
Future Generation Computer Systems 138 (2023) 13–25

J
a

b

c

p
G
a
e
u

i
d
c
s
a
c
d
(

(
(
j

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

CloudWhite: Detecting and Estimating QoS Degradation of
Latency-CriticalWorkloads in the Public Cloud
Lucía Pons a,∗, Josué Feliu b, Julio Sahuquillo a, María E. Gómez a, Salvador Petit a,
ulio Pons a, Chaoyi Huang c

Universitat Politècnica de València, Valencia, Spain
Universidad de Murcia, Murcia, Spain
Huawei Technologies CO., LDT., China

a r t i c l e i n f o

Article history:
Received 22 January 2022
Received in revised form 29 May 2022
Accepted 12 August 2022
Available online 17 August 2022

Keywords:
Cloud computing
Public cloud
Virtualization
Interference
Performance estimation
QoS
Tail latency
Latency-critical workloads

a b s t r a c t

The increasing popularity of cloud computing has forced cloud providers to build economies of scale
to meet the growing demand. Nowadays, data-centers include thousands of physical machines, each
hosting many virtual machines (VMs), which share the main system resources, causing interference
that can significantly impact on performance. Frequently, these data-centers run latency-critical
workloads, whose performance is determined by tail latency, which is very sensitive to the interference
of co-running workloads. To prevent QoS violations, cloud providers adopt overprovisioning strategies
but they reduce the server utilization and increase the costs. A mechanism that accurately estimates
performance degradation dynamically in a production system would allow cloud providers to improve
the servers’ utilization. In this work we propose Cloud White, an approach that is able to detect the
inter-VM interference in scenarios with multiple co-located latency-critical VMs and estimate the
performance degradation using multi-variable regression models. Unlike previous proposals, Cloud
White is built taking into account the limitations of a public cloud production system. Experimental
results show that Cloud White is able to estimate performance degradation with a small overall
prediction error of 5%.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

An increasing amount of computing is being performed in
ublic clouds, such as Amazon’s EC2 [1], Microsoft Azure [2] and
oogle Compute Engine [3]. Cloud platforms provide two major
dvantages for end-users and cloud operators: flexibility and cost
fficiency [4]. Users can quickly launch jobs without the cost of
pgrading its computer infrastructure.
Cloud providers can achieve economies of scale by build-

ng large-scale datacenters and sharing their resources among
ifferent jobs. Following the typical virtualization model, the
loud provider allocates multiple virtual machines (VMs) in the
ame physical machine which provides fault isolation, security
nd improved manageability. However, sharing the physical ma-
hine means that inter-VM performance interference will appear
ue to multiple VMs competing for the major system resources
e.g., processor cores, last level cache (LLC), or main memory),

∗ Corresponding author.
E-mail addresses: lupones@disca.upv.es (L. Pons), josue.f.p@um.es

J. Feliu), jsahuqui@disca.upv.es (J. Sahuquillo), megomez@disca.upv.es
M.E. Gómez), spetit@disca.upv.es (S. Petit), jpons@disca.upv.es (J. Pons),
oehuang@huawei.com (C. Huang).
ttps://doi.org/10.1016/j.future.2022.08.012
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
making performance unpredictable. In other words, the interfer-
ence adversely impacts on the quality of service (QoS) of the
applications. Moreover, when the QoS degrades, it might not
comply with the service level objectives (SLOs), stated in the
service level agreement (SLA) between a cloud provider and a
customer.

To avoid QoS violations and tackle the inter-VM performance
interference, cloud providers typically adopt an overprovisioning
strategy. That is, resources are assigned to each VM in excess
to avoid possible performance degradation due to the inter-VM
interference. This workaround, however, results in a poor utiliza-
tion of the major resources of the cloud system. For instance, the
average CPU utilization is typically far below 50% in cloud servers
running latency-critical applications [5] and, in most cases, below
20% [6,7].

Despite the public cloud can run any kind of workload, an
important characteristic that makes public cloud servers differ-
ent from traditional computing nodes is that they frequently
run latency-critical workloads, which is the main focus of this
work. Most online or interactive services are examples of these
workloads. Unlike conventional workloads, the performance of
latency-critical applications is given by the obtained tail latency,

indicated as a percentile (e.g., 95th or 99th) of all the latencies,

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.08.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.08.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:lupones@disca.upv.es
mailto:josue.f.p@um.es
mailto:jsahuqui@disca.upv.es
mailto:megomez@disca.upv.es
mailto:spetit@disca.upv.es
mailto:jpons@disca.upv.es
mailto:joehuang@huawei.com
https://doi.org/10.1016/j.future.2022.08.012
http://creativecommons.org/licenses/by/4.0/

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

c
s
a
c
p
d
m
l

b
p
t
A
i
r
V

Fig. 1. Typical scenario: (1) co-located VM load grows and increases interfer-
ence, (2) performance degradation increases for the target VM, (3) co-located
VM reduces its load.

and accounts for the requests that take longer to complete. This
means that the performance of these workloads is very sensi-
tive to the inter-VM interference. Because of this fact, system
resources need to be conservatively overprovisioned to ensure
compliance with the SLA.

The previous rationale means that an important concern for
loud providers is to reduce the overprovisioning costs of the
ystem resources associated to the VM; in other words, there is
n interest in improving the resource efficiency to make the VM
ost cheaper. For this purpose, in general, it would help that cloud
roviders could estimate online how performance of a given VM
egrades depending on the co-located VMs on the same physical
achine. In this situation, a VM can experience performance

osses due to a change either in its load (intra-VM) or in the
load of other VMs (inter-VM). Detecting the cause of interference
inducing the performance loss is challenging. The former case
refers to intra-VM interference and thus, it is not a concern for
the cloud provider, which is the focus of this work. This paper
concentrates on the latter case, where two or more VMs are
involved and the performance degrades due to the inter-VM in-
terference. We use the terms victim and inflicting to refer to VM(s)
suffering performance degradation and the VM(s) increasing its
load, respectively. Notice that a given VM can become a victim or
act as inflicting across different periods of its execution time. The
main goal of this paper is twofold: detect the victim VM(s) and
estimate its performance degradation, both especially challenging
when all the co-running applications are latency-critical in the
public cloud.

We illustrate the problem in Fig. 1, which shows how the
tail latency of a victim VM co-located with multiple resource-
consuming VMs degrades over a 180-s time interval. The example
starts in a steady situation with all co-located VMs running at a
relatively low utilization (i.e., shared resources are not stressed).
This steady situation is assumed to be the normal conditions or
aseline situation, thus we assume that at this point of time the
erformance of the victim VM is not (or slightly) suffering due to
he inter-VM interference (1 means no performance degradation).
t second 50, one of the co-located VMs (inflicting VM) increases
ts load and starts making a higher consumption of the shared
esources. This load increase impacts on the performance of other
Ms. In the example, the victim degrades up to 1.4× – 1.6× its

performance compared to the steady situation. After second 100,
the resource consumption of the inflicting VM reduces and the
performance degradation of the victim VM returns to a low level.

Discerning which are the victim and inflicting VMs is challeng-
ing in the public cloud, especially when running multiple latency-
critical applications, since (i) VMs are seen as ‘‘black boxes’’ so

the cloud provider has no information about the applications

14
running on the VMs, and (ii) these applications present rather
low shared resources utilization. Some previous works have tried
to address these challenges. Unfortunately, most of them [8–13]
fail in managing VMs as ‘‘black boxes’’ which makes them not
applicable to the public cloud, or in dealing with latency-critical
applications [14,15] (see Section 2 for further details).

This paper proposes Cloud White, an approach that not only
identifies the victim VM(s) in cloud systems running multiple
latency-critical applications as ‘‘black boxes’’, but also provides
accurate estimates of their performance degradation. With our
approach, the VM is not a black box anymore, but its behavior
(and introduced interference) is revealed, becoming ‘‘white’’ or
Cloud White. Cloud White uses the Giga Instructions Per Second
(GIPS) to identify the victim VM(s). The novelty does not lie on the
GIPS metric itself but we show its effectiveness for this purpose;
in other words, as far as we know, it is the first time it is used to
discern the victim VM(s). Performance degradation is estimated
through multi-variable regression models.

Cloud White is, to the best of our knowledge, the first ap-
proach that is able to deal with the two aforementioned chal-
lenges: identify the victim VM(s) in cloud systems with latency-
critical applications, and provide accurate estimates of its perfor-
mance degradation. Moreover, the dynamic prediction error is, on
average, below 10%.

In summary, this paper makes four main contributions:

• We propose a method to discern the victim from the in-
flicting VM(s) at execution time. More precisely, we propose
using the Giga Instructions Per Second (GIPS) metric to
identify the victim VM(s).

• We propose multi-variable regression models to estimate
the 95th tail latency degradation due to interference caused
by co-running latency-critical VMs. We prove that specific
models for distinct processor utilization levels are needed
to match the applications’ performance degradation trend.

• We propose Cloud White, an approach that introduces the
two previous mechanisms to make accurate estimates of the
QoS degradation dynamically in a production system.

• The proposed approach works well when all the running
applications are latency-critical and make smooth changes
in the shared resource utilization.

2. Related work

Interference detection based on simple measurements. There
is an extensive literature on detecting interference due to co-
located jobs or resource sharing. Many approaches [17–20], how-
ever, monitor QoS (e.g., in terms of average latency or queries per
second), something that cloud providers cannot carry out in real
production-systems since VMs should be handled as black boxes.

Recent approaches [14,16] have tried to detect the inter-
VM interference while complying with public cloud limitations.
In [16], Javadi et al. propose Scavenger, a resource manager that
considers tenant workloads as black boxes and identifies perfor-
mance interference by monitoring the usage of a subset of the
system resources (memory, network, LLC and CPU) consumed by
the VM. Chen et al. propose Alita [14], which identifies contention
online considering a different subset of the system resources
(memory bus, LLC and power supply) based on low-level metrics
but omitting important shared resources like disk and network.
These approaches present two main shortcomings. On the one
hand, performance interference is detected in a subset of the
system resources. On the other hand, no prediction is made on
how performance interference impacts on the QoS of VMs. Table 1
summarizes the main features of these approaches.

Performance interference prediction models. Prior works have
proposed models to estimate the impact on performance caused

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

o
i
c
l
i
l
e
o
r
m
t
t
c
s
T
(
V
t
e

3

3

r
p
c
t
t

Table 1
Summary of closely-related work to Cloud White supporting latency-critical applications, sorted by chronological order.
Approach Year Main features

Interference detection Performance interference prediction Tail latency All main system resources? Black box?

DeepDive [13] 2013 ✓, low-level metrics ✓, but in isolation ×, average ✓ ✓
RC [6] 2017 × ✓, VM information ✓, median/99th ×, no disk & network ✓
Scavenger [16] 2018 ✓, VM resource usage × ✓, 90th/95th ×, no disk ✓
Alita [14] 2020 ✓, low-level metrics × ×, average ×, no disk & network ✓
Twig [11] 2020 × ✓, low-level metrics ✓, 99th ×, no disk & network ×
CLITE [12] 2020 × ✓, resource shares ✓, 95th ✓ ×
Cloud White 2022 ✓, GIPS metric ✓, low-level metrics ✓, 95th ✓ ✓
by the interference (e.g., introduced by co-runners or limited
resources) in distinct environments or from different perspec-
tives. In [21], online prediction models are built from a user-
level perspective. This way allows user to run microbenchmarks
to estimate resource contention at the shared resources and
use application-specific models to estimate its impact on perfor-
mance. Instead our work focuses on the cloud provider’s point of
view and therefore we assume no knowledge of the application
running within each VM. Another important piece of research
[8–10,13] has focused on predicting the performance interference
that background applications introduce when co-located with
latency-critical applications. Other works like [15] focus on co-
location of HPC applications. From these works, [8–10,15] access
data regarding performance of individual applications not ac-
cessible by cloud providers, which makes these approaches not
practical in real production-systems. DeepDive [13] detects per-
formance interference based on the aggregated resource system
utilization of VMs by monitoring low-level metrics. Nevertheless,
an important weakness of DeepDive is the isolation-based method-
logy used to quantify interference in VMs, which is prohibitive
n public cloud environments. Resource Central [6], based on that
ertain VMs show consistent behaviors over multiple lifetimes,
earns off-line from past behaviors to predict online future behav-
or of customer’s VM. This approach predicts high-level metrics
ike CPU utilization, cores, memory or workload class. To this
nd, it uses machine learning methods (e.g., random forest) to
utput buckets, instead of predicting a single number through
egression models. Some approaches [11,12] have used prediction
odels to estimate the resulting performance when modifying a

arget resource configuration. Twig [11] uses performance coun-
ers to estimate the QoS that results from different DVFS and
ore combinations. CLITE [12] elaborates prediction models to
earch for the near-optimal resource partitioning. However, both
wig and CLITE require monitoring at run-time the performance
e.g., latency) of the executing applications, thus not considering
Ms as black boxes. In addition, performance degradation due
o interference is continuously being estimated, instead of being
stimated only when it is detected.

. Experimental setup

.1. Platform

With the aim of building a controlled environment closely
esembling one of the public cloud, we set up an experimental
latform following the structure depicted in Fig. 2. The three main
omponents of the system are the physical server (main node),
he client node, and the storage node, interconnected among
hem with two 20 Gbps dedicated links.
15
Fig. 2. Overview of the complete experimental framework.

The server node is made up of two 12-core Intel Xeon Silver
4116 processors, with six memory channels holding 16 GB each,
which amounts 96 GB (6 × 16 GB) of DRAM and supports a band-
width of 107.3 GB/s. It has a 16.5 MB 11-way LLC, which supports
Intel Resource Director Technologies (RDT) [22]. The installed
operating system is Ubuntu 18.04 LTS. The main tasks carried out
in the server node, performed under our Resource and Applica-
tion Manager software (ReAM), are (1) run the VMs hosting the
applications to be studied, (2) collect the data sampled, and (3)
apply Cloud White. Data sampled include (i) hardware/software
events gathered with the performance monitoring unit (PMU)
using Perf [23,24], (ii) breakdown of the processor time from
the /proc/stat system file, which reports statistics about the
amount of time spent performing different kinds of work, and (iii)
consumption of the main system shared resources not monitored
with the PMU but with the support libraries offered by the
developers of the tools. LLC occupancy and memory bandwidth
are measured with Intel’s PQoS library [25]. Disk bandwidth is
obtained with libvirt’s library [26]. Network bandwidth (both
send and receive) is obtained with OVS-ofctl [27] commands,
used to monitor and manage OpenFlow switches.

To replicate a typical cloud infrastructure, the experimental
framework works with VMs that use KVM as hypervisor, QEMU as
virtualizer, and libvirt as virtualization manager. This configura-
tion is similar to that used by a compute node of OpenStack [28],
which is currently used in production-system software [29]. Al-
though OpenStack supports many hypervisors, KVM is the most
widely adopted hypervisor in the OpenStack community [30]. To
connect the physical network interfaces with the VMs, the main
node has a virtual switch configured using Open vSwitch [27]
(OvS) and Data Plane Development Kit [31] (DPDK). OvS and
DPDK enable direct transfer of packets between the user space
and physical interface, bypassing the kernel network stack, and

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

t
f
a
b
c
c
g

p
c
o
o
e
c
(

3

b
m
f
q
a
a
d
S
l
t

3

t
q
Q
p
l

t
c
t
C
t
u
s
u
i
s
c
C
v

4

4

a
T
o
t
c
w
f

s
v
c
(
m
a

4

t
t
t
i

o
e
T
t
T
s
a
u
1
e

herefore, boosting network performance over the default packet
orwarding mechanism. The server node accesses a remote stor-
ge system implemented with Ceph [32], one of the preferred
lock storage backends in public clouds using OpenStack. The
lient node has an Intel Xeon E5-2658 A v3 processor with 12
ores. It is only used to run the client of each workload, which
enerates and sends requests to the server.
In summary, our experimental platform includes all the com-

onents of a typical cloud system [33]. Even though it is not
omposed of many nodes like a production system, the setup of
ne server node and one client node complies with the twofold
bjective of this work: (i) study the interference among VMs
xecuting in the same server node, and (ii) use the client node to
arry out experiments with controlled load that help us evaluate
even saturate the server) and validate our approach.

.2. Workloads

In this work we use a set of representative latency-critical
enchmarks from the Tailbench suite [34]: img-dnn, masstree,
oses, silo and specjbb. Client requests are issued to the server

ollowing the Zipfian distribution, which accurately models re-
uest times in online services [35,36]. According to the char-
cteristics of these applications, our results confirm that they
re mainly limited by CPU or memory resources [37], thus, two
ifferent models will be required to predict the performance (see
ection 6). We extended Tailbench source code to report tail
atency of the requests serviced dynamically after a configurable
ime slice, set to 1 s in our experiments.

.3. System load conditions

A key modeling decision is to establish the load level of in-
erest to be studied. The client load is controlled by varying the
ueries per second (QPS) performed by clients. However, the
PS is an internal metric of the workload unknown to the cloud
rovider. Thus, we consider the CPU utilization as a proxy of the
oad from the cloud provider perspective.

To this end, two main CPU utilization levels are of interest for
he cloud provider: normal and overloaded conditions. Normal
onditions refer to low processor utilization (e.g., 10%), where
he interference introduced due to the VM load is negligible.
urrent cloud servers [6,7] typically run at this low CPU utiliza-
ion. Overloaded conditions refer to a relatively high processor
tilization (e.g.,over 50%), where cloud providers assume that the
ystem SLO may be violated. It is important to note that the
tilization value strongly depends on the type of workload. For
nstance, if performance is measured in terms of tail latency,
mall CPU variations can turn into a large tail latency increase and
ause important performance degradation [37]. We considered
PU utilizations ranging from 10% to 60% to analyze the impact of
arying the inflicting VM’s load on the performance of the victim.

. Cloud White: Detecting the inter-VM interference

.1. GIPS: a new way to detect the victim and inflicting VMs

One could think that the CPU utilization could be used as
n intuitive solution to detect the VM causing the interference.
he CPU utilization, however, does not only grow when the QPS
f the target VM grows during its execution, but also due to
he inter-VM interference. The reason is that the CPU utilization
omprises both the time the processor is executing instructions,
hich grows with the QPS, and the time it is stalled waiting
or memory accesses, which grows with interference. This means f

16
Fig. 3. Relationship between GIPS and QPS for the five studied latency-critical
applications.

that, apart from the CPU utilization, other metrics are needed, as
discussed below.

To cope with this challenge, a wide set of performance metrics
(like the IPC, ROB stalls, etc.) were analyzed. We found that the
number of instructions executed per second helps identifying the
inflicting and victim VMs. More precisely, the Giga Instructions
executed Per Second (GIPS). Based on this finding, the devised
approach uses the GIPS to identify the victim VM(s). Notice that
the novelty is not the metric itself but the purpose for which it
is used. The rationale is as follows. The amount of instructions
committed by a VM per second is directly related to the number
of queries that it receives per second (QPS). That is, if a victim VM
keeps its load steady (i.e., the server processes the same requests
per second), its GIPS remain unaffected. Otherwise, the GIPS will
change.

To support this claim, we studied the correlation between QPS
and GIPS. Fig. 3 plots the results, varying the QPS for the five
studied applications executed under four server threads (1, 2,
4 and 8) configurations. Tested QPS ranges from 100 to 2000
(i.e., the maximum value before the 95th tail latency saturates).
For each server configuration, both QPS and GIPS, have been
normalized to that of the lowest QPS value (i.e., 100). A total of
175 points are plotted. Results show that the GIPS presents a very
strong linear correlation (R2

= 0.9896), almost perfect, to QPS.
It should be taken into account that cloud workloads do not

tress 100% the CPU, but the CPU utilization usually takes low
alues (e.g., 20%) [6,7]. Therefore, IPC and GIPS are not directly
orrelated since IPC is calculated over the time the CPU is busy
i.e., utilization time) while the GIPS is computed over the total
easurement time, which comprises both the utilization time
nd time the VM is waiting for client requests.

.2. Case study with two VMs

This section shows how the GIPS helps detecting the vic-
im and the inflicting VMs running latency-critical applications
hrough an experimental example. For illustrative purposes, only
wo VMs are used, one acting as the victim and another as the
nflicting.

Fig. 4 shows the GIPS and the IPC varying the CPU utilization
f the victim and inflicting VMs across four different scenarios. In
ach plot, each pair of bars corresponds to a different experiment.
he X-axis legend below each bar indicates the CPU utilization
hat the victim and inflicting VMs achieve in the experiment.
wo load (utilization) levels, low (left-side plots) and high (right-
ide plots), are considered for the victim VM, which refer to
bout 10% and 50% CPU utilization in isolation, respectively. The
tilization of the inflicting VM has been set to grow from about
0% (no contention) up to 60%. More precisely, QPS have been
xperimentally configured in order to achieve that utilization. The

irst pair of columns refers to a low contention scenario where

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

(

t
G
s

(
V
a
b
c
a
a
g
s
a
c
N
d
1

c
v
v
t
t
a
l
i
i

l
o

4

t
c
v
f
g

a

5

d
o
c
t
t
d
m
u
m
l
i
m
n
u

u
t
O
a
r
l
e
u
s
r
t
(
a

w
a

N

Fig. 4. Normalized GIPS of victim VM (fixed QPS) and inflicting VM (increasing
QPS) for different CPU loads, high and low. Right Y -axis shows the IPC obtained
black line) by the victim VM in each of the test cases.

he inflicting VM presents low load and it is used as baseline. The
IPS of both VMs are normalized to the achieved in the baseline
cenario.
In the upper plots, img-dnn is the victim VM under low load

Fig. 4(a)) and high load (Fig. 4(b)), and specjbb is the inflicting
M growing the interference from left to right. This can be
ppreciated, as the normalized GIPS of the inflicting VM (orange
ar) grows in a by 4× factor in the highest interference. On the
ontrary, the GIPS of the victim VM (blue bar) remain around 1
cross the six experiments in the plot. The interference introduces
n important change in the victim behavior. The CPU utilization
rows from 11% to 15% when it works under low load (left
ide plot) and from 50% to 52% (right side plot). This represents
n important growth (in percentage), especially under low load
onditions, thus it translates into significant performance losses.
otice that the IPC of the victim VM (right Y-axis) significantly
ecreases as the interference increases, dropping from around
.78 to 1.53.
In the bottom plots (Figs. 4(c) and 4(d)) the applications

hange their role: img-dnn is the inflicting VM and specjbb is
ictim VM. Similar results can be observed. Again, the GIPS of the
ictim VM are not affected as the interference increases while
he GIPS of the inflicting VM grow up in a 5× factor. Unlike
he previous figures, the CPU utilization of the victim grows in
negligible way (less than 1%); consequently, its IPC drops to a

esser extend, especially in the low load plot (Fig. 4(c)). The reason
s that img-dnn is more memory-intensive than specjbb, and thus,
s more sensitive to the co-runner’s workload.

Finally, we would like to remark that the GIPS metric is not
imited to two VMs but it can be applied regardless of the number
f VMs (see Section 7.3).

.3. Cloud White: Interference detection phase algorithm

Algorithm 1 presents the pseudo-code of the interference de-
ection mechanism performed by Cloud White. That is, the steps
arried out to discern if a given VM present an inflicting or a
ictim behavior. First, the normalized load and GIPS are computed
or each application. Load is quantified in terms of percentage of

uest time (from the /proc/stat system file, see Section 6.1). o

17
Algorithm 1 Cloud White’s interference detection phase pseudo-
code where inflicting and victim behaviors are detected.
1: for all apps do
2: Compute %guestnorm and GIPSnorm
3: if %guestnorm increases M% then
4: if GIPSnorm increases N% then
5: Inflicting behavior
6: Tag as victim all non-inflicting VMs
7: else
8: Victim behavior
9: end if
10: else
11: VM’s behavior is steady
12: end if
13: end for

Normalized values are computed with respect to No Interference
scenario (see Section 7.1 for more details). Once computed, Cloud
White checks if the VM has experienced a load change. This
is done by checking if %guest time has changed – increase or
decrease – more than a given threshold (M%) over the rolling
mean of the previous intervals. If this condition fulfills, then it
checks if the GIPS have also noticeably changed (over N%). In
such a case, the VM is tagged as inflicting. Otherwise, it is tagged
as victim. Notice that some VMs may not experience any load
change (lines 10–11). However, if one of the co-located VM(s)
exhibits an inflicting behavior, the VMs exhibiting a steady behav-
ior are also tagged as victim as they may be possibly affected in
the near-future by the interference caused by the inflicting VM(s).
The results presented in this work have been obtained with M%
nd N% set to 5 and 50, respectively.

. Microbenchmarking: Introducing inter-VM interference

To devise the models to estimate the performance degra-
ation, we first need to study the impact of the interference
n the system performance. This study needs to be done in a
ontrolled way, that is, we need a method to control the in-
roduced interference. A practical option commonly employed is
he use of microbenchmarks, or synthetic benchmarks, especially
esigned to stress specific systems resources (e.g., the cache, the
ain memory or the disk) by introducing interference in their
tilization. One of the main advantages of using microbench-
arks is that they can be finely tuned, setting different utilization

evels on each shared resource. To generate a workload that
ntroduces realistic interference, we have used the stress-ng [38]
icrobenchmark, which stresses the three main system compo-
ents (LLC, main memory bandwidth and disk). In addition, we
sed iPerf3 [39] to stress the network bandwidth.
In the experiments, all (24 logical) cores of our machine are

sed to model scenarios closely resembling to a production sys-
em. Two different instances of the microbenchmark are used.
ne instance is devoted to stress one or some shared resources,
nd is hosted in a VM with 8 logical cores. The other instance,
eferred to as no interference has been used to introduce relatively
ow interference, that will barely affect the victim VM. To this
nd, 6 logical cores are occupied presenting each of them a low
tilization. In this way, the stress introduced comes only from a
ubset (i.e., 8) of the cores of the system as it is likely to occur in
eal systems. From the remaining logical cores, 2 were devoted
o the victim VM and 8 to run the software agent components
OVS, DPDK, and ReAM described in Section 3). From now on, we
ssume the same core distribution of the software agents.
Below, we present five types of workload scenarios created

ith the microbenchmarks to analyze different stressing levels
t the major system components.

o interference. This scenario represents the common situation

f the target system, where there is a low (by 10%) processor

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

u
s

C

m
a

6

w
s
t
f

t
t

s
s
i
p
l
m
c
t
i
f
n
b
e
a

6

v
r
i
t
u

tilization and resource usage. It will be used as our baseline
cenario to check performance degradation.

ache-memory stressing. This scenario is used to study the effect
of stressing the LLC occupancy and main memory bandwidth.
Three main stressing levels have been considered, ranging mem-
ory bandwidth consumption from 1.9 to 5.5 GB/s and LLC space
from approx. 12.5 to 14.7 MB.

Disk stressing. This scenario implies a high number of write
and read operations to disk. Three stressing levels have been
considered, from moderate (around 45 MB/s) to high (over 100
MB/s) disk bandwidth consumption.

Cache-memory-disk stressing. This scenario adds the stress in-
troduced by the cache-memory and disk scenarios within the
same experiment.

Network stressing. This scenario stresses the network bandwidth
(both receive and transmit, but in separate experiments).

6. Cloud White: Modeling performance degradation

After using the microbenchmarks to model different levels of
interference, we analyze the impact of the interference on tail
latency. This analysis is aimed at identifying the metrics that have
stronger relationship with performance degradation in order to
consider them in the prediction models. Recall that the public
cloud imposes important limitations for an approach to be prac-
tical. First, it should not have prior knowledge of the workloads
running on the VMs. Second, it should not require costly actions
(e.g., isolating a VM). And third, it should be general enough to
adapt to different workloads and system conditions.

The devised models are generic and can be applied to other
applications showing similar characteristics. To check this claim,
we make two different groups of workloads: one for building the
models (known workloads) and another for evaluating the models
(unknown workloads), not previously used. From our set of appli-
cations, we identified two behaviors, CPU- and memory-bound
(see Section 3.2). In case Cloud White encounters an applica-
tion presenting an unseen behavior, models would be trained
with this application to update or generate new models. We use
specjbb and img-dnn as known workloads presenting CPU- and
emory-bound behaviors, respectively, and leave silo, masstree
nd moses as unknown applications.

.1. Looking for performance metrics as model parameters

Since the cloud provider sees tenant VMs as ‘‘black boxes’’,
e studied a wide set of performance indicators from the main
ystem components (processor, memory, network and disk) with
he aim of finding potential correlation between them and per-
ormance degradation.

We evaluated two different CPU metrics related to where
he processor spends time: guest time, which accounts for the
ime spent by processes running on a virtual CPU, and idle time,
which represents the time spent idling (i.e., not executing in-
structions) while there are no disk I/O requests outstanding. To
assess the core performance, we have evaluated metrics to quan-
tify throughput (e.g., IPC) and the interference within the core
(e.g., processor stalls and L1 cache misses). In addition, we have
studied metrics that quantify the LLC occupancy and bandwidth
consumption in the main memory, disk, and network. Regarding
network bandwidth, we found out that the Tailbench applications
consumption is very low compared to the maximum supported
bandwidth (over 20 Gb/s) in our experimental platform. Thus, no
performance degradation was observed due to the interference in
the network bandwidth. Furthermore, the cloud provider should
 v

18
Fig. 5. Correlation of the studied metrics for img-dnn and specjbb for a 20%
processor utilization.

always provide enough network bandwidth to almost completely
avoid the interference at this component because queuing delays
at the network will immediately prevent the application from
meeting the required QoS.

Fig. 5 illustrates the correlation between the degradation of
the 95th tail latency and the studied metrics (left-most column
and top row) for the two applications representative of memory-
and CPU-bound behaviors, img-dnn and specjbb running a QPS
that results in an average CPU utilization of 20%. That is, how
much performance degradation (compared to that obtained in
the No Interference scenario) is related with each of the studied
performance metrics. Additionally, the correlation between each
pair of metrics is shown. Each table represents the correlation of
the studied metrics for each application, obtained from the results
of all the experiments performed with the microbenchmarks in
all the stressing scenarios previously discussed. Positive correla-
tions are colored in blue and negative correlations in red, where
a darker shade implies stronger correlation. Correlations between
0.2 and 0.6 are colored in light blue and correlations between 0.6
and 1 in dark blue. Negative correlations within the same range
are colored in light and dark red. Cells colored in white represent
a very low correlation (i.e., between −0.2 and 0.2). As observed
in the 95th tail lat. column, img-dnn’s performance achieves a
strong correlation with the processor utilization, core and LLC
metrics. However, specjbb achieves strongest correlation in just a
ubset of these metrics (percentage of guest time and processor
talls) and in the main memory bandwidth. Even though specjbb
s CPU-bound, memory bandwidth has a stronger correlation with
erformance degradation in specjbb than in img-dnn. Specjbb’s tail
atency is 4× shorter than that of img-dnn and consumes more
emory resources, so a small impact in the memory bandwidth
an turn into performance degradation [37]. Note, however, that
he correlation factor indicates how related are the variations
n both metrics but gives no insight about the impact on per-
ormance of the interference in that component. In both cases,
etwork- and disk-related metrics achieve a poor correlation,
eing stronger in specjbb but not significant enough. This was
xpected because the two workloads present relatively low disk
nd network utilization.

.2. Relationship between system load and the models

So far, we have considered that the CPU utilization of the
ictim remains constant and the CPU utilization of the inflicting
anges from 10% to 60% (higher utilization normally translates
nto higher interference) to analyze workload conditions of in-
erest (see Section 3.3). However, in the real cloud, the processor
tilization of the victim does not remain constant but it tends to

ary in the range from normal to overloaded.

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

r
s
t

m
w
C
t
q
G
r
i
t
W
s
e

Fig. 6. Relationship between IPC and performance degradation for img-dnn
varying the CPU utilization (10% to 50%).

Under different CPU utilizations, we observed that the trend of
the performance metrics also varies. An example can be observed
in Fig. 6, showing the relationship between dynamic performance
degradation (95th tail latency) and IPC for the studied CPU utiliza-
tion scenarios for img-dnn. Each point corresponds to the 95th tail
latency and IPC achieved over a time interval of 5 s, resulting in
more 1000 points plotted in the graph.

Values have been normalized to the average value obtained
with the No Interference workload scenario (see Section 5). As
observed, the slope of the points corresponding to each CPU
utilization (with different colors) varies, being more pronounced
for higher processor utilization. Additionally, points that belong
to higher CPU loads (i.e., 40% and 50%) present a non-linear trend.
Therefore, building a unique model that embraces all processor
utilizations may lead to high prediction errors. To deal with this
fact, specific models can be built for distinct processor utilization
(e.g., 10%, 30% and 50%).

6.3. Multi-variable regression models

To acquire a sound knowledge about the performance-related
metrics (see Section 6.1), we analyzed how each metric individ-
ually correlates with performance degradation using regression
models. We found that none of them strongly correlate with
performance in a generalized way. Therefore, we looked into
multi-variable regression models to devise models that achieve
a stronger correlation. These models pursue to improve the cor-
relation by combining several metrics.

Designing statistical models. Due to the non-linear nature of
the tail latency metric, linear regression models are not the most
suitable models to use. We also observed that the performance
degradation metric does not follow a normal distribution.

Fig. 7 shows the distribution of the performance degrada-
tion (95th tail latency normalized over No interference). A value
of 1 in the X-axis means no performance degradation. Results
were gathered in the stressing scenarios for img-dnn and specjbb
for two processor utilization levels: 20% (upper plots) and 50%
(bottom plots). As observed, the histograms do not exhibit a
symmetric shape. As expected, in the top plots where the CPU
utilization (20%) is lower, the performance is less affected by the
interference. This can be appreciated in that, in around 96% of
the observations, performance degrades by a factor of 1.9×. In
contrast, in the highest CPU load scenario (Figs. 7(c) and 7(d)),
this range is extended up to around 2.8, meaning that in some
cases performance degradation can be as much as 180%.

In all cases, the histogram shape does not resemble a typical
bell-shaped curve but is right skewed, especially in the high-
est CPU load plots, illustrating that the Gaussian distribution is
not the most appropriate distribution for tail latency [40]. To
19
Fig. 7. Histograms with the frequency distribution of the 95th tail latency
degradation values in different scenarios.

check this, we modeled the measured data linearly and per-
formed the Anderson–Darling test [41] which confirmed that,
generally, the models’ residuals were not normally distributed.
We found that only img-dnn’s 50% CPU load model satisfied the
normality assumption, so this can be considered as the rare
case. Additionally, we checked that in most cases, performance
degradation did not present a linear relationship with the studied
metric (e.g., IPC values corresponding to 40% and 50% CPU utiliza-
tion in Fig. 6). Therefore, for generalization purposes, we looked
into other models that do not require the data to be normally
distributed. Among these, we found that the generalized linear
models (GLM) [42] are the most appropriate for non-linear and
skewed distributions [43].

Model fitting - reduction strategy. The models were built and
fitted using statsmodel Python library [41]. The model fitting was
performed with the iteratively reweighted least squares (IRLS)
method, with the objective of minimizing the deviation that
occurs when estimating performance degradation. No constraints
were specified to obtain the model coefficient values. A model
reduction strategy [44] by statistical significance of the terms
has been followed to find the truly significant variables. This
implies that, initially, the model is built including all candidate
variables (performance metrics), and the least statistically signif-
icant variable (largest P>|z|, fulfilling that is higher than 5%) is
emoved. This process is repeated until the model only contains
ignificant terms. In this work, we considered candidate variables
he performance metrics achieving a correlation higher than 0.4.

For illustrative purposes, Table 2 shows an example of the
odel generated with the data from the experiments performed
ith specjbb under stressing conditions (see Section 5) for 20%
PU utilization. The upper part of the table shows a summary of
he characteristics of the resultant model, both qualitative and
uantitative. In this example, the obtained model belongs to the
LM Gamma exponential family, with inverse_power (i.e., recip-
ocal) link function, the default link function for the Gamma fam-
ly. Other link functions were explored like the logarithmic func-
ion, but the best results where obtained with the inverse_power.
e would like to remark that the model characteristics are the

ame for the models generated for all the CPU utilization lev-
ls. Results like the Log-Likelihood, Deviance and Pearson

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

c
F
a

v
g
m
r
a

F
p
i
R
(
f
p
s
w

F
b

y

u
(
e
(
s
o
d
b
t

7

7

o
p
e
V
c
o
(
V
a
t
t
t
w
i
r
V

c
M
p
u
i
v
t
m
W
r
a
t
a
W
o
a

Table 2
Example of the parameters and statistics of the prediction model generated with
data from specjbb with a 20% CPU load.
Generalized linear model regression results

Dep. Variable: perf. deg. No. Observations: 425
Model: GLM Df Residuals: 420
Model family: Gamma Df Model: 4
Link function: inverse_power Scale: 0.0043907
Method: IRLS Log-Likelihood: 396.96
No. Iterations: 6 Deviance: 1.7979
Covariance type: nonrobust Pearson chi2: 1.84

coef std err z P > |z| [0.025] [0.975]

const 1.0602 0.017 63.261 0.000 1.027 1.093
guest% −0.0207 0.009 −2.261 0.024 −0.039 −0.003
Mem. BW −0.0233 0.002 −10.432 0.000 −0.028 −0.019
Core stalls −0.1674 0.017 −9.713 0.000 −0.201 −0.134
Total stalls 0.0876 0.016 5.446 0.000 0.056 0.119

Fig. 8. Scatter plots with real (measured) vs. predicted performance degradation.

hi2 [45] indicate the model goodness to the data used to train it.
or instance, deviance is a measure of goodness of fit (the lower
nd closer to zero, the better).
The bottom part of Table 2 shows the coefficients of the model

ariables, as well as the standard error of each one. Among the
enerated models, this is the part that mainly differs, since each
odel has different (both in number and value) coefficients. As a

esult of the model reduction, all independent variables present
P>|z| lower than 5%. In this example, the model is made up

of 5 independent terms, that consists of a constant term and 4
significant variables (degrees of freedom, Df, equals 4): guest%,
memory BW, core stalls and total stalls.

The goodness of the model can also be analyzed graphically.
ig. 8 shows four examples of the relationship between the real
erformance degradation values with the predicted values for
mg-dnn and specjbb in two different CPU utilization scenarios.
esults show that most of the points lie on the curve x = y
plotted diagonal) or very close to it, which indicates the per-
ect prediction (i.e., real and predicted values are equal). Higher
rocessor utilization scenarios (Figs. 8(c) and 8(d)) show higher
pread, something expected since tail latency is more affected
ith higher CPU utilization (i.e., overloaded scenario).

inal models. This section presents the memory-bound and CPU-
ound models devised in this work for img-dnn and specjbb,
 i

20
respectively. Eqs. (1) and (2) show the formulas where K , x1,
x2 to xn represent the coefficients of the constant term and the
independent variables, respectively. ymem and yCPU represents the
dependent variables in terms of performance degradation for the
memory-bound and CPU-bound models, respectively.

ymem =
1⎛⎜⎝ K + (x1 × idle%) + (x2 × IPC)

+ (x3 × MPKI_L2) + (x4 × MPKI_L3)
+(x5 × mem_BW) + (x6 × mem_stalls)
+(x7 × core_stalls) + (x8 × total_stalls)

⎞⎟⎠
(1)

CPU =
1⎛⎜⎝K + (x1 × guest%) + (x2 × idle%) + (x3 × IPC)

+(x4 × mem_BW) + (x5 × MPKI_L2)
+(x6 × MPKI_L3) + (x7 × mem_stalls)
+(x8 × core_stalls) + (x9 × total_stalls)

⎞⎟⎠
(2)

Since performance degradation strongly depends on the CPU
tilization, each model needs to be tuned for five CPU values
i.e., 10%, 20%, 30%, 40% and 50%). We found that this number is
nough to provide accurate estimates. For each individual model
i.e., model generated for a CPU load), only those statistically
ignificant terms have been considered, meaning the coefficients
f the remaining terms are set to zero. For instance, in the model
escribed in Table 2 only the variables of the guest%, memory
andwidth, core stalls and total stalls metrics are significant and
herefore, their parameters are not equal to zero.

. Cloud White evaluation

.1. Methodology

To evaluate the model accuracy, we performed a wide set
f experiments both with one and multiple latency-critical ap-
lications. Firstly, we tested the effectiveness of the models by
xecuting the target latency-critical application in a VM (victim
M) with two virtual CPUs (VCPUs) along with a stressor mi-
robenchmark, launched in another VM (inflicting VM) running
n eight VCPUs. Then, experiments were performed with multiple
two and three) latency-critical applications running in different
Ms to test if Cloud White could effectively distinguish the victim
nd inflicting VMs and estimate the performance degradation of
he victim VM. Some applications were configured to increase
heir load (i.e., QPS) gradually at different points of the execution
ime to dynamically introduce or remove interference. Each VM
as launched with 2 (victim) or 4 (inflicting) VCPUs. The remain-

ng CPUs were occupied by an instance of the microbenchmark
unning the No Interference scenario launched in a VM with 8
CPUs.
For the experiments performed with the microbenchmark, we

onfigured it to run the No Interference scenario for the first
seconds. During this time, Cloud White sees that the system

resents a low and constant load and gathers the baseline val-
es. Remember that the public cloud runs, most of the time,
n steady phases with low CPU loads [5,7], therefore baseline
alues would be gathered during these times. After this time,
he microbenchmark adopts the stressing cache-memory-disk
odel (see Section 5) for N seconds. When this happens, Cloud
hite detects that a load change is taking place in the VM

unning the microbenchmark (i.e., acts as inflicting) and starts to
pply the regression model to the VM identified as victim to es-
imate its performance degradation. Finally, the microbenchmark
dopts again the No Interference model in order to check if Cloud
hite is able to detect this new situation and estimate that little
r no performance degradation is taking place. In this work, M
nd N are set to 60 s and 50 s, respectively. In a similar way,
n the multiple latency-critical applications experiments, we have

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

a
r
d
o
o
d

7

W
t
t
s

b

Fig. 9. Bar plots comparing the overall real and predicted performance degradation (i.e., 95th tail latency). The CPU utilization refers to that achieved, on average,
when applications were executed with No Interference.
Fig. 10. Dynamic graphs comparing the real and predicted performance degradation (i.e., 95th tail latency).
configured inflicting applications to start increasing the load after
a minimum of 45 s so Cloud White can gather the baseline values
during this time.

Experiments were repeated five times, point at which the
deviation among the measured 95th tail latencies was less than
5%, except for some experiments with higher CPU load (e.g., 40%
and 50%) that experience higher deviation, between 7% and 10%.
Prediction accuracy results were evaluated in terms of (1) overall
prediction error, which defines the difference between the real
and estimated performance degradation of the entire experiment,
and (2) average dynamic prediction error, which quantifies the
verage error of each prediction performed with respect to the
eal value in each 1s quantum. In both cases, performance degra-
ation quantifies the 95th tail latency normalized against that
btained in a phase under low interference (e.g., first M seconds
f the execution). Therefore, a value of 1.0 means no performance
egradation, and higher values mean degradation has taken place.

.2. Prediction effectiveness with a single latency-critical application

This section shows the results obtained when applying Cloud
hite to the set of studied applications executed individually

ogether with the microbenchmark. This includes those applica-
ions left outside for validation purposes (masstree, moses and
ilo), as well as those used to create and train the models (img-
dnn and specjbb). The goal of including the latter two applications
in the evaluation is to check if Cloud White correctly applies
the appropriate model when predicting performance degradation.
Notice that, in all cases, Cloud White sees these applications
as black boxes and has no prior information of the applica-
tions under execution, other than the resource consumption and
hardware/software events gathered at run-time with the PMU.

Overall results can be observed in Fig. 9.1 Each graph presents
the normalized real or measured performance degradation (blue

1 Silo shows no results for 50% CPU utilization since the application saturates
efore reaching this load.
 v

21
bar) and the normalized estimated performance degradation (or-
ange bar) for a variety of CPU utilization levels (X-axis), calculated
as the 95th percentile of all the measurements and estimations
made at run-time, respectively. Interval bars show the devia-
tion achieved for the run-time values of both the measured and
estimated normalized latency in the experiments. As it can be ob-
served, Cloud White is able to estimate performance degradation
accurately for most of the experiments, having on average a 5%
prediction error. Experiments with high CPU load (i.e., 40% and
50%), however, make slightly higher prediction errors (7.5%). This
is mainly due to the fact that applications are close to saturating
and, therefore, 95th tail latency shows more spike values. This is
also reflected in the interval bars, as longer interval bars mean
that there exists higher deviation among values. In general, we
can observe that the estimated values’ deviation is similar to the
real values’ deviation.

A complete evaluation, however, should also consider how
Cloud White behaves when the workload changes dynamically.
Fig. 10 shows examples of how real (measured) performance
degradation evolves across the execution time, and the predicted
performance degradation performed by the models for experi-
ments with 20% and 40% CPU load for the first 150 s of execution.2
Since 95th tail latency metric experiences high variation, a best
fit curve computer with the LOWESS algorithm [46] has been
plotted instead of line joining all the points. Notice that prediction
starts around second 60, point at which Cloud White detects
that the co-running VM is changing its load and it is possibly
causing interference. As it can be observed, both the real and
predicted curves follow a similar trend in most time intervals,
showing Cloud White is able to detect and predict accurately
performance degradation. On average, dynamic prediction error
is less than 10%, except for some experiments like in specjbb with
40% CPU utilization which is higher. Likewise, moses experiences
a higher sensitivity to interference at the shared resources ob-
taining higher prediction errors in some experiments, but in all
cases, average prediction error is less than 20%.

2 Silo 40% has a shorter execution time since higher time resulted in QoS
iolation.

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25
Fig. 11. Normalized GIPS and performance degradation (i.e., 95th tail latency)
of experiments performed with 2 VMs executing img-dnn and silo as victim (V)
and inflicting (I) VMs (plots a and b) and vice-versa (plots c and d).

Additionally, Cloud White is able to determine that little or
no performance degradation is taking place in the last third of
the execution, when the co-running VM is no longer stressing
the system main resources. This proves that Cloud White can be
effectively used to detect performance degradation.

7.3. Prediction effectiveness with multiple latency-critical applica-
tions

This section evaluates how Cloud White behaves when run-
ning two and three VMs with latency-critical applications. For this
purpose, we have chosen img-dnn, silo and specjbb. The first two
applications were chosen since they exhibited high sensitivity
(img-dnn, see Fig. 9(a)) and low sensitivity (silo, see Fig. 9(c))
to the interference. For the three VMs experiments, specjbb was
added with an inflicting role since it presents a significant con-
sumption of shared resources and performs a high QPS [37]. Thus,
it introduces a high pressure and interference.

The main objective is to check Cloud White’s two major design
issues: (i) distinguish the victim VM and, (ii) accurately estimate
its performance degradation. Although we have tested up to
three VMs concurrently running latency-critical workloads, Cloud
White is not limited to three. Notice, however, that in real public
systems, not many latency-critical workloads are co-located in
the same node due to their QoS requirements, so it is not realistic
to test a high number of latency-critical workloads.

Two latency-critical applications. This section analyzes Cloud
White’s behavior when running two latency-critical applications.
To this end, we followed the methodology (mapping of VMs
to VCPUs and the way in which the interference is introduced)
described in Section 7.1. Fig. 11 shows the results for the first
150 s of two experiments performed with the pair made by img-
dnn and silo; in the first experiment, img-dnn acts as the victim
(constant 50% CPU load) and silo as the inflicting VM, and in
the second, both applications exchange the role (silo runs now
with constant 30% CPU load). The two upper plots (Figs. 11(a)
and 11(b)) show the results for the first experiment. Fig. 11(a)
shows the normalized GIPS with respect to the steady scenario
(first 50 s), before silo starts to increase its load. As already
studied in Section 4, the GIPS of the victim VM (i.e., img-dnn)
remain almost constant if the load experiences no variations,
22
Fig. 12. Normalized GIPS and performance degradation (i.e., 95th tail latency)
of experiments performed with 3 VMs executing img-dnn, silo and specjbb as
victim (V) or inflicting (I) VMs. In plots a and b img-dnn is the victim and in
plots c and d silo takes this role.

while the GIPS increase if the load increases, as it happens for the
inflicting VM (i.e., silo). It can be observed that the load increase
(from second 50 to second 110 approx.) matches the top of the
curve of Fig. 11(b) on the right side, which draws the real and
predicted performance degradation of img-dnn, the victim VM.
Around second 60, Cloud White detects that the load of the co-
running VM has increased significantly and starts to estimate the
effect it has on img-dnn’s performance. Notice that after second
110 approx., the load of the inflicting VM reduces, and so does the
interference it introduces, until it reaches again the steady load. In
this experiment, Cloud White is able to estimate the performance
degradation with an overall prediction error by 6% and average
dynamic prediction error of less than 10%. A similar reasoning
can be applied to the two bottom figures (Figs. 11(c) and 11(d)),
which correspond to the second experiment where img-dnn is the
inflicting application. In this case, the average dynamic prediction
error is roughly the same but the overall prediction error slightly
lowers to 4%.

Three latency-critical applications. Finally, we analyze how
Cloud White behaves with three co-located VMs running latency-
critical workloads. For illustrative purposes, Fig. 12 presents the
results for img-dnn, silo and specjbb. In the first experiment, img-
dnn is the victim application (constant 50% CPU load) and the
other applications act as inflicting (Figs. 12(a) and 12(b)). In the
second experiment, silo acts as the victim application with a
constant 20% CPU load (Figs. 12(c) and 12(d)). As in the previous
section, the normalized GIPS of the victim VM remain around 1
for the whole execution, which allows Cloud White to identify
it; meanwhile the inflicting VMs show an increasing trend of
the GIPS, matching the load increase. For the steady-load victim
VM, Cloud White is able to accurately estimate the performance
degradation in both cases, with an overall prediction error by 7.5%
in the case where img-dnn is the victim VM and 8% in the case
where silo is the victim VM and an average dynamic prediction
error of 11% and 8.5%, respectively.

8. Comparison to prior work

CloudWhite is able to detect the inter-VM interference (i) con-
sidering VMs as ‘‘black boxes’’ while (ii) assuming these VMs run

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25

l
i

a
o
h
o
d

u
r
C
v
t
t
s
w
t

L
L
n
i
s

w
m
d
t
e
w
(
d
I
(
w
i
t
d
i
A
i
a
i

M
b
m
o
o
t
i
W

C
o

Fig. 13. Comparison of the LLC occupancy and performance of img-dnn and stress_ng.
atency-critical applications. Combining both statements together
s one of the main contributions of this work.

This section compares our approach with the state-of-the-art
pproach Alita [14]. For this purpose, we implemented Alita in
ur experimental platform. As our proposal, this approach also
andles VMs as black boxes; hence, the comparison concentrates
n analyzing the online interference detection capabilities and
ifferences between both approaches.
Alita uses low-level information although different from that

sed by Cloud White. The major difference is not only in the met-
ics used but how the interference is detected. On the one hand,
loud White combines numerous hardware events in a multi-
ariable regression model that estimates performance degrada-
ion considering interactions between resources. Alita simplifies
he process estimating degradation in three main shared re-
ources (LLC, memory bus and CPU) in an independent way. Next,
e compare the effectiveness of Cloud White against Alita from
he point of view of latency-critical applications.

LC contention. Alita evaluates LLC contention based on the fair
LC quota each VM should occupy, which is determined by the
umber of CPUs assigned to the VM. Nonetheless, as proved
n [47], LLC occupancy is not a good metric to quantify contention
ince it does not consider data reuse.
Fig. 13 presents a counter example to illustrate this claim,

here img-dnn is executed together with the stressor
icrobenchmark (stress_ng), each on a VM with 8 VCPUs. Img-
nn shows the same behavior across all the execution while
he microbenchmark occupies little LLC space (less than 1 MB)
xcept in the second third of the execution (from 60 s to 110 s)
here it stresses the LLC, polluting it with data with little locality
i.e., no reuse). In the first and last third of the execution, img-
nn occupies most of the LLC space (over 10 MB out of 16.5 MB).
f computed the fair LLC quota, each VM should occupy 5.5MB
8/24 × 16.5). Thus, Alita detects img-dnn is polluting the LLC
hen, in fact, it is not since the IPC of stress_ng (see Fig. 13(b))

s almost the same as that achieved when running alone. On
he contrary, in the second third of the execution Alita does not
etect the real LLC contention (see img-dnn’s tail latency increase
n Fig. 13(c)) since both VMs have a balanced LLC consumption.
s opposed to Alita, Cloud White would properly detect this
nterference since (i) img-dnn would not be detected as inflicting
s its GIPS do not vary, and (ii) stress_ng would be detected as
nflicting in the middle phase where the GIPS increase.

emory Bus contention. Alita quantifies memory bus contention
y detecting split locks [14], which deeply degrade the perfor-
ance of latency-critical applications. This approach works well
n specific workloads like malicious tenant programs. We do not
bserve, however, split locks in the studied Tailbench applica-
ions. Moreover, when memory bandwidth contention appears
n regular workloads it is not detected by Alita unlike Cloud
hite which considers memory-related metrics.

PU contention. Contention in the CPU is quantified in terms
f power. In the case of CPU-intensive applications, Alita detects
23
CPU contention since these applications achieve a high IPC and
present high circuitry activity, which significantly increases the
dynamic power and temperature. On the contrary, latency-critical
applications do not stress so much the CPU and thus, we observed
little increase in temperature (a few degrees Celsius at most)
when running such applications.

In summary, Alita is suited to work well with specific work-
loads presenting a high interference but cannot be considered as
a general approach. In contrast Cloud White is, to the best of our
knowledge, the only approach able to detect smooth interference
caused by inflicting VMs running latency-critical applications.

9. Applying Cloud White to improve QoS

The objective of Cloud White is to detect the inter-VM inter-
ference and quantify the performance degradation suffered by
the victim VM(s). This information can be leveraged by cloud
providers to carry out specific actions depending on the level of
performance degradation. For instance, urgent solutions need to
be carried out where there exists a narrow margin with SLA vio-
lations. The most straightforward action that the cloud provider
can carry out on such a case is to move the identified victim VM
to another less-loaded node. Notice that if this VM is not properly
identified, the cloud provider has no way of knowing which VM
to move. Other more refined actions for not so urgent situations
may be more appropriate than migration since this process is
resource-intensive [6,48], and for VMs with a large image size,
it can be very costly. These actions include analyzing the major
shared processor resource that bottlenecks the performance due
to interference. For instance, in case it is the LLC or memory band-
width the resource that experiences a higher utilization increase,
then the cloud provider can assign a larger share of it (e.g., LLC
cache ways or memory bandwidth) to the victim VM in order to
rise its performance to the same level it was before the inflicting
action.

10. Conclusions

Accurately estimating performance degradation of latency-
critical workloads is a key challenge for cloud providers since
it allows them to improve resource utilization while meeting
applications QoS requirements. This work has presented an in-
depth analysis of how performance degradation can be identified
and quantified in a realistic scenario with multiple co-located
VMs, handling VMs as black boxes and relying on metrics that
can be easily monitored in the public cloud.

The proposed approach, Cloud White, uses the GIPS metric
as a novel way to discern victim VM(s), which have a steady
load over the last quanta but their performance degrades due to
the interference introduced by the inflicting VM(s). After that, it
estimates the performance degradation of the victim VM(s) using
multi-variable linear regression models.

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25
Results show that Cloud White is able to accurately identify
the victim VM(s) in situations of multiple VMs running together.
Moreover, we have shown that Cloud White is able to do that
dynamically by detecting the co-running VMs that experience
load changes. Upon a load change, Cloud White estimates the
performance degradation of the victim VMs in an accurate way.
Experimental results show that the total error deviation is about
5% and the average dynamic prediction error less than 10%. To
the best of our knowledge, this is the first approach that detects
and quantifies inter-VM interference in cloud systems running
latency-critical applications.

CRediT authorship contribution statement

Lucía Pons: Software, Investigation, Data curation, Visualiza-
tion, Writing – original draft, Writing – review & editing. Josué
Feliu: Software, Investigation, Writing – original draft, Formal
analysis, Writing – review & editing. Julio Sahuquillo: Concep-
tualization, Project administration, Funding acquisition, Supervi-
sion, Writing – review & editing. María E. Gómez: Resources,
Writing – review & editing. Salvador Petit: Conceptualization,
Methodology, Formal analysis, Writing – review & editing. Julio
Pons: Resources, Visualization, Software. Chaoyi Huang: Super-
vision, Validation.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Julio Sahuquillo reports financial support was provided
by Huawei Cloud.

Acknowledgments

This work has been supported by Huawei Cloud, and in part by
Spanish Ministerio de Universidades under grant FPU18/01948,
and by Spanish Ministerio de Universidades and European ERDF
under grants RTI2018-098156-B-C51 and PID2021-123627OB-
C51. Funding for open access charge: CRUE-Universitat Politéc-
nica de Valéncia.

References

[1] Amazon’s EC2 [online], 2020, Available at http://aws.amazon.com/ec2/,
Accessed: 2020-09-30.

[2] Windows azure [online], 2020, Available at http://www.windowsazure.
com/, Accessed: 2020-09-30.

[3] Google compute engine [online], 2020, Available at https://developers.
google.com/compute/, Accessed: 2020-09-30.

[4] J.R. Hamilton, Cost of power in large-scale data centers, 2020,
Available at https://perspectives.mvdirona.com/2008/11/cost-of-power-in-
large-scale-data-centers/, Accesed: 2020-09-27.

[5] C. Lu, K. Ye, G. Xu, C.-Z. Xu, T. Bai, Imbalance in the cloud: An analysis on
alibaba cluster trace, in: 2017 IEEE International Conference on Big Data,
2017, pp. 2884–2892, http://dx.doi.org/10.1109/BigData.2017.8258257.

[6] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, R. Bianchini,
Resource central: Understanding and predicting workloads for improved
resource management in large cloud platforms, in: Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP), 2017, pp. 153–167,
http://dx.doi.org/10.1145/3132747.3132772.

[7] Q. Liu, Z. Yu, The elasticity and plasticity in semi-containerized co-locating
cloud workload: A view from alibaba trace, in: Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2018, pp. 347–360, http://dx.doi.
org/10.1145/3267809.3267830.

[8] H. Yang, A. Breslow, J. Mars, L. Tang, Bubble-flux: Precise online QoS
management for increased utilization in warehouse scale computers, in:
Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA), 2013, pp. 607–618.

[9] R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-clouds: managing performance
interference effects for QoS-aware clouds, in: Proceedings of the 5th
European Conference on Computer Systems (EuroSys), 2010, pp. 237–250.
24
[10] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, X. Koutsoukos, Per-
formance interference-aware vertical elasticity for cloud-hosted latency-
sensitive applications, in: Proceedings of the IEEE 11th International
Conference on Cloud Computing (CLOUD), 2018, pp. 82–89, http://dx.doi.
org/10.1109/CLOUD.2018.00018.

[11] R. Nishtala, V. Petrucci, P. Carpenter, M. Sjalander, Twig: Multi-agent
task management for colocated latency-critical cloud services, in: Pro-
ceedings of 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 167–179, http://dx.doi.org/10.
1109/HPCA47549.2020.00023.

[12] T. Patel, D. Tiwari, CLITE: Efficient and qos-aware co-location of multiple
latency-critical jobs for warehouse scale computers, in: Proceedings of
2020 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 2020, pp. 193–206, http://dx.doi.org/10.1109/HPCA47549.
2020.00025.

[13] D. Novaković, N. Vasić, S. Novaković, D. Kostić, R. Bianchini, Deep-
Dive: Transparently identifying and managing performance interference
in virtualized environments, in: Proceedings of USENIX Annual Technical
Conference (ATC), 2013, pp. 219–230.

[14] Q. Chen, S. Xue, S. Zhao, S. Chen, Y. Wu, Y. Xu, Z. Song, T. Ma, Y. Yang, M.
Guo, Alita: Comprehensive performance isolation through bias resource
management for public clouds, in: Proceedings of SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2020, pp. 1–13, http://dx.doi.org/10.1109/SC41405.2020.00036.

[15] M. Melo Alves, L.M.d.A. Drummond, A multivariate and quantitative model
for predicting cross-application interference in virtual environments, J.
Syst. Softw. 128 (C) (2017) 150–163, http://dx.doi.org/10.1016/j.jss.2017.
04.001.

[16] S.A. Javadi, A. Suresh, M. Wajahat, A. Gandhi, Scavenger: A black-box
batch workload resource manager for improving utilization in cloud
environments, in: Proceedings of the ACM Symposium on Cloud Computing
(SoCC), 2019, pp. 272–285, http://dx.doi.org/10.1145/3357223.3362734.

[17] N. Vasic, D.M. Novakovic, S. Miucin, D. Kostic, R. Bianchini, DejaVu:
accelerating resource allocation in virtualized environments, in: Pro-
ceedings of the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2012, pp.
423–436.

[18] S. Chen, C. Delimitrou, J.F. Martínez, PARTIES: QoS-aware resource par-
titioning for multiple interactive services, in: Proceedings of the 24th
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2019, pp. 107–120, http://dx.doi.
org/10.1145/3297858.3304005.

[19] R. Nishtala, P. Carpenter, V. Petrucci, X. Martorell, Hipster: Hybrid task
manager for latency-critical cloud workloads, in: Proceedings of the 23rd
IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2017, pp. 409–420, http://dx.doi.org/10.1109/HPCA.2017.13.

[20] C. Delimitrou, C. Kozyrakis, Quasar: Resource-efficient and QoS-aware
cluster management, SIGPLAN Not. 49 (4) (2014) 127–144, http://dx.doi.
org/10.1145/2644865.2541941.

[21] H. Moradi, W. Wang, D. Zhu, Online performance modeling and predic-
tion for single-VM applications in multi-tenant clouds, IEEE Trans. Cloud
Comput. (2021) http://dx.doi.org/10.1109/TCC.2021.3078690.

[22] Intel Cloud Technology, Are Noisy Neighbors in Your Data Center Keeping
You Up at Night? [online], Tech. Rep., Intel Corporation, 2017.

[23] T. Gleixner, I. Molnar, Performance counters for linux, 2009.
[24] P. Irelan, S. Kuo, Performance Monitoring Unit Sharing Guide, Tech. Rep.,

Intel Corporation, 2009.
[25] Intel Corporation, Intel RDT library, 2019, https://github.com/intel/intel-

cmt-cat/tree/master/lib.
[26] Red Hat, Libvirt virtualization API [online], 2020, Available at http://libvirt.

org, Accessed: 2020-09-30.
[27] Open vSwitch [online], 2020, Available at https://www.openvswitch.org/,

Accessed: 2020-09-28.
[28] O. Sefraoui, M. Aissaoui, M. Eleuldj, OpenStack: Toward an open-source

solution for cloud computing, Int. J. Comput. Appl. 55 (3) (2012) 38–42.
[29] API overview - elastic cloud server [online], 2022, https://support.

huaweicloud.com/intl/en-us/api-ecs/ecs_01_0008.html, Accessed: 2022-
05-16.

[30] Choosing a hypervisor - arch-design documentation openstack.org [online],
2022, https://docs.openstack.org/arch-design/design-compute/design-
compute-hypervisor.html, Accessed: 2022-05-16.

[31] DPDK [online], 2020, https://www.dpdk.org/, Accessed: 2020-09-28.
[32] S. Weil, S. Brandt, E. Miller, D. Long, C. Maltzahn, Ceph: A Scalable,

High-Performance Distributed File System, in: Proceedings of the 7th
Symposium on Operating Systems Design and Implementation (OSDI),
2006, pp. 307–320.

http://aws.amazon.com/ec2/
http://www.windowsazure.com/
http://www.windowsazure.com/
http://www.windowsazure.com/
https://developers.google.com/compute/
https://developers.google.com/compute/
https://developers.google.com/compute/
https://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
https://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
https://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
http://dx.doi.org/10.1109/BigData.2017.8258257
http://dx.doi.org/10.1145/3132747.3132772
http://dx.doi.org/10.1145/3267809.3267830
http://dx.doi.org/10.1145/3267809.3267830
http://dx.doi.org/10.1145/3267809.3267830
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb8
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb8
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb8
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb8
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb8
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb8
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb8
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb9
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb9
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb9
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb9
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb9
http://dx.doi.org/10.1109/CLOUD.2018.00018
http://dx.doi.org/10.1109/CLOUD.2018.00018
http://dx.doi.org/10.1109/CLOUD.2018.00018
http://dx.doi.org/10.1109/HPCA47549.2020.00023
http://dx.doi.org/10.1109/HPCA47549.2020.00023
http://dx.doi.org/10.1109/HPCA47549.2020.00023
http://dx.doi.org/10.1109/HPCA47549.2020.00025
http://dx.doi.org/10.1109/HPCA47549.2020.00025
http://dx.doi.org/10.1109/HPCA47549.2020.00025
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb13
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb13
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb13
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb13
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb13
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb13
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb13
http://dx.doi.org/10.1109/SC41405.2020.00036
http://dx.doi.org/10.1016/j.jss.2017.04.001
http://dx.doi.org/10.1016/j.jss.2017.04.001
http://dx.doi.org/10.1016/j.jss.2017.04.001
http://dx.doi.org/10.1145/3357223.3362734
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb17
http://dx.doi.org/10.1145/3297858.3304005
http://dx.doi.org/10.1145/3297858.3304005
http://dx.doi.org/10.1145/3297858.3304005
http://dx.doi.org/10.1109/HPCA.2017.13
http://dx.doi.org/10.1145/2644865.2541941
http://dx.doi.org/10.1145/2644865.2541941
http://dx.doi.org/10.1145/2644865.2541941
http://dx.doi.org/10.1109/TCC.2021.3078690
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb22
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb22
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb22
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb23
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb24
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb24
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb24
https://github.com/intel/intel-cmt-cat/tree/master/lib
https://github.com/intel/intel-cmt-cat/tree/master/lib
https://github.com/intel/intel-cmt-cat/tree/master/lib
http://libvirt.org
http://libvirt.org
http://libvirt.org
https://www.openvswitch.org/
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb28
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb28
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb28
https://support.huaweicloud.com/intl/en-us/api-ecs/ecs_01_0008.html
https://support.huaweicloud.com/intl/en-us/api-ecs/ecs_01_0008.html
https://support.huaweicloud.com/intl/en-us/api-ecs/ecs_01_0008.html
https://docs.openstack.org/arch-design/design-compute/design-compute-hypervisor.html
https://docs.openstack.org/arch-design/design-compute/design-compute-hypervisor.html
https://docs.openstack.org/arch-design/design-compute/design-compute-hypervisor.html
https://www.dpdk.org/

L. Pons, J. Feliu, J. Sahuquillo et al. Future Generation Computer Systems 138 (2023) 13–25
[33] Kunpeng BoostKit for Virtualization, Tech. Rep. Issue 11, Huawei Technolo-
gies Co., Ltd., 2021, URL https://support.huaweicloud.com/intl/en-us/twp-
kunpengcpfs/kunpengcpfs-twp.pdf.

[34] H. Kasture, D. Sanchez, Tailbench: a benchmark suite and evaluation
methodology for latency-critical applications, in: Proceedings of the 12th
IEEE International Symposium on Workload Characterization (IISWC),
2016, pp. 1–10.

[35] R. Baeza-Yates, Applications of web query mining, in: European Conference
on Information Retrieval, 2005, pp. 7–22.

[36] D.G. Feitelson, Workload Modeling for Computer Systems Performance
Evaluation, Cambridge University Press, 2015.

[37] L.a. Pons, J. Feliu, J. Puche, C. Huang, S. Petit, J. Pons, M.a.E. Gómez,
J. Sahuquillo, Effect of hyper-threading in latency-critical multithreaded
cloud applications and utilization analysis of the major system resources,
Future Gener. Comput. Syst. 131 (C) (2022) 194–208, http://dx.doi.org/10.
1016/j.future.2022.01.025.

[38] Canonical Ltd, Ubuntu manpage: stress-ng, 2020, https://manpages.ubuntu.
com/manpages/artful/man1/stress-ng.1.html, Accessed: 2020-09-30.

[39] ESnet, NLANR, DAST, Iperf tool for network bandwidth measurements,
2020, https://iperf.fr/, Accessed: 2020-09-30.

[40] J. Li, N.K. Sharma, D.R.K. Ports, S.D. Gribble, Tales of the tail: Hardware, OS,
and application-level sources of tail latency, in: Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2014, pp. 1–14, http://dx.doi.org/
10.1145/2670979.2670988.

[41] S. Seabold, J. Perktold, statsmodels: Econometric and statistical modeling
with python, in: Proceedings of 9th Python in Science Conference, 2010,
pp. 92–96.

[42] J. Wakefield, Non-linear regression modelling and inference, in: Methods
and Models in Statistics: In Honour of Professor John Nelder, FRS, World
Scientific, 2004, pp. 119–153.

[43] S. Dodd, A. Bassi, K. Bodger, P. Williamson, A comparison of multivariable
regression models to analyse cost data, J. Eval. Clin. Pract. 12 (1) (2006)
76–86.

[44] M. Valbuena, D. Sarabia, C. de Prada, A reduced-order approach of dis-
tributed parameter models using proper orthogonal decomposition, in:
Proceedings of 21st European Symposium on Computer Aided Process
Engineering, Vol. 29, 2011, pp. 26–30, http://dx.doi.org/10.1016/B978-0-
444-53711-9.50006-7.

[45] E. López-González, M. Ruiz-Soler, Análisis de datos con el modelo lineal
generalizado. Una aplicación con R, Rev. Esp. Pedagog. (2011) 59–80.

[46] J.D. Triveri, LOESS - nonparametric scatterplot smoothing in Python,
2018, http://www.jtrive.com/loess-nonparametric-scatterplot-smoothing-
in-python.html, Accessed: 2020-12-21.

[47] L. Pons, J. Sahuquillo, V. Selfa, S. Petit, J. Pons, Phase-aware cache partition-
ing to target both turnaround time and system performance, IEEE Trans.
Parallel Distrib. Syst. 31 (11) (2020) 2556–2568, http://dx.doi.org/10.1109/
TPDS.2020.2996031.

[48] R.W. Ahmad, A. Gani, S.H.A. Hamid, M. Shiraz, A. Yousafzai, F. Xia, A
survey on virtual machine migration and server consolidation frameworks
for cloud data centers, J. Netw. Comput. Appl. 52 (2015) 11–25, http:
//dx.doi.org/10.1016/j.jnca.2015.02.002.

Lucía Pons received the BS and MS degrees in com-
puter engineering from the Universitat Politècnica de
València (UPV), Spain, in 2018 and 2019, respectively.
She is currently working towards a Ph.D. degree at the
Department of Computer Engineering (DISCA) of the
same university. Her Ph.D. research focuses on cache
partitioning approaches and efficient use of shared
resources in multi-core.
25
Josué Feliu received his M.Sc. and Ph.D. degrees in
computer engineering from the UPV, Spain, in 2012
and 2017, respectively. He is currently working as a
postdoctoral researcher at the Universidad de Murcia.
His research interests include scheduling strategies
and performance modeling for multicore and multi-
threaded processors. He was awarded the ‘‘IEEE TCSC
Outstanding Ph.D Dissertation Award’’ in 2017.

Julio Sahuquillo received the BS, MS, and Ph.D. degrees
from the UPV, Spain, all in computer engineering.
He is a Full Professor with the DISCA department at
the UPV. He has taught several courses on computer
organization and architecture. He has authored over
150 refereed conference and journal papers. His current
research interests include multicore processors, mem-
ory hierarchy design, GPU architecture, and resource
management.

María E. Gómez received his BS, MS, and Ph.D. de-
grees in Computer Engineering from the UPV, Spain,
in 1996 and 2000, respectively. She joined the Depart-
ment of Computer Engineering (DISCA) at Universitat
Politècnica de València in 1996 where she is cur-
rently a Full Professor. She has published more than
80 conference and journal papers. She has served on
program committees for several major conferences. Her
research interests are on processor architecture and
interconnection networks.

Salvador Petit received the Ph.D. degree in computer
engineering from the UPV. Since 2009, he has been an
Associate Professor with the DISCA department, where
he has taught several courses on computer organiza-
tion. He has authored over 100 refereed conference and
journal papers. His current research interests include
multi-core processors, memory hierarchy design, GPU
architecture, and resource management.

Julio Pons received the BS, MS, and Ph.D. degrees from
the UPV, Spain, all in computer engineering. He is an
Associate Professor with the DISCA department. He has
taught several courses on computer organization and
operating systems. His current research interests in-
clude multi-core processors, memory hierarchy design,
cache sharing and cloud computing.

Chaoyi Huang received his BS degree in mechanical
engineering, MS degree in computer aided quality
management from Huazhong University of Science
\& Technology, China. He is an expert in Cloud BU,
Huawei Technologies Co., Ltd. His current research in-
terests is improving cloud resource efficiency, including
technologies like inter-VM interference detection and
control, dynamic VM resizing.

https://support.huaweicloud.com/intl/en-us/twp-kunpengcpfs/kunpengcpfs-twp.pdf
https://support.huaweicloud.com/intl/en-us/twp-kunpengcpfs/kunpengcpfs-twp.pdf
https://support.huaweicloud.com/intl/en-us/twp-kunpengcpfs/kunpengcpfs-twp.pdf
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb35
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb35
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb35
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb36
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb36
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb36
http://dx.doi.org/10.1016/j.future.2022.01.025
http://dx.doi.org/10.1016/j.future.2022.01.025
http://dx.doi.org/10.1016/j.future.2022.01.025
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://iperf.fr/
http://dx.doi.org/10.1145/2670979.2670988
http://dx.doi.org/10.1145/2670979.2670988
http://dx.doi.org/10.1145/2670979.2670988
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb42
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb42
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb42
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb42
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb42
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb43
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb43
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb43
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb43
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb43
http://dx.doi.org/10.1016/B978-0-444-53711-9.50006-7
http://dx.doi.org/10.1016/B978-0-444-53711-9.50006-7
http://dx.doi.org/10.1016/B978-0-444-53711-9.50006-7
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb45
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb45
http://refhub.elsevier.com/S0167-739X(22)00273-4/sb45
http://www.jtrive.com/loess-nonparametric-scatterplot-smoothing-in-python.html
http://www.jtrive.com/loess-nonparametric-scatterplot-smoothing-in-python.html
http://www.jtrive.com/loess-nonparametric-scatterplot-smoothing-in-python.html
http://dx.doi.org/10.1109/TPDS.2020.2996031
http://dx.doi.org/10.1109/TPDS.2020.2996031
http://dx.doi.org/10.1109/TPDS.2020.2996031
http://dx.doi.org/10.1016/j.jnca.2015.02.002
http://dx.doi.org/10.1016/j.jnca.2015.02.002
http://dx.doi.org/10.1016/j.jnca.2015.02.002

	Cloud White: Detecting and Estimating QoS Degradation of Latency-Critical Workloads in the Public Cloud
	Introduction
	Related work
	Experimental setup
	Platform
	Workloads
	System load conditions

	Cloud White: Detecting the inter-VM interference
	GIPS: a new way to detect the victim and inflicting VMs
	Case study with two VMs
	Cloud White: Interference detection phase algorithm

	Microbenchmarking: Introducing inter-VM interference
	Cloud White: Modeling performance degradation
	Looking for performance metrics as model parameters
	Relationship between system load and the models
	Multi-variable regression models

	Cloud White evaluation
	Methodology
	Prediction effectiveness with a single latency-critical application
	Prediction effectiveness with multiple latency-critical applications

	Comparison to prior work
	Applying Cloud White to improve QoS
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

