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SUMMARY

Polytopic quasi-LPV models of nonlinear processes allow using linear matrix inequalities (LMI) to 
guarantee some performance goal on them (in most cases, locally, over a so-called modelling region). In 
order to get a finite number of LMIs, nonlinearities are embedded on the convex hull of a finite set of 
linear models. However, for a given system, the quasi-LPV representations are not unique, yielding different 
performance bounds depending on the model choice. To avoid such drawback, earlier literature on the topic 
used annihilator-based approaches, which require gridding on the modelling region, and non-convex BMI 
conditions for controller synthesis: optimal performance bounds are obtained, but with a huge computational 
burden. This paper proposes building a model by minimising the projection of the nonlinearities onto 
directions which are deleterious for performance. For a small modelling region, these directions are obtained 
from LMIs with the linearised model. Additionally, these directions will guide the selection of the polytopic 
embedding’s vertices. The procedure allows gridding-free LMI controller synthesis, as in standard LPV 
setups, with a very reduced performance loss with respect to the above BMI+gridding approaches, at a 
fraction of the computational cost. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many smooth nonlinear systems can be embedded into a linear parameter-varying (LPV) dynamics,
resulting in the so-called quasi-LPV [33, 19] or Takagi-Sugeno (TS) [45, 17, 23] systems; both
denominations will be considered equivalent in the context in this paper [32], although the TS
denomination is usually associated to polytopic bounding and convex interpolation expressions.
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2 R. ROBLES, A. SALA, AND M. BERNAL

Efficient linear matrix inequality (LMI) techniques for LPV systems have been developed in order
to analyse their properties or synthesise gain-scheduled controllers for them, see the above-cited
works, [2, 40, 16, 26] and references therein, albeit with some sources of conservatism [36].

Alternatively, nonlinearities can also be embedded into the convex hull of polynomials [34, 9],
amenable to convex sum-of-squares optimisation [28], but these approaches are intentionally out
of the scope of this work. Identification-based LPV models [46] will also be left out of the present
discussion.

Rewriting a nonlinear differential equation as a quasi-LPV model consists in decomposing a C1

nonlinearity, present in a first-principle model, say ρ(z), as ρ(z) = Q(z)z, see [33, 45, 30] and
references therein, being z a linear function of exogenous or state variables. The knowledge about
the relationship between the factors Q(z) and z is usually disregarded, so Q(z(t)) is considered
as an uncertain linear time-varying element ∆(t) (assumed measurable in gain-scheduled designs
[3, 33]).

Subsequently, some LMIs involving Q(z) must hold for all z in a so-called modelling region
Ωz . If feasible LMI decision variables are found, system properties will be proven inside some
bounded invariant set (usually a Lyapunov level set in the undisturbed case, or an inescapable set if
disturbances are present and amplitude or integral bounds for them are known [38]). As the above
problem would require solving an infinite set of LMIs, in order to get computable results, either
evaluating Q(z) in a dense enough grid [49, 19, 35] or obtaining a polytopic bound with a finite
number of vertices [45, 20] are routinely used in applications.

Note that, in some LPV developments, stability conditions are relaxed via a priori bounds on
the time-derivatives of the arguments of Q, see [13, 19, 48]. In the quasi-LPV setup, this might
be justified in stability analysis if bounding ż is possible; however, in controller synthesis, ż may
depend on the to-be-designed control u, hence, such derivative bound assumption may imply a
posteriori checks of their fulfillment (for instance, by simulation [18, Chap. 4]). In some cases,
the time-derivative components may be cancelled [15]. Actually, conditions on the gradient on the
polytopic interpolation coefficients [21, 4] seem more natural in the quasi-LPV context than plain
time-derivative bounds. Nevertheless, derivative-related issues will not be considered in the scope
of the present work.

The main motivation of this work is the fact that the above decomposition ρ(z) = Q(z)z is, in
general, not unique. For instance, in ρ(z) = sin(z1z2) both (sin(z1z2)/z1 0) and (0 sin(z1z2)/z2)

can be equally used as two alternative options for Q(z). However, different performance results for
the ensuing analysis or control design might be proved for each choice. This is one of the several
causes of the inherent conservatism of the quasi-LPV/TS approach with respect to an ideal nonlinear
controller [36]. Actually, there are infinitely many of options for Q(z): the use of annihilators
N(z)z = 0, such that ρ(z) = (Q(z) +N(z))z, has been proposed in [19, 8, 11, 47], where decision
variables in N(z) are used to diminish conservatism; however, most results require gridding and
are BMI in control synthesis problems, so these approaches will be not pursued here. An alternative
option is a selection of the optimal factorisation in order to diminish the “spread” ofQ(z) over some
directions; these idea is exploited in [8], and in the works by the authors’ team [29] and [30], which
present preliminary approaches to the developments here. Annihilator and minimum-spread options
will be briefly reviewed in next section.
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PERFORMANCE-ORIENTED QUASI-LPV MODELLING OF NONLINEAR SYSTEMS 3

The objective of this work is reversing the usual approach on the quasi-LPV framework: instead
of writing LMIs for a given model, it assumes that LMIs for a given performance optimisation
problem are already available and sets out for a quest to determine the optimal model that keeps the
proven performance as close as possible to the linearised one (indeed, as the linearisation is included
in the LPV embedding, the proven performance cannot be better than the linearised one). A general
subspace-based method is presented, determining a worst-case matrix perturbation to the linearised
LMIs so the projection of Q(z) onto it should be minimised.

The structure of this paper is as follows: section 2 introduces preliminaries and motivates the
problem; section 3 presents the main result of this paper and the assumptions involved. Examples
and conclusions appear in sections 4 and 5, respectively. For readability, some ideas and notation
are presented in an appendix.

2. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider a class of nonlinear dynamic systems expressed as:

ẋ =Ax+Mxv +Bu+ Ew (1)

z =Czx+Dzu+ Fzw (2)

y =Cyx+Myv +Dyu+ Fyw (3)

v =ρ(z) (4)

where x ∈ Rn is the vector of state variables, u ∈ Rq has the manipulated input variables, w ∈ Rp is
a disturbance input vector, and y ∈ Rr gathers the output variables; accordingly, matricesA,Mx,B,
E, Cz , Dz , Fz , Cy, My, Dy, and Fy are of adequate size. Additionally, v ∈ Rm is a dummy variable
representing the output of the nonlinearities ρ(z), being their input z ∈ Rs assumed to belong to a
known modelling region Ωz ⊂ Rs, with 0 ∈ Ωz , and ρ(z) fulfills the following assumption:

Assumption 1. The function ρ : Ωz 7→ Rm is a vector of continuously differentiable nonlinear
functions, i.e., ρ ∈ C1, with ρ(0) = 0. Also, without loss of generality, we will assume that ρ has
null Jacobian.

Under the above assumption, x = 0 is an equilibrium point of the above system for u = w = 0

and the classical Jacobian linearisation of (1)–(4) is obtained replacing (4) by v = 0.
Note that, if ρ had non-zero Jacobian, denoting it as H := ∂ρ

∂z , we can write ρ = Hz + ρ̃(z), with
ρ̃(z) := ρ(z)−Hz having, evidently, null Jacobian. Replacing Mx and My by M̃x = Mx +H and
M̃y = My +H , respectively, and using ρ̃ instead of ρ in (4), a model (1)–(4) fulfilling Assumption
1 will be readily obtained.

From Taylor’s theorem (Peano form), the following result is well known [19, Lemma 3.1]:

Proposition 1. Under Assumption 1, there exists a factorisation

ρ(z) = Q(z) · z (5)

with Q(z) being a continuous matrix-valued function Q : Ωz 7→ Rm×s, with Q(0) = 0.

Int. J. Robust. Nonlinear Control (0000)
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4 R. ROBLES, A. SALA, AND M. BERNAL

Finding Q(z) is trivial in the case s = 1, as the only option for Q(z) is Q(z) = ρ(z)/z; abusing
the notation, for z = 0 the quotient expression should be understood as the limit when z → 0,
guaranteed to exist by the assumptions. For ρ : R2 7→ R, the quotient idea is generalised by
expressing ρ(z1, z2) = ζ1(z) + ρ(0, z2), with ζ1(z) = ρ(z1, z2)− ρ(0, z2). Proposition 1 ensures the
continuity at z1 = 0 of q1(z) := ζ1(z)/z1, and that of q2(z) = ρ(0, z2)/z2 at z2 = 0; subsequently,
ρ(z) = q1(z)z1 + q2(z)z2. The idea is generalised to more than two input variables in the Appendix
of this work.

Nevertheless, the above decomposition is not unique if the dimension of z is equal or larger than
two, as infinitely many ℵ(z) such that ℵ(z)z = 0 can be found [8, 19] so that given ρ(z) = Q0(z)z,
the decomposition below is still valid:

ρ(z) = (Q0(z) + ℵ(z)) · z (6)

As an example, with s = 2, ℵ(z) := ζ(z)(−z2 z1) would be a valid choice for any continuous ζ(z).
Once a decomposition (5) is chosen, the representation {(1), (2), (3), (5)} is named in the literature

as quasi-LPV system [19, 6], because the original nonlinear dynamics can be embedded into the
LPV system conformed by equations (1)–(3) plus

v =∆(t) · z (7)

defining the time-varying quantity ∆(t) to be ∆(t) := Q(z(t)).
Note that, in most works in literature, the LMIs arising from posing control problems using the

LPV model arising from (1)–(3) and (7) disregard the actual relationship between ∆ ≡ Q and z,
i.e., the LMIs do not exploit the explicit “shape” of Q(z(t)), and use only bounds (vertex models) or
samples of ∆. This, of course, introduces the so-called shape-independence conservatism [36] with
respect to an ideal nonlinear control using the explicit expressions in Q(z). Limited approaches to
shape-dependent results appear in, for instance, [37, 5]; the use of gradient information, discussed
in the introduction, may also be considered a shape-dependent approach.

Shape-independence conservatism is the reason on why different choices of Q(z) influence
the final LPV obtained performance, and the main motivation of the work here presented. Of
course, (7) and (5) are the same, but we use notation ∆ to emphasize its use in conservative
shape-independent LPV analysis, whereas using Q(z) introduced in (5) emphasizes the initial non-
conservative rewriting of (4); thus, ∆ and Q can be exchanged at will.

As discussed in the introduction, in order to get a finite number of LMI conditions, either a dense
enough grid [22] of values Q(zk), zk ∈ Ωz , or a polytopic embedding [1] are pursued in many
cases. The most straightforward polytopic bounding would be obtaining the 2m×s vertices from the
infimum and supremum of each element of matrix Q(z) when z ranges in Ωz [45]; for instance,
these vertices are guaranteed to exist if Ωz is compact.

If the linear (time-varying) expression (7) is substituted on (1)–(3), a representation:

ẋ =Ã(∆)x+ B̃(∆)u+ Ẽ(∆)w (8)

y =C̃(∆)x+ D̃(∆)u+ F̃ (∆)w (9)

Int. J. Robust. Nonlinear Control (0000)
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PERFORMANCE-ORIENTED QUASI-LPV MODELLING OF NONLINEAR SYSTEMS 5

can be obtained where system matrices Ã(∆) := A+Mx∆Cz , B̃(∆) = B +Mx∆Dz , . . . are affine
in ∆ (i.e., affine inQ(z) in the quasi-LPV setup). Quasi-LPV systems (8)–(9) with polytopic bounds
for ∆ are also denoted as Takagi-Sugeno ones in literature [45, 17, 36, 32]. If (2) were replaced
by z = Czx+Dzu+Mzv + Fzw the resulting model (8)–(9) would have rational dependence
on ∆, yielding linear-fractional representations [27]. For instance, ÃLFT (∆) := A+Mx∆(1−
Mz∆)−1Cz , etc. Affine dependence on ∆ will be later required in some of the results; nevertheless,
the 1st-order approximation for small ∆ is ÃLFT (∆) ≈ A+Mx∆Cz so the results will apply to
LFT models for small enough Ωz , as these will yield a small Q (i.e., small ∆) from the continuity
assumptions.

Annihilator approaches in prior literature. Options for selecting ℵ(z) in (6) have been proposed
in [19, 8, 11, 47], where ℵ(z) is denoted as annihilator. Note that, if ℵ(z)z = 0, we have
R(z)ℵ(z)z = 0 for any matrix function R(z), so elements in R(z) can be decision variables. For
instance, the annihilator approach, in a state-feedback control synthesis problem pursuing decay
rate ς , translates into finding decision variables in R(z), as well as matrices X and F , such that:

X � I, − (A+MxQ0(z) +MxR(z)ℵ(z))X −BF − ςX − (∗) � 0 ∀ z ∈ Ωz (10)

where (∗) denotes the transpose needed to conform a symmetric matrix, and � denotes positive
semidefiniteness. Cz = I , Dz = Fz = 0 has also been assumed to write (10).

However, the above expression hints the main drawbacks of the annihilator proposal:

• Non-convex controller synthesis problems, due to the products between decision variables in
R(z) and those in X .
• Need of setting a grid on Ωz to approximate (10) by a finite set of constraints. Then, there is

the risk of not hitting close enough to the “worst-case” point2.

Due to the above computational concerns, the annihilator approach will not be pursued in this
work; only some comparisons with it will be made in the example section.

Minimum-spread approaches. In [8] stability analysis problems were discussed and, denoting
as A(z) = A+MxR(z)ℵ(z), the authors proposed minimizing λ := min maxψ,φ∈Ωz

σ̄(A(ψ)−
A(φ)) where σ̄ denotes the maximum singular value; as a variation, they also proposed minimizing
σ̄
(
∂A
∂z

)
. However, in a generic case, gridding in the parameter space is needed to carry out such

minimizations. In [30], a Hessian based minimum-spread result is suggested to solve a problem
similar to the above minimization of λ, avoiding gridding, which can be proved exact for quadratic
nonlinearities with a single output. The caveat of these approaches is that they are problem-
independent: minimising the worst-case uncertainty induced in A by the choice of Q may be
conservative if a particular problem’s performance is not sensitive in that worst-case direction. This
motivates the present contribution: a performance optimisation problem will be defined next, and
the problem to be addressed will be obtaining the best performance-oriented quasi-LPV model for
it, tailoring the choice of Q(z) to such specific performance optimization setup.

2 Gridding can be avoided, with polytopic Ωz , on some classes of polynomial systems, setting constant R and affine ℵ
[11, 47]. That makes the approach related to the sum-of-squares techniques in [28], as pinpointed in [47]. Anyway, the
relationship with polynomial approaches is intentionally left out of the scope of this paper, restricted to LPV/TS settings.
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6 R. ROBLES, A. SALA, AND M. BERNAL

State-subspace approach. In our work [30, Prop.1,$VI.B], a quasi-LPV modelling idea was
presented, based on analyzing the null space of the optimal solution, for a single Lyapunov
inequality, for a linear system, in the form xTΥ(A,D, γ)x ≥ 0, being D some decision variables.

This paper generalises the above problem to arbitrary inequalities ζTMI(·)ζ ≥ 0 (arising from
Schur, Finsler or other widely used manipulations) so that the assumption that ζ ≡ x is not needed,
and multiple inequalities can be considered.

Let us, thus, propose a generic performance optimisation problem for (1)–(4) and state the quasi-
LPV modelling problem to be addressed in this manuscript.

2.1. Performance optimisation problem

Under the conditions discussed above, considering that ∆(t) := Q(z(t)) in the usual LPV analysis
of nonlinear systems, some matrix inequalities (actually, in many cases, LMIs) can be asserted on
the model matrices arising from (8)–(9); for convenience, we will in the sequel denote the set of
model matrices as L(Q) := {Ã(Q), B̃(Q), C̃(Q), D̃(Q), Ẽ(Q), F̃ (Q)}. The structure of problem to
be solved over the original nonlinear system is in the form given by the assumption below:

Assumption 2. The pursued objective over the model (1)–(4), whose LPV embedding is (8)–(9), is
the optimisation of a performance measure γ subject to some constraints in the form of a matrix
inequality, i.e., obtaining γLPV below:

γLPV := inf
D1,D2(·)

γ,

subject to MI(L(Q(z)), {D1, D2(Q(z))}, γ) � 0 ∀z∈Ωz

(11)

where {D1, D2(Q(z))} are the decision variables (usually some matrix elements), withD1 denoting
a set of decision variables which cannot depend on z (usually matrix variables associated to
a Lyapunov function), and D2(Q(z)) are decision variables which can depend on Q(z) (for
instance, those related to controller gains in gain-scheduled setups). MI(·, ·, ·) � 0 will be
understood as MI being positive semi-definite, with MI(·, ·, ·) assumed to be a continuous
matrix-valued expression, monotonic in γ, i.e., for fixed L, D1 and D2, condition γ1 ≥ γ2 implies
MI(L, {D1, D2}, γ1) �MI(L, {D1, D2}, γ2). The modelling region Ωz will be assumed to be the
s-dimensional unit ball around the origin (if Ωz were an hyperellipsoid, linear changes of variable
would trivially transform it to the unit ball), i.e., Ωz := {z ∈ Rs : zT z ≤ 1}.

Of course, problems stated as multiple matrix inequalities will be assumed to be equivalently
cast as a single block-diagonal one. Note, for instance, that (10) is a particular example of
the generic problem stated in Assumption 2 if minimization of γ := −ς is pursued (decay-rate
maximization). In a robust control case, D1 := {X,F}, in a gain-scheduled case F would be
replaced by F (Q) and D1 := {X}, D2(Q) := {F (Q)}. Shape-independence conservatism arises
because, for instance, matrix inequalitiesMI(Q,X,F ) � 0 in (10) are obtained from scalar ones
xTMI(Q(x), X, F )x ≥ 0, being the former inequalities a sufficient condition for the latter scalar
ones (but not necessary).

Int. J. Robust. Nonlinear Control (0000)
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PERFORMANCE-ORIENTED QUASI-LPV MODELLING OF NONLINEAR SYSTEMS 7

Modelling aspects of robust versus gain-scheduled control problems. In stability analysis or
robust linear control (i.e., assuming u independent of Q(z(t))) there is no need of assuming the
values of Q(z(t)) being explicitly known at any time instant [41].

On the other hand, let us now consider a gain-scheduled controller, say u(Q(z), x). Given the fact
that, from (2), z is a function of three arguments, z(x, u, w), the factorisation (5) must forcedly be set
up so that unmeasurable components of disturbance vectorw are not present inQ(z) to enable actual
implementation with available sensors. Also, if z depended on u, then an algebraic loop may appear,
needing such loop to be solved at each instant of time in order to compute u (and well-posedness
conditions would need to be added), which is quite inconvenient in implementation.

Hence, to avoid these two implementation issues, in gain-scheduled designs, (5) must be in the
form ρ(z) = Q(x, ξ)z being ξ the measurable elements of w, if any. For instance, a nonlinearity
v = (1 + x2)uwill be forcedly factored withQ = (1 + x2). As there is no freedom in choosing such
“pinned” components of Q, the discussion is this work will be centered on giving good options for
the unrestricted elements of Q, so pinned components of Q (i.e., factors multiplying the input) will
not be considered any further. Note, too, that there are intermediate options in literature regarding
imperfect knowledge of scheduling parameters [39], uncertain vertex models [31], or sampled-data
setups with knowledge of scheduling parameters only at sampling instants [25]; nevertheless, these
possible extensions will not be considered in the scope of this paper for brevity.

2.2. Problem statement

Due to the non-uniqueness of the decomposition (5), different performance results γLPV can
be obtained for different choices of Q. The main goal of this paper is providing guidelines on
how to select a suitable Q(z) so that “performance loss” with respect to the linear case (i.e., the
obtained performance when posing (11) with just the linearised model) is reduced, at least when
the modelling region Ωz is small. Also, as a by-product, some worst-performance directions are
obtained; these directions can, too, contribute to minimising the performance loss when using
polytopic embeddings (projection of Q(z) over them must be minimised).

3. MAIN RESULT

Consider the linearisation of (1)–(4) at the origin, i.e.:

ẋ =Ax+Bu+ Ew (12)

y =Cyx+Dyu+ Fyw (13)

The restriction to Q(0)=0 of the problem stated in Assumption 2 gives rise to the following
definition:

Definition 1 (linearised performance). The linearised performance γlin is defined to be the result of
the optimisation of a performance measure γ subject to constraints in the form of matrix inequalities

Int. J. Robust. Nonlinear Control (0000)
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8 R. ROBLES, A. SALA, AND M. BERNAL

in decision variables D1 and D2, obtaining γlin below:

γlin := inf
D1,D2

γ,

subject to MI(L(0), {D1, D2}, γ) � 0
(14)

being the above constraints MI(·, ·, ·) the same as in Assumption 2, and L(0) the set of constant
model matrices in (12)–(13).

Note that, actually, the above definition is the particularization of Assumption 2 for Ωz := {0};
with a slight abuse of notation, D2 in (14) should be understood as D2(0) in (11) .

Proposition 2. For any choice of Q(z) fulfilling (5), the proven performance γLPV in the setting in
Assumption 2 will be worse than or equal to the linearised performance γlin, i.e., γLPV ≥ γlin.

Proof
As the modelling region includes the origin, and Q(0) = 0 from Proposition 1, the constraint
inequalities in (11) must hold for L(0) and D2(0) and, obviously, also for the rest of values
of z ∈ Ωz . However, (14) is the particularisation of (11) for the single point z = 0; thus, the
minimisation over a single point will achieve an equal or lower optimal γ than the said minimisation
over the whole ball Ωz .

The next assumption formally states the intuition that, in order to get meaningful LPV solutions
of (11), the linearised solution must be well-posed.

Assumption 3. We will assume that the above linearised performance problem is feasible and that
the objective function is bounded from below (γlin > −∞). The decision variable values achieving
γlin, i.e., arg infD1,D2 γ, will be denoted by {Dlin

1 , D
lin
2 } (or any arbitrary selection of them if non-

unique). By assumption, too, conditions MI will be such that the linearised problem has a finite
solution {Dlin

1 , D
lin
2 } achieving optimality.

Let us denote the null space of the optimal solution as:

C := null(MI(L(0), {Dlin
1 , D

lin
2 }, γlin)) (15)

Proposition 3. C is not empty, i.e., there exist ζ such that ζTMI(L(0), {Dlin
1 , Dlin

2 }, γlin)ζ = 0 .

Proof
Let us assume that the optimal γlin fulfills MI(L(0), {Dlin

1 , Dlin
2 }, γlin) � 0. Then, by

continuity of MI and, too, continuity of the sorted eigenvalues of a matrix with respect
to its coefficients [7], there would exist an interval I := (γ1, γ2), with γ1 < γlin < γ2

fulfilling MI(L(0), {Dlin
1 , Dlin

2 }, γ) � 0 for all γ ∈ I. Monotonicity of MI would entail
that MI(L(0), {Dlin

1 , Dlin
2 }, γ) ≤MI(L(0), {Dlin

1 , Dlin
2 }, γlin), for γ < γlin and given that the

constraints for γ ∈ I are feasible, this contradicts the assumption that γlin was the optimal solution,
because such optimal solution must forcedly be lower than or equal to γ1. Thus, the assumption that
MI(L(0), {Dlin

1 , Dlin
2 }, γlin) � 0 cannot be true.

Int. J. Robust. Nonlinear Control (0000)
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PERFORMANCE-ORIENTED QUASI-LPV MODELLING OF NONLINEAR SYSTEMS 9

Now, let us consider the nonlinear model (1)–(4), and consider expressing ρ(z) = Q(z)z with

Q(z) =


q11 q12 · · · q1s

...
...

. . .
...

qm1 qm2 · · · qms

 ∈ Rm×s (16)

For notational brevity, dependence on z of each element qij has been omitted. Now, the problem in
in Assumption 2 will be equivalently recast as:

γLPV = inf
D1,D2(·)

γ,

subject to MI(L(Q), {D1, D2(Q)}, γ) � 0 ∀Q ∈ Q(Ωz)

(17)

where, with a slight abuse of notation, we define Q(Ωz) as

Q(Ωz) := {ξ ∈ Rm×s|∃z ∈ Ωz s.t. ξ = Q(z)}. (18)

As earlier discussed, evidently γLPV ≥ γlin. Now, let us assert additional assumptions for the
conditions (17), i.e., (11), which will allow us to bound γLPV − γlin for small Ωz . On the sequel,
notation ‖ · ‖F will denote the Frobenius norm of a matrix.

Now, keeping the linearised solution for D1, i.e., Dlin
1 and introducing an incremental notation,

γ := γlin + ∆γ, D2 = Dlin
2 + ∆D2, a conservative version of problem (17) may be written as:

∆γ∗ := sup
Q∈Q(Ωz)

∆γ̄(Q) (19)

where

∆γ̄(Q) := inf
∆D2

∆γ (20)

subject toMI(L(Q), {Dlin
1 , D

lin
2 + ∆D2}, γlin + ∆γ) � 0 (21)

where ∆γ̄(Q) is the performance loss (or gain, if negative) if system matrices were modified to a
particular value of Q (keeping Dlin

1 ); indeed, note that the for-all clause in (17) is absent in (21), as
it has moved to (19).

Obviously, a different ∆D2 for each Q can be used in (21), analogously to (17). Conservatism in
the result of (19) arises from fixing D1 to the linearised solution, instead of searching for a common
D1 in (17), which, obviously, was not necessarily equal to Dlin

1 .
As a result of the above discussion, we can assert that γLPV ≤ γlin + ∆γ∗. In exchange for

such conservatism, matrix inequality (21) can be, conceptually, independently optimized for each
Q ∈ Q(Ωz), motivating the definition of ∆γ̄(Q) in (20); this was not possible for the set of
inequalities in (17), forcedly solved as a whole.

Assumption 4. We will considerMI to be:

1. (Jointly) affine 3 in arguments (Q,D2, γ),

3 As earlier discussed, rational LFT expressions can be approximated to affine ones for small Ωz , yielding small Q
by continuity. In an analogous way, in order to approximately fulfill Assumption 4.1 in gain-scheduled cases where
B(Q)u(Q, x) appears, for small Q we can linearise B(Q)u(Q, x) ≈ B(0)(u(Q, x)− u(0, x)) +B(Q)u(0, x).
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2. The linearised solution is numerically robust, in the sense that for any ε > 0, there exists δ > 0

such that for any Q such that ‖Q‖F ≤ δ, condition (21) is feasible and the optimal ∆γ̄(Q)

and its associated ∆D2 in (20) fulfil ‖∆D2‖F ≤ ε, |∆γ̄(Q)| ≤ ε.

For instance, the robust decay-rate problem (10) does fulfill Assumption 4.1, as well as its gain-
scheduled version using D2(Q) ≡ F (Q). If the linearised system is fully controllable, some extra
constraints are needed to fulfill assumptions 3 and 4.2 (otherwise, decay rate can be made infinitely
fast), such as well-knwon constraints on control input amplitude, or pole-region ones (details left to
the reader).

Let H be a matrix whose vectors form a basis of the subspace C defined in (15), guaranteed
to exist by Proposition 3. Let H⊥ be a basis of the orthogonal subspace to C. Hence, considering
the optimal conditions for the linearised model, introducing notation in incremental variables and a
congruence matrix, we can write an equivalent condition to (21), in the form:(

HT
⊥

HT

)
MI(L(Q), {Dlin

1 , D
lin
2 + ∆D2}, γlin + ∆γ)

(
H⊥ H

)
=

(
Ξ11(Q,∆D2,∆γ) Ξ12(Q,∆D2,∆γ)

Ξ12(Q,∆D2,∆γ)T W(Q,∆D2,∆γ)

)
� 0 (22)

where dependence of submatrices Ξ11, Ξ12 and W on Dlin
1 , Dlin

2 and γlin has been omitted from
the notation because they will be considered fixed in the sequel. Now, given the definitions of H
and H⊥, we have: Ξ11(0, 0, 0) � 0, Ξ12(0, 0, 0) = 0,W(0, 0, 0) = 0.

The sorted eigenvalues of a matrix are Lipschitz continuous with respect to its elements
[7]; therefore, there exists ε such that for all ‖Q‖F ≤ ε, ‖∆D2‖F ≤ ε, |∆γ| ≤ ε the inequality
Ξ11(Q,∆D2,∆γ) � 0 holds. Now, from Assumption 4.(2), for all ‖Q‖F ≤ min(ε, δ), the LMIs
(22), equivalent to (21), are feasible, and the optimal solution ∆γ̄(Q) in (20) is attained with
‖∆D2‖F ≤ ε, ∆γ̄(Q) ≤ ε. Then, as Ξ11(·) � 0, by Schur complement, the optimisation problem
of minimising ∆γ subject to:

Ξ11(Q,∆D2,∆γ) � 0 (23)

W(Q,∆D2,∆γ)− Ξ12(·)Ξ11(·)−1Ξ12(·)T � 0 (24)

will be feasible, too, for all ‖Q‖F ≤ min(ε, δ), and the optimal solution ∆γ̄(Q) will be limited only
by active constraints in (24). The above reasoning, then, proves the following proposition:

Proposition 4. Under assumptions 1 to 4, there exists ε > 0 such that, for allQ verifying ‖Q‖F ≤ ε,
the solution of (20) subject to (21) is the same as (20) subject to (24).

Note, however, that (24) is a nonlinear matrix inequality. Let us now prove that, for small enough
ε, onlyW is relevant.

First, note that the eigenvalues of Ξ12 are O(ε), by the aforementioned Lipschitz continuity and
the fact that Ξ12(0, 0, 0) = 0. Now, expressing the affine Ξ11(Q,∆D2,∆γ) as Ξ11(Q,∆D2,∆γ) =

M +N (Q,∆D2,∆γ), being M := Ξ11(0, 0, 0), and N a linear function of its arguments, the
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nonlinear term in (24) can be written as:

Ξ̂ : = −Ξ12(·)Ξ11(·)−1Ξ12(·)T

= −Ξ12(·)M−1Ξ12(·)T + Ξ12(·)M−1N (·)M−1Ξ12(·)T + . . .

which shows that it contains quadratic, cubic, etc. terms in Q and the decision variables, which will
be negligible for small enough ε: as the eigenvalues of Ξ12 are O(ε), the eigenvalues of Ξ̂ are O(ε2).
Thus, the solution ∆γ∗ to (19)–(21), for small enough Ωz (subsequently yielding small enough
Q(z)), will be approximately equal to ∆γ∗L obtained from the next optimisation problem:

∆γ∗L := sup
Q∈Q(Ωz)

∆γ̄L(Q) (25)

∆γ̄L(Q) := inf
∆D2

∆γ (26)

subject to W(Q,∆D2,∆γ) � 0 (27)

because the difference between (27) and (24) shrinks as O(ε2).
Note, however, that the above W is linear in all its arguments by Assumption 4.1, so if we

have a solution of (26) subject to (27) for some Q, the solution for a scaled Q′ := λQ would
be ∆γ̄L(Q′) = λ∆γ̄L(Q), λ ∈ R. Feasibility is guaranteed for any Q because Assumption 4.2
guaranteed such feasibility for the more conservative (24) for a small enough ‖Q‖F , and (27) fulfills
the just-mentioned scaling property.

The above scaling and convexity arguments will allow us to give a bound on ∆γ∗L considering the
solution of the above problem over a canonical basis of Q. Let us define as Ejk ∈ Rm×s the matrix,
with the same size as Q, whose element at position (j, k) is one, being the rest of elements equal to
zero (j denotes row, k denotes column number).

Lemma 1. Let us denote by ∆γ[jk] the solution to the LMI problem

∆γ[jk] := inf
∆D2

∆γ (28)

subject toW(Ejk,∆D2,∆γ) � 0 (29)

Let us define ∆Γ ∈ Rm×s as the matrix whose element (j, k) is ∆γ[jk], and the set of matrices

J := {Q ∈ Rm×s : tr(∆Γ ·QT ) ≤ δ}.

It follows that, if Q(Ωz) ⊂ J , then ∆γ∗L ≤ δ.

Proof
Conditions (27) are LMIs, so it is easy to prove that ∆γ̄L(Q) is a convex function ofQ. Any arbitrary
Q with the structure (16) can be trivially expressed as Q =

∑m
j=1

∑s
k=1 qjkEjk. Let us denote the

sum of absolute values of qjk by % :=
∑m

j=1

∑s
k=1 |qjk|. We can state that the optimal ∆γ̄L(Q) in

(26) will fulfill, by scaling and convexity argumentations:

∆γ̄L(Q) = % ·∆γ̄L

(
m∑
j=1

s∑
k=1

|qjk|
%

sign(qjk)Ejk

)
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12 R. ROBLES, A. SALA, AND M. BERNAL

≤ % ·
m∑
j=1

s∑
k=1

|qjk|
%

sign(qjk)∆γ̄L (Ejk) =
∑m

j=1

∑s
k=1

(
qjk ·∆γ[jk]

)
= tr

(
∆Γ ·QT

)
. (30)

Thus, for any Q ∈ J we have ∆γ̄L(Q) ≤ δ, which implies the assertion in the lemma.

3.1. Quasi-LPV modelling methodology

The above argumentations sum up asserting that for a small enough Ωz , the solution ∆γ∗L from
(25) will be approximately equal to ∆γ∗ from (19), so γLPV ≤ γlin + ∆γ∗ ≈ γlin + ∆γ∗L. Thus, the
choice of the factorisation ρ(z)=Q(z)z should try to minimise maxQ∈Q(Ωz) tr(∆Γ ·QT ).

From the fact that tr(∆Γ ·QT ) is the scalar product on the vector space of matrices, and
‖Q‖F=tr(QQT )1/2, we can assert that, for a givenQ such that ‖Q‖F≤ε, tr(∆ΓQT ) ≤ ‖∆Γ‖F ‖Q‖F
(Schwartz inequality), and equality holds if Q=α∆Γ, being α a positive scalar. So the largest
performance loss would be incurred if the components of Q “collinear” with ∆Γ are large.

Thus, the problem addressed next is finding a factorisation ρ(z)=Q(z)z, such that Q(Ωz) has
the smallest possible orthogonal projection over the 1-dimensional subspace (in the vector space
of Rm×s matrices) spanned by ∆Γ. As ρ is a vector of nonlinearities, each row of matrix ∆Γ will
induce a so-called modelling direction for the corresponding row of Q, i.e., for each individual
nonlinearity composing ρ, so its projection over it should be minimised. Thus, the case m = 1

will be considered next, and the procedures to be detailed should be repeated for each of the
nonlinearities comprising ρ in (4).

Consider a real-valued nonlinearity v = ρ(z), ρ : Rs 7→ R, fulfilling assumptions in Section 2
(i.e., being C1 and ρ(0) = 0) and a modelling direction given by column vector ψ ∈ Rs, normalised
so that ψTψ = 1 without loss of generality4.

Let us denote the 1-dimensional vector subspace generated by ψ as Ξ := {ηψ, η ∈ R}. Denote
the projection matrix onto Ξ as ΠΞ := ψψT . The orthogonal projection of a set S of row vectors
over Ξ will be understood as:

proj(S,Ξ) := {ζ : ∃y ∈ S s.t. ζ = yΠΞ} (31)

Recall now that Ωz was the s-dimensional unit ball (Assumption 2). Defining the line segment
L:=Ωz ∩ Ξ, evidently proj(Q(L),Ξ) ⊆ proj(Q(Ωz),Ξ) because L ⊆ Ωz .

Definition 2. A factorisation ρ(z) = Q(z)z, Q(z) = [q1(z) . . . qs(z)] is tight on subspace Ξ if

proj(Q(Ωz),Ξ) = proj(Q(L),Ξ).

Proposition 5. Under the assumptions in Section 2, given any arbitrary vector ψ, generating the
1-dimensional subspace Ξ, there exists a factorisation ρ(z) = Q(z)z which is tight on Ξ.

Proof
Considering ΠΞ, and Π⊥ := I −ΠΞ, z can be decomposed on two orthogonal components z =

zΞ + z⊥, being zΞ := ΠΞz and z⊥ := Π⊥z. Also, if z ∈ Ωz , zΞ ∈ L, because Ωz is the unit ball

4From the above-discussed geometric considerations, the actual model direction to be evaluated comes from transposing
a s× 1 row of ∆Γ defined in Lemma 1.
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(Assumption 2), and L is a diameter of such hypersphere. Consider now the decomposition ρ(z) =

ρ(zΞ)+δ(z), being δ(z) := ρ(z)−ρ(ΠΞz). Obviously, for z ∈ L, we have z = zΞ so δ(z) = 0.
If, considering zΞ as fixed, we define δ̄(z⊥) := δ(z⊥ + zΞ), then δ̄ fulfils Assumption 1 so, from

Proposition 1, there exists a factorisation

δ̄(z⊥) = Q(z⊥, zΞ)z⊥ = δ(z). (32)

Thus, we can decompose:

ρ(z) = ρ(ΠΞz)
ψT z

ψT z
+Q(z⊥, zΞ)Π⊥z

Denoting:

Q(z) :=

(
ρ(ΠΞz)

ψT z
ψT +Q(z⊥, zΞ)Π⊥

)
(33)

we can, indeed, express ρ(z) = Q(z)z.
Now, due to the presence of Π⊥, as Π⊥ΠΞ = 0,

proj(Q(zΞ + z⊥),Ξ) =
ρ(zΞ)

ψT zΞ
ψT = proj(Q(zΞ),Ξ).

So, the projection of Q(z) only depends on the component zΞ ∈ L. Thus, proj(Q(Ωz),Ξ) ⊆
proj(Q(L),Ξ) and, as inclusion in the other sense comes from Ωz ⊇ L, the proof is complete.

The above proof constructs the component of Q(z) collinear with ψT , but does not consider how
to build Q̄ arising in the decomposition (32). Note that, actually, choice of Q̄ is, again, an instance
of the same modelling problem on an (s− 1)-dimensional space spanned by z⊥. Based on this, a
recursive application of the ideas yielding (33) is outlined in the Appendix to completely specify Q,
after making a change of variable z = Tη where the last row of T is ψT and the remaining rows are
built to conform an orthogonal matrix. From this change of variable, an hyper-rectangular bounding
box readily ensues; such bounds will be discussed in Section 3.2.

Once the methodology to obtain Q(z) has been discussed, Algorithm 1 is proposed to minimise
the performance bound in Lemma 1. In this way, the spread of Q(z) in the directions more
deleterious for performance (at least for small enough modelling regions) will be minimised.
Examples in Section 4 will show the performance improvement achieved with the resulting model
from the referred algorithm.

Algorithm 1 Factorisation ρ(z) = Q(z)z

1: Solve the linearised performance problem, obtaining {Dlin
1 , D

lin
2 } and γlin.

2: Using Dlin
1 , obtain matrix ∆Γ defined on Lemma 1.

3: Denoting as ∆Γ[i] the i-th row of ∆Γ and, likewise, Q[i] the i-th row of Q, model each
nonlinearity as ρi(z) = Q[i](z)z, in such a way so that Q[i] is tight in the direction ∆Γ[i], in
the sense of Definition 2.

Note that only the geometry of the null space C is used in the factorisation proposal (Algorithm
1), and not any shape information on ρ(z). Thus, final performance loss will depend on (a) the actual
range of Q(z), (b) the improvement a new D1 in problem (11) might be able to achieve compared
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14 R. ROBLES, A. SALA, AND M. BERNAL

Figure 1. Illustration of options for polytopic bounding of Q(Ωz) [blue] for Q ∈ R2×1. Best bounding is the
convex hull [dotted-black line]. Given direction ∆Γ [green arrow], the rectangle with minimal projection on
∆Γ, equation (52), is P1. The principal-component box from [20] is P2 [dash-dotted violet rectangle]. The

intersection between P2 and P∆ from (35) is the shaded gray region P3.

to Dlin
1 and, (c) the influence of other directions not in the null space C as modelling region size

increases (so Q(z) significantly departs from zero). Hence, the ideas inspiring Algorithm 1 only
apply for small enough modelling regions.

3.2. Bounding Q(z) by polytopic embeddings

Definition 3. Once Q(z) has been chosen to fulfill (5), a so-called polytopic embedding (a.k.a. TS
model) of Q(z) is a set of nv vertex points Q̂i such that Q(z) ∈ Co{Q̂i, i=1, . . . , nv} for all z∈Ωz .

The usefulness of the polytopic embeddings is the fact that most references in the literature
use well-known convexity argumentations and LMI relaxations [42] to pose a (conservative)
approximation of (17) based on matrix inequalities involving only the vertices Q̂i.

Of course, the best embedding would be Co({Q(z)|z ∈ Ωz}) but that set might not have
a finite number of vertices. Figure 1 illustrates the idea for a case of a single nonlinearity
ρ(z1, z2)=Q(z)z=(q11(z) q12(z))z, where Q(Ωz) is depicted as a blue region, and its convex hull
is shown with a dotted-black boundary. In practice, the convex hull of a set of (dense enough) grid
points might be the best reasonable approximation but it might, nevertheless, have a large number
of vertices (for illustration, such grid appears as a collection of hundreds of white dots on Figure 1
inside the blue representation of Q(Ωz)).

Alternatively, there exists some simple options to avoid gridding, by bounding Q(Ωz) in an
hyperrectangle, obtaining infimum and supremum over some orthogonal directions, as follows:

(a) Worst-performance directions: expression (52) in the Appendix provides a polytopic hyper-
rectangle bounding, given some change of variable. For the case ∆Γ = (0.966 − 0.259), which
appears as a green arrow in the figure, the resulting bound would be the rectangle delimited by
dashed-red lines, labelled as P1 in the figure.

(b) Principal-component (PCA) directions: the work [20] proposes vectorising Q(z) and obtaining
the principal directions (eigenvectors of the covariance matrix), to reduce possible overbounding
arising from choosing boxes not “aligned” with the principal components of Q(Ωz); indeed, in
many cases this does improve the obtained performance, compared to other box orientations, see
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the cited work for details and examples. Informally, principal components align the rectangle
with the spread of the data. The result of Kwatowski’s PCA algorithm is the rectangle whose
edges are outlined in dash-dotted violed line on Figure 1, labelled P2.

Combined PCA plus worst-performance direction embedding. The above approaches have
drawbacks arising from the fact that principal directions of the dataset Q(z) might not be aligned
with the worst-performance directions arising from the rows ∆Γ[i]. Thus, choosing just one of the
two options may lead to either overbounding, in case (a) due to the misaligment with the data,
or non-minimal projection over ∆Γ[i], in case (b) losing the “tightness” pursued in the previous
subsection. Both situations may yield unwanted performance loss.

Thus, to avoid any overbounding in the most influential direction, our proposal is to obtain both
the Kwiatowski principal directions and the pair of supporting hyperplanes given by

l1 := inf
z∈Ωz

tr(∆ΓQ(z)T ), l2 := sup
z∈Ωz

tr(∆ΓQ(z)T ) (34)

so that the principal-component polytope P2, is intersected with the set

P∆ := {l1 ≤ tr(∆ΓQT ) ≤ l2} (35)

being P∆ represented as a band delimited by yelow lines on the figure. So we can state that
Q(Ωz) ⊆ P3, P3 := P2 ∩ P∆. The set P3 is the shaded gray region on the figure5 and, as a conclusion
of the above ideas, such set is the proposed polytopic embedding for subsequent vertex-based LMI
conditions.

Let us summarise, in the form of an algorithm, the proposed polytopic bounding, see Algorithm
2 on next page. Note: in the algorithm, we denote as vec : Rm×s 7→ R1×(ms) the vectorisation
operation so that a matrix is transformed to a row vector by concatenating its rows. The inverse
operation (building the matrix again) is thus denoted as vec−1.

4. EXAMPLES

Consider a nonlinear system whose state equation (1) is

ẋ =

(
−2.6 0.7

−3.4 −3.5

)
x+

(
1.2 −1.7

−0.1 0.5

)
v +

(
−0.5

0.9

)
u+

(
1 0

0 1

)
w (36)

setting z = x in (2) and splitting the output equation (3) onto two components:

y :=

(
ν∞

ν2

)
, ν∞ = C∞x+Du, ν2 = C2x+Du,

5Obviously, the polyhedral bound could be further trimmed by actually intersecting P1 and P2 or obtaining supporting
hyperplanes in more directions; nevertheless, that would increase the number of vertices but their effect on the
performance (for small Ωz) would likely not be significant, according to the ideas in Lemma 1. Thus, the recommended
option is the set P3 as a sensible compromise between performance loss and model complexity.
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Algorithm 2 Performance-oriented polytopic embedding

1: Obtain ∆Γ from the linearised problem using Algorithm 1, as well as the explicit expression of
Q(z), using formulae in the Appendix.

2: Denote the set of values of a vectorized Q by;

Θ := {vec(Q(z)) : z ∈ Ωz} ⊂ R1×ms

Obtain the covariance matrix of Θ, defined as Σ =
∫

Θ
φTφdφ, see [20]. The dimensions of Σ

are ms×ms.
3: Obtain the eigenvalue decomposition Σ = V ΛV T .
4: Denoting the i-th column of V as V [i], compute the bounds:

λi1 = inf
φ∈Θ

φV [i] λi2 = sup
φ∈Θ

φV [i]

5: Using the above bounds and (34), form the polytopic subset of R1×ms given by:

P vec3 := {l1 ≤ vec(∆Γ)φ ≤ l2, li1 ≤ (V [i])Tφ ≤ li2, i = 1, . . . ,ms}

6: Obtain the vertices of P vec3 , so P vec3 = Co({v[1], . . . v[j]}) for some finite j.
7: Obtain the polytopic bounding of Q(Ωz) inverting the vectorisation, so we can state that:

Q(z) ∈ P3 := Co({vec−1(v[1]), . . . , vec−1(v[j])}) ∀z∈Ωz

with

C∞ :=

(
0.9 −0.5

0 0

)
, C2 :=

(
0.9 0.5

0 0

)
, D :=

(
0

1

)
and, last, a nonlinearity (4) given by:(

v1

v2

)
=

(
ρ1(x)

ρ2(x)

)
=

(
x1x2

sin(0.4x1x2)

)

Assuming a quasi-LPV representation v = Q(x)x is available, with Ωz = {x : xTx ≤ 1}, in this
example, the performance objective will be a combinedH2/H∞ performance optimisation problem
formally stated as minimising γ subject to conditionsMI(·) given by:

X � εI (37)

γ − 3γ∞ − γ2 ≥ 0 (38)(
A(Q)X +BF (Q) + (A(Q)X +BF (Q))T (C2X +DF (Q))T

C2X +DF (Q) −γ2I

)
� 0 (39)A(Q)X +BF (Q) + (A(Q)X +BF (Q))T (C∞X +DF (Q))T E

C∞X +DF (Q) −γ∞I 0

ET 0 −γ∞I

 � 0 (40)

being ε = 10−4 and

A(Q) =

(
−2.6 0.7

−3.4 −3.4

)
+

(
1.2 −1.7

−0.1 0.5

)
Q (41)
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If the above conditions are feasible, they guarantee that a gain-scheduled state feedback controller
u(Q, x) := F (Q)X−1x ensures ‖ν∞‖2 ≤ γ∞‖w‖2 under zero initial conditions and, too, that with
w = 0 but nonzero initial state x(0), ‖ν2‖2 ≤ γ2x

T (0)x(0), where 2-norm of signals are understood
in the integral sense ‖ν‖22 =

∫∞
0
ν(t)T ν(t) dt. In the proposed problem, the importance weight of

the γ∞ performance bound has been arbitrarily set to be three times that of γ2, in order to write (38).
This problem verifies the conditions in Assumption 2, with D1 ≡ X , D2 ≡ F (Q).
Solving the above problem for the linearized system (Q = 0), the obtained optimal linearised

performance is γlin = 1.4121, jointly with Lyapunov function decision variable Dlin
1 ≡ X lin and

linear controller decision variable Dlin
2 ≡ F lin, omitted for brevity; so, Assumption 3 is fulfilled.

LMIs were set up using YALMIP-20160930 [24], and the used solver was SeDuMi 1.3 [44], in Matlab
R2014a. YALMIP and SeDuMi options were set to default values.

Now, the proposed methodology for the choice of Q(x) will be illustrated. With the optimal
variables from the linearised solution, the suitable basisH of the relevant null space C of the optimal
LMIs was obtained, so an expression forW was suitably programmed in the LMI solver..

Next, checking four vertex values for Q:

E11 =

(
1 0

0 0

)
, E12 =

(
0 1

0 0

)
, E21 =

(
0 0

1 0

)
, E22 =

(
0 0

0 1

)
on the incremental version of the LMIs (28) and (29), sensitivity matrix ∆Γ in Lemma 1 results in

∆Γ =

[
0.6435 −0.7654

−0.6333 0.7739

]

Hence, the proposal in this work suggests that the nonlinearities ρ1 and ρ2 are modelled for
minimal projection onto the subspace spanned for the first and second row of ∆Γ, respectively,
following Algorithm 1. As a result, the finally proposed factorisation is (42), understanding the
fractions at ξ3 = 0 or ξ4 = 0 in a limit sense, see the Appendix.

ρ1(x) =
(

0.493ξ1 − 0.172ξ2 −0.493ξ2

)(ξ1
ξ2

)
,

ρ2(x) =
(

sin(0.196ξ24)+sin(κ)
ξ3

− sin(0.196ξ24)
ξ4

)(ξ3
ξ4

)
,

ξ1 := 0.7654x1 + 0.6435x2,

ξ2 := ∆Γ[1]x = 0.6435x1 − 0.7654x2,

ξ3 := 0.7739x1 + 0.6333x2,

ξ4 := ∆Γ[2]x = −0.6333x1 + 0.7739x2,

κ := 0.196ξ23 + 0.0792ξ3ξ4 − 0.196ξ24

(42)

4.1. Comparison with alternative options for Q(z).

In order to compare the above proposal with alternative approaches, a grid of 481 points {x[k], k =

1, . . . , 481} over a modelling region Ωx being a circle of radius r in the state space R2 has been
chosen: the origin plus a grid of 480 points in 10 radius values {0.1, 0.2, . . . , 1} × r and 48 equally-
spaced angle steps. In gridding-based approaches, the proposed Q(z) would be evaluated at these
481 points, and compared with other possibilities for Q(z); of course, later on, gridding will be
avoided by embedding Q(z) in a polytope with a small number of vertices. Obviously, a naive
scaling transforms Ωz to the unit ball required in the assumptions.
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Gain-scheduled controller parametrisation. In gridding-based approaches, one controller gain
will be sought for each grid point. In polytopic-based embeddings, one controller gain Fi will be
obtained for each vertex: given the structure of LMIs (39) and (40), it is well-known [12] that
these vertex gains can be used to synthesise a gain-scheduled controller with the same interpolation
coefficients as the model matrices.

Annihilator approach. Let us first compare with BMI+gridding annihilator approaches in earlier
literature [10]. A factorisation v = (Q0(x) + ℵ(x))x has been used, for any annihilator ℵ(x) such
that ℵ(x)x = 0. We chose Q0(x) to be the one suggested by our proposed subspace approach. The
choice for ℵ(x), at each grid point, was the linear annihilator:

ℵ(x[k]) :=

(
−l[k]

1 x
[k]
2 l

[k]
1 x

[k]
1

−l[k]
2 x

[k]
2 l

[k]
2 x

[k]
1

)
(43)

being l[k]
1 and l[k]

2 decision variables for each grid point. As discussed in Section 2, product of ℵ
and X forces the problem to be solved as a bilinear matrix inequality (BMI). The total number of
BMI decision variables is 1928: 481× 2 for l[k]

i , 481× 2 for F [k] ∈ R1×2, three for the symmetric
Lyapunov matrix X , plus γ, γ∞ and γ2. The inequalities resulting from (37), (38) and repeating 481
times, for each Q(x[k]) the LMIs (39) and (40) can be expressed as a big block-diagonal BMI of
size 4813× 4813. Thus, the annihilator approach entails solving a large BMI problem with a lot of
decision variables. For the sake of comparison, in our approach to search for the best Q(z), each
element of ∆Γ was obtained with a 13× 13 LMI, with 8 decision variables.

Note that the resulting BMI search, if properly converged, should always yield a better
performance bound than our proposal: this is intentional, as the issue is determining whether the
achieved improvement is significant or worthwhile, given the increase of computational cost arising
from the iterative BMI steps. Actual numerical results will be later discussed, after other alternatives
options are also presented.

Inspection-based factorisation. For the sake of comparison, four other easy “common sense”
factorisation options for Q(x) will be evaluated, either extracting x1 or x2 as a factor, as follows:

v =

(
ρ1(x)
x1

0
ρ2(x)
x1

0

)
x =

(
x2 0

sin(0.4x1x2)
x1

0

)
x (44)

v =

(
0 ρ1(x)

x2
ρ2(x)
x1

0

)
x =

(
0 x1

sin(0.4x1x2)
x1

0

)
x (45)

v =

(
ρ1(x)
x1

0

0 ρ2(x)
x2

)
x =

(
x2 0

0 sin(0.4x1x2)
x2

)
x (46)

v =

(
0 ρ1(x)

x2

0 ρ2(x)
x2

)
x =

(
0 x1

0 sin(0.4x1x2)
x2

)
x (47)

Trivially, these options can give a simple 4-vertices polytopic embedding representation, by
combining minimum and maximum bounds of the two non-zero matrix elements.
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Figure 2. Peformance comparison of choices for Q(z), gridding approach. Our proposal from Algoritm 1,
i.e., Q(z) in (42), labelled as (**) achieves a very good performance with significantly less computational

cost than the (BMI) one.

Comparison of results (gridding approach). Comparing all six candidate options forQ(z) in the
same grid of 481 points results in Figure 2. It can be clearly seen that our proposal forQ(z), labelled
as (**), provides the best results except the marginal improvements of the costly annihilator-BMIs,
as expected (at least for small modelling region radius). The common-sense factorisations above
incur in a clear performance penalty. Note that, as intuitively expected, performance is close to the
linearised one (1.4121) for small modelling region radius, but it worsens as such radius increases
(indeed, the set Q(Ωz) grows larger as the radius of Ωz expands).

Computation time (gridding approach). On a Core I5-4690 processor, computation of ∆Γ with
our LMI proposals takes around 0.088 seconds. OnceQ(z) is crafted from the resulting ∆Γ, solving
the LMIs with SeDuMi 1.3 over the 481-point grid to obtain the new gain-scheduled controller takes
8.76 seconds. On the other hand, using PenBMI2.1 32 bit with default configuration, a 481-point
grid takes around 420 seconds in average for each tested radius.

Note that the computational cost would exacerbate for higher-order systems because of the larger
dimension of the matrix inequalities and the likely need of an exponentially larger number of grid
points; thus, polytopic bounding to avoid gridding is clearly important, and it will be discussed
below in the context of this example.

As a conclusion, our subspace approach has two worthwhile advantages (at least in this example):
first, it clearly outperforms ad-hoc inspection-based factorisations (44)–(47); second, BMI+gridding
options in other literature achieve only marginal improvements and the computational cost is much
higher.

4.2. Effect of polytopic embedding

Once Q(z) is chosen from our proposal, in order to avoid gridding, performance of polytopic
embeddings will be tested. On Figure 3, the three different approaches discussed on Section 3.2
are compared with the gridding-based “best-possible” performance (in this example, denser grids
were tested with no appreciable performance improvement). First, the simpler options:
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Figure 3. Performance degradation due to different options for polytopic embedding, for the fixed Q(z)
arising from Algorithm 1 in (42). See enumeration in the text for interpretation of labels (a), (b), (�). Our
proposal (�) achieves comparable performance with a 10-fold improvement in computational time over the

gridding results (**) and 700-fold over (BMI), both copied from Figure 2.

Table I. Performance versus computation time (radius 2)

Method Num. of
vertices

Computation
time (s)

Performance
(penalty%) Figure

Earlier literature:
BMI-Gridding [10] Grid 481 420 1.729 (best) Fig.1&2, blue

LMI-Gridding (44) Grid 481 8.73 1.842 (6.5%) Fig.1, green

PCA bound (44) 4 0.14 1.929 (11.5%) –
inf/sup bound of (44) 4 0.11 11.60 (570%) –
LMI-Gridding (45) Grid 481 7.14 3.832 (121%) Fig.1,light brown

LMI-Gridding (46) Grid 481 7.19 4.819 (178%) Fig.1,dark brown

LMI-Gridding (47) Grid 481 6.68 1.857 (7.4%) Fig.1, violet

Proposals in this work:
Alg. 1 Q(z)+LMI Grid 481 8.76 1.742 (0.7%) Fig.1&2, red

Alg. 1+Alg. 2. LMI 24 0.56 1.756 (1.5%) Fig.2, green

(a) the 16-vertices box arising from an orthogonal transformation induced by worst-performance
directions in ∆Γ, using (52); we recall that the methodology is analogous to the one yielding
P1 in the simplified illustrative example on Figure 1.

(b) the PCA approach from [20] (with, too, 16 vertices), symbolically depicted as P2 on Figure 1.

and, finally, our proposed combined approach, labelled as (�) on Figure 3, intersecting the principal-
component box with the supporting hyperplanes (34), which results in a polytope with 24 vertices
(i.e., the analogous option to the one depicted as P3 on Figure 1).

In order to better assess the performance loss due to the polytopic embedding, the original
BMI+grid approach and the LMI+grid on our proposed Q(z) have been copied over from Figure
2 to Figure 3 with the same line styles, and additional lines added. So, in total, Figure 3 depicts
three polytopic embeddings plus two griding-based calculations (LMI/BMI) over the same choice
of Q(z).

Computation time comparison. As intuitively expected, polytopic embedding achieves more
conservative performance bounds than gridding options, but at a much lower computational cost.
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Table I depicts an overall comparison between the different approaches showing computation time
and performance (and the number of considered vertices/grid points), for the rightmost point of the
figure (states in the region xTx ≤ 2). Indication of figure number and colour of some performance
entries are also presented in the table. Let us discuss the different table entries below:

The first rows describe proposals in prior literature:

• Row 1 lists data for the already discussed BMI-gridding, whose performance is, obviously,
the best one.
• Rows 2 to 4 use the inspection-based factorisation (44): directly on a grid (row 2), bounding it

with the PCA-based approach in [20] (row 3), or using the most straightforward bounding by
computing the minimum and maximum over Ωz of the matrix elements, routinely proposed in
many applications [43, 20] in row 4 (in the particular case in this example, in the ball of radius
2 we can bound −2 ≤ x2 ≤ 2, and −0.8 ≤ sin(0.4x1x2)

x1
≤ 0.8 yielding a 4-vertices polytopic

LPV model, details left for the reader).
• Rows 5 to 7 are the results of alternative inspection-based options.

After presenting prior literature results, the last two rows present the data from our proposals:
first, a gridding approach (row 8) to point out the effect of the choice of Q(z) with respect to the
other gridding options (rows 1, 2, 5, 6, 7). Apart from the reference row 1 (BMI), the performance
from our proposal beats by a large margin the rest of the referred rows. Finally, row 9 presents the
combination of our choice of Q(z) plus the polytopic embedding from Algorithm 2, with a minor
performance loss with respect to rows 1 and 8, and a significantly faster execution.

For sake of comparison, the inspection-based polytopic embeddings were unable to approach the
optimal performance points. For instance, (44) was the best factorisation when evaluated on the 481-
point grid, yielding a performance of 1.84 (6.4% penalty); however, the 4-vertices PCA bound of
(44) incurred in a 11.5% penalty, and a much larger penalty figure appeared for the straightforward
inf/sup bound of each matrix component over the circle Ωz . Similar results were achieved with the
other options (45)–(47), omitted for brevity.

In conclusion, our proposals beat inspection-based models; they yield 0.7% performance penalty
with a 46 times lower computation time (Algorithm 1 with LMI gridding), and 1.5% performance
penalty with more than 700 times lower computation time (Algorithm 2, polytopic embedding) with
respect to the ideal BMI-gridding results. These computational advantages would, likely, accentuate
for higher dimensions.

5. CONCLUSIONS

This paper has addressed the problem of choosing a good quasi-LPV model for a nonlinear
system. Our proposals are able to mitigate the performance loss from a reference linearised
design, compared to other inspection-based modelling choices, while avoiding BMIs needed in
prior literature for controller synthesis problems. The main idea is based on obtaining the more
harmful perturbations of the model matrices in the linearised design, proposing then a coordinate
transformation so that the projection of the uncertainty over these model perturbations is minimised.
This direction plays, too, a fundamental role in subsequent polytopic embedding options which are
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built to avoid the need of gridding. As the root of the procedure is the linearised design, the results
are only valid, formally, for small modelling regions around the origin. An illustrative example
shows that, indeed, the proposal seems to strike an interesting balance between computational cost
and achieved performance: BMIs are avoided, but our LMI results are very close to the ideal BMI
ones from prior works, significantly improving over ad-hoc factorisations used in many applications.
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A. SYSTEMATIC FACTORISATION OF A NONLINEARITY

Let us consider a C1 nonlinearity ρ̃ : Rs → R:

v = ρ̃(η) (48)

and present a factorisation option v = Q(η) · η, based in [29, 14] and the proof of Proposition 5.
Let us define ξ1 := ρ̃(η1, . . . , ηs) and ξi(ηi, . . . , ηs) := ρ̃(0, . . . , 0, ηi, . . . , ηs) for i = {2, . . . s},

ξs+1 := 0 and let us denote, for i = {1, . . . , s}:

ζi(ηi, . . . , ηs) := ξi(ηi, . . . , ηs)− ξi+1(ηi+1, . . . , ηs). (49)

With the above definitions, we have

ζi(0, ηi+1, . . . , ηs) = ξi(. . . )− ξi+1(. . . ) = ρ̃(0, . . . , 0, ηi+1, . . . , ηs)− ρ̃(0, . . . , 0, ηi+1, . . . , ηs) = 0,
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and ζi(·) ∈ C1. Hence, by Proposition 1, there exists a factorisation

ζi(ηi, . . . , ηs) =
ζi(ηi, . . . , ηs)

ηi
· ηi

taking suitable limits when ηi → 0, being ζi(. . . )/ηi a continuous function. Thus, as trivially:

ξi(ηi, . . . , ηs) = ζi(ηi, . . . , ηs) + ξi+1(ηi+1, . . . , ηs)

with these definitions, we have ξ1(. . . ) = ζ1(. . . ) + ξ2(. . . ) = ζ1(. . . ) + ζ2(. . . ) + ξ3(. . . ) = . . . ,
i.e.:

ρ̃(η) =

s∑
i=1

ζi(ηi, . . . , ηs) =

s∑
i=1

ζi(·)
ηi
· ηi (50)

so (50) entails that we can write v = Q(η)η, being Q(η) the expression below:

Q(η) =
ζs
ηs

(
0 . . . 0 1

)
+
(
ζ1
η1

. . . ζs−1

ηs−1
0
)
. (51)

It can be easily proved that the resulting Q(η) is tight on the subspace generated by ψ :=

(0 . . . 0 1)T , because the rightmost term in the summation is orthogonal to ψ, so the above
expression is in the form (33), details left to the reader.

Polytopic embedding via inf/sup bounds. A straightforward embedding with nv=2s vertices
can be built by obtaining the infimum and supremum, for η in some modelling region Ωη ⊆ Rs, of
each element ζi(ηi, . . . , ηs)/ηi conforming Q(η) in (51). Let us denote them ζ∗i and ζ∗i , respectively
(assuming they exist; by the continuity assumption they will for sure do if Ωη is compact). Indeed,
straightforward interpolation allows us to write the well-known expression:

ρ̃(η) =

s∑
i=1

(
µi1(η)ζ∗i + µi2(η)ζ∗i

)
ηi (52)

with µi1(η) + µi2(η) = 1, µi1(η) ≥ 0, µi2(η) ≥ 0 for all η ∈ Ωη.
Note that, apart from this “box” embedding of (48), other possibilities exist, as discussed in

Section 3.2 on the main text.
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