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ABSTRACT 

Huntington disease (HD, MIM# 143100) is an autosomal dominant neurodegenerative 

disorder characterized clinically by progressive motor impairment, cognitive decline, and 

emotional deterioration. The disease is caused by the abnormal expansion of a CAG 

trinucleotide repeat in the first exon of the huntingtin gene in chromosome 4p16.3. HD is 

spread worldwide and it is generally accepted that few mutational events account for the 

origin of the pathogenic CAG expansion in most populations. We have investigated the 

genetic history of HD mutation in 83 family probands from the Land of Valencia, Eastern 

Spain. An analysis of the HD/CCG repeat in informative families suggested that at least two 

main chromosomes were associated in the Valencian population, one associated with allele 7 

(77 mutant chromosomes) and one associated with allele 10 (2 mutant chromosomes). 

Haplotype A-7-A (H1) was observed in 47 out of 48 phase-known mutant chromosomes, 

obtained by segregation analysis, through the haplotype analysis of rs1313770-HD/CCG-

rs82334, as it also was in 120 out of 166 chromosomes constructed by means of the PHASE 

program. The genetic history and geographical distribution of the main haplotype H1 were 

both studied by constructing extended haplotypes with flanking STRs D4S106 and D4S3034. 

We found that we were able to determine the age of the CAG expansion associated with the 

haplotype H1 as being between 4,700 and 10,000 years ago. Furthermore, we observed a non-

homogenous distribution in the different regions associated with the different extended 

haplotypes of the ancestral haplotype H1, suggesting that local founder effects have occurred.  
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INTRODUCTION 

 Huntington disease (HD; MIM# 143100) is an autosomal dominant neurodegenerative 

disorder of mild-life onset that results in progressive neurological movement symptoms 

accompanied by psychiatric alterations and cognitive decline (Martin and Gusella, 1986; 

Harper, 1996). HD occurs with a frequency of approximately 5-10 patients out of 100,000 

individuals in most Caucasian populations, although its estimated frequency exhibits extreme 

variations among populations (Martin and Gusella, 1986; Harper, 1996). The HD genetic 

defect consists of an expansion of CAG triplets within exon 1 of the huntingtin gene on 

chromosome 4p16.3 (The Huntington Collaborative Research Group, 1993). As a general rule 

it is assumed that this highly polymorphic CAG repeat ranges from 8-35 copies on normal 

chromosomes, whereas the copy number ranges within 36-121 on disease chromosomes, 

although it depends on the populations (Zühlke et al., 1993; Kremer et al., 1994; The 

American College of Medical Genetics et al., 1998; Costa et al., 2003). 

 Dynamic mutations are caused by an expansion of trinucleotide sequences in or 

adjacent to a protein-coding gene (Ashley and Warren, 1995; Wells et al., 1998; Cummings 

and Zoghbi, 2000), and are characterised by the intergenerational instability of trinucleotide 

repeats and by an increasing bias during transmission. In this way, the existence of 

intermediate-sized nonpathologic alleles near the upper limit of the normal-sized range is 

thought to act as a reservoir from which de novo mutations arise in several generations, given 

that the larger the expanded alleles are, the more instable the expansion becomes (Richards et 

al., 1992; Goldberg et al., 1993; Imbert et al., 1993; Myers et al., 1993; Kunst and Warren, 

1994; Paulson and Fischbeck, 1996). That is, a new mutation arises in an already long HD 

chromosome that acquires a pathological size due to an increase of the initial copy number of 

the repeat, mainly occurring during spermatogenesis and even before meiosis is completed 
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(De Rooij et al., 1993; Zühlke et al., 1993; Chong et al., 1997; Yoon et al., 2003). In many 

cases, expanded alleles and the longest normal alleles can be related thanks to flanking 

markers (Richards, 2001). In fact, strong linkage disequilibrium between disease alleles and 

close markers resulting from ancestral events has been referred to in many populations for 

several diseases caused by dynamic mutations, such as fragile-X syndrome (MIM# 309550) 

(Richards et al., 1992; Kunst and Warren, 1994), myotonic dystrophy (MIM# 160900) (Imbert 

et al., 1993; Liquori et al., 2003) or Friedreich’s ataxia (MIM# 229300) (Cossée et al., 1997; 

Labuda et al., 2000). In reference to HD, haplotype studies carried out in different populations 

of a defined ancestry have revealed that multiple mutation events underlie this disorder even 

within each population (McDonald et al., 1992; Morrison et al., 1993; Squitieri et al., 1994; 

Almqvist et al., 1995). In this context, it is difficult to establish in most cases whether HD 

cases are caused by new mutations generated from longest normal expanded alleles or else, 

they descent from single founders.  

 Here we present allele and haplotype studies in a series of 83 HD family probands 

from the Land of Valencia (Eastern Spain) that represents 10% of the total Spanish population 

(approximately 4 million people). We have analysed five polymorphic markers within or 

close to the huntingtin gene and we have observed that more than 50 per cent of mutant 

chromosomes may have a very ancient common origin.  

 

 

MATERIAL AND METHODS 

Patients 

 This study involved 115 patients with molecular confirmation of HD. Patients were 

ascertained at the Neurology and Genetics Departments of the University Hospital La Fe. 

Both departments are reference services for clinical diagnosis and genetic counselling. All 
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patients and relatives were aware of the investigative nature of the studies and gave their 

consent. In order to learn about their geographical origin (town and county), the interview 

included information about the place of birth of both the proband and their parents, and when 

known, of grandparents. The HD patients belonging to 83 families originated from the Land 

of Valencia, in Eastern Mediterranean Spain. One hundred unrelated and healthy Valencian 

individuals, whose parents’ samples were available (trio series), were also analysed as a 

control group. According to the geographical origin of the patients, frequencies have been 

estimated for different counties of the Land of Valencia. 

 

Analysis of CAG-HD repeats 

 Genomic DNA was obtained from peripheral white blood cells by standard methods. 

The CAG repeat responsible for the disease was amplified by PCR independently of the 

adjacent CCG repeat, as previously described (Andrew et al., 1994), using the following 

primers: HD-C1: 5’-FAM-CCT TCG AGT CCC TCA AGT CCT TC-3’, and HD-C2: 5’-

CGG CGG TGG CGG CTG TTG-3’. The expected size of amplicons depends on the number 

of CAG repeats. It ranged from 59 bp to 146 bp for normal alleles (6-35 repeats), and from 

149 bp to 404 bp for expanded alleles (36-121 repeats). The number of repeats was 

determined exactly by sequencing differently sized samples, and via comparative analyses in 

an autoanalyser ABI Prism 3100 (Applied Biosystems, Foster City, CA).  

 

Allelic and Haplotype Analyses 

 Five polymorphic markers were studied: pter-D4S126-

rs1313770(NT_006081.17:g.444387A>G)-HD/CCG-rs82334(NT_006081.17:g.611947A>C)-

D4S3034-cen (Table 1, Fig. 1). Markers D4S126, HD/CCG and D4S3034 were labelled and 

analysed in an autoanalyser ABI Prism 3100 (Applied Biosystems, Foster City, CA). SNPs 
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rs1313770 and rs82334 were analysed by restriction analyses using the endonuclease MboI 

and BseDI, respectively. Allelic frequencies of every marker were estimated in both the 

control and affected populations. A 2 test was performed to determine a significant allelic 

association between normal and affected chromosomes in cases with notable differences of 

allelic frequencies,. Haplotypes were established based on the five polymorphic markers in 

both populations by inheritance or by homozigosity, whenever possible. Otherwise, 

haplotypes were reconstructed using version 2.0 of the PHASE (PHASE v2.0) program 

running on MS-DOS.  

 

Dating the mutation 

 Two mathematical approaches were applied to date the mutation: (1) The method 

reported by Serre et al. (1990) was applied, based on intra-allelic variability of linked 

markers, for which three mathematical models were performed: rs1313770_HD 

locus_rs82334, HD locus_rs82334_D4S3034; and rs1313770_HD locus_D4S3034; (2) a 

Monte Carlo likelihood method implemented in the program BDMC21 v2.1 was used, 

(Slatkin and Rannala, 1997; www.rannala.org/labpages/software.html), to consider 

information provided by the multiallelic markers D4S126 and D4S3034. The program 

parameter settings were: growth rate = 0.05; sample fraction = 0.045 (assuming a frequency 

of HD= 5/100,000) (Burguera et al. 1997); and mutation rate of the linked markers = 0.0001. 

Program data settings were: mutant copies = 17; and segregating sites = 5. Program option 

settings were: number of Monte Carlo replicates = 10,000; and initial, final and increments = 

10, 200, and 10, respectively. The resulting output file is converted in a log likelihood curve 

using MATLAB v6.5. 

 

 

http://www.rannala.org/labpages/software.html
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RESULTS 

Mutation analysis 

 Searching for mutations has made it possible to establish the exact length of the 

pathogenic CAG repeats, and also to determine the distribution of mutant and normal alleles 

in the affected population and the control group (Fig. 2). The CAG length ranged from 37 to 

86 for the HD population (between 38 and 46 units have been found in 93.60% of the disease 

chromosomes), and from 8 to 31 for the control group (between 13 and 21 units have been 

found in 87.17% of the control chromosomes). The allele with 15 repeats has been by far the 

most common normal allele.  

 

Allelic and haplotype analyses 

 To perform allelic association studies, we estimated the allele frequencies of two 

SNPs, rs131770 and rs82334, and of the CCG repeat adjacent to HD mutation (Table 2) in 

both control and patient groups. Whenever possible, we established the associated allele to the 

HD mutation for every marker, by either familial segregation or by allelic homozygosity. The 

HD mutation was significantly associated with allele A of the marker rs131770 (p<0.0001), 

allele 7 of the CCG triplet (p<0.0001) and with allele A of the marker rs82334 (p<0.0001).  

 A haplotype analysis with the HD/CCG repeat and flanking SNPs was performed to 

determine the number of mutational events. Firstly, we constructed a core haplotype with 

markers rs1313770-HD/CCG-rs82334. Seventy nine out of 83 probands were correctly 

phased for the HD/CCG marker. In the two cases in which the HD mutation was associated 

with the 10-CCG allele, the haplotypes were A/G-10-C and A/G-10-A/C. Unfortunately, this 

phase could not be established more accurately. We could establish the exact phase of the 

core rs1313770-HD/CCG-rs82334 in 48 patients out of 77 probands that were associated with 

7-CCG allele. In accordance with the variability of both flanking SNPs, only two haplotypes 
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associated with HD were unambiguously established among the four possible haplotypes: A-

7-A (haplotype H1) in 47 families (56.6%) and A-7-C (haplotype H2) in 1 family (1.2%). In 

order to obtain more genetic information, we proceeded to infer haplotypes in the 83 available 

patients (166 chromosomes) by using the PHASE v2.0 program. We included both the 48 

phase-known mutant haplotypes and the 35 phase-unknown mutant haplotypes. Eight 

different haplotypes were discerned and the two phase-unequivocal haplotypes were also 

computationally constructed. Haplotype H1 was by far the best option yielded by the program 

and was generated in 120 out of 166 chromosomes, and haplotype H2 did so in 2 

chromosomes (2/166). Two other haplotypes generated by the PHASE v2.0 program are 

worthy of mention since they were represented in a notable number: G-7-A (H3) and G-7-C 

(H4) in 20/166 and 11/166 chromosomes, respectively. These new haplotypes generated by 

the PHASE program suggested that there might possibly more haplotypes and therefore, some 

of them might cause disease. Moreover, the striking number of the H1-associated cases, both 

phased haplotypes and computationally-deduced haplotypes, may note at least that these H1 

cases could have the same origin. 

 Two flanking microsatellites, D4S126 and D4S3034 (Table 1), were studied in order to 

go into the genetic history of HD mutation in our population in depth. Allelic frequencies 

were estimated for these STR markers, and the pathogenic mutation was observed as being 

significantly associated with allele 3 of marker D4S126 (p<0.0001), and also with allele 2 of 

marker D4S3034 (p<0.0001) (Table 2). Affected chromosomes bearing other alleles for both 

markers were nevertheless identified as well. In fact, with regard to marker D4S126, the HD 

mutation was associated with allele 6 in nine cases, allele 5 in one case, and allele 4 in six 

cases. With regard to marker D4S3034, the HD mutation was associated with allele 3 in seven 

cases and allele 4 in one case (Table 2). Upon the basis of D4S126-rs1313770-HD/CCG-

rs82334-D4S3034, we constructed extended haplotypes in the 47 H1 families. This phase 
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could be established by inheritance in only 17 out of 47 chromosomes bearing the H1 

haplotype. We obtained five different haplotypes: two of them, H1A and H1D, were present 

in seven cases each, and the remaining definite haplotypes were constructed in one 

chromosome each (Fig. 3). We proceeded to computationally generate more haplotypes in the 

47 H1 cases by the PHASE program. A total of 24 different haplotypes were discerned, and 

among them all the unambiguous haplotypes could be generated again. Moreover, haplotype 

H1B must be emphasised since it was yielded as one of the best construction by the program 

(11/74), although it was not established with total certainty in any case.  

 To investigate the geographical distribution of the haplotype H1, we placed the 

extended haplotypes H1A and H1D, the two more frequent phase-known haplotypes, and the 

haplotype H1F, that was once unequivocally established and computationally generated in a 

notable number (11/74), on a map of the Land of Valencia. The geographical distribution 

turned out to be non-uniform (Fig. 4). H1A was basically concentrated on the coast; H1D is 

located in the inner Southern counties; and finally, H1F was distributed along the Land of 

Valencia and in the more inner Southern regions. When estimated frequencies were 

considered for several of these counties, we observed that the highest ones corresponded to 

the areas where haplotypes H1A, H1D and H1F were localised (Fig. 4), which could provide 

us evidence of a narrow historical relation among these haplotypes.  

 

Dating the mutation 

 In order to estimate the original time of the HD mutation associated to the H1 core 

haplotype actually appeared in the Land of Valencia, we applied the method developed by 

Serre et al. (1990), based on the intra-allelic variability at two markers for which at least one 

recombination between them has occurred. Depending on the mathematical model, we 

obtained different results. According to the first model proposed 
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(rs1313770_HD/CAG_rs82334), the mutation is 235 generations old; the second model 

(HD/CAG_rs82334_D4S3034) suggested the origin of the mutation occurred 350 generations 

ago; and finally, the third model (rs1313770_HD/CAG_D4S3034), the mutation is 417 

generations old.  

 We also performed a second analysis by means of the BDMC21 v2.1 program (Slatkin 

and Rannala, 1997). This approach relies on the assumption that the genetic variation among a 

group of highly linked polymorphic markers, defining a haplotype on which a novel non 

recurrent mutation arose, is a function of the mutation frequencies of those linked markers, as 

well as an indication of the time since this unique mutation first occurred. To achieve this 

approach, we considered information from multiallelic STRs D4S126 and D4S3034 and 

therefore, families with the haplotype H1 associated with the disease were taken into account. 

This approach showed us that HD mutation associated with the H1 haplotype is 

approximately 500 generations old in our population (Fig. 5). Assuming a generation time of 

20 years, these results led us to estimate that the origin for this mutation is extremely ancient, 

between 4,700 and 10,000 years old.  

 

De novo mutation 

 A de novo mutation caused by an unstable transmission, was observed in a patient 

with 46 CAG repeats. The mutant allele was a consequence of the meiotic expansion of a 

paternal 30 CAG repeat. Paternal false paternity was excluded by using ten non-linked STRs. 

The haplotype associated with this HD/CAG expansion was 5-A/G-7-A-3. We have not 

previously observed this haplotype in either phase or non-phase haplotypes associated with 

the HD mutation.  
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DISCUSSION 

 Classical studies supported by the variations in the geographical distribution, along 

with epidemiological studies, have postulated that the current HD distribution could be caused 

by a single ancestral mutation that would have had its origins in Western Europe, and that 

would have been spread worldwide through emigration (Hayden, 1981). Haplotype analyses 

in different populations have however shown a wide variety of HD haplotypes, that is 

suggestive of distinct independent mutations as the origin for disease (McDonald et al., 1992; 

Andrew et al., 1993; Almqvist et al., 1994 and 1995). Allele and haplotype analyses in a 

series of 83 familial probands from the Land of Valencia (Spain), have shown evidences 

which indicate that the disease had more than one origin in the population. Haplotypes in 

which the HD mutation was associated to the 10-CCG allele with absolute certainty, or with 

ambiguity, are worthy of mention. Collectively, all these patients could have the same 

haplotype A/G-10-C associated to disease, and since this allelic combination is not very 

common in the Valencian population, a single recent origin for this mutation might be 

suggested. 

 Allele and segregation analysis showed that the vast majority of chromosomes (77 out 

of 83 cases) causing disease bore a 7-CCG allele. Some previous reports have concluded that 

between 90-95% of HD patients of both Caucasian and Asiatic descent have a 7-CCG allele, 

while only approximately 5-10% of patients have a 10-CCG allele on the affected 

chromosome (Almqvist et al., 1994; Andrew et al., 1994; Squitieri et al., 1994; Yapijakis et 

al., 1995; Pramanik et al., 2000), which is quite similar to our data. Two haplotypes were 

unambiguously phased: H1 and H2 for 47 and 1 out of 83 cases, respectively. 

Computationally inferred haplotypes rendered two more haplotypes (H3 and H4) so that, at 

least, other possibilities could be computationally valid as well. If all four haplotypes are 

associated with HD, two hypotheses are plausible: firstly, only one mutational event occurred 
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on the ancestral haplotype H1, and haplotypes H2, H3 and H4 are the result of genetic events 

(recombination or mutation) on H1; secondly, haplotypes represent different origins as the 

consequence of independent mutational events, or because they come from other populations 

due to migratory movements. Taking into account the extremely low mutation rate of SNPs, 

the second hypothesis would carry more weight. However, in light of the notable number of 

haplotypes H1, and also because of their distribution, the first hypothesis should not be 

discarded. It is not possible to discern more accurately which option is correct with the data 

that is available. Similar results have been reported in previous studies on the genetic history 

and evolution of the HD mutation (McDonald et al. 1992; Andrew et al. 1993; Morrison et al., 

1993, 1995; Squitieri et al. 1994). In Sweden, segregation analyses showed that 89% of HD 

families shared the same haplotype constructed with two polymorphic markers within the 

huntingtin gene, so that at least three origins for the HD mutation were suggested in the 

aggregate (Almqvist et al., 1994 and 1995). In the same way, a similar finding has been 

reported in other disorders associated with dynamic mutations. In Friedreich ataxia, more than 

50% of the GAA expanded chromosomes were associated with a single haplotype in families 

of a European origin, whereas the rest of the expanded alleles segregate were associated with 

haplotypes that could be derived from the founder one by genetic mechanisms such as 

recombination or mutation (Monrós et al., 1996; Cossée et al., 1997). 

 When haplotypes H1 were discerned by including microsatellites, six variant 

haplotypes were identified. These extended haplotypes have shown a non-homogeneous 

geographical distribution (Fig. 4). In fact, it is striking that many HD cases sharing a common 

core haplotype H1 are placed in a reduced geographical area in the Land of Valencia. 

Haplotype H1A is basically placed in two coastal regions: La Marina Alta and La Safor. 

Haplotype H1D is more distributed and it could be in favour of different timings. However, 

since haplotype H1D is mainly found in inner countryside regions, concentrated in l’Alcoià 
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and its natural routes of communication, this wider distribution could be a consequence of 

migratory movements rather than the multiple origins of HD mutation. Something similar 

could have occurred to haplotype H1F. This is situated throughout the Land of Valencia, and 

in the most inner Southern counties, mainly in the Vinalopó region. Moreover, although a 

complete census was not available, according to the origin of the studied HD families, we 

have found that the three more representative haplotypes in our series (H1A, H1D and H1F) 

are located in counties with high estimated frequenciess. This high frequency may therefore 

be the result of a founder effect (Fig. 4).  

  To further investigate the natural history of HD in our population, we estimated the 

age of the founding haplotype H1 and the associated HD expansion by using two 

mathematical approaches. Estimations made with computer iterations based on the method 

developed by Serre et al. (1990), gave a wide range of generations, between 235 and 417 

(4,700 and 8,340 years old, based on the assumption that a generation lasts 20 years). This 

wide range of generations is not unique to the present results. In fact, the different mutations 

ages were estimated by using Risch’s formula (Risch et al., 1995), which assumes an 

exponential decay of linkage disequilibrium with time, as shown by Serre’s method (Serre et 

al., 1990), where a large variability was also shown, depending on the markers used for the 

dating analysis (Díaz et al., 1999; Hashemi et al., 2001). When the method implemented by 

Slatkin and Rannala (1997) was applied, an age estimation of approximately 500 generations 

was obtained (10,000 years). The variability obtained is subjected to a statistical fluctuation 

resulting from the methods used, which in turn depend strongly on genetic (mutation rate, 

selection) and demographic (population size, expansion dynamics) parameters (Díaz et al., 

1999; Ciotti et al., 2000; Broeks et al., 2003). In the aggregate, all these calculations led us to 

conclude that the most likely scenario is that the time when the founding haplotype H1, 

associated with the HD mutation, actually appeared in the Land of Valencia is extremely 
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ancient. This is also supported by the low frequency of the H1 haplotype in the Valencian 

control chromosomes. Reported data on dating a HD mutation are not available. On the other 

hand, it is noteworthy to mention the results obtained by Bachinski et al. (2003) on the 

evolution of the type 2 myotonic dystrophy (DM2) expansion mutation in geographically 

separate populations of a European origin. They estimated the age of both the founding 

haplotype and the DM2 mutation to be ~4,000-11,000 years. In both cases the dynamic 

mutation would give arise after the Neolithic expansion of the modern humans into Europe, 

roughly 10,000-15,000 years ago (Cavalli-Sforza et al., 1994). At this point it is intriguing to 

set out the possibility that most of HD mutations in European populations came about in that 

period of the European history. Further studies on the allelic age of the HD expansion are 

needed.  

 De novo mutations in diseases associated with dynamic expansions used to be 

originated from large normal alleles that may act as a reservoir (Imbert et al., 1993). We have 

found one de novo CAG expansion in the present series. The mutation is associated with a 

rare haplotype 5-A/G-7-A-3 at first sight non-related with the ancestral haplotype H1. Despite 

the ambiguity at marker rs1313770 however, it is still possible that this rare haplotype might 

derived from H1. In such a case, it could be argued that the HD chromosome associated with 

H1 arrived into Valencia as a large normal allele that underwent further mutated expansion. 

This ancient large allele would have remained as the reservoir for the disease through the 

Valencian history. 
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Locus 
Marker 

Systematic namea 
Sequence (5’→3’) PCR size (bp) 

Heterozigosity 

(alleles) 

D4S126 dinucleotide HEX-GGATCCTGTCACTGTACTCCAGCC 

TGCTTAACCAGTTTGACCATGAGG 
155-177 

83.50 % 

(12) 

rs1313770 SNP 

NT_006081.17:g.444387A>G 

CCAAGAGAGGACTTATCC 

CTGTCAGAAGTGGGATCC 
138 

---- 

(2) 

HD/CCG trinucleotide AGCAGCAGCAACAGCC 

HEX-GGCTGAGGAAGCTGAGGAG 
61-79 

---- 

(6) 

rs82334 SNP 

NT_006081.17:g.611947A>C 

GCTGCTTGGAGCAGCAGC 

GGAGGCCACCTTTGGGTC 
219 

37.8 % 

(2) 

D4S3034 dinucleotide CTGCCAATAAACTGGGT 

TET-TTGCTCACCAAAGAGGTT 
180-188 

62 % 

(5) 
aThe nomenclature format followed is a GenBank accession number and version number, the letter “g” what 

means it is a genomic sequence, the position number of the change and the nucleotide change itself.  

 

TABLE 1. Characteristics of the analysed markers. Data were obtained from 

http://genome.ucsc.edu and http://www.ncbi.nlm.nih.gov/entrez. 
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TABLE 2. Allelic distribution of the five analysed markers in both controls and the HD 

population. Only unequivocal-phased chromosomes associated with the HD mutation were 

considered. 

 

 

Marker Allele Control 

chromosomes 

HD 

chromosomes 

N (%) N (%) 

D4S126 149   (12) 

151   (11) 

153   (10) 

155    (9) 

157    (8) 

159    (7) 

161    (6) 

163    (5) 

165    (4) 

167    (3) 

169    (2) 

Total 

  1 (0.5) 

 

  7 (3.5) 

20 (10) 

26 (13) 

38 (19) 

44 (22) 

24 (12) 

30 (15) 

  9 (4.5) 

  1 (0.5) 

200 

 

 

 

 

 

 

  9 (32.2) 

  1 (3.6) 

  6 (21.4) 

12 (42.8) 

 

28 

rs1313770 A 

G 

Total 

111 (55.5) 

 89 (44.5) 

200 

50 (98) 

 1 (2) 

51 

CCG repeat 6 

7 

8 

9 

10 

Total 

    1 (0.5) 

147 (74.3) 

    3 (1.5) 

    2 (1.0) 

 45 (22.7) 

198 

 

77 (97.5) 

 

 

 2 (2.5) 

79 

rs82334 A 

C 

Total 

143 (71.5) 

  57 (28.5) 

200 

63 (95.5) 

 3 (4.5) 

66 

D4S3034 180     (1) 

182     (2) 

184     (3) 

186     (4) 

188     (5) 

Total 

22 (11.1) 

74 (37.4) 

77 (38.9) 

23 (11.6) 

  2 (1.0) 

198 

 

23 (74.2) 

  7 (22.6) 

  1 (3.2) 

 

31 
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FIGURE 1. Distribution of the CAG-HD repeat in all the alleles genotyped. The CAG repeat 

number is represented on the X axis, and the number of alleles detected for each repetition is 

represented on the Y axis. 

 

FIGURE 2. Physical map of HD locus (NM_002111.3). Huntingtin gene is indicated as an 

arrow. Distances between each pair of markers are indicated at the top. Markers are placed at 

the bottom. 

 

FIGURE 3. Distribution of HD-associated haplotypes segregating with the allele 7 of the 

HD/CCG polymorphism. The number of resulting cases for each haplotype either established 

by inheritance (known phase) or reconstructed by the PHASE v2.0 program (unknown phase) 

is shown. (A) Main haplotypes constructed with markers rs1313770-HD/CCG-rs82334; (B) 

Haplotypes based on the core H1 (A-7-A). A total of 17 extended haplotypes associated to the 

HD mutation were established by inheritance. Haplotype H1B is also included because it was 

yielded by the computational analysis as one of the best reconstructions. Vertical bars denote 

hypothetical recombinational events.  

 

FIGURE 4. Location of the HD cases in the Land of Valencia. (A) Geographical distribution 

of the haplotypes H1A, H1D and H1F. Both the phased (grey symbols) and unambiguous 

(black symbols) haplotypes are placed. (B) Estimated frequencies estimated for several 

Valencian counties.  

 

FIGURE 5. Maximum likelihood curves obtained by means of BDMC21. Graphics shows 

the log-likelihood values and the corresponding number of generation estimates regarding the 
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age of the founding haplotype H1. Up to 10 seeds were performed to validate the resulting 

data, and no significant differences were observed. 


