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Abstract: Industry 5.0 emphasises social sustainability and highlights the critical need for personnel
upskilling and reskilling to achieve the seamless integration of human expertise and advanced
technology. This paper presents a methodological framework for designing personalised training
programs that support personnel upskilling, with the goal of fostering flexibility and resilience amid
rapid changes in the industrial landscape. The proposed framework encompasses seven stages:
(1) Integration with Existing Systems, (2) Data Collection, (3) Data Preparation, (4) Skills-Models
Extraction, (5) Assessment of Skills and Qualifications, (6) Recommendations for Training Program,
(7) Evaluation and Continuous Improvement. By leveraging Large Language Models (LLMs) and
human-centric principles, our methodology enables the creation of tailored training programs to help
organisations promote a culture of proactive learning. This work thus contributes to the sustainable
development of the human workforce, facilitating access to high-quality training and fostering
personnel well-being and satisfaction. Through a food-processing use case, this paper demonstrates
how this methodology can help organisations identify skill gaps and upskilling opportunities and
use these insights to drive personnel upskilling in Industry 5.0.

Keywords: NLP; Large Language Models; skills extraction; workers upskilling; Zero Defect Manu-
facturing; Industry 5.0

1. Introduction

Contemporary manufacturing is undergoing radical changes with the adoption of
Industry 4.0 and the need for higher manufacturing sustainability. Therefore, manufac-
turers are constantly seeking to adopt new technologies that will allow them to be more
efficient and sustainable [1]. To that end, it is necessary to educate employees regarding
the new digital, data-based, knowledge-based, and interoperable technologies. The rapid
technological advancements in the manufacturing and Information and Communication
Technologies (ICT) domains make manufacturing education critical [2,3]. As they combine
digital technologies, manufacturing systems are becoming increasingly complex [4–6].
Therefore, new technologies require new educational methods to update or upgrade the
skills of engineers and blue-collar workers [7–9]. Especially in the manufacturing domain,
the education of personnel is a necessary and continuous process for keeping up with
the pace of changes, increasing the safety and sustainability of manufacturing systems,
achieving high-quality production with the least amount of resources, and staying competi-
tive [10]. Furthermore, careful attention to the human aspect in manufacturing systems is
mandatory not only from the business or economic perspective, but also with regard to the
social aspect of manufacturing [11,12]. This approach is highly aligned with the concept
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of Industry 5.0, which was newly introduced by the European Commission. Industry 5.0
is not completely new; it has deep roots in Industry 4.0, but the difference lies in the fact
that the goal of Industry 5.0 is not only to produce goods and services for profit, but to give
great focus to environmental and social aspects of manufacturing [13–15].

In this Industry 5.0 context, quality control and assurance is one of the most crucial
domains in manufacturing, and labour training is essential [16–19]. This domain is fac-
ing radical changes, and many new technologies and approaches are being introduced,
rendering traditional methods and technologies obsolete. Quality control and assurance
is a vital part of any manufacturing system. Achieving high-quality production is some-
thing that manufacturers are aiming for and spend significant resources to accomplish,
but they are not always able to achieve this goal. Here, “quality” refers not only to the
product quality, but also to process quality [10,20,21]. Production quality is related di-
rectly to manufacturing sustainability, which is a key business target for manufacturing
companies. Poor-quality operations have multi-level negative implications, from direct
economic losses to indirect losses, such as the negative impact on the reputation of the
company [22,23]. To achieve high product and process quality, manufacturing companies
are using various quality-management tools to improve their operational performance [24].
The latest approach for quality assurance is Zero Defect Manufacturing (ZDM) [10,21].
ZDM imposes some new rules; therefore, the training of engineers and blue-collar workers
in ZDM technologies is imperative.

The literature has identified numerous factors that discourage companies from offering
training courses to their employees. The most important such factors are the cost and the
working time required for the courses [25]. Due to the investment that companies should
make in the training of their employees, it is of vital importance to identify the skills of
each employee and to adapt their training sessions to the acquisition of new competences.
Therefore, in this paper, we propose the use of sentence embeddings using transformers
and Natural Language Processing (NLP) to identify the skills of each worker and at the
same time identify areas in which each worker may require training [26,27]. This approach
will give manufacturers the opportunity to offer personalised training courses to each
worker and thus save time and money, while giving their employees the exact knowledge
that is required to complete their assigned tasks.

Our proposal relies on analysis of the internal communications issued by personnel
during operations. Many companies use information systems in which personnel de-
scribe events that occurred during the manufacturing process using natural language. One
prominent example is maintenance incident requests, in which operators report failures
that require intervention by the maintenance department. These communications capture
the tacit knowledge, skills, and competences of personnel, as each communication uses
language and terminology specific to the skill domain (for instance, electric work). State-
of-the-art Large Language Models (LLMs) allow to companies to obtain insight into these
internal communications. This research work focuses on the improvement of companies’
training and upskilling programs through the extraction of this tacit knowledge of person-
nel skills from unstructured data and comparison of the extracted model with an explicit
model of the skills provided by qualification results. For instance, this comparison allows
companies to identify the interests of personnel in specific competence areas for which they
have not yet acquired qualifications and to identify areas in which training needs to be
reinforced. From this analysis, it is possible to design personalised training programs to
support personnel training and upskilling.

The rest of the paper is structured as follows: Section 2 contains a description of the
state of the art in worker training in Industry 5.0, ZDM, and NLP. Section 3 describes
the methodological framework of the proposal. Section 4 provides details about the
implementation use case. Section 5 shows the results, and Section 6 provides some final
conclusions and remarks.
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2. State of the Art

In Industry 4.0 and Industry 5.0, digitalization is one of the most important drivers of
innovation in reducing waste and improving overall quality, hence saving cost and time
and optimising production systems. Digital technologies can be applied to all manufac-
turing stages, including product design, the overall operation of company, and personnel
training [28,29]. Training is key to allowing companies to stay competitive; therefore,
operators and employees should receive regular up-to-date training to improve not only
process performance, but also safety and sustainability [30–33]. Furthermore, training
could increase responsiveness to unexpected events and foster the knowledge required to
prevent them, increasing the companies’ resilience [33,34].

However, despite the importance of training to companies’ competitiveness, few
frameworks exist in the literature for its empowerment and management. One such frame-
work is the Conceptual Learning Framework proposed by [35], the goal of which is to
understand the essential future skills that are expected from the digital workforce. That
exploratory study identified nine critical skills in three categories: cognitive and metacog-
nitive skills, social-emotional skills, and practical skills. That study further identified
community management, data-analytic skills, and web-development skills as critical. One
of the important conclusions of these authors was that organizations should monitor the
abilities of their employees and offer opportunities for individuals to develop their skills,
which is precisely the basis of our work.

In this line, ref. [36] highlights current efforts to implement and research personalised
learning within K-12 and Higher Education and suggests that personalized learning may be
a promising strategy to solve many of the problems of workforce training and development
programs. In response, they propose a Personalized Learning Interaction Framework based
on a three-level interaction model and five types of interactions (among learners, coaches,
Artificial Intelligence Assistants, small groups, networks, etc.). The findings suggest that
personalized learning may be an effective strategy to increase engagement in workforce
training and development programs.

On the other hand, ref. [37] propose a six-step methodological framework with the
objective of determining whether it is possible to create a skill-focused climate in a software
organization through a software system proposed by the researcher and whether such a
system will help in utilizing in-house employees for new opportunities, rather than hiring
new employees. The steps of the methodological framework are: (1) identify minimum vi-
able features; (2) identify the necessary technologies and approaches; (3) design, implement
and test; (4) prepare a questionnaire for HR and software professionals; (5) obtain feedback
on the skill-based system; and (6) evaluate feedback to generate insights. Additionally,
the authors model the workflow among the actors in the system (employee, manager,
skills expert).

In addition to these frameworks, other frameworks and literature on personalised
learning and education can be found [38,39], but no NLP-based frameworks like the one
proposed in this work have been found.

The rest of the section is organised into operators training, ZDM, and NLP to iden-
tify the main functions and concepts and thus to allow the design of a methodology for
skills extraction.

2.1. Personnel Training

The most common approaches for personnel training are classroom or online lec-
tures, online learning packages, pilot-plant exercises for hands-on training, and computer
simulations [28,40]. Studies have shown that, very frequently, lectures do not have the
desired outcome, as they do not provide an engaging and challenging experience [41–43].
In general, lectures and massive-passive methods no longer seem to adapt well to the
training needs of current workers, especially those from younger generations, who are
accustomed to consuming on-demand audiovisual content in their private lives.
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On the other hand, the rise of Industry 4.0 and the growing incorporation of all the
technologies associated with this concept require a renewal of the skills and knowledge
of workers [44–47]. Some researchers try to find solutions to address this new challenge
and analyse the advantages and possibilities of new training methodologies. Another
study introduced an approach for familiarising both low- and high-experience workers
with Industry 4.0 hybrid workstations and assembly procedures using an intuitive training
methodology [48]. Furthermore, they propose that the training should be performed on
site, at the physical workstation during production, to accelerate learning. However, this
practice could impact normal production performance and might not always be advisable.

Immersive experiences may help companies respond to the industry’s requirement
for more engaging training methodologies. Overall, the data support the idea that a
growing number of immersive technologies are being used for operator training [48,49].
It is projected that the number of immersive training apps will continue to rise in the
coming years. For example, immersive experiences have been used in the chemical, nuclear,
manufacturing, and industrial environments [28]. Even though each industry’s ultimate
output differs, they have components in common, such as hazardous working conditions
and technical or functional complexity. Immersive experiences have gained popularity
as employee training due to the ability to train and to perform tasks safely (in a virtual
environment when the tasks would be too dangerous, very expensive or even impossible
to perform in the real world) [50,51]. The research by García et al. emphasises the essential
issue of evaluating the training experience [28]. Despite its importance, these authors
highlight that only a tiny percentage of researchers carry out and report a comparison of
immersive training with standard approaches along with the performance metrics that were
measured. The findings show that more work is needed to ensure a thorough examination
of the usefulness and efficiency of immersive experiences in the process industry. To
this end, they construct a model from the learner’s perspective to analyse immersive
experiences in the process industry, aided by the analysis of performance indicators. This
model constitutes a starting point for determining which parameters could be used to
evaluate the effectiveness and efficiency of these experiences.

The state of the art now shows a clear picture of the research and application of
recent immersive technologies and developments. According to the findings, the three
key immersive technologies used for operator training that are most widely mentioned
in the literature are, in this order [28], 3D immersive training, Virtual Reality (VR), and
Augmented Reality (AR). This categorization of the types of training was helpful in sepa-
rately clarifying the use of each one and made it possible to ascertain that some beneficial
and promising objectives are not achieved because the training was not implemented in
emergencies and dangerous situations.

3D immersive training includes all developments that create a 3D representation of
a specific environment or situation within which certain tasks can be executed [28,52,53].
This 3D representation can be visualised on a computer screen, on a powerwall, or in a cave
automatic virtual environment. Some modern experiences in 3D immersive training that
have been applied to an industrial context include simulations of industrial plants, where
operators can move around the plant to learn about the different plant sections [54,55]
and about some of the elements or devices inside. This application represents an essential
advantage of virtual environments in training workers for extreme and dangerous situations
that, with these technologies, can be reproduced in safe conditions.

Virtual reality (VR) refers to virtual environments reproduced by using a head-
mounted display (HMD) or VR headset [28]. This technology is also a leader in training
systems because it can offer interactive training environments, which can simulate testing
and execution in the virtual environment prior to the execution of the actual processes
in the production line [56,57]. With such training systems, production productivity and
safety are increased significantly. Another study proposed a structured approach to assess
operator performance and cognitive conditions during assembly training using virtual
reality applications [58–60]. The findings of these experiments will enable the human-
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centred optimization of the VR training app, resulting in an improvement in the operators’
knowledge and skills. However, although VR technology is very promising, there is still a
need for research to make VR a viable training method [53].

Another contemporary technology, AR, has been used for personnel training. AR
overlays virtual information with the real world and shows it simultaneously as a real-time
interaction [48,52]. In most literature applications, AR has been used to familiarise operators
with assembly operations and digital technologies. AR can help operators understand a
problem and even show the next steps to solve it, providing additional relevant information.
This information can be, for example, photos, videos, flow diagrams, instructions, technical
documentation, voice assistance, and 3D models or representations. The information
can include warnings, alerts or anything that can simplify or complement the operator’s
understanding of the situation. For these reasons, AR training is primarily used to provide
virtual guidance in the industry [41]. Among the main advantages of using this technology
are the reduction of errors in problem solving, which is directly related to reducing the risk
of accidents, and the reduction in the time needed to complete tasks.

Operator 4.0 is another important concept within the Industry 4.0 paradigm and
describes the operators that have become familiar and use Industry 4.0 technologies [61–64].
In modern manufacturing systems, Industry 4.0 technologies are being increasingly used,
which this creates the need to adopt the Operator 4.0 approach and to shift from traditional
training approaches to training models that utilize more engaging approaches and digital
technologies. In this setting, a human-centred approach is required for the development of
effective training pathways [65]. The usefulness of modern training methods in this new
context seems obvious, and research about this topic has been growing in recent years;
however, to the authors’ best knowledge, there are no studies in the literature discussing
immersive training experiences tailored to each individual.

2.2. Zero Defect Manufacturing (ZDM)

Manufacturing companies have traditionally used at least one Quality Improvement
(QI) strategy to maintain and improve quality during production while minimising perfor-
mance loss [20,66]. Six sigma (SS), lean manufacturing (LM), theory of constraints (TOC),
and total quality management (TQM) are all traditional QI approaches, but they all focus
on product quality and use statistical tools to improve it. The modern manufacturing land-
scape has shifted away from statistical methodologies and toward data-driven technology
as a result of the Industry 4.0 paradigm. This shift results from the fact that classical QI
approaches were created utilising the technologies available at the time, without recent
technical breakthroughs, in the context of Industry 4.0 [66]. Artificial intelligence, machine
learning, and semantic modelling, for example, open up an entirely new horizon for man-
ufacturers, allowing them to achieve goals that were previously unattainable [67]. The
significant rise in computational power and reductions in the price of sensors have further
expanded the usage of data-driven technologies [68–71].

These circumstances resulted in the development of a new quality management
technique known as Zero-Defect Manufacturing (ZDM) [21], which originated in the
discrete-production domain but is now also relevant to the continuous-manufacturing
domain. The difference between traditional QI and ZDM is that the latter is a holistic
approach that looks at all stages of production, from product design to production and
finally to the actual operation of the system [20]. ZDM aims to eliminate waste and improve
the long-term viability of industrial systems [10]. This aim is accomplished using four ZDM
strategies: detection, prediction, prevention, and repair. Those ZDM techniques are used
in pairs according to Psarommatis et al.: detecting a problem, repairing it, attempting to
prevent future defects, and using data from identified anomalies to forecast when defects
will arise in the near future and prevent those defects [21]. The term “defect” refers to either
a product defect or a defect in the manufacturing process. Maintenance is a component of
ZDM; when a quality issue is discovered at the process level, maintenance is the solution.
For example, when an equipment failure is predicted, predictive maintenance is necessary
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to keep KPIs at target levels [72]. The design of both the product and the production
system plays a vital role in achieving ZDM [73–75]. Psarommatis et al. presented a
methodology utilising a digital twin to appropriately design a manufacturing system
leveraging the four ZDM strategies (detect, correct, predict, and prevent), with the goal
of achieving zero defects in manufacturing [20]. There is very little research on how to
properly design a manufacturing system to reach ZDM. The semantic modelling of data
and information models in general play a major role in the efficiency and capacities of
data-driven technologies [76,77].

2.3. Natural Language Processing (NLP) and Large Language Models (LLM)

Natural Language Processing (NLP) is a field of computer science and artificial intelli-
gence that involves the development of algorithms and techniques that enable computers
to understand, interpret, and generate human language. Although its roots in the world
of computational linguistics date to the 1950s, it has been the emergence of deep learning
that has made it possible for NLP to achieve its most remarkable results. The use of word-
embedding techniques allowed the semantic representation of words in multidimensional
spaces and powerful semantic-similarity solutions between words or sentences. Recurrent
Neural Networks (such as LSTM and GRU) were soon being used for text-generation
tasks. The emergence of the transformer architecture [78], with its numerous variations, has
allowed the implementation of the so-called Large Language Models (LLMs). Although
there are differences depending on the transformer architecture used, the training of these
models is initially carried out in an unsupervised way, with large amounts of text, so that
the models are finally able to complete subsequent text from a sequence, resolve instruc-
tions, identify semantic similarities between texts, and perform a wide variety of tasks
typical of high-level natural language management.

Regarding specific applications in the manufacturing domain, Ayadi et al. presented
a methodology for utilising NLP methods to perform Named Entity Recognition (NER),
extract details about environmental exposure to engineered nanomaterials (ENMs) from
text sources, classify them in line with ontological ideas, and automatically improve knowl-
edge [79–83]. They did this by using NLP methods combined with a domain ontology. On
the one hand, NER is used to extract relevant information. By contrast, the function of the
domain ontology is to semantically classify and categorise the extracted data in accordance
with its concepts, thereby connecting the data with its corresponding attributes [47]. Müller
and Metternich [27] suggested that using NLP in digital shop-floor management could
allow the development of help features based on information generated during order-
fulfilment procedures [84]. The valuable domain-specific knowledge of the employees is
found in the free-text data, even though the performance-indicator data may be leveraged
to improve anomaly detection [27]. Sala et al. utilised NLP methods for text-mining to
produce new knowledge in the maintenance domain; the objective was to demonstrate how
businesses may use maintenance-report analysis to extract data that might influence asset
design and maintenance-service delivery, resulting in an improvement from a dual per-
spective [85]. Mourtzis et al. suggested a methodology for assessing the level of expertise
in human resources based on their abilities and competencies. That method makes use of
unprocessed text data that was obtained from an operator’s interactions with an industrial
social network (ISN), and with the help of NLP methods, they managed to analyse and
classify the level of expertise of each operator [85].

As stated previously, in recent years, large language models (LLMs) have made
remarkable progress in various NLP tasks, such as language generation, text classification,
and question answering. Relying heavily on data and information processing, ZDM has
explored the potential of LLMs to improve manufacturing quality. LLMs can analyse
data from various sources, such as images, sensor readings, and textual descriptions, to
detect anomalies (defect detection), identify deviations from quality standards (quality
control), and predict the need for maintenance operations (predictive maintenance). LLMs
have been also applied in operator training, generating easy-to-comprehend summaries of
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key training concepts, providing natural-language feedback to guide the operator during
the execution of tasks, and providing personalized feedback based on the strengths and
weaknesses detected during execution. LLMs can be combined with other multimodal
interactions on industrial shop floors; for example, Augmented Reality can be used to
connect natural-language interactions with visual clues anchored in the real environment
of the operator [34].

3. Methodological Framework

The proposed methodological framework is divided into several structured steps
aimed at designing personalized programs. The steps are:

3.1. Integration with Existing Systems
3.1.1. Digital Transformation

Leverage digital technologies to achieve effective data collection, transitioning from
face-to-face or paper-based interactions to digital platforms for reporting and documenting
internal communications and establishing workplace requirements (roles, tasks, and skills).

3.1.2. Operational Systems Compatibility

Ensure compatibility with operational support systems like Enterprise Resource Plan-
ning (ERP), Manufacturing Execution Systems (MES), Manufacturing Operations Man-
agement (MOM), Computer Maintenance Management System (CMMS), and Content
Management Systems (CMS), utilizing ISA-95 [86] and SCOR Information [87] model
standards for seamless integration and data modelling.

3.2. Data Collection
3.2.1. Identification of Workplace Requirements (Roles, Task, and Skills), Data Collection,
and Dataset Preparation

Each person involved in the manufacturing process plays a different role, handling a
specific set of tasks that require specific competences. For instance, specialists (role) handle
the configuration of a machine during start-up (task), which requires specific technical
knowledge and skills (competences). The first step is to identify the different roles, tasks,
and skills, then to collect data describing this information.

3.2.2. Identification of Training Materials, Data Collection, and Dataset Preparation

The second step is to collect and possibly digitize existing training materials linked to
each competence.

3.2.3. Collection of Internal Communications Data and Dataset Preparation

In-line personnel are requested to report and document situations and events occurring
in their workplace (for instance, security incidents). The third step is to obtain digital
records of internal communications from personnel detailing different situations occurring
in manufacturing settings.

3.2.4. Collection of Qualifications Data and Dataset Preparation

The organisation may require specific qualification tests (an examination or formal
completion of specific training tasks) to formally acknowledge skills as competences. The
methodological framework requires the collection of these formal qualifications.

3.3. Dataset Preparation

This step involves cleaning, organizing, and transforming data into a usable format
for subsequent analysis. This step involves, for instance, extracting, labelling, or further
processing syntactic units from internal communication records and training materials that
are stored in digital formats.
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3.4. Skills-Models Extraction
3.4.1. Generation of Embeddings Using Transformers

Employ Transformers to generate embeddings representing the semantics of training
materials and internal communications.

3.4.2. Semantic Correspondence

Extract skills models by comparing internal communication to training materials, ap-
plying semantic correspondence via similarity functions applied to extracted embeddings.

3.5. Assessment of Skills and Qualifications
3.5.1. Skills-Gap Analysis

Contrast the extracted skills model to the required qualifications for the respective
roles and workplaces, identifying missing or underrepresented skills.

3.5.2. Identification of Advanced Skills

Detect skills in the model that surpass the required qualifications, providing insights
into the potential for personnel upskilling.

3.6. Recommendations for Training Programs
3.6.1. Competence Reinforcement

Use the insights from the skills-gap analysis to deliver personalized training recom-
mendations to reinforce essential competences.

3.6.2. Personalized Upskilling

Use the insights from the skills assessment to deliver personalized training and up-
skilling recommendations, facilitating personnels’ transition to higher-value roles within
the organization.

3.7. Evaluation and Continuous Improvement
3.7.1. Personalized Upskilling Assessment

Implement control mechanisms and mitigation plans to ensure that the recommenda-
tions are adequate; implement mitigation plans to continuously improve performance and
detect and reduce bias.

3.7.2. Qualification Testing

Implement regular qualification tests to formally acknowledge personnel skills, foster-
ing a culture of continual learning and improvement.

The concept diagram in Figure 1 illustrates the different steps in the methodology.
The next sub-sections describe in greater detail the core steps of the methodology

(namely, Dataset Preparation, Skills-Models Extraction, Skills and Qualification Assessment,
Training Program Recommendations, and Evaluation and Continuous Improvement). The
next section, Implementation Use Case, uses concrete use-case examples to further describe
the different steps in a practical implementation.

3.8. Dataset Preparation and Skills-Model Extraction

Figure 2 provides a high-level overview of the data-processing pipeline used to extract
a model of personnel skills from internal communications. It identifies the three different
data sources identified in the data-collection stage: Workplace Requirements, Qualification
and Training Materials, and Internal Communications. Note that this separation into
three data sources is mainly for the sake of clarity in explaining the data processing and
NLP involved. In practical implementations, data might be organised in a different way.
The Internal Communications database contains internal-communications text messages,
as well as related information like the issuer, date, role, and workplace. The Workplace
Requirements database contains information related to the skills required for every role
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and workplace. Finally, the training-materials data consist of training materials stored in
separate documents and metadata specifying the skill to which each document is linked.
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3.8.1. Dataset Preparation

In the internal communications-data pipeline, communication are filtered and labelled
according to different criteria (workplace, issuer, date, etc.). Then, the text is split into
sentences so that the length is more homogeneous and the data are cleaned to eliminate re-
dundant parts and noise. The text-cleaning process consists of Part of Speech (PoS) tagging
to learn the part of speech of each word in each sentence, stop-word removal to remove
irrelevant parts of the sentence (taking into account the PoS so that the word removal does
not change the meaning of sentences), lemmatization, and normalisation, including the
normalisation of specific terms used in the manufacturing process (for instance, to correct
spelling errors in reference to specific products). In the implementation described below, the
cleaning process is performed with available open-source models and pipelines for Spanish-
language text [88]. Thus, the result is a dataset in which each row contains a normalised
text field that summarises a sentence of an internal-communication message, labelled with
the unique identifier of the issuer, the workplace of origin, the date and time it was issued,
and a unique sentence identifier. The raw text of the communication messages is kept in
a different column to facilitate analysis. It is important to note that S-BERT models and
LLMs in general do not require this processing and text normalisation [89]. State-of-the-art
models allow for the comparison of long texts and for asymmetric comparisons (comparing
long texts and short terms; it is thus not required to split texts into sentences). However,
these features are model-dependent, and even if they are implementation-dependent, these
processing functions are included in the methodological problem. Moreover, for the model
used in the use-case implementation, the text-normalisation pipeline reduces the cosine
distance between sentences that are semantically related and increases the distance between
sentences that are not related, thereby improving the overall results. Similarly, this model
performs better with symmetric searches. For that reason, it is important that the encoded
texts that are compared are of similar length, so in this particular case, the comparison
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is made sentence-by-sentence to ensure symmetry of semantic searches and improve the
overall accuracy of the setup.
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Additionally, the content of the training materials is extracted, divided into sentences,
cleaned and denoised in a way similar to that described above for communications, and
finally labelled with the unique identifier of each training material, the training module
the material belongs to, the qualification associated to the training material, and a unique
sentence identifier. The text extraction for the training material in the implementation
uses the Apache Tika toolkit to extract the text from different document file formats (e.g.,
PDF, Microsoft Word, Microsoft PowerPoint, etc.). Thus, these processing steps produce
two datasets of sentences: one corresponding to communication messages and the other
corresponding to training material.

3.8.2. Skills Extraction

The central AI task of the proposed framework is the extraction of skills models for
personnel based on internal communications. To better illustrate the methodology and for
the sake of repeatability, the methodological framework divides this task into two steps:
embeddings generation using transformers and semantic correspondence.

Embeddings are compact numeric vector representations of data that encapsulate
essential information about the data they represent. In this methodology, embeddings are
generated from internal communications and sentences from training materials. These
vector representations enable the application of mathematical operations to analyse and
compare data downstream. Therefore, the result after embeddings generation consists of
multi-dimensional vectors representing the semantics of internal communications sent by
personnel and vectors representing sentences from training materials.

Transformers are a class of model in NLP that have shown remarkable success in
generating rich text embeddings. In the context of this work, from the possible transformer
architectures currently available for NLP, the BERT [90–94] family was chosen. The BERT
transformer family has been proven to be especially well suited to text classification, with
NER (Name Entity Recognition) being the type of task that is best aligned with the work
proposed here. The pre-trained BERT model used in this implementation is a model specifi-
cally built for Spanish (the language used in the use case described below) [95]. To look for
semantic similarities between sentences, Sentence-BERT networks [95], a Siamese BERT
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extension for sentence-level semantic similarity, is used to generate sentence embeddings
of the normalised text.

The generated embeddings can be used downstream to perform a semantic-similarity
comparison. As embeddings are essentially numeric vectors, they can be compared with
each other using vector distance functions like heuristic distance or cosine distance. Further-
more, as each embedding captures the semantics of a sentence, this comparison quantifies
the semantic similarity between two sentences.

In this way, each internal-communication and training-material sentence pair is com-
pared, resulting in a M × N matrix C in which each element clk represents the cosine
distance between the internal communication l (i ∈ [1, . . . , M]) and the training-material
sentence k (j ∈ [1, . . . , N]).

Finally, as all sentences in the datasets have unique identifiers, it is possible to leverage
the dataset labels to group these distance coefficients according to different criteria. Apply-
ing a grouping function (like minimum distance or mean distance) to grouped coefficients
allows the extraction of information related to the semantic relation between higher-level
semantic entities composed of groups of sentences. For instance, to infer relationships
between personnel and skills, the cosine-distance elements are grouped by the unique
identifier of each individual person and skill, and the minimum grouping function returns
a C* matrix in which each element c*ij represents the minimum semantic distance between
any sentence in the training materials associated with skill i and any sentence issued by
person j.

3.9. Assessment of Skills and Qualifications and Training Recommendations

The Training Recommendations system is based on the comparison of the actual skills
of personnel, as acknowledged by the company through qualifications tests, with the skills
models extracted from internal communications (obtained through the procedure described
in the previous section) (Figure 3). The qualifications, which are stored in a Qualifications
database, are filtered and labelled with the unique identifiers of the qualifications and
operators. Then, the table is pivoted to obtain a matrix A in which each element aij
is 1 if operator j has skill i and 0 otherwise. This matrix A is used to split the cosine
similarity matrix dataset C* described above, where element c*ij represents the minimum
semantic distance between sentences in training materials related to skill i and internal
communications sent by worker j.

The indices where A is equal to 1, that is (i, j): aij = 1, are used to obtain the values of
C* corresponding to all the acknowledged qualifications of every worker. These values
should be close to 0, representing high similarity, as it is expected that the persons who
have a skill will use expressions similar to those found in the training materials related to
that skill. The values form three different clusters: a high-similarity cluster (low semantic
distance), a medium-similarity cluster (moderate semantic distance), and a low-similarity
cluster (high semantic distance). If c*ij is in the high-similarity cluster, the output of the
recommender system is to not recommend any action for skill i to worker j. If c*ij is in
the medium-similarity cluster, the output of the recommender system is to recommend
re-training in skill i to worker j. Finally, if c*ij is in the low-similarity cluster, then the output
of the recommender system is to highly recommend re-training in skill i to worker j.

Similarly, the indices where A is equal to 0, that is (l, k): alk = 0, are used to obtain the
values of C* corresponding to the missing skills of every worker missing a qualification test.
These values should represent low similarity, as it is expected that the persons who have not
passed a qualification test for a skill will not express themselves in internal communications
using the same language that is used in training materials for missing skills. The values
again form three clusters: a high-similarity cluster, a medium-similarity cluster and a
low-similarity cluster. If c*lk is in the high-similarity cluster, the output of the recommender
system is to highly recommend that worker k perform the competence test for skill l. If c*lk
is in the medium-similarity cluster, the output of the recommender system is to recommend
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that worker k perform the competence test for the corresponding skill, and if c*lk is in the
low-similarity cluster, there is no recommendation.
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3.10. Evaluation and Continuous Improvement

Once results have been obtained, the framework includes a systematic approach for
evaluation and continuous improvement. The primary objective is to ensure the accuracy
and effectiveness of the training and upskilling recommendations. Another important
objective is to ensure that the persons in charge of in-line personnel training can assess the
quality of the results and pinpoint and address any discrepancies or issues. For instance,
the skills-gap analysis may identify an underrepresented skill and the system may therefore
issue a competence-reinforcement recommendation, but this result could be due to an
error if the dataset was not updated when the individual obtained the qualification. The
evaluation and continuous-improvement processes consist of the following steps and
mitigation actions:

1. Quality Assessment of Recommendation Results: Review and assess the align-
ment between the inferred skill models and formal qualifications through feedback loops
involving individuals and other stakeholders, like trainers. Identify potential mismatches
and inconsistencies that might suggest inaccuracies in the dataset or the system.

2. Check for Ethical Compliance: Evaluate the fairness and ethical implications of the
training recommendations to ensure they are unbiased. Establish mechanisms to monitor
imbalance or demographic bias in training materials or communications and implement
mitigation plans to correct detected problems. Establish mechanisms to ensure compliance
with privacy and ethical regulations in data collection, analysis, and dissemination of the
training recommendations.

3. Identification and Mitigation of Dataset Errors: When discrepancies are found,
identify the source of error (for instance, insufficient communication data, insufficient
training-material content, dataset inaccuracies), formulate a mitigation plan to correct the
dataset, and re-evaluate the skills-gap analysis. In cases in which training materials are
insufficient, the mitigation plan involves enriching and updating the content to provide
a robust context for both personnel training and accurate analysis. In cases in which
there are insufficient communication data, mitigation plans may contain specific actions to
foster internal communications and overall involvement in the continuous improvement of
all personnel.

4. Performance Evaluation and System Updates: Implement test cases to evaluate
skills assessment under different scenarios. If recommendations are not aligned with
actual training needs, refine the algorithm, e.g., update the model, adjust thresholds, or
incorporate other techniques. Update test cases to facilitate the detection of errors. Gen-
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erate internal documentation to inform future iterations of the continuous-improvement
framework and enrich the knowledge base.

4. Implementation Use Case
4.1. Description

The main objective of this implementation is to present a specific use case, explain
how the data are collected and prepared in a practical context, present some experimental
results to help other researchers apply the methodology, and present the results of a specific
case study.

The implementation use case is a food-processing factory, and the analysis is based
on different Manufacturing Operations Management (MOM) application modules. These
modules, namely, Operators Training and Internal Communications, provide support to the
Total Productivity Management (TPM) methodology used for continuous improvement.

The Human Resources department uses the Operators Training module to manage
internal and external training programs for line personnel. It is worth mentioning that one
of the main pillars of Total Productivity Management (TPM)—the continuous-improvement
methodology used in the factory—is autonomous maintenance, which consists of providing
tools to operators so that they can perform maintenance tasks on their own equipment
with no support from the maintenance department. In this sense, operator training is
crucial to obtaining this objective. Through the management interfaces, the training and
upskilling managers can create courses, manage the course calendar, add training materials
to the course, and assign instructors (either internal or external personnel) and trainees
(internal personnel). The courses are composed of training tasks, and each task can be
assigned to different calendar events in the course. Trainers can use the application user
interfaces to manage their courses: update the course materials, upload new materials,
and manage the attendance list for each training event. Similarly, trainees receive calendar
notifications and reminders to access the course program and attend the courses. Figure 4
highlights how these courses are linked to the personnel model used in MOM application
modules. The completion of tasks is linked to a qualification test specification to indicate
that the training tasks are part of the procedure required to obtain a specific qualifica-
tion: a demonstrated competency that ensures that the person has the required training
and experience to perform specific operations. The operations definitions have specific
personnel specifications, which correspond to the personnel and personnel qualifications
requirements for the operation. In this way, it is possible to consider these requirements in
production personnel scheduling, during the execution of production orders, and during
performance evaluations. All these definitions are consistent with the ISA-95 standard
concepts and models.

The internal communications application is used primarily by the continuous-improvement
and maintenance departments to collect additional information about the execution of pro-
duction orders. The objective is to leverage operators’ in-depth knowledge of the execution
process. Through this application, in-line personnel report events that occurred during the
execution of the production order using natural language. The events they report vary in
content: for the most part, the events reported are incidents that negatively affected safety,
productivity, process performance, or product quality. Examples include maintenance incidents,
whether they were solved by the personnel or triggered a maintenance request; incidents that
resulted in a loss of performance or product quality; and safety incidents. Personnel can also
report observations regarding re phenomena that did not negatively affect performance yet
but may do so in the future (for instance, presence of rust in a machine), and proposals for
improvement to safety, productivity, process performance or product quality. Maintenance and
production managers review these internal communications and design an action plan as part
of the continuous-improvement practise of the factory.
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Both applications are linked by the personnel model, as shown in Figure 4: persons
have qualifications and publish communications, so there is an explicit relationship between
the communications and the entities that model skills and training. All of the data are
stored in proprietary Structured Query Language (SQL) databases, so the datasets can be
extracted using SQL queries based on the model described above.

4.2. Preliminary Data Analysis

The study focuses narrowly on a specific section of the food-processing factory, the
packing section, and on a specific set of qualifications related to packing-process operations,
security, and quality. Table 1 shows the qualifications considered and classified in training
modules, as well as the different roles in which the qualification is required: Team Leader (1),
First Officer (2), and Specialist (5). The number in parentheses is the degree, or level in the
hierarchical organization of the line, with degree 1 representing the highest degree in the
hierarchy. Some qualifications in packing operations are specific to each machine (there are
19 different machines), but only one row is included in the table text (one per machine).

The study group was composed of 60 persons who have experience in the packing section
and who had sent communication messages in the last year. These messages were processed
to obtain a model of their skills, and this model was compared to the qualification tests the
operators had passed to obtain personalized training and upskilling recommendations. Figure 5
shows a heatmap that represents the qualifications of all personnel with experience in the
packing section. The X axis represents the operator order, sorted by the number of qualification
tests passed, and the Y axis represents the index of the qualification test, ordered by module. The
Y-axis labels show the module identifier. The heatmap uses a binary colour map to represent
whether a specific person has acquired a qualification through a qualification test (yellow
means yes; purple means no). There is a high number of workers with the minimum required
qualifications (at the right side of the figure).
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Table 1. Description of qualifications.

Modules Qualifications Roles

10—Packing Operations Routing and changeover (1 per machine) Team Leader (1), First Officer (2)

10—Packing Operations Initial conditions, alarms, and failure states (1 per machine) Team Leader (1), First Officer (2)

10—Packing Operations Routing and changeover (1 per machine) Team Leader (1), First Officer (2)

10—Packing Operations Initial conditions, alarms, and failure states (1 per machine) Team Leader (1), First Officer (2)

10—Packing Operations Cleaning procedures First Officer (2)

10—Packing Operations General principles: packing section First Officer (2), Specialist (5)

15—Quality Basic hygiene norms and food handling Team Leader (1), First Officer (2), Specialist (5)

15—Quality Food-handling certification Team Leader (1), First Officer (2), Specialist (5)

15—Quality Allergens management Team Leader (1), First Officer (2), Specialist (5)

15—Quality Hazard analysis and Critical control point Team Leader (1), First Officer (2), Specialist (5)

15—Quality Potential risks and Individual protective equipment Team Leader (1), First Officer (2)

15—Quality Quality procedures First Officer (2)

15—Quality Process control First Officer (2)

16—Packing Cleaning General principles: cleaning First Officer (2), Specialist (5)

16—Packing Cleaning Specific cleaning procedures First Officer (2), Specialist (5)

17—Specialist Training Line feeding: operations, security, and process control Specialist (5)

22—Security Emergency management and evacuation plan Team Leader (1), First Officer (2), Specialist (5)

22—Security General security risks First Officer (2)

22—Security Fall-prevention plan Team Leader (1), First Officer (2), Specialist (5)

22—Security General risks: hygiene Team Leader (1), First Officer (2), Specialist (5)

22—Security General risks: ergonomics Team Leader (1), First Officer (2), Specialist (5)

22—Security Action in the event of an accident Team Leader (1)
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4.3. Experimentation Example

This section contains a practical example utilizing use-case data to illustrate the
workings of the proposed methodological framework. Figure 6 shows a literal translation
of one of the messages used in internal communications, together with a fictional unique
identifier and the role of the person who issued the communication.
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Figure 6. Example communication.

The message highlights a maintenance issue describing a malfunctioning hose installed
in a cabin that may lead to a safety incident. This communication has high semantic
similarity with sentences found in the training materials that describe the end-of-shift
inspection procedures, as shown in Figure 7.
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Figure 7. Example sentence from training material.

Within the framework, this semantic similarity plays a crucial role in deducing whether
individuals are familiar with the procedures outlined in the training materials, based on
their communications. This inference mirrors a human-like approach of deducing some-
one’s knowledge by analysing how they articulate domain-specific matters. To illustrate
this approach, consider the sentence in Figure 7. It is semantically very similar to the
example internal communication, but it was not selected manually. Instead, we applied a
distance function—specifically, cosine distance– to compute the semantic distance between
the embeddings of the example communication sentence in Figure 6 and the embeddings
of all sentences across all training materials. The embeddings are generated using the
pre-trained BERT model selected for the implementation of the use case [88].

The cosine distance function yields a value within the range [0, 1], where a lower value
indicates a higher similarity. Consequently, for every sentence in the training materials,
a cosine distance value is computed, resulting in a vector v of length 3563 (number of
sentences in training materials). The index of the sentence in Figure 7 corresponds to
the index where the minimum of v is observed (argmin(v)), indicating the index with the
greatest similarity. This vector is represented in Figure 8, providing a clear depiction of how
the framework identifies the sentence from the training materials that is most semantically
similar to the communication sentence.

Moreover, a closer examination of Figure 8 reveals other indices of sentences from
training materials for which the cosine similarity is low, indicating high semantic similarity
to the communication sentence. Figure 9 shows the values of vector v sorted in ascending
order, positioning sentences with high semantic similarity (lower cosine-distance values)
towards the left of the figure. Looking at this figure, we can identify three different regions.
First, there is a rapid increase in the value, but this increase starts decaying around 0.4.
Beyond this point, the rate of increase in the cosine value slows gradually until it reaches a
value of about 0.8. Past this threshold, the cosine distance increases sharply once again.
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If we take a conservative approach, one might infer that the training materials in the
first region bear high similarity to the communication sentence. If the communicating
person does not have these qualifications, we should provide personalised training for them
because the person is expressing interest in related activities and procedures. Acquiring
related qualifications will yield higher levels of workplace satisfaction and in turn higher
added value for the organisation. However, it is important to note that the shape and the
specific boundaries between these regions depend on the model used and the sentences
compared. Employing statistical methodologies such as clustering can provide an estimate
of these values, supporting the interpretation of semantic similarity across the dataset.

Hence, semantic similarity can provide a model of the skill demonstrated by the
operator in executing this particular procedure. Furthermore, this data, combined with
the communicating person’s role, enable a qualification assessment, determining whether
the demonstrated skill aligns with the required qualifications for the role. This analytical
process can be scaled up to encompass all communications from a worker and all procedures
outlined in the training materials pertaining to a specific qualification, grouping the skills
models extracted for each of the communications sent by a person. In this case, the
cosine-distance representations will be two-dimensional arrays rather than vectors, but the
rationale of the methodological approach remains the same.

5. Results
5.1. Semantic Similarity between Training-Material Documents

The objective in this section is to analyse the semantic similarity between training-
material documents, applying the NLP pipeline described in the previous section to com-
pare them in pairs. As mentioned previously, the selected transformer requires that the
encoded texts be similar in length (symmetric semantic search), so the content is divided
into sentences to ensure that the length of the texts is approximately heterogeneous. Hence,
S-BERT transformers are used to obtain sentence embeddings for each sentence from a
document. Then, for every pair of files, the cosine distance between the sentence embed-
dings of each sentence is calculated and the minimum distance is selected to compute
the semantic similarity of the documents. The result is a MxM matrix C, where M is the
number of qualification tests and element cij represents the semantic similarity between
training-materials documents of qualification tests i and j. The matrix is symmetric because
the cosine-distance function is commutative. The values of the obtained matrix are shown
in the heatmap in Figure 10. The X and Y axes represent the document index, a unique
identifier of each document (ranging from 0 to N− 1). The qualification tests are ordered by
module, and the labels in both axes show the module identifier to facilitate the analysis of
the result. Values of cij that are close to 0 (represented in yellow in the figure) indicate that
documents i and j have very high semantic similarity, whereas values close to 1 (represented
in blue in the figure) indicate that the documents have little semantic similarity.

The results show that in general, the training-material documents have similar content,
according to this pipeline. Notably, the similarity is high in the regions near the diagonal
that are shown as yellow squares in Figure 10. These regions represent the semantic
similarity of documents from training materials in the same training module. Outside the
diagonal, similar shapes can be identified, showing that training materials from different
modules are also similar, except for documents in module 16 (hygiene, food handling and
allergens management), which have lower similarity compared to the rest of modules.

Semantic Similarity of Communications and Training Materials

To obtain the results presented in this section, sentences in communications are com-
pared to sentences in training-material documents. As in the previous section, S-BERT
sentence transformers are applied to obtain sentence embeddings for sentences in commu-
nications and sentences in training-material documents. The cosine-similarity function is
applied to the embeddings to estimate the semantic distance between pairs of sentences.
Then, coefficients are grouped by qualification and by person and the minimum grouping
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distance is used to estimate the semantic distance between a qualification and a person.
The result is a MxN matrix C (where M is the number of qualifications and N is the number
of persons in the study group) where element cij represents the semantic distance between
training-material documents of qualification test i and person j. The values of the matrix
are shown in the heatmap in Figure 11, using the same colour map and scale (values in
yellow represent high similarity between sentences). The training-material documents are
ordered by the corresponding training-module identifier, and the Y-axis labels indicate
the module identifier. The X axis represents the index of personnel and is ordered by the
number of qualifications acquired.
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The figure shows that in general (Figure 11), the communications of personnel with
more qualifications (on the left side of the figure) have on average a higher semantic
similarity to training-material documents than do the communications of personnel with
fewer qualifications (on the right side of the figure). This pattern can be seen in the fact
that the heatmap is predominantly yellow to on the left side of the figure. Still, there are
areas on the left side of the figure that show low semantic similarity. Hence, although these
operators are qualified, they do not send any internal communications that are semantically
related to the training-material documents. This result indicates that these persons need
training to reinforce knowledge of the corresponding skills. Similarly, on the right side
of the figure, there are areas in light green or yellow that show that personnel express
themselves in internal communications using language similar to that found in training-
material documents, although they have not formally acquired the qualification (or at least,
they have not received formal training or passed the corresponding qualification tests).
Therefore, these individuals should be encouraged to formally acquire the corresponding
qualifications, fostering internal promotion. The following subsection describes specific
recommendations, using the actual qualification tests to split the semantic-similarity results
and clustering the values to better differentiate among the results.
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5.2. Recommendations

To derive the recommendations, the semantic cosine-similarity results are split into
two different arrays, one containing the values corresponding to the qualifications acquired
by workers, noted as q, and another containing the values corresponding to qualifications
not acquired by workers, noted as n. The values are then clustered with Kmeans using
the Scipy library [89], as described in previous sections. The clustering of q results in the
clusters shown in Table 2.

Table 2. Values-clustering table.

Cluster Name Centroid Range Recommendation

High Similarity 0.185 [0–0.306] No recommendation

Medium Similarity 0.421 [0.307–0.586] Re-training recommended

Low Similarity 0.744 [0.588–1] Re-training highly recommended

Figure 12 shows the results obtained by the recommender system for all personnel.
In more detail, it shows the qualifications that need to be reinforced with re-training. In
cases in which these qualifications are critical (e.g., due to security or regulations), the
information is highly valuable both for the organization and for individual employees, as it
helps reinforce key company policies, concepts, and skills, thus preventing potential issues
and manufacturing defects. The figure also allows the identification of qualifications for
which the system recommends re-training for all employees. In these cases, the company
should also consider reviewing and reinforcing the associated training materials to ensure
that the low level of similarity is not due to a lack of adequate training materials. A
similar analysis can be performed on the vertical axis, identifying employees who exhibit
a low level of similarity for all qualifications. In such cases, it is recommended that the
cases be analysed individually. Note that the methodological framework relies on internal
personnel communications, so employees that do not engage in internal communications
will likely exhibit low levels of similarity for all qualifications. The clustering of array
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n results in the clusters described in Table 3. Figure 13 illustrates the final upskilling-
recommendation results.
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Table 3. Clustering of array n results.

Cluster Name Centroid Range Recommendation

High Similarity 0.186 [0–0.303] Upskilling highly recommended

Medium Similarity 0.420 [0.303–0.555] Upskilling recommended

Low Similarity 0.690 [0.556–1] No recommendation
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6. Conclusions

This paper presents a methodological framework based on LLMs to design person-
alised training programs to facilitate personnel upskilling in Industry 5.0. The methodolog-
ical framework shows how LLMs and natural-language interactions with operators can
be used to extract models of the operators’ skills and guide personnel-training programs
based on the extracted knowledge. Despite significant efforts to capture, develop, and
retain talent, many organisations are currently facing a shortfall of personnel qualified to
cope with exponential technological and societal change. The acquisition and engagement
of suitable personnel is becoming increasingly difficult. While automation, robotics, and
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artificial intelligence can automate and streamline many processes, their adoption also
requires human expertise. Industry 4.0 is transforming (rapidly) the roles and workplaces
of workers, rather than removing workers. Persons who are not able to receive training
and upskilling see themselves displaced from their workplace, and companies are not
able to cope with increasing pressures related to personnel shortages. While it is clear to
organisations that they need Industry 4.0 to scale up their businesses and remain competi-
tive, it is also clear that their workers are a necessary asset and that it is thus essential to
achieve high levels of commitment and engagement. Personalised training can certainly be
a cornerstone supporting this challenging transition, and the presented framework shows
a possible pathway to implementing such a system.

Based on this framework, the paper presents a use case based on a dataset from a
food-processing company. The use-case implementation uses S-BERT transformers, and
the results clearly demonstrate how the methodological framework can support the devel-
opment of personalised training and upskilling programs. This implementation should be
regarded as a first approach and obviously has some limitations. The main advantage is
that the natural-processing methods, techniques, and models used in the data pipelines
of this early prototype are industry-standard open-source tools. In this sense, the main
objective of this early implementation is to showcase the feasibility of implementing the
methodological framework in a real use case. The main limitations are that the selected
model does not consider sentiment (confidence, hesitation) or other important elements of
communication and that it does not take into account the conversation in full, instead using
tokenized sentences, so much valuable context information is missed. Most ambitious
future work based on state-of-the-art very large LLMs such as GPT, BLOOM, or LLaMa, can
clearly overcome these limitations. These models are instruction-tuned LLMs (fine-tuned
to carry out very general kinds of activities) and are able to perceive more subtle nuances in
natural language and discern the required information with a higher degree of confidence.
While the presented results are good, using instruction-tuned LLMs as the backbone of
the methodological approach presented in this paper can give extraordinary results with
much less effort. For this reason, while the core contributions of the research work herein
described are the definition of the methodological framework and the practical implemen-
tation, future work will aim in two directions: firstly, the incorporation of novel techniques,
leveraging state-of-the-art models to improve results; secondly, the implementation of
the continuous improvement stage. This stage will involve the integration of stakeholder
feedback, which will serve as a validation mechanism.
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