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Abstract

Organizations use cash management models to control balances to both avoid overdrafts

and obtain a profit from short-term investments. Most management models are based on

control bounds which are derived from the assumption of a particular cash flow probabil-

ity distribution. In this paper, we relax this strong assumption to fit cash management

models to data by means of stochastic and linear programming. We also introduce en-

sembles of random cash management models which are built by randomly selecting a

subsequence of the original cash flow data set. We illustrate our approach by means of a

real case study showing that a small random sample of data is enough to fit sufficiently

good bound-based models.

Keywords: Machine learning, stochastic programming, data-driven models, ensembles,

control bounds.

1. Introduction

A wide range of economic organizations manage cash for operational, precautionary

and speculative purposes (Keynes, 1936). Cash management models help decision-makers

in their daily job of controlling cash balances. Since the seminal works by Baumol (1952)

and Miller and Orr (1966), cash management models follow a inventory control approach.

Within this framework, cash balances are allowed to wander around until some control

bounds, usually a higher bound and a lower bound, are reached. Then, a control action

is made to restore the balance to a given target level. The set of control actions deployed
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over a period of time is called a policy and it is usually determined by simple rules derived

from the set of bounds of the model.

The bound-based control approach is based on the strong assumption of a particular

probability distribution for cash flows, which is usually assumed to be a normal, indepen-

dent and stationary cash flow as in Miller and Orr (1966), Baccarin (2009), Premachandra

(2004). Surprisingly, the use of empirical data sets in cash management research is lim-

ited to recent contributions such as Gormley and Meade (2007) and Salas-Molina et al.

(2017), in which alternative forecasters are used to obtain predictions as a key input

to cash management models, and Salas-Molina et al. (2016), in which a multiobjective

approach to the cash management problem is proposed. We here follow a different data-

driven approach. Instead of fitting forecasters as in Gormley and Meade (2007) and

Salas-Molina et al. (2017), we here fit cash management models. Furthermore, Gormley

and Meade (2007) proposed a bound-based model using forecasts as a key input and they

used genetic algorithms to find sufficiently good bounds. On the other hand, Salas-Molina

et al. (2016) used simulation techniques and the Miller and Orr (1966) model within a

multiobjective framework considering not only the cost but also the risk of alternative

policies. In this paper, we first propose a mixed-integer linear program that derives from

a general stochastic programming problem to obtain a bound-based model from available

data. In order to avoid the computational burden of possibly very large mixed-integer

linear programs, we propose a method based on random cash flow subsequences.

We here follow a data-driven approach that mainly focuses on models for cash man-

agers. However, we rely on several machine learning concepts to build our approach.

Machine learning covers a wide range of algorithms that can learn from data to make

better decisions. A paradigmatic case is deep learning because it requires very little

engineering and it can take advantage of computational power and data availability (Le-

Cun et al., 2015, Schmidhuber, 2015). Deep learning models are built through multiple

processing layers that are able to discover how computers should modify or adapt their

actions to be more precise. On the other hand, random forests are also an interesting

technique based on an ensemble of slightly different decision trees (Ho, 1998, Breiman,

2001). The output of the global model is then obtained by combining the output of

multiple randomly trained models. In this paper, we use this particular feature to fit
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random cash management models.

Fitting a model to data means finding the best parameters of the model according

to an objective function and a given data set. We here describe a general procedure to

fit a set of control bounds to a given data set of cash flows. We make no assumption

on the form of the cash flow process under consideration. Then, our approach accepts

as a key input a data set with either: (i) past cash flow observations; (ii) cash flows

sampled from a particular probability distribution; or (iii) a set of cash flow predictions.

Similarly to the ordinary least squares method used in linear regression, we rely on an

optimization procedure to produce the solution that minimizes some objective function

for a given data set. Instead of a data set with previous examples, we use a data set

with cash flow observations. Instead of minimizing the sum of squared deviations, we

minimize the sum of costs. And instead of obtaining a set of regression coefficients, we

obtain a set of control bounds ready to be used by cash managers.

Relevant related works are those based on stochastic programming (SP) to address

different cash management problems as in Golub et al. (1995), Gardin et al. (1995),

Gondzio and Kouwenberg (2001) and Castro (2009). In these works, the authors rely on

SP and a set of previous realizations of random variables to improve current techniques

to manage cash (e.g. in automatic teller machines in the case of Castro (2009)). Thus,

this paper is an extension of this body of SP works to fit bound-based models in cash

management. A further advantage of our proposal is that the solution provided is a

cash management model of the Miller and Orr (1966) type. In other words, we provide

cash managers with a set of simple decision rules based on a set of control bounds that

proved to be optimal for a given cash flow data set. This fact avoids the drawback

of solving a new (possibly large) problem at each time step when information about a

new initial condition is available according to the so-called receding horizon philosophy

(Bemporad and Morari, 1999, Camacho and Bordons, 2007). In addition, our approach

can be extended to fit other cash management models such as the one proposed by Stone

(1972) or by Gormley and Meade (2007).

In order to speed up computations, we describe a procedure to randomly select a

subsequence of the original cash flow data set to construct an ensemble of random cash

management models. The policy to deploy is elicited by averaging the output of ran-
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domly trained models similarly to the methods used in machine learning to train random

forests (Ho, 1998, Breiman, 2001). To illustrate our approach, we present a case study

with real data from an industrial company in Spain. As a benchmark, we use the equa-

tions proposed by the Miller and Orr (1966) model to obtain a set of three bounds.

The reason to select this model is twofold. First, its relevance. The Miller and Orr

model was the first stochastic cash management model and it has become a framework

for subsequent research in cash management (some recent examples are Premachandra

(2004), da Costa Moraes and Nagano (2014)). Second, its simplicity. While other models

propose a higher number of bounds (see e.g. Eppen and Fama (1969), Stone (1972)),

the Miller and Orr model is based on only three control bounds allowing us to limit the

number of decision variables and constraints for illustrative purposes.

Summarizing, we propose a general methodology to fit cash management models

based on control bounds to data as a feasible way to solve the cash management problem

(CMP). More precisely, we highlight three main contributions:

1. We provide a method to solve the CMP when using bound-based models without

making any assumption on the underlying cash flow process.

2. We construct data-driven cash management models by fitting parameters to data.

3. We introduce ensembles of random cash management models.

This paper is organized as follows. In Section 2, we provide useful background on

the Miller and Orr model, the usual cost functions used in cash management and about

stochastic programming in cash management. In Section 3, we introduce our method

to fit models to cash flow data sets. Next, we present a case study using real data in

Section 4. Finally, we conclude in Section 5 suggesting natural extensions of our work.

2. Background

In this section, we first provide useful background on the Miller and Orr model that

we later use in a case study to illustrate our data-driven approach. Next, we describe the

usual cost functions used in cash management. Finally, we describe a related approach

to cash management based on stochastic programming.
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2.1. The Miller and Orr model

Consider a cash management system for a typical company as shown in Figure 1.

This system comprises two accounts (depicted as circles), a control action xt between

accounts and an external cash flow ft summarizing both inflows from debtors and outflows

to creditors at each time step t. Cash managers can adjust cash balances bt in account 1

for operational purposes by selling available investments in account 2 through control

action xt at a fixed cost γ0. On the other hand, idle cash balances in account 1 can

be allocated in investment account 2 in exchange for a given return v per money unit

when xt < 0. Miller and Orr (1966) proposed a model to control balances for the two-

assets system in Figure 1 by assuming that stochastic cash flows ft are generated by a

stationary random walk with standard deviation σ.

1

ft

2
xt

Figure 1: A cash management system with two assets.

Under this framework, cash managers seek to find sequence x = {x1, x2, . . . , xτ} to

minimize long-rung average daily cost of managing their cash balances over any planning

horizon of τ days given by:

min

[
γ0 ·

E(n)

τ
+ v · E(b)

]
(1)

where E(n) is the expected number of transfers n = {|x| : xi 6= 0} during planning

horizon τ , and E(b) is the average daily balance derived from sequence b = {b1, b2, . . . , bτ}

containing cash balances at each time step. Following the recommendations in Gormley

and Meade (2007), we use an indicator function Iq that takes value one when condition

q holds, zero otherwise, to rewrite objective function in equation (1) as follows:

min

[
γ0
τ

τ∑
t=1

Ixt 6=0 +
v

τ

τ∑
t=1

bt

]
(2)

subject to the following state transition law with an initial state b0:

bt = bt−1 + ft + xt. (3)
5



Miller and Orr (1966) proposed a bound-based model by showing that the optimal

policy (when cash flows follow a stationary random walk with standard deviation σ) is

obtained by defining three control bounds L, Z and H. These bounds allow determining

specific control action xt and cash balance bt at each time step t from a previous balance

bt−1 and an external cash flow ft. Formally, control action xt is elicited by comparing

the current cash balance derived from previous balance bt−1 and actual cash flow ft to

the lower and upper bounds as follows:

xt =


Z − bt−1 − ft, if bt−1 + ft > H

0, if L < bt−1 + ft < H

Z − bt−1 − ft, if bt−1 + ft < L.

(4)

Although Miller and Orr set lower limit L to zero in their work, a real cash manager

should set a lower limit above zero for precautionary motives as recommended in Ross

et al. (2002). This lower limit represents a safety cash buffer and its selection will depend

on the level of risk the company is willing to accept. As a result, when the cash balance

reaches L, a positive transfer is made to restore the balance to Z (from account 2 to

account 1 in Figure 1). Similarly, when H is reached a negative transfer (from account 1

to account 2 in Figure 1) is made to restore the balance to a target level Z as shown

in Figure 2. After setting lower limit L for precautionary purposes and by minimizing

objective function (2) with respect to policy x, Miller and Orr (1966) showed that the

optimal policy is given by equation (4) with parameters Z and H set as follows:

Z = L+

(
3 · γ0 · σ2

4 · v

)1/3

(5)

and

H = 3 · Z − 2 · L. (6)

The reasoning behind the optimality of these bounds requires rewriting objective

function (1) in terms of bounds H and Z. By setting R = H−Z and L = 0, the problem

can be stated in terms of the variance of the net cash flows as:

min
R,Z

{
γ0σ

2

RZ
+
v(R+ 2Z)

3

}
. (7)

The first term of objective function (7) relates transaction cost γ0 with the inverse

value of the expected duration of a random walk of variance σ starting at level Z and
6
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Figure 2: The Miller and Orr model.

ending at bounds H or L. The second term relates the holding cost with the average

cash balance given by (H + Z)/3. The necessary conditions for a minimum are that

the partial derivatives of objective function (7) with respect to R and Z are equal to

zero that ultimately lead to the bound expressions described in equations (5) and (6).

These results imply that the greater the transfer cost (γ0), the higher the target cash

balance (Z), and the greater the holding cost (v), the lower the target cash balance (Z).

However, the greater the uncertainty of net daily cash flows, measured by σ, the higher

the target cash balance (Z).

2.2. Holding and transaction costs in cash management

In what follows, we consider a more general approach than Miller and Orr (1966)

with respect to cost functions as described in recent cash management works (see e.g.

Gormley and Meade (2007), Salas-Molina et al. (2016)). Any positive transaction adding

cash to an account may have a cost, which may include a fixed part (γ+0 ) and a variable

part (γ+1 ). On the other hand, a negative transaction removing cash from an account

may also have a cost with a fixed part (γ−0 ) and a variable part (γ−1 ). Furthermore, at

the end of the day, a holding cost (v) per money unit is charged if a positive cash balance
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occurs, or a penalty cost (u) per money unit is charged if a negative cash balance occurs.

According to this cost structure, a general daily cost function is defined as:

c(xt) = Γ(xt) + Λ(bt) (8)

where Γ(xt) is a transfer cost function, and Λ(bt) stands for a holding/shortage cost

function. The transfer cost function Γ(xt) is defined as:

Γ(xt) =


γ−0 − γ

−
1 · xt if xt < 0,

0 if xt = 0,

γ+0 + γ+1 · xt if xt > 0.

(9)

Additionally, the holding/shortage cost function Λ(bt) is expressed as:

Λ(bt) =

 −u · bt if bt < 0;u > 0,

v · bt if bt ≥ 0; v > 0.
(10)

As a result, cash managers aiming to derive cash management policies need to solve

the following program:

min
1

τ

τ∑
t=1

[
(γ−0 − γ

−
1 · xt)Ixt<0 + (γ+0 + γ+1 · xt)Ixt>0 + bt(v · Ibt≥0 − u · Ibt<0)

]
(11)

subject to transition equation (3). Note that the presence of indicator functions Iq in

objective function (11) implies non-linearity since these functions depend on the value of

decision variables xt and bt. This fact complicates the selection of the best policies. In

Section 3, we provide a method to derive cash management policies from data that relies

on mixed integer linear programming to overcome this problem.

2.3. Stochastic programing and cash management

Within a general formulation of a stochastic problem (Birge and Louveaux, 2011),

we have to make decisions under some degree of uncertainty. These decisions are called

first-stage decisions and are usually summarized in a vector x of decision variables. When

new information on the realization of some random vector ξ is available, second-stage

decisions y are taken. The ultimate goal is to find decisions x that minimize average

costs according to the distribution of ξ by means of the so-called stochastic program with

recourse as follows:

min
x
c(x) + Eξ [Q(x, ξ)] (12)
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subject to:

Ax = d (13)

x ∈ Rn1 , x ≥ 0 (14)

where:

Q(x, ξ) = min
y
{q(y, ξ) | Wy = h(ξ)− T (ξ)x} (15)

y ∈ Rn2 (16)

where q(y, ξ), h(ξ) and T (ξ) are usually linear functions of random variable ξ, matrix

W is assumed to be fixed, and Eξ denote mathematical expectation with respect to ξ.

Cash management usually involves a sequence of decisions over a given planning

horizon. Then, we need to formulate a multistage stochastic problem with τ time steps

(Castro, 2009):

min
xi

c1(x1) + Eξ2 [Q(x, ξτ )] (17)

subject to:

W1x1 = h1 (18)

W2x2(ξ2) + T1(ξ2)x1 = h2(ξ2) (19)

Wixi(ξ
i) + Ti−1(ξi−1)xi−1 = hi(ξ

i), i = 3, 4, . . . , τ (20)

x1 ≥ 0, xi(ξi) ≥ 0, i = 2, 3, . . . , τ, (21)

where ξi denotes the history of random events up to time step i, Wi (i = 1, . . . , τ) are

known mi × ni matrices, h1 is a known vector in Rm1 , Ti−1 are mi × (ni − 1) random

matrices, hi are random vectors in Rm1 , and xi (i = 1, . . . , τ) are vectors of decision

variables at time step i that depends on past events. In words, term Eξ2 [Q(x, ξτ )] in

objective function (17) summarizes the expected cost from the second time step to the

end of planning horizon τ . In addition, constraints (18), (19) and (20) define the state

transition between stages. In Section 3, we will see that our data-driven proposal is a

special case of the general multistage stochastic problem encoded from equation (17) to

(21).

9



3. A data-driven procedure to fit bound-based models

In this section, we introduce our data-driven stochastic approach to select the set

of control bounds that determines the policy to be deployed by cash managers when

using bound-based models. We first provide some useful definitions; next, we describe a

novel method to fit bound-based cash management models; and finally, we introduce the

concept of generalization power of cash management models.

3.1. Some useful definitions

As described in Section 2.2, cash managers make decisions under some economic

context.

Definition 1. A cost structure α is a tuple
(
γ+0 , γ

−
0 , γ

+
1 , γ

−
1 , v, u

)
defining the trans-

action and holding costs for a given context.

Within this context, we assume that cash managers have been able to observe the

external net cash flows during a given period of time. Then, a data set of observed net

cash flows is available as a key input to derive a cash management model.

Definition 2. Given a cash flow data set f = {ft : t = 1, 2, . . . , N} of size N ∈ N,

an initial condition b0, and a cost structure α, a cash management model h(f , b0, α)

returns a policy that optimizes some objective function.

By considering alternative cash flow data sets, cash managers can design a number

of different cash management models to define a combined policy.

Definition 3. An ensemble of cash management models {hk : k = 1, 2, . . . ,K} of

size K ∈ N is a collection of models that returns a policy by combining the policy derived

from each model.

By randomly selecting a part of a larger data set, cash managers can use alternative

cash flow data sets to build a collection of models.

Definition 4. A random cash management set (RCMS) is an ensemble of mod-

els where each model hk(b0,fk, α) is trained by randomly selecting a subsequence fk

belonging to a larger cash flow sequence f .
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Given an initial condition b0, a context α, and a cash flow data set f , we next present

method to fit a model of the Miller and Orr type as an instance of a general model

h(f , b0, α).

3.2. Fitting bound-based cash management models

Recall from the introduction that we here follow a data-driven approach similar to

those used in machine learning to fit models to data. The underlying idea behind the

proposed methodology is in line with the main stream of statistical learning approaches

ranging from regression analysis to non-parametric estimation. Similarly to linear regres-

sion depicted in Figure 3 (a), we here use mixed integer linear programming to produce

the optimal bound-based model that minimizes the sum of holding and transactions costs

introduced in Section 2.2 for a given data set of cash flows. The most remarkable dif-

ference is that instead of obtaining a set of regression coefficients, we obtain a set of

control bounds ready to be used by cash managers to deploy a control policy as shown

in Figure 3 (b).
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Figure 3: (a) Fitting a linear model to data; (b) Fitting a bound-based model to data.

In order fit a model h(f , b0, α), we next reformulate objective function (11) with

the sum of holding and transaction costs as a mixed integer linear function. To this

end, we transform the common two-assets setting shown in Figure 1 into an equivalent

configuration as depicted in Figure 4. Let xt be the difference between control actions

xt = x+t − x−t at account 1, with x+t and x−t being non-negative real numbers. In this
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setting, the transfer cost function in equation (9) can be expressed as follows:

Γ(xt) = γ+0 · z
+
t + γ+1 · x

+
t + γ−0 · z

−
t + γ−1 · x

−
t (22)

where z+t , z
−
t ∈ {0, 1} are binary auxiliary variables satisfying:

z+t + z−t ≤ 1 (23)

x+t ≤M · z+t (24)

x−t ≤M · z−t (25)

where M is a very large number. A similar approach can be followed to linearize the

holding/penalty cost function in equation (10). For simplicity, we assume u = ∞ and

Λ(bt) = v · bt to restrict ourselves to the usual situation in which cash managers discard

policies with negative balances due to high penalty costs. Then, we can rewrite the cost

function in equation (8) as follows:

c(xt) = γ+0 · z
+
t + γ+1 · x

+
t + γ−0 · z

−
t + γ−1 · x

−
t + v · bt. (26)

1

ft

2

x+t

x−t

Figure 4: The common two-assets setting in the cash management problem.

Furthermore, we must also rewrite the law of motion in equation (3) as:

bt = bt−1 + ft + x+t − x−t . (27)

According to the Miller and Orr policy described in equation (4), positive transactions

x+t occur when bound L is reached. Thus, z+t = 1 when bt−1 + ft ≤ L, and the amount

transferred is given by x+t = Z − bt−1− ft. This can be expressed by the following linear

constraints:

bt−1 + ft − L ≤M(1− z+t ) (28)

−M(1− z+t ) ≤ x+t − Z + bt−1 + ft ≤M(1− z+t ). (29)
12



Furthermore, negative transactions x−t occur when bound H is reached. Thus, z−t = 1

when bt−1 + ft ≥ H, and the amount transferred is given by x−t = bt−1 + ft − Z. This

can be expressed by the following linear constraints:

H − bt−1 − ft ≤M(1− z−t ) (30)

−M(1− z−t ) ≤ x−t + Z − bt−1 − ft ≤M(1− z−t ). (31)

A third group of conditions must hold when the cash balance is between bounds L

and H. Thus, when z+t = 0 and z−t = 0, no transaction occurs. This can be expressed

by the following linear constraints:

L− bt−1 − ft ≤M(z+t + z−t ) (32)

bt−1 + ft −H ≤M(z+t + z−t ) (33)

−M · z+t ≤ x+t ≤M · z+t (34)

−M · z−t ≤ x−t ≤M · z−t . (35)

As a result, given an initial cash balance b0 and a sequence of cash flow observations

{ft : t = 1, 2, . . . , N} as a given data set, we are in a position to elicit the set of optimal

control bounds for policies of the Miller and Orr type by solving the following mixed

integer linear program:

min

N∑
t=1

[
γ+0 · z

+
t + γ+1 · x

+
t + γ−0 · z

−
t + γ−1 · x

−
t + v · bt

]
(36)

subject to:

bt = bt−1 + ft + x+t − x−t (37)

bt−1 + ft − L ≤M(1− z+t ) (38)

−M(1− z+t ) ≤ x+t − Z + bt−1 + ft ≤M(1− z+t ) (39)

H − bt−1 − ft ≤M(1− z−t ) (40)

−M(1− z−t ) ≤ x−t + Z − bt−1 − ft ≤M(1− z−t ) (41)

L− bt−1 − ft ≤M(z+t + z−t ) (42)

bt−1 + ft −H ≤M(z+t + z−t ) (43)
13



−M · z+t ≤ x+t ≤M · z+t (44)

−M · z−t ≤ x−t ≤M · z−t (45)

z+t + z−t ≤ 1 (46)

x+t ≤M · z+t (47)

x−t ≤M · z−t (48)

bt ≥ bmin (49)

where the final decision variables are bounds L, Z and H that determine the optimal

control policy. At each time step, four additional auxiliary decision variables, two real

(x+t and x−t ) and two binary (z+t and z−t ) are necessary to solve the problem. Following

the recommendations in Ross et al. (2002) about the Miller and Orr model, we also set

a minimum cash balance for precautionary purposes. In practice, setting this value bmin

is equivalent to set a lower limit for bound L.

Note that the problem encoded from equation (36) to (49) is a special case of the mul-

tistage stochastic problem described from (17) to (21) adapted to the characteristics of

the Miller and Orr (1966) model where random variable ξi = ft. On the one hand, objec-

tive function (36) is the expected cost over some time interval which is equivalent to add

the cost of first decision c1(x1) to the expected cost of the rest of decisions summarized

in Eξ2 [Q(x, ξτ )] from equation (17). On the other hand, balance transition equations

such as (37) or constraint (38) relate current state decision variables with previous ones

as in constraint (20). As an illustrative example, if vectors xi =
[
bt, x

+
t , x

−
t , z

+
t , yt

]′
and

xi−1 =
[
bt−1, x

+
t−1, x

−
t−1, z

+
t−1, yt−1

]′
summarize two subsets of decision variables at two

consecutive time steps as in equation (20), where yt and yt−1 are additional non-negative

auxiliary variables used to transform an inequality into an equality, we can set Wi, Ti−1

and hi as follows:

Wi =



1 −1 1 0 0

0 0 0 M 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


;Ti−1 =



−1 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


;hi =



ft

M − ft + L

0

0

0


(50)
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to obtain equation (37) by computing:

Wixi + Ti−1xi−1 = hi. (51)

By considering the complete vector of decision variables, we can follow a similar

reasoning to represent the rest of constraints of the formulation encoded from equations

(36) to (49) as a general stochastic program such as the one described in Section 2.3

through the use of larger matrices Wi, Ti−1 and vectors hi, which we here omit for

economy of space.

The model proposed in this section is based on an observed cash flow data set as a

possible realization of an underlying cash flow process. Then, the solution to the program

is the best Miller and Orr model in terms of cost adjusted to the observed cash flow.

Intuitively, the goodness of the model depends on how representative of the underlying

cash flow process is the data used to fit the model. The higher the number of observations

N included in the data set used to fit the model, the higher the probability that the model

better captures the real characteristics of the underlying cash flow process. For instance,

if the sample volatility is a good estimation of the real volatility, the model will handle

well cash flows derived from the real process. The rationale is the same that it is behind

modern machine learning techniques aiming to obtain models that generalize well the

underlying process. However, a balance between representativeness of the model and

computational efficiency must be considered.

However, it is important to highlight that the size N of the available data set may

limit the utility of this procedure for computational reasons. Due to the presence of

binary variables in the minimization problem encoded from equation (36) to (49), com-

putation times may result prohibitive for large data sets. In order to mitigate this effect,

we propose ensemble methods and random subsequences to fit cash management models

as formally introduced in Definitions 3 and 4. Selecting random subsequences of the

input data space has been fruitfully used to construct decision tree models (Ho, 1998,

Breiman, 2001). Furthermore, ensemble methods are learning algorithms that construct

a set of models and then predict by taking a possibly weighted average of their predic-

tions (Dietterich, 2000). Note that the random selection of a subsequence from a time

indexed cash flow may be performed by different methods. Taking a uniform sample

with replacement as in bagging (Breiman, 1996), or weighting the observations to pro-
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duce a biased selection similarly to boosting (Freund and Schapire, 1996), are suitable

procedures.

3.3. Generalization power of cash management models

Another key feature in machine learning is the appropriateness of a particular predic-

tive model to a given data set. The goodness of fit is usually evaluated by the predictive

accuracy that refers to how well the model is able to reproduce the data used to fit the

model (Makridakis et al., 2008). In this paper, we follow the approach of measuring how

well a particular cash management model fits to a given data set by computing the sum

of holding and transaction costs. Furthermore, we propose to measure the utility of any

model derived from the optimization problem described in Section 3.2 in comparison to

a benchmark model. An interesting benchmark model is the trivial strategy of taking

no control action. By comparing performances of models to trivial strategies, we are

implicitly checking if cash management models are worthwhile along the lines of Dael-

lenbach (1974). We can also use alternative cash management models as a benchmark.

In the following case study, we use the equations proposed by the Miller and Orr model

described in Section 2 for benchmarking purposes.

As a result, given a cash flow data set f , we define the goodness of fit G(f) as:

G(f) =
C(f)

C0(f)
(52)

where C(f) is the total cost of the fitted model over data set f , and C0(f) is the total

cost of the benchmark model over the same data set. The lower the value of G, the better

the model with respect to the benchmark. However, we are usually more interested in

the generalization power of models when dealing with data not used to fit the model.

In machine learning, the generalization power of predictive models is estimated by the

accuracy of the model in terms of the deviation of forecasts from actual values in a

test data set not used to fit the model (Makridakis et al., 2008, Provost and Fawcett,

2013). To this end, the existing data set is usually split in a training set to fit the model

(in-sample data) and a test set to evaluate the model (out-of-sample data). Next, we

estimate the generalization power of a cash management model by computing its relative

performance with respect to a benchmark model over a test set:

G(f test) =
C(f test)

C0(f test)
(53)
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where f test is a cash flow data set not used to fit the model.

A more sophisticated technique for estimating the generalization power is cross-

validation. Unlike training and test set splitting, cross-validation estimates the gen-

eralization power of a model by performing multiple splits (Hastie et al., 2009, Provost

and Fawcett, 2013). This method estimates the generalization power of the model across

the available data set obtaining useful statistics such as the mean and variance of the

expected performance.

4. Case study

In this section, we describe a case study based on a real cash flow data set from an

industrial company in Spain that has been recently used in Salas-Molina et al. (2017).

This data set contains 2717 daily net cash flows on working days covering a period of

more than ten years with mean 0.009 and a high variability 0.097 in terms of standard

deviation, both figures in millions of euros. In what follows, we first describe a method

to estimate the generalization power of the RCMS defined in Section 3.1. Next, we

study the impact of alternative economic contexts on generalization power, and finally,

we explore the influence of the number of cash flow observations to fit a RCMS. All the

experiments in this case study are performed on Jupyter Notebooks executed on a CPU

Intel Core Duo E8400 at 3 GHz with 4 GB of RAM under operating system Windows

10 Professional 64 bits. Mathematical programs are solved through the Python interface

of Gurobi optimization software (Gurobi Optimization, Inc, 2017).

4.1. Estimating the generalization power of random cash management models

Using the common 80/20 % split to produce a training and a test set would force

us to solve a mixed integer linear program with almost 8700 decisions variables. One

of the main purposes of proposing ensembles of models such as the RCMS introduced

in Section 3.2 is to obtain a ready-to-use model without solving the extensive problem

encoded from equation (36) to (49) for a large sequence of observations f1, f2, . . . , fN

when N is large as it is the case of our data set with N = 2717 cash flows. In order to

support this approach with computational results, we next evaluate efficiency in terms

of the required computing time to solve the problem for a range of different size samples

17



in which n� N holds. The results obtained discouraged us from testing larger values of

n since we think that longer computing times are not acceptable in practice from a cash

management point of view.
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Figure 5: Run time for different size samples.

In Figure 5, we show the average run time required to solve real instances of problem

(36)-(49) using a state-of-the-art integer optimization solver such as Gurobi for different

size samples. We also depict generalization power G(f test) computed using expression

(53) to evaluate the trade-off between efficiency and generalization power of the RCMS.

The results in Figure 5 show that run times rapidly increase with the number of ob-

servations used to fit the model. However, the generalization power of models remains

remarkably stable. As a result, we can reasonably infer that solving the extensive for-

mulation for N = 2717 observations would lead to prohibitive computing times. To

overcome this drawback, we follow the strategy of using a relatively low number of ob-

servations fit a good bound-based model. Thus, we here recommend the use of RCMS

as a suitable method to find a balance between efficiency and generalization power of

bound-based models. In what follows, we use RCMS to fit a cash management model of

the Miller and Orr type to the data provided by the company. To this end, we proceed

as detailed in Algorithm 1.
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Algorithm 1: Generalization power estimation for cash management models

1 Input: Cash flow data set f ; initial balance b0; number n of observations to fit

the model; number of randomly trained models K; cost structure α; benchmark

model h0; and training/test set rate r;

2 Output: Generalization power for a cash management model;

3 Split f in f train and f test according to r;

4 for k = 1, 2, . . . ,K do

5 Randomly sample n observations from f train to obtain fk;

6 Estimate the model hk(b0,fk, α) by solving program (36)-(49) with N = n;

7 end

8 Obtain model h(b0,f train, α) by averaging parameters of hk;

9 Compute G(f test) = C(f test)/C0(f test) from the cost of deploying h and h0;

Note that Algorithm 1 can be used for a single generalization power estimate, but it

can be replicated as many times as needed for cross-validation. In this case study, we use

a training set wit the first 80% of the observations and a test set with the remaining 20%

since we aim to test the utility of the model with the most recent data. As an illustrative

example, let us consider the following cost structure selected from those proposed in

da Costa Moraes and Nagano (2014):

α1 =
(
γ+0 = 20e, γ−0 = 20e, γ+1 = 0.01%, γ−1 = 0.01%, v = 0.02%, u =∞

)
. (54)

In this case study, we use as a benchmark the Miller and Orr model derived from the

application of equations (5) and (6) from Section 2. According to the recommendations

in Ross et al. (2002), we set a lower bound L for precautionary purposes. A suitable

way to do it is setting a value proportional to the empirical standard deviation of cash

flows along the lines of Ben-Tal and Nemirovski (1999), Ben-Tal et al. (2009) for robust

optimization. Then, we set:

L = δ · σ (55)

where σ is the empirical standard deviation of the cash flow data set and δ is a parameter

reflecting the attitude towards risk of cash managers so that the higher the value of δ, the

more averse to risk they are. Let us consider as abnormal cash flows those with absolute
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value above five standard deviations as recommended in Gormley and Meade (2007).

Then, we set δ = 5 for precautionary purposes in order to ensure that only abnormal

cash flows (only 0.25% of the observations in this data set) may result in a negative cash

balance.

In a first numerical example, we aim to compare the generalization power achieved

by our RCMS from Section 3.1 with respect to the Miller and Orr equations described

in Section 2. To this end, we first split the whole cash flow data set in a training set

with the first 80% of the observations and a test set with the remaining 20%. From the

standard deviation of cash flows in the training set and cost structure α1 in tuple (54), we

obtain a Miller and Orr model using equations (55), (5) and (6) to obtain (L0, Z0, H0) =

(0.48, 0.57, 0.75), figures in millions of Euros. Starting at an initial stable cash balance

for both models equal to Z from equation (5), we use Algorithm 1 with K = 20 and

n = 25 to obtain a RCMS with (L,Z,H) = (0.46, 0.50, 0.64) and G(f test) = 0.88. Since

the generalization power is below one, our RCMS performs better than the benchmark.

Note also that only 25 samples from the training set and 20 randomly trained models are

enough for our RCMS to reduce the cost with respect to the Miller and Orr equations

evaluated over the test set.

4.2. Generalization versus economic context

Cash managers may be interested in analyzing the impact of alternative economic

contexts on the generalization power of RCMS. In this section, we compare the general-

ization power of a RCMS (with K = 20 and n = 25) to the Miller and Orr benchmark

by applying Algorithm 1 to different cost structures. In addition to cost structure α1

described in tuple (54), we present in Table 1 the results obtained for different combina-

tions of holding and transaction costs. More precisely, we consider the case when: fixed

transaction costs are doubled (α2); variable transaction costs are set to zero (α3); fixed

transaction costs are doubled and variable transaction costs are set to zero (α4); holding

costs are doubled (α5); both fixed transaction and holding costs are doubled and variable

transaction costs are set to zero (α6); variable transaction costs are doubled (α7); both

fixed and variable transaction costs and also holding costs are doubled (α8). As in the

example in Section 4.1, we assume u =∞, for all contexts in Table 1.
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Table 1: Generalization power of a RCMS with K = 20 and n = 25 for different economic contexts

Context γ+0 (e) γ−0 (e) γ+1 (%) γ−1 (%) v(%) G(f test)

α1 20 20 0.01 0.01 0.02 0.88

α2 40 40 0.01 0.01 0.02 0,89

α3 20 20 0 0 0.02 0,85

α4 40 40 0 0 0.02 0,85

α5 20 20 0.01 0.01 0.04 0,88

α6 40 40 0 0 0.04 0,86

α7 20 20 0.02 0.02 0.02 0,89

α8 40 40 0.02 0.02 0.04 0,88

According to equations (52) and (53), the lower the value of G(f test), the better the

performance of the RCMS with respect to the Miller and Orr benchmark. Since the

generalization power is quite stable, we can conclude that the impact of changes in the

economic context is reduced.

4.3. Generalization versus number of observations used to fit a RCMS

An interesting additional exercise consists in determining the minimum number of

samples that allow our RCMS to improve the generalization power of the benchmark.

We may be also interested in the number of samples from which our RCMS does not

produce any further improvement or even worsen its performance. Note that in the limit,

when the size of the sample approaches the size of the training set, the performance of

our RCMS and the Miller and Orr benchmark should be very similar. We answer these

questions by means of a learning plot mapping the number of samples n used to train

our RCMS to the generalization power G over the test set.

In Figure 6, we represent the generalization power for ensembles of 20 randomly

trained cash management models for different small sample sizes of the training set in

steps of two. Sizes below 16 produce results much worse than the benchmark that we

remove from the plot for scale reasons. From the analysis of this plot, we can highlight

three interesting points: (i) our RCMS consistently outperforms the Miller and Orr

benchmark for a wide range of small samples; (ii) the best sample size seems to be
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around sizes from 18 to 22 observations; and (iii) there is a slight increasing trend in the

generalization power with the sample size.
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Figure 6: Learning plot for random cash management models.

5. Concluding remarks

Organizations can leverage optimization models to improve data-driven decision-

making in finance. Most cash management models are based on the assumption of a

particular underlying cash flow process usually assumed to be independent, stationary

and Gaussian. In this paper, we relax this strong assumption to fit cash management

models to data by relying on both recent machine learning techniques and mathematical

programming.

In an attempt to extract useful knowledge from data, we describe a general procedure

based on mixed integer linear programs derived from a general stochastic programming

approach to elicit the best bound-based model from a given cash flow data set. Our

approach is suitable for a wide range of organizations since we use net cash flows that

summarize an arbitrary number of flows in a single figure per time step as an input

to the model. To reduce the computational effort required to solve large mixed integer

linear programs, we also introduce the concept of ensembles of random cash management

models. These ensembles are built by randomly selecting a subsequence of the original
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cash flow data set. Interestingly, the results from a case study using real data show

that a small sample size is enough to fit better bound-based models than a benchmark

based on the whole training set. These results must encourage cash managers to find

a balance between computational effort and generalization power of cash management

models deployed to deal with real cash flows.

It is also important to highlight that our approach can be applied to a variety of

data sets including past cash flow observations, draws from a particular probability dis-

tribution or even forecasts. Summarizing, we show that stochastic and mixed integer

linear programming can be used to fit cash management models to data as way to solve

the cash management problem without making any assumption on the available data.

Natural extensions of our work may explore more sophisticated methods to randomly

train cash management models.
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