that
good results can be obtained with less labeling effort to gen-
erate the base poses. In this experiment, we also wanted to
analyze the learning of the rolling case. Comparing the accu-
racy obtained in the trial using 30 base poses (none rolled
up) versus the trial using 18810 base poses (3780 rolled up)
the improvement is not very significant. The fact that the net-
work can skeletonize rolled poses without having examples
in training may be because it learns from the cases of parallel
motion and cross aggregation, where it also has to solve the
problem of skeletonizing wide areas.
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Table 3 Results of the experiment Real versus synthetic image

Train Test

N Annotated Best Avg. aggregation Avg. Agg. with noise Avg. rolled Total average

worms poses epoch IoU E. D IoU E. D IoU E. D IoU ± CI 95% E. D. ± CI 95%

Real 627 18810 11 0.4987 1.7913 0.3965 3.5523 0.4405 2.3572 0.4265±0.0094 2.9776±0.1403

Synthetic 1 30 14 0.6358 0.6487 0.6914 0.7795 0.7424 0.6146 0.6850±0.0115 0.7267±0.0419

Synthetic 16 480 13 0.6782 0.6581 0.7097 0.7346 0.7264 0.6554 0.7044±0.0077 0.6824±0.0323

Synthetic 30 900 9 0.6997 0.5777 0.7267 0.7299 0.7432 0.6387 0.7225±0.0082 0.6818±0.0332

Synthetic 627 18810 5 0.6992 0.6090 0.7313 0.7259 0.7622 0.5686 0.7279±0.0066 0.6097±0.0276

Fig. 12 Noise-generated connected components detection. a, d UMF
U-Net network output encoding. b, e Joining method between final
pixels of head/tail and body classes. c, f Detection result

5.3 Detection Application

This experiment consists of analyzing the accuracyof a detec-
tion method based on the proposed skeletonization method.
For this experiment, 120 dataset-real imageswere used, these
images contained different aggregation behaviors between
worms and individual behaviors, all of these plates had high
noise content. The selected images were passed through the
trained UMF U-Net network and were encoded as indicated
in Fig. 7 d, e, and f (Fig. 12a, b). Then we proceeded to ana-
lyze whether there were skeletons of broken worms, that is,
if there was a distance greater than 1 and less than 4 pixels
between the final pixels of the head/tail and body classes, if
that was the case, both endpoints were joined (Fig. 12b, e).
After this, each connected component was analyzed to obtain
possible skeleton solutions. To do so, a recursive algorithm
used the endpoints and intersections of connected points to
go through the connected component and obtain sequences
of points between 20 and 40. All these possible solutions
were analyzed by an optimizer which evaluated whether they
were individual worms or aggregations between worms and
obtained the best solution for each case using 2 evaluation

criteria: Minimum skeleton length (20 pixels), completeness
(the solutions occupy the entire connected component). To
detect aggregations, it was considered if the connected com-
ponent hadmore than3head/tail pixel connected components
(green pixels) and if the connected component hadmore than
30 pixels. The Precision and Recall metrics were used to
measure the precision of this experiment. The results were
83.50% and 73.77% respectively. The Precision and Recall
metrics are detailed in the evaluation method section. For
cases of cross aggregations and individual behaviors, the
precision and recall values were very high, close to 1. The
precision errors were due to problems with the method of
joining body and endpoint stubs. The recall errors were due
to noise-generated connected components that compliedwith
worm characteristics, Fig. 12c, f. In order to use the proposed
skeletonization method in detection applications, the joining
method and noise filtering should be improved.

5.4 Tracking Application

This experiment consists of analyzing the accuracy of a
tracking method based on the proposed skeletonization
method. In addition, the IoU and computational cost results
were compared with the WT-ISA method Layana Castro
et al. (2021). The WT-ISA tracking method is based on
a skeletonization method Layana Castro et al. (2020) and
an optimization method. The skeletonization method was
designed specifically to solve rolling and aggregation cases.
In the aggregation cases, the optimizer obtains the best
solution among all possible combinations of endpoints and
branches (possible solutions). The proposed trackingmethod
consists of the UMF U-Net skeletonization method and the
same optimization method used in WT-ISA. The accuracy
evaluation was performed with paths from the real dataset.
This dataset was divided between individual behaviors and
aggregations. The aggregations dataset contains 72 paths of
aggregations between 2, 3 and 4 worms and with plate noise.
The result of paths of individual behaviors such as rolling and
self-occlusions obtained an IoU and MOTA value close to 1.
The results obtained with the aggregations dataset showed
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an average IoU value of 0.66 and a MOTA value of 0.70,
an identity loss (IDS) of 7%. The IDS is distributed 95%
in aggregations between worms (mostly in parallel) and 5%
aggregation with noise. In most of these cases, after separat-
ing the worms, the identity of each individual was recovered.
Regarding the comparison, theWT-ISA (Layana Castro et al.
(2021)) method obtained an IoU value of 0.70 and gener-
ated 75626 possible solutions for the 72 aggregation paths,
while the proposedmethod obtained an IoU value of 0.66 and
generated 10997 possible solutions. Demonstration videos
using the proposed skeletonization method were uploaded
to github and a GoogleColab notebook to show worm
tracking in image sequence. https://github.com/playanaC/
Skeletonizing_Unet/blob/main/Demo_videos.ipynb.

6 Discussion

Noise on the plate (dark objects, residues, stains, or worm
shapes that are not worms) usually results in constant scales
of gray across the plate surface, thus it is distinguishable from
worm bodies, which have different characteristics. Head and
tail pixels are lighter than body pixels. However, these colors
are altered by the aggregation of the worm with the noise
on the plate, producing connected segmentations and caus-
ing the failure of fixed-threshold skeletonization techniques.
Notwithstanding, neural networks are capable of learning
features that are robust to changes in illumination and inten-
sity. In this scenario, the variability of the dataset is a key
piece in network training, thus changes in skeleton intensity,
as well as variability in social or individual cases included in
the network, will result in better predictions, even surpass-
ing improved skeletonization techniques Layana Castro et al.
(2020) as shown in Table 2.

Worm curling cases, however, aremore complex to detect,
especially in low-resolution images. Depending on the extent
to which the worms are coiled, it may be possible to iden-
tify skeletons and worm ends or, on the contrary, it may be
an almost impossible task for either traditional skeletoniza-
tion techniques or neural networks. Previous work Layana
Castro et al. (2020) showed that information on the width
and length of the worm can be used to create an improved
skeleton in order to provide a better pose and skeleton of the
worm’s body. As indicated in Trebing et al. (2021), U-Nets
with spatial-channel attention can achieve similar results to
other architectures with a greater number of parameters, with
which lighter applications or applicationswithmultiplemod-
els can be developed.

All networks except the U-Net standard have Batch nor-
malization layers, it is clear that applyingbatch normalization
after each convolutional layer allows data regularization,
as well as better convergence, reducing internal covariate
change as mentioned in Ioffe and Szegedy (2015). UMF U-

Net Plebani et al. (2022), on the other hand, adds another
regularization technique (Dropout) at the end of the encoder,
obtaining better skeletons with synthetic and real data.

7 Conclusions and FutureWork

In this work, we have proposed a skeletonization method for
low-resolution images of Petri dishes containing C. elegans
based on U-Net type neural networks. A synthetic dataset
of different C. elegans behaviors was generated using a
low-resolution image simulator to train differentU-Net archi-
tectures. Good skeletonization results were achieved with all
models trained on real images. Finally, the results of net-
works were compared with a skeletonization method based
on traditional image processing techniques, showing that all
networks were superior to those in previous work Layana
Castro et al. (2020) in terms of aggregations with noise. In
future works, the low-resolution synthetic image simulator
will be used together with U-Net plus a temporary network
to predict worm behaviors and aim to perform tracking by
resolving aggregations between worms.
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Appendix A. Other Images

The synthetic image sequence was generated using two
functions: Simulator and Create Image (Image generator).
The first generated PTS and backgrounds files from pre-
processing files (TXT), worm skeleton files (XML), and
background images without worms. While the second func-
tion used these files to generate the images (Fig. 13).The
PTS files contained skeleton point information, as well as
color and width values for each skeleton pixel. The synthetic
image generator was developed in C++ using the OpenCV
tool for image processing and integrated into Python through
the SWIG application.

Figure 14 shows different skeleton errors. Figure14a, d
show errors occurred by the presence of noise similar to the
worm. Figure14b, e show errors when worms are highly
aggregated, and Fig. 14c, f shows errors when worms are
small and coiled upon itself. Figure15 show full image of
Fig. 11, and Fig. 16 show the comparison of previous work
Layana Castro et al. (2020) with U-nets architectures using
a box plot.

Fig. 13 Pipeline code

Fig. 14 Error example of UMF U-Net model. a Grayscale image of
worm aggregated with noise. b Grayscale image of two worms aggre-
gated at one end and part of the body. c Gray image of worm coiled
upon itself. d, e, f Pixel encoding using the maximum value of the RGB
channels. Red pixels are background pixels, blue pixels are worm body
pixels, and green pixels are worm-end pixels. The results obtained with
the rest of the models are similar to these
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Fig. 15 Comparison of skeletons obtained with the different U-Net
architectures. Full image of Fig. 11. Each image presents a zoom to a
certain area. a Grayscale image. b Result with standard U-Net Ron-
neberger et al. (2015), c Result with Alexandre’s U-Net Alexandre

(2019), d Result with UMF U-Net Plebani et al. (2022), e, f, g, h Result
with SmaAt U-Net Trebing et al. (2021) (SmaAT Ds, SmaATDs At,
SmaATDs At 4CBAMs and SmaAT respectively)
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Fig. 16 Comparison of previous work Layana Castro et al. (2020) with
U-Nets architectures. Green line indicates the mean in both graphs and
gray line indicates the median. ISA N = 664, mean = 0.6936, median
= 0.7635, standard deviation = 0.1649, variance = 0.0272. U-Net N
= 664, mean = 0.6923, median = 0.7400, standard deviation = 0.1757,
variance = 0.0309. U-Net A. N = 664, mean = 0.6977, median = 0.7276,
standard deviation = 0.1378, variance = 0.0190. UMF U-Net N = 664,
mean = 0.7279, median = 0.7430, standard deviation = 0.0871, variance

= 0.0076. SmaAT DS N = 664, mean = 0.6993, median = 0.7201, stan-
dard deviation = 0.1135, variance = 0.0129. SmaAT DS AT N = 664,
mean = 0.6613, median = 0.6916, standard deviation = 0.1407, variance
= 0.0198. SmaATDSAT 4CN = 664, mean = 0.6884, median = 0.7302,
standard deviation = 0.1646, variance = 0.0271. SmaAT AT N = 664,
mean = 0.7240, median = 0.7436, standard deviation = 0.1080, variance
= 0.0117

Appendix B. Analysis Results Tables

Table 4, Table 5, Table 6, show the average results from
IoU and error pixel distance (E.D.) for each problematic case
and for each skeleton segmentation class.

Table 4 Analysis of results by class (worm ends, worm body) for aggregation cases

Avg. worm-ends class Avg. worm-body class Total average worm

Model IoU E.D IoU E.D IoU ± IC 95% E.D.± IC 95%

ISA 0.6627 0.5787 0.7635 0.5604 0.7625±0.0065 0.5659±0.0206

U-Net 0.6725 0.5634 0.768 0.5554 0.7634±0.0046 0.5551±0.0186

U-Net A 0.5391 0.8740 0.7027 0.6915 0.6858±0.0103 0.7822±0.0714

UMF U-Net 0.5848 0.6093 0.7400 0.6138 0.6992±0.0083 0.6090±0.0151

SmaAt DS 0.4558 0.5673 0.6552 0.5810 0.6339±0.0141 0.5737±0.0217

SmaAt DS AT 0.4343 0.5989 0.5819 0.5822 0.5759±0.0184 0.5870±0.0282

SmaAt DS AT 4C 0.4374 0.7422 0.5637 0.7512 0.5713±0.0219 0.7471±0.0394

SmaAt AT 0.5551 0.8472 0.7135 0.8385 0.6767±0.0107 0.8359±0.0430
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Table 5 Analysis of results by class (worm ends, worm body) for aggregation with noise cases

Avg. worm-ends class Avg. worm-body class Total average worm

Model IoU E.D IoU E.D IoU ± IC 95% E.D.± IC 95%

ISA 0.5836 2.2960 0.7031 1.6793 0.6421±0.0137 2.1726±0.1731

U-Net 0.5650 0.9349 0.6678 0.8802 0.6510±0.0160 0.9001±0.0470

U-Net A 0.5540 0.7804 0.7359 0.6232 0.6980±0.0116 0.6712±0.0335

UMF U-Net 0.5959 0.8476 0.7691 0.6358 0.7313±0.0053 0.7259±0.0412

SmaAt DS 0.5501 0.7772 0.7509 0.5992 0.7133±0.0080 0.6562±0.0332

SmaAt DS AT 0.5237 0.7426 0.7135 0.6125 0.6849±0.0085 0.6505±0.0199

SmaAt DS AT 4C 0.5908 0.8142 0.7493 0.6481 0.7193±0.0079 0.7032±0.0188

SmaAt AT 0.6041 0.7312 0.7783 0.6097 0.7338±0.0049 0.6459±0.0382

Table 6 Analysis of results by class (worm ends, worm body) for rolled cases

Avg. worm-ends class Avg. worm-body class Total average worm

Model IoU E.D IoU E.D IoU ± IC 95% E.D.± IC 95%

ISA 0.7268 0.5685 0.8066 0.5083 0.8122±0.0040 0.554±0.0122

U-Net 0.6796 0.6797 0.7507 0.6497 0.7600±0.0037 0.6678±0.0114

U-Net A 0.6126 0.6267 0.7108 0.6027 0.7172±0.0097 0.6089±0.0164

UMF U-Net 0.6854 0.6142 0.7644 0.5680 0.7622±0.0048 0.5686±0.0124

SmaAt DS 0.6373 0.6190 0.7463 0.5762 0.7481±0.0046 0.5905±0.012

SmaAt DS AT 0.5845 0.6404 0.6897 0.6103 0.7004±0.0059 0.6150±0.0138

SmaAt DS AT 4C 0.6640 0.6369 0.7391 0.5911 0.7497±0.0044 0.6053±0.0164

SmaAt AT 0.6602 0.6038 0.7576 0.6173 0.7610±0.0077 0.6146±0.0125
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