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Abstract In this paper, we consider cash management systems with multiple
bank accounts described by a given particular relationship between accounts
and by a linear state transition law. Since cash managers may simultaneously
consider a number of possibly conflicting goals, we provide a general stochas-
tic goal programming model that is able to handle multiple goals and also the
inherent uncertainty introduced by expected cash flows. We describe in detail
an instance of our general model that considers the optimization of three dif-
ferent criteria such as cost, risk and cash balance stability. We claim that cash
balance stability is an interesting goal to deal with the inherent uncertainty
of expected cash flows. We also provide useful instructions for cash managers
to set the main parameters of our model in practice. Our model provides a
systematic approach to multiobjective cash management that is ready to be
implemented in decision support systems for cash management.

Keywords Multiple criteria · multiple accounts · stochastic goal program-
ming · uncertainty

1 Introduction

Many papers have proposed analytical models to deal with cash management
operations assuming that cash holdings are summarized in a single cash ac-

Francisco Salas-Molina
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count and an alternative investment account [1, 2]. However, cash managers
usually deal with multiple banks to receive payments from customers and to
send payments to suppliers, employees and other creditors. Managing multiple
bank accounts implies a number of transactions between accounts to maintain
the system in a state of equilibrium, meaning that there exists enough cash
balance to face payments and avoid an overdraft. As a result, the challenge
that face cash managers on a daily basis is finding the policy (a set of control
actions) that optimizes cost and possibly additional goals.

Mathematically speaking, the cash management problem is a particular
case of dynamic programming [3, 4], an optimization technique that aims to
break down a multistage problem into simpler subproblems. This optimization
method has found applications in almost every scientific field. An example of
a similar problem in the field of water resource management is the multireser-
voir problem [5, 6, 7]. A reservoir is a natural or artificial place where water is
collected for use, supplying a community. In this case, a system of connected
reservoirs is to be optimized to maximize energy generation and satisfy ir-
rigation demands. An initial storage, inflows and outflows for each reservoir
determine the law of motion of water storage over different time periods in a
similar way to a system of cash accounts. To solve the multireservoir problem
different techniques such as constrained differential dynamic programming [5],
control theory [8], or evolutionary algorithms [9] have been proposed. Since we
here consider multiple criteria in the selection of cash management policies for
a finite planning horizon, we follow a multiobjective optimization approach.

Cash management schemes with multiple accounts have received little at-
tention of the research community with the exception of [10] and [11]. A first
extension of the typical two-assets setting in the literature was proposed by
[12], who considered a single bank account and two different sources of short-
term funds. Later on, [10] proposed a multidimensional impulse control ap-
proach to provide optimal control restricted to continuous fluctuations of cash
balances given by homogeneous diffusion processes. However, the continuous
time framework and the assumption on the cash flow process seem to be far
from matching the needs of real-world cash management. First, real-world
cash flows are neither completely certain nor completely unpredictable [13, 14].
Second, a discrete time framework is more appropriate due to the fact that
common planning and control practices in most organizations are typically
performed in discrete intervals [15]. Finally, most optimization models pro-
posed in the literature have focused only on a single objective, namely, on
minimizing costs. However, cash managers may also be interested in the risk
associated to cash policies due to the uncertainty introduced by cash flow
forecasts as proposed by [16] and [11].

In this paper, we extend this body of work by generalizing cash manage-
ment systems affected by stochastic cash flows. More precisely, we follow the
recommendations in [11] to represent cash management systems as: (i) a set
of bank accounts; (ii) a set of allowed transactions between accounts; and (iii)
a multidimensional cash flow process for each account as a source of uncer-
tainty about the near future. Since we are dealing with the uncertainty about
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cash flows in the in the near future, we rely on stochastic goal programming
(SGP). Indeed, this paper differs from previous approaches in that we provide
a generalized SGP model as a way to account for multiple criteria for opti-
mization purposes. A further advantage of the use of SGP is that practitioners
are allowed to set soft constraints which can be violated without generating
unfeasible solutions [17]. Goal programming (GP) [18, 19, 20, 21, 22] aggre-
gates goals to obtain a solution that minimizes the sum of deviations between
achievement and the aspiration levels (or targets) of the goals. The underlying
idea behind goal programming is that the decision-maker follows a satisfying
logic expressed by means of targets. By establishing an achievement objective
function, goal programming aims to conciliate the achievement of a set of goals
instead of optimizing every goal.

In order to better deal with the uncertainty introduced by expected cash
flows, we propose to consider the combination of three goals: cost, risk and
cash balance stability. On the one hand, we measure cost by averaging daily
cost as it is customary in the literature. On the other hand, we measure risk
using the conditional-cost-at-risk (CCaR) recently proposed in [23] since cash
managers are usually more interested in deviations above mean values. Finally,
we introduce the concept of cash balance stability as a third desirable goal for
short-term financial planning. Indeed, cash balance deviations from a given
reference have been recently used in [24] and [11]. By minimizing this deviation,
cash managers ensure that policies outputs stable balances. As a result, we here
consider cash balance stability as an additional goal for optimization purposes
within a generalized SGP approach to cash management.

Assuming that cash flow is a random variable, we need to take into ac-
count its probability distribution to make decisions under some degree of ran-
domness. A suitable way to manage cash flow distributions for optimization
optimization purposes is chance constrained programming [18, 21, 25]. Thus,
we formulate the cash management problem as chance constrained program.
More precisely, we follow a data-driven approach in which some constraints
of the problem are based on past observations. In addition, we assume that
cash managers are able to produce predictions with known accuracy or ly-
ing in a given prediction interval. Finally, we reduce the chance constrained
program to an equivalent linear deterministic problem, ready to be solved by
state-of-the-art solvers such as CPLEX or Gurobi. Besides its computational
tractability, this approach allows us to encode the initial stochastic problem
as a linear program with soft constraints.

Summarizing, the main purpose of this paper is to provide cash managers
with a tool to deal with the inherent uncertainty of future cash flows by means
of stable policies. To this end, we rely on SGP as a suitable technique to
consider not only cost but also risk and stability measures. As a result, we
highlight the following contributions:

1. We provide a generalized stochastic goal programming model as a system-
atic approach to multiobjective decision-making within the context of cash
management systems with multiple bank accounts.
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2. We show that stochastic goal programming can deal with the inherent
uncertainty of expected cash flows by considering cash balance stability as
an interesting third goal.

3. We provide useful instructions for cash managers to set the main parame-
ters of our model.

In addition to extend the existing cash management literature, the previous
contributions build primarily on the practical side of decision support systems
for cash managers without disregarding the mathematical rigor.

In what follows, we formulate the cash management problem with multiple
bank accounts in Section 2. Next, we introduce our generalized stochastic
goal programming model for cash management in Section 3. We present an
instance of the general model considering both cost and risk in Section 4,
which we illustrate by means of a numerical example. In Section 5, we provide
recommendations for cash managers to set the main parameters of our model
in practice. Finally, we conclude in Section 6, suggesting natural extensions of
this work.

2 Formulation of the problem

The purpose of this section is to provide a mathematical formulation of the
cash management problem with multiple bank accounts derived from the single
bank account formulation described in [11]. As an introductory example, con-
sider a cash management system with two bank accounts and an investment
account as the one shown in Figure 1. A hypothetical cash manager receives
payments from customers and manages payments to suppliers through bank
accounts 1 and 2. Daily net cash flows are summarized in variables f1,t and
f2,t. Temporary idle cash balances can be invested in short-term marketable
securities and bonds through an investment account 3.

21

x1,t

x2,t

3

x4,t

x3,t

x6,t

x5,t

f2,tf1,t

Fig. 1 A cash management system with two bank accounts and an investment account.

Let us consider a cash management system defined as setM of m accounts
and a set N of n possible transactions such as the one depicted in Figure 1.
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The state of the system is represented by an m × 1 vector bt at time t with
cash balance holdings. Let {f t : t = 1, 2, . . . , τ} a sequence of m-dimensional
cash flow process. At each time step, cash managers aim to obtain policy
xt with n possible transactions between accounts to maintain the system in
a desired state. The state transition of a cash management system with n
transactions between m different bank accounts taken at time t, is determined
by the following system of linear equations:

bt = A · bt−1 +B · xt + C · f t (1)

where A is an m×m matrix; B is an m×n incidence matrix with element Bij
set to: 1 if transaction j adds cash to account i, −1 if transaction j removes
cash from account i, and zero otherwise; and C is another m × m matrix.
In what follows, we set matrix A to the identity matrix by assuming that
balances do not change from one period to the following. Matrix C specify
which accounts are affected by external cash flow processes. For instance, only
accounts 1 and 2 in Figure 1 receive external flows. Then, matrix C is set to:

C =

1 0 0
0 1 0
0 0 0

 . (2)

This setting accepts any form of the process {f t} that outputs real cash
flows f t from a probability density function, an empirical data set, or any
other cash flow process. In practice, since decisions are made in advance to
real cash flows, both predicted cash flows f̂ t and balances b̂t are used instead.

In the usual case of linear transaction costs between accounts with a fixed
part γ0, and a variable part γ1, the transaction cost function Γ (xt) at time t
is defined as:

Γ (xt) = γT0 · zt + γT1 · xt (3)

where zt is an n × 1 binary vector with element zi set to one if the i-th
element of xt is not null, and zero otherwise; γ0 is a n × 1 vector of fixed
transaction costs for each transaction; and γ1 is a n × 1 vector of variable
transaction costs. On the other hand, the expected holding cost function at
time t is usually expressed as:

H(b̂t) = vT · b̂t (4)

where v is an m × 1 column vector with the j-th element set to the holding
cost per money unit for account j. In this paper, we assume the common
situation in practice for many companies in which penalty costs for negative
cash balances are much higher than holding costs in vector v. This fact is
equivalent to restrict feasibility of balances to positive values.

As a result, given a cash planning horizon of τ time steps and an initial
cash balance state, the solution to the problem is the τ · n × 1 policy vector
x = [x1,x2, . . . ,xτ ]

T
, obtained through vertical concatenation, that optimizes

some objective function. Within the field of multiple criteria decision-making,
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objective functions are usually expressed through a set of q goals (see e.g. [17]),
according to the particular criteria defined by decision-makers:

opt g(x) = [g1(x), . . . , gi(x), . . . , gq(x)] (5)

subject to:

x ∈ S (6)

where gi(x) is the mathematical expression of the i-th criterion, and S is the
set of all feasible solutions given by equation (1) and non-negativity constraints
for balances bt and controls xt. This formulation is a mathematical represen-
tation of the multiobjective cash management problem with multiple bank
accounts. Although computationally tractable, this model presents practical
limitations since it is unable to deal with uncertainty and feasibility is based
on hard constraints. To solve these limitations, we propose a new stochastic
goal programming model.

3 A generalized stochastic goal programming model for cash
management

In this section, we approach the cash management problem from a multiob-
jective perspective in which not only cost but also additional goals are impor-
tant for cash managers. A large number of engineering and economic prob-
lems require that decisions are made in the presence of uncertainty. The main
approaches to optimization under uncertainty are: stochastic programming,
fuzzy programming and stochastic dynamic programming [26]. In stochastic
programming [25, 27], uncertainty is modeled through a probability distribu-
tion. Fuzzy programming considers random parameters as fuzzy numbers and
constraints as fuzzy sets [28]. Finally, stochastic dynamic programming dates
back to the seminal work by [3], where decisions are made within a dynamic
environment and uncertainty is modeled as a shock or disturbance process.

Since cash management is a multistage decision process, we follow a stochas-
tic dynamic approach. Unlike fuzzy programming, we aim to ensure linearity
of objective functions and constraints for computational tractability. By in-
troducing GP as a variant of stochastic dynamic programming, we further
provide cash managers with the following advantages: 1) the possibility to
consider multiple criteria to account not only for cost but also for risk and
other important attributes; 2) the use of soft constraints that can be violated
without producing unfeasible but yet realistic solutions; and 3) the inherent
satisficing logic of GP in the Simonian sense [29] established by a set of targets
defined by cash managers.

In the next subsections, we first outline a general weighted GP model, we
next describe a GP model to deal with uncertainty, and we finally introduce a
generalized stochastic goal programming model for cash management (SGP-
CM) as a natural extension of GP in our context. This model generalizes
previous cash management works approaches such as [10, 16, 30] and [11] to
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the cash management problem to multiple bank accounts, multiple objectives
and random cash flow processes through SGP.

3.1 A weighted goal programming model

GP was introduced by [18, 19] and its popularity has been extended up to re-
cent dates [20, 21, 22, 31, 32, 33]. GP aggregates multiple objectives to obtain
the solution that minimizes the sum of deviations between achievement and the
aspiration levels of the goals. Then, for each goal gi, it is necessary to specify
aspiration level or target Gi ∈ R, with i = 1, 2, . . . , q. Next, positive and neg-
ative deviation auxiliary variables are introduced to connect goal achievement
and targets. Then, we express a general weighted goal programming model as
follows:

min

q∑
i=1

(w+
i δ

+
i + w−i δ

−
i ) (7)

subject to:
gi(x) + δ−i − δ

+
i = Gi (8)

δ−i , δ
+
i ≥ 0 (9)

x ∈ S (10)

where each gi(x) is a particular goal defined by decision-makers that ultimately
depends on policy x belonging to set S of feasible solutions. Equation (7)
expresses the aim of decision makers to minimize the sum of positive (δ+i ) and
negative (δ−i ) deviations. These deviations are the required slack variables
to reach targets Gi in equation (8). Finally, the particular preferences are
incorporated to determine the relative importance of each goal by means of a
set of positive (w+

i ) and negative weights (w−i ).

3.2 Goal programming under uncertainty

To deal with uncertainty, we need a method to consider random variables in
the optimization problem. A sound approach to deal with uncertainty is chance
constrained programming [18, 21, 25]. Thus, we reformulate program encoded
from equation (7) to (10) as a SGP model:

min

q∑
i=1

(w+
i δ

+
i + w−i δ

−
i ) (11)

subject to:
gi(x) + δ−i − δ

+
i = Gi (12)

P (hk(x) ≤ 0) ≤ 1− ζ (13)

δ−i , δ
+
i ≥ 0 (14)
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x ∈ S (15)

k = 1, 2, . . . ,K (16)

where P in equation (13) denotes probability and hk(x) denotes any type of
constraint depending on policy x. Parameter ζ is a threshold set by decision-
makers that typically takes values of 0.95 or 0.99 establishing a low probability
that a given constraint is not satisfied.

3.3 A generalized SGP model for cash management

Next, we adapt the SGP model encoded from equations (11) to (16) to the
particular characteristics of the cash management problem with multiple ac-
counts. This generalized stochastic goal programming model for cash man-
agement (SGP-CM) includes forecasts as a way to reduce the uncertainty
introduced by future cash flows. To this end, we follow the approach initi-
ated by [34] and followed by [35, 36] of transforming a linear program with
uncertain data in its robust deterministic counterpart. [34] proposed to use
the maximum uncertainty as a way to replace stochastic constraint (13) with
a deterministic approximation. This approach is equivalent to set ζ = 1 and
presents the drawback of an excessive conservatism. To solve this problem,
[35, 36] followed a similar strategy but used parameter ζ as a way to capture
the particular risk preferences of decision-makers.

Within the context of the cash management problem, the uncertainty is
introduced by future cash flow uncertainty. Ultimately, this uncertainty re-
sults in a real cash balance that differs from the expected balance in the cash
flow forecasting error. To account for such an uncertainty, we here propose to
replace constraint (13) with the following set of linear constraints to capture
the particular uncertainty of the cash management problem:

b̂t = A · b̂t−1 +B · xt + C · f̂ t (17)

b̂t ≥ ζ · b̂min (18)

where b̂min is an m × 1 vector with elements set to minimum cash balances
for each of the m accounts in the system. As mentioned above, parameter
ζ ∈ [0, 1] adjusts the aversion of cash managers to the risk of an overdraft so
that the higher the value of ζ, the more averse to risk they are.

However, equation (18) is a hard constraint, namely, one that has to be
satisfied whatever the realization of the uncertainty of cash flow process {f t}.
This fact, may lead to unnecessarily reduce the feasibility space by discarding
solutions that result in balances that are close enough to a given reference
such as a minimum cash balance set by cash managers. GP provides a suitable
approach to overcome this inconvenient since goals can be considered as soft
constraints which can be violated without generating unfeasible solutions [17].
Here, we propose to replace equation (18) with the following set of constraints:

b̂it + δ−it − δ
+
it = bi,ref (19)
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for each account i = 1, 2 . . . ,m. This transformation implies that, instead of
satisfying a hard minimum balance constraint, we aim to minimize the sum of
deviations of balances with respect to a predefined target bi,ref as m additional
goals. Moreover, the relative importance of the deviations from targets of these
soft constraints are set according to the preferences (w+

i , w
−
i ) of cash managers.

Finally, note that equation (19) can be easily casted in the general SGP
model described in (11)-(16) to formulate our general SGP-CM as follows:

min

q∑
i=1

[
w+
i

τ∑
t=1

δ+it + w−i

τ∑
t=1

δ−it

]
(20)

subject to:

gi(xt) + δ−it − δ
+
it = Git (21)

b̂t = A · b̂t−1 +B · xt + C · f̂ t (22)

xt ∈ S (23)

Git ∈ R (24)

δ−it , δ
+
it ≥ 0. (25)

t = 1, 2, . . . , τ. (26)

It is important to highlight that the SGP-CM encoded from equation (20)
to equation (26) produces a single solution. Under a multiple criteria deci-
sion making context, a solution is called Pareto efficient if no other feasible
solution can achieve the same or better performance for all the criteria while
being strictly better for at least one criterion. This definition leads to the
concept of efficient frontier comprising all Pareto efficient solutions. Although
our SGP-CM provides one solution among many efficient solutions, the rest
of efficient solutions can be viewed as alternative solutions that could become
eligible when the preferences weights of the set of goals considered by cash
managers vary due to a change in the economic circumstances. Some exam-
ples of these varying circumstances are financial crisis, credit restrictions, or
market changes.

We next present an instance of our generalized SGP-CM that aims to min-
imize three goals: cost, risk and balance variability of policies in cash manage-
ment systems with multiple accounts. Note that minimizing balance variability
is equivalent to maximizing balance stability.

4 An instance of the SGP-CM with three goals

To illustrate the use of the SGP-CM model, we next present an instance of
the model that aims to minimize three attributes: cost, risk, and cash balance
variability. Later, we solve a numerical example using a linear programming
solver.
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4.1 Model formulation

Consider a cash management system withm bank accounts and n transactions.
A cash manager aims to minimize three attributes: cost (g1), risk (g2) and cash
balance variability (g3) for a planning horizon of τ days. First, consider that
cost g1(xt) is measured by the daily cost computed using equations (3) and
(4) as follows:

g1(xt) = γT0 · zt + γT1 · xt + vT · b̂t. (27)

On the other hand, our cash manager uses the CCaR as a measure of risk
in finance [23, 37]. The CCaR is defined as the expected loss above a given
reference c0 for a given period of time. Then, to avoid policies with daily costs
above some cost reference c0, our cash manager measures risk g2(xt) by means
of the following expression:

g2(xt) = max(g1(xt)− c0, 0). (28)

Finally, our cash manager is interested in minimizing cash balance vari-
ability for a subset of accounts within the system with respect to some global
daily reference bref . This reference is established according to the particular
context faced by cash managers. If we define a subset of accounts P ⊆ M
indexed by I ⊆ {1, 2, . . . ,m}, we can compute balance variability g3(xt) for a
given subset of accounts as follows:

g3(xt) =
∑
i∈I

bit. (29)

Translated into the goal programming language, our cash manager aims
to minimize: 1) the sum of positive deviations of cost (g1) above zero; 2) the
sum of positive deviations of cost (g1) above a cost reference (c0) as a measure
of risk (g2); and 3) the sum of both positive and negative deviations of daily
balances (g3) with respect to a reference balance bref . Then, an instance of the
SGP-CM encoded by means of equations (20) to (26) is expressed as follows:

min

[
w1

Cmax

τ∑
t=1

δ+1t +
w2

Rmax

τ∑
t=1

δ+2t +
w3

Vmax

τ∑
t=1

∑
i∈I

(
δ+3ti + δ−3ti

)]
(30)

subject to:
b̂t = A · b̂t−1 +B · xt + C · f̂ t (31)

g1(xt)− δ+1t ≤ 0 (32)

g2(xt)− δ+2t ≤ c0 (33)

g3(xt)−
∑
i∈I

δ+3ti +
∑
i∈I

δ−3ti = bref (34)

δ+1t, δ
+
2t, δ

+
3ti, δ

−
3ti, b̂ti ≥ 0 (35)

xt ∈ Rn≥0 (36)



A stochastic goal programming model to derive stable cash management policies 11

b̂t, f̂ t ∈ Rm≥0 (37)

w1 + w2 + w3 = 1 (38)

t = 1, 2, . . . , τ (39)

where Cmax, Rmax and Vmax are normalization factors to avoid meaningless
comparisons. Note also that negative deviations δ−1t and δ−2t are set to zero
since we are only interested in minimizing positive deviations, i.e., costs and
costs above a given reference. This is the reason why equations (32) and (33)
are expressed in a simplified form. Moreover, equation (34) is a representation
of variability goal as a minimum balance soft constraint, which we think is one
of the main advantages of the model. Note also that the previous problem is a
mixed integer linear program that can be solved using state-of-the-art solvers
such as CPLEX or Gurobi.

4.2 A numerical example

In this section, we solve a numerical example to illustrate our SGP-CM model
with three different criteria as described in Section 4. Consider again the cash
management system of Figure 1 with two current bank accounts 1 and 2, and
an investment account 3. Temporary idle cash balances can be invested in
short-term marketable securities and bonds through an investment account 3
with an average return of 3.6% per annum, equivalent to 0.01% per day. This
is equivalent to set a holding cost 0.01% per day for both accounts 1 and 2.
Transactions are allowed between all three accounts and charged with fixed
(γ0) and variable (γ1) costs determining the cost structure detailed in Table 1.

Transaction γ0 (e) γ1 (%) Account v (%)
1 50 0 1 0.01
2 50 0 2 0.01
3 100 0.01 3 0
4 50 0.001
5 100 0.01
6 50 0.001

Table 1 Cost structure data for the example.

Assume also that we obtain forecasts for the next five working days with
a given accuracy. From this known accuracy, instead of setting a minimum
balance hard constraint, we set a balance reference vector of [6, 6, 0]

T
, where

each element is the desired balance for each of the three accounts. In other
words, we set a global reference of 12 millions for accounts 1 and 2. Then,
in addition to cost and risk, we aim to minimize the total deviation of daily
balances for these two accounts with respect to bref = 12.
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Given an initial cash balance b0 = [5, 8, 12]
T

, for accounts 1, 2 and 3, we
look for the best policy for a planning horizon comprising the next five days
in terms of cost from equation (27), risk from equation (28), and also balance
variability from (29). To this end, we obtain a τ × m matrix F of forecasts
with time steps in rows, accounts in columns and figures in millions of Euros:

F =


3 −3 0
1 −2 0
−2 −3 0
−1 4 0
−3 6 0

 . (40)

Consider that we have no bias to any of the goals. This fact is equivalent
to setting w1 = w2 = w3 = 0.333. To allow comparisons with respect to a
no-control strategy as a benchmark (xt = 0, for the whole planning horizon),
we set normalization factors Cmax = 0.7, Rmax = 0.34 and Vmax = 67, figures
in millions of Euros. We obtain these factors from the cost, risk and balance
variability that resulted from a no-control strategy when the cash flow is F .
Furthermore, cost reference c0 for the risk measurement is set to the daily hold-
ing cost computed with equation (4) for the balance reference vector [6, 6, 0]

T
.

This cost reference is the resulting cost of a no-control strategy. Finally, once
an instance of the problem is created introducing all the required input data,
we are in a position to derive the best policy by solving (30)-(39), resulting in
the balance depicted in Figure 2.
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Fig. 2 Optimal balances for an instance of the SGP-CM.

A final comment must be done in the sense that in the case that the either
economic context or the quality of the cash flow predictions may change, we
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can adjust preferences to the new situation by varying weights w1, w2 and w3

and solve the SGP-CM again.

5 Specifying useful SGP-CM model parameters in practice

In Section 4.2, we describe a numerical example for a given cash management
system in which the main parameters such as preference weights, normaliza-
tion factors, cost and balance references are conveniently set for illustrative
purposes. In practice, selecting the appropriate values for these parameters can
be a more complicated task and it may influence performance. In this section,
we experiment on the impact of the SGP-CM model parameters to provide
useful guidelines for practitioners.

5.1 Setting preference weights

The notion of preference is a critical issue in multiple criteria decision making.
One of the most popular techniques to set preference weights is the Analytic
Hierarchy Process proposed by [38, 39]. According to the SGP-CM model de-
scribed in Section 4, we evaluate cash management policies in terms of the
sum of cost, risk and balance variability ratios with respect to normalization
factors Cmax, Rmax and Vmax. Since we are dealing with a minimization prob-
lem, partial goal achievement can also be viewed as keeping cash management
plans at a percentage of maximum cost, risk and variability budgets under the
logic the less the better. This approach facilitates the task of cash managers
since ratios and percentages are common concepts in business and finance.
However, cash managers may have preferences between cost, risk and stability
(i.e., the inverse of variability).

Decision-making preferences for the three criteria under consideration are
introduced in the SGP-CM model by means of weights w1, w2 and w3. Fol-
lowing the AHP recommendations, we elicit these weights by establishing the
pairwise importance of criteria for a hypothetical cash manager. First, let us
consider a risky cash manager that is willing accept higher levels of risk in
exchange for lower costs. Then, this cash manager states that cost is moder-
ately more important risk, cost is strongly more important than stability, and
risk is moderately more important than stability. According to the 1-9 scale
described in [39], an example of goal preferences for a risky cash manager is
summarized in the first three rows of Table 2, where we approximate weights
by adding each row of the matrix and dividing by their total.

Now consider a moderately conservative cash manager stating that risk
is moderately more important than cost, stability is also moderately more
important than cost, and risk is equally important than stability. An example
of goal preferences for a moderately conservative cash manager is summarized
in the last three rows of Table 2. The three central rows of the table show the
goal preferences for a neutral cash manager. Consistency ratios for all three
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Goal Cost Risk Stability Weights Case
Cost 1 3 5 w1 = 0.61 Risky
Risk 1/3 1 3 w2 = 0.29 case
Stability 1/5 1/3 1 w3 = 0.10
Cost 1 1 1 w1 = 0.33 Neutral
Risk 1 1 1 w2 = 0.33 case
Stability 1 1 1 w3 = 0.33
Cost 1 1/3 1/3 w1 = 0.14 Moderately
Risk 3 1 3 w2 = 0.43 conservative
Stability 3 1 1 w3 = 0.43 case

Table 2 Pairwise comparison of criteria for alternative cash managers.

pairwise comparison matrices computed as described in [39] are below the
acceptable threshold of 0.1.

5.2 Cost and balance references

The selection of cost reference c0 may influence the ability of the CCaR in
equation (28) to measure risk. Cost reference c0 is then a way to penalize
policies with costs above a given threshold. Provided there is a data set with
past daily costs, we can easily set c0 to the average daily cost as an intuitive
and rational cost reference. Then, g2(xt) computes deviations of cost above c0
as a measure of risk. However, it is important to comment on the implications
of setting c0 to some extreme values. Note that setting c0 = 0 implies that
g1(xt) and g2(xt) are measuring the same. Then, δ2t is no longer a measure
of risk. On the other hand, consider setting c0 to a high enough value such
that g2(xt) is always below c0. Then, δ+2t = 0 and the risk of cash management
policies are ignored.

The selection of bref is quite less problematic since both positive and neg-
ative deviations with respect to the balance reference are considered in the
minimization process. If a low reference is set, then positive deviations will
be probably higher than negative ones. Similarly, if a high reference is set,
then negative deviations will be probably higher than positive ones. In both
cases, however, cash management policies with the lowest total deviation will
be preferred ensuring stability.

6 Concluding remarks

Most cash management models in the literature try to solve the cash manage-
ment problem for both a single bank account and a single objective, namely,
cost. In this paper, we propose a generalized stochastic goal programming
model to derive stable policies within cash management systems with multiple
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bank accounts using cash flow forecasts as a key input. Our formulation pro-
vides a flexible framework to face cash management problems according to the
particular needs of cash managers in terms of: (i) number of bank accounts;
(ii) relationship between accounts; (iii) different goals and targets.

In order to deal with the uncertainty introduced by cash flows when man-
aging multiple bank accounts, we provide cash managers with a new SGP-CM
model to produce stable policies. More precisely, we derive satisfying poli-
cies in terms of three criteria: cost, risk and cash balance stability. From a
cash management perspective, the consideration of cash balance stability as a
third interesting goal in addition to cost and risk allows to adjust policies to
particular preferences and current circumstances. The motivation behind this
statement is the possibility to transform hard minimum balance constraints
into soft constraints that can be satisfied within a given tolerance set by cash
managers in terms of the uncertainty introduced by cash flow uncertainty. In
addition, our SGP-CM model allows to handle cash flows predictions within
a discrete time framework that we claim to be more appropriate to real-world
environments since common planning practices in most organizations are typ-
ically performed in discrete intervals.

Our aim to help cash managers in practice motivated us to further elaborate
on the settings of the SGP-CM model. The selection of the appropriate values
for parameters such as preference weights, normalization factors, cost and
balance references can be a more complicated task than it may seem at first
glance. As an additional result, we provide guidelines for cash managers to set
the main parameters of our model.

Summarizing, our SGP-CM model provides a systematic approach to man-
age multiple accounts and multiple objectives while considering the uncer-
tainty coped with in practice by cash managers. Within a context of time-
varying circumstances, we claim that cash balance stability is an interesting
goal to deal with uncertainty. Moreover, the proposed approach is fully appli-
cable to real-world environments in which predictable cash flows are available,
at least for a short-term planning horizon. Finally, it is important to highlight
that the exploration of alternative (and maybe non-linear) measures of risk
and stability, shows that an interesting future research line should consider
multiobjective non-linear optimization.
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