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A B S T R A C T   

Modern agriculture is underpinned by actual meteorological data registered using automated meteorological 
stations forming networks specifically created for advising purposes. In many cases, those data used to be 
accessible online by means of APIs (Application Programming Interface). One of the most common cases is the 
irrigation-advice weather network implemented with the aim of obtaining ETo values to be used in irrigation 
recommendations. However, those punctual values of ETo scattered throughout the territory do not allow to 
produce specific irrigation recommendations for each farm. The only way of disposing site-specific values of ETo 
is by compiling maps that describe its spatial variation. With this objective, a new dynamic procedure based on 
an existing regression-based technique of interpolation was proposed. Using the meteorological data registered at 
the end of each day, maximum and minimum temperature, maximum and minimum relative humidity, wind 
velocity, and radiation maps were interpolated and then, an ETo map was derived. The proposed procedure 
demonstrated a special adaptation capacity to the synoptic pattern of each day using some geographical features 
or others, as appropriate to explain the spatial variability of the interpolated meteorological variable. In those 
months where radiation plays a key role in the ETo value (growing season), ETo maps obtained were especially 
fine-grained in areas with significant relief. This procedure improved other contrasted methodologies they were 
compared with. The impact of using the nearest-weather-station ETo vs interpolated value on a daily water needs 
was investigated and near 10% average value of error was encountered in the case study.   

1. Introduction 

In recent times, a multitude of agricultural weather networks (AWN) 
have been developed around the world with the aim of advising agri-
cultural activities (Shulski et al., 2018) certainly fostered by the expo-
nential growth of digital technologies. Few years ago, the installation 
and maintenance of these kinds of facilities were only within reach of 
governmental agencies and national weather services of countries. 
However, nowadays cooperative extensions, universities, growers’ as-
sociations, and regional or even local governments are providing this 
service thanks to the automated weather stations. Furthermore, adopt-
ing modern information and communication technologies allows data to 
be available in real-time. Among the different ways of serving the 
registered data to the users, weather APIs (Application Programming 

Interface) are gaining space due to their flexibility. Any authorized user 
can retrieve data online from the AWN creating software applications 
that directly consume the data. In this sense, it is worth to highlight the 
increase of the AWNs specifically set up to advice irrigators (Elliott et al., 
2000). This type of weather station uses to be equipped with enough 
sensors (temperature and relative humidity probes, anemometer, and 
pyranometer) to derive the FAO-56 Penman-Monteith (PM56) reference 
evapotranspiration (ETo) (Brown, 2007) as an expression of the daily 
evaporative demand of the atmosphere (Raes et al., 2009). ETo along 
with the registered rainfall allows to provide irrigation recommenda-
tions using the FAO-56 methodology (Allen et al., 1998). 

Nonetheless, even if an irrigation-advice weather network exists in a 
region, stations density does not allow producing specific irrigation 
recommendations for each farm. Depending on the relative location of 

* Corresponding author. 
E-mail address: agprats@upv.es (A. Garcia-Prats).  

Contents lists available at ScienceDirect 

Agricultural Water Management 

journal homepage: www.elsevier.com/locate/agwat 

https://doi.org/10.1016/j.agwat.2023.108415 
Received 20 May 2023; Received in revised form 12 June 2023; Accepted 12 June 2023   

mailto:agprats@upv.es
www.sciencedirect.com/science/journal/03783774
https://www.elsevier.com/locate/agwat
https://doi.org/10.1016/j.agwat.2023.108415
https://doi.org/10.1016/j.agwat.2023.108415
https://doi.org/10.1016/j.agwat.2023.108415
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agwat.2023.108415&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Agricultural Water Management 287 (2023) 108415

2

the farm in respect of the weather station, the ETo employed could come 
from many kilometers apart (Martínez-Lüscher et al., 2022). Under this 
circumstance, the only way of disposing site-specific values of ETo is by 
compiling maps that describe its spatial variation (Vicente-Serrano 
et al., 2007). To do that, two main procedures can be identified in the 
literature. On the one hand, a number of authors employed geostatistical 
or deterministic interpolation methods: Hodam et al. (2017), Mancosu 
et al. (2014), Noshadi and Sepaskhah (2005), and Martinez-Cob (1996) 
utilized ordinary kriging, residual kriging, cokriging and inverse dis-
tance squared. Martínez-Cob and Cuenca (1992) and Mardikis et al. 
(2005) proposed variations in some of them to include the terrain 
elevation as a covariate due to its deep influence in landscapes with 
some relief. On the other hand, and considering that ETo would be 
spatially influenced by not only elevation but other geographical fea-
tures, other authors opted for statistical techniques of mapping previ-
ously employed successfully to map other meteorological variables like 
temperature (Agnew and Palutikof, 2000; Ninyerola et al., 2007a), 
precipitation (Daly et al., 2002; Ninyerola et al., 2007b) or radiation 
(Pons and Ninyerola, 2008). This kind of interpolation method uses to be 
based on multiple linear regressions in which the explained meteoro-
logical variable is related to some geographical characteristic like lati-
tude, longitude, elevation, continentality, slope, aspect, etc. acting as 
independent variables. To date, only a few studies have explicitly 
addressed this ETo-mapping approach. Furthermore, the existing ones 
are obtained on a monthly basis (Vicente-Serrano et al., 2007; McVicar 
et al., 2007), a definitely time-step not valid to be used to make irriga-
tion recommendations that need at most weekly or preferably daily ETo 
values. 

It is worth emphasizing that the aforementioned regression-based 
statistical techniques of mapping ETo can be addressed under two 
different headings (McVicar et al., 2007): i) “calculate-then-interpolate 
approach”, interpolating directly the punctual ETo values obtained in 
each weather station on the region covered for the AWN (Martí and 
Zarzo, 2012), or ii) “interpolate-then-calculate” approach, interpolating 
separately each meteorological variable involved in the PM56 formu-
lation (maximum and minimum temperature, maximum and minimum 
relative humidity, 2-meter height wind speed and solar radiation) and 
then applying layer algebra for each grid-cell to derive the ETo map 
(Vicente-Serrano et al., 2007; McVicar et al., 2007). As a general rule, in 
the previous monthly-basis works, authors agreed that better results 
were obtained using the second approach despite the error propagation 
along with each interpolation involved (Vicente-Serrano et al., 2007). 
Conversely, from a temporal point of view, those previous 
monthly-basis-works are “static”, due to the fact that the regression 
coefficients were obtained using a certain weather-station percentage of 
the network, and validated in the rest of them (e.g. 80% mapping, 20% 
validation) but for the same period of time (e.g. same 15, 20 or whatever 
period of years). It is not proven that this approach guarantees the ad-
equacy of these regression equations for a new period, i.e. for a new 
month of a new year, not to mention for producing daily ETo maps. 

In relation to the generation of daily-meteorological-variable sur-
faces, a special mention deserves the contribution of (Thornton et al., 
1997). They improved the MTCLIM logic model (Hungerford et al., 
1989) applying a truncated Gaussian filter as an interpolation method 
and a weighted least-square regression between pairs of stations as a 
correction for the effect of the elevation on the variables. Using this 

Fig. 1. Jucar River system location.  
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method, important products like DAYMET dataset (Oak Ridge National 
Laboratory, supported by NASA- USA) (Thornton et al., 2021, 1997) 
have been delivered. DAYMET dataset provides long-term, continuous, 
gridded estimates of daily weather and climatology variables on a 1 km x 
1 km gridded surface over continental North America from 1980, but 
does not exist in other regions or in other resolutions. Using this same 
algorithm with a few modifications, the R package METEOLAND (De 
Cáceres et al., 2018) allows the spatial interpolation of daily weather 
records from meteorological stations in order to produce continuous 
surfaces. In this case, the user decides the spatial resolution by means of 
the resolution of the elevation surface or digital elevation model (DEM) 
employed in the interpolation procedure. 

In regions covered by AWNs specifically devoted to irrigation-advice 
with weather-API-real-time access to the data, it is peremptory to 
investigate the development of a dynamic algorithm capable to obtain 
reliable ETo maps on a daily basis and with an adequate spatial reso-
lution to produce site-specific irrigation recommendations and not just 
referred to the nearest weather station. At the end of each day, the API 
should serve a new map along with the regular daily meteorological 
records. 

This study aims at contributing to an improved comprehension of 
ETo mapping on a daily basis considering the geographical character-
istics of the landscape. Our study was conducted in the Jucar River 
system, a Mediterranean region of eastern Spain where the intensive 
irrigated agriculture and a pronounced relief in certain areas, provided 
an excellent context to address the following research questions (RQ): 

RQ1:. Are monthly interpolation procedures capable to produce 
proper ETo maps on a daily basis using static equations coming from 
historical data? 

RQ2:. Do all the meteorological variables involved in the PM56-ETo 

calculation have the same influence on the final ETo value? And, Is 
this influence constant throughout the year? 

RQ3:. Derived from the previous question, Does the lack of precision 
interpolating one meteorological variable have the same impact as 
another? 

2. Material and methods 

2.1. Case study area: the Jucar River system (JRs) 

Placed in the east of Spain (Fig. 1), the Jucar River system (JRs) 
almost exactly matches the same-name river basin. According to the 
published information by the river authority (Confederación 
Hidrográfica del Júcar, 2022) the basin is characterized by a typical 
Mediterranean climate. The annual average precipitation is about 500 
mm, ranging from 300 to 780 mm. The rainfall regime combines intense 
rains in autumn (October is the rainiest month with nearly 60 mm) and 
spring with dry summers (July is the driest month with nearly 13 mm). 
The average temperature ranges from 11 ◦C in winter to 26.6 ◦C in 
summer. The average ETo for the period 1980–2018 was 992.7 mm. The 
geographical area of the JRs is 2,226,093 ha of which 210,000 ha are 
irrigated. To finish with, citrus trees are the main crop occupying nearly 
40% of the irrigated area, being cereals, vineyards, fruit trees, horti-
culture crops, and olives the other 60% (Confederación Hidrográfica del 
Júcar, 2022). 

2.2. Meteorological data: “SIAR” agricultural weather network 

Irrigated areas of the Jucar River system (JRs) are covered by the 
AWN named SIAR (Agro-climatic Information System for Irrigation 

Fig. 2. Automated weather station of SIAR network locations and digital elevation model-DEM-of the JRs.  
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-www.siar.es-). SIAR was created in 1998 to promote water savings by 
means of proper irrigation recommendations, and covering the main 
irrigable areas of Spain with a total of 460 automated weather stations, 
63 of them located into or near the perimeter of the JRs, as can be seen in  
Fig. 2. SIAR was promoted by the Spanish Ministry of Agriculture, 
Fisheries and Food (MAPA), and is maintained -and in some cases 
densified with additional stations- by the different regional govern-
ments. That is the case of the JRs whose weather stations are maintained 
by the Valencian Community and Castile-La Mancha Community 
regional governments. In Fig. 3 can be seen a typical automated weather 
station equipped with a bucket rainfall sensor, anemometer, and wind 
direction located at 2 m-normalized high from the ground, temperature 
and humidity probes, and pyranometer. The station is completed with a 
data logger and a GSM communication module to transfer the data 
automatically several times a day. Meteorological records are registered 
every 30 min and then aggregated to hourly and daily data to be served 
through the API. In the stations of the SIAR network, preventive main-
tenance is carried out every six months, performing a general review. In 
the same way, an annual calibration of the station sensors is done in a 
laboratory. Corrective maintenance of any anomaly detected in the 
station is carried out. 

2.3. Modeling framework 

Since the final purpose of this work was developing a dynamic ETo 
mapping procedure to deliver site-specific irrigation recommendations 
according to FAO-56 methodology (Allen et al., 1998), the 
Penman-Monteith equation was adopted to calculate the reference 
evapotranspiration. 

ETo =
0.408⋅Δ⋅(Rn − G) + γ⋅ 900

Tm+273 ⋅U2⋅(es − ea)

Δ + γ⋅(1 + 0.34⋅U2)

Where ETo is the reference evapotranspiration (mm⋅d− 1); Δ is the slope 
vapour pressure curve (kPa ºC− 1); Rn is the net radiation at the crop 
surface (MJ m− 2 día− 1); G is the soil heat flux density (MJ m− 2 día− 1); U2 
is the wind speed at 2 m height (m s− 1); γ is the psychrometric constant 

(kPa ºC− 1); (es – ea) is the saturation vapour pressure deficit (kPa); and 
Tm is the mean daily air temperature (ºC). 

In this work, an “interpolate-then-calculate” approach was adopted. 
Thus, a continuous grid-cell map per meteorological variable involved in 
the PM56-ETo had to be previously interpolated, based on the daily 
records registered for the AWN. The spatial resolution of the grid-cell 
maps for all cases was 100 m. 

Fig. 4 describes the proposed modeling framework. Three different 
spatial interpolation procedures were applied and then compared using 
model-performance metrics: i) Meteoland R package, ii) Monthly Static 
Regression-Based Interpolation (SRI), and iii) Daily Dynamic 
Regression-Based Interpolation (DRI). The three procedures are shortly 
described here, with some detail hereafter in the next section.  

i) Meteoland (De Cáceres et al., 2018) R package implements, with 
few modifications, the daily weather interpolation algorithms 
developed by (Thornton et al., 2021, 1997) and (Thornton and 
Running, 1999) that underpin the DAYMET dataset (https 
://daymet.ornl.gov/). The interpolation procedure is based on a 
truncated Gaussian filter and the correction of the meteorological 
variables for the elevation effect is solved using a weighted 
least-square regression between stations and target points to be 
interpolated. Daily potential solar radiation is calculated after 
(Garnier and Ohmura, 1968) and the incident radiation after 
(Thornton and Running, 1999). Further details about the algo-
rithms and procedures can be seen in De Cáceres et al. (2018) and 
the R package documentation (https://cran.r-project.org/web/-
packages/meteoland/index.html). Meteoland was employed to 
interpolate 365 daily continuous surfaces (year 2022) of the 
mean (Tm), maximum (Tmax) and minimum (Tmin) temperature, 
maximum (HRmax) and minimum (HRmin) relative humidity, 
wind velocity (U2) and incident solar radiation (Rs) using 49 
training stations of SIAR network as defined in Fig. 2. Results 
were validated using 14 validation stations of the SIAR network 
as well as illustrated in Fig. 2. Finally, applying layer algebra for 
each grid-cell, the PM56-ETo map was obtained.  

ii) Monthly Static Regression-Based Interpolation (SRI) is a 
regression-based procedure calculated using exactly the same 
methodology after Vicente-Serrano et al. (2007). Using a 15-year 
period (2007–2021), monthly multiple regression equations were 
obtained. Using those static monthly regression equations based 
on historical data, 365 daily for the year 2022 continuous 
grid-cell maps of Tm, Tmax, Tmin, HRmax, HRmin, and U2 were 
obtained. An upward-looking hemispherical viewshed algorithm 
was employed to obtain Rs on a monthly basis. Finally, applying 
layer algebra for each grid-cell, the PM56-ETo map was derived. 
The same procedure of validation as described in the METEO-
LAND procedure was employed, explained in more detail in the 
next section.  

iii) Daily Dynamic Regression-Based Interpolation (DRI). It turns out 
to be the very novelty proposal of this paper. Based on the SRI 
procedure, a new regression equation is obtained every day 
instead of using static regression equations obtained from his-
torical data. According to the atmospheric conditions of each day, 
different geographical features are able to explain spatial vari-
ability. 365 daily continuous grid-cell maps for the year-2022 of 
Tm, Tmax, Tmin, HRmax, HRmin, and U2 were obtained using this method. 

An upward-looking hemispherical viewshed algorithm was employed to get Rs on a daily 

basis. Finally, applying layer algebra for each grid-cell, the PM56-ETo map was derived. 

The same validation procedure described in the METEOLAND procedure was employed, 

explained in more detail in the next section. 

Fig. 3. Automated weather station of SIAR network.  
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2.4. Monthly Static (SRI) and Daily Dynamic (DRI) regression-based 
interpolation procedures 

2.4.1. Maximum and Minimum Temperature, Maximum and Minimum 
Relative Humidity and Wind Speed interpolation procedure 

For this purpose, the regression-based technique of interpolation 
after Vicente-Serrano et al. (2007) and previously Ninyerola et al. 
(2000), was applied. The value of the variable in the space among 
weather stations was calculated using the equation: 

Z(x) = a0 + a1⋅x1 + a2⋅x2 +…+ an⋅xn  

Where Z(x) is the predicted value of the temperature, humidity, or wind 
speed, (ºC, % or m⋅s− 1 respectively); a0 to an are the regression co-
efficients, and x1 to xn are the values of the independent variables 
(geographical features) at the spatial point x. 

Table 1 includes the geographical features acting as independent 
variables. The linear relationship between them and the predicted 
temperature/humidity/wind speed was investigated using a multiple 

Fig. 4. Modeling framework. DOY = Day of the year (1− 365), T = Temperature, HR = Relative humidity, U2 = wind velocity. Other variables explained into 
the figure. 
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regression forward stepwise procedure. Only independent variables 
with pvalue< 0.01 were included in the regression, avoiding collinearity 
problems derived from using the complete set (Hair et al., 2010). Ho-
moscedasticity (using residual plots) and no residual autocorrelation 
(using the Durbin-Watson parameter) were checked as well. 

After obtaining the geographical variables involved and the co-
efficients of the multiple regression equations, a continuous map was 
obtained by simply combining the raster layers with the information of 
each geographic variable and applying the algebraic formula. Logically, 
at the location of each weather station, the value of the registered and 
modeled temperature/humidity/wind speed does not match. Residuals 
use to be interpolated over the entire study area, and summed up to the 
predicted value using local techniques. In this case, the splines with 
tension method (Mitášová and Mitáš, 1993) was employed to do that. 
This way, registered and predicted values at the weather station loca-
tions employed to train the model (Training Stations in Fig. 2) coincide, 
and the validation in other locations improves substantially (Validation 
Stations in Fig. 2) according to Ninyerola et al. (2000) and Agnew and 
Palutikof (2000). 

For SRI, monthly regression equations were obtained using a 15-year 
period of daily data (2007–2021). Those static monthly regression 
equations based on historical data were obtained only once and then 
employed in the generation of new daily continuous grid-cell maps of 
Tm, Tmax, Tmin, HRmax, HRmin, and U2 for the year-2022. Neverthe-
less, in DRI, based on the registered daily data along the AWN, a new 
regression equation was obtained specifically for each day. Only those 
geographical features with statical significance were included, being the 
case as they might be different even for two contiguous days. 

2.4.2. Radiation interpolation procedure 
Solar radiation plays a key role in the ET process due to the fact that 

is responsible of contributing the necessary energy to transform water 

from liquid to vapor state. Hence, the spatial heterogeneity of the 
incoming solar energy produced by a complex topography (elevation, 
slope, aspect and shadows) creates strong local gradients that determine 
the dynamic of the ET (Tovar-Pescador et al., 2006) that cannot be 
ignored assuming a flat terrain. For that reason, several models and 
almost all GIS platforms have developed algorithms for estimating solar 
radiation spatially-adapted to the relief: SolarFlux for ArcInfo (Dubayah 
and Rich, 1995), Solar Analyst for Arc View (Fu and Rich, 2000), SRAD 
(Wilson and Gallant, 2000), Solei for IDRISI (Miklánek, 1993), MiraMon 
GIS (Pons, 2006), MTCLIM logic/DAYMET (Thornton et al., 2021, 1997; 
Thornton and Running, 1999), METEOLAND (De Cáceres et al., 2018) or 
r.sun for GRASS/QGIS (Hofierka et al., 2002) are some examples of this. 

Some of the aforementioned models employ the upward-looking 
hemispherical viewshed algorithm. The viewshed algorithm is a vir-
tualized version of hemispherical canopy photography (Kodysh et al., 
2013). Three main results are obtained from them: i) global, ii) direct 
and iii) diffuse radiation. Regardless of the version of the 
upward-looking hemispherical viewshed algorithm employed, two pa-
rameters control the algorithm: i) atmosphere transmissivity and ii) 
diffuse radiation rate. Transmissivity is a property of the atmosphere 
and is the quotient between the radiation received at the top of the at-
mosphere and that reaching the earth’s surface, ranging from 0 (no 
transmission) to 1 (complete transmission). Typically observed values 
are 0.6–0.7 for very clear sky conditions and 0.5 for a generally clear 
sky. The percentage of global radiation that is diffused is approximately 
0.2 for very clear sky conditions and 0.7 for very cloudy sky conditions. 
(ArcGis Help, 2022), (Kodysh et al., 2013). It should be noted that 
transmissivity and diffuse radiation rate depend on atmospheric condi-
tions and are constantly changing. Not only cloud cover but also pre-
cipitation, dust, or aerosol presence attenuate the amount of diffuse and 
direct solar radiation for a given surface. Hence, transmissivity and 
diffuse radiation rate are time-space-specific and they are constantly 
changing. To consider this attribute consistent with a feasible compu-
tational effort, the following method was applied: for the 2022-year, 365 
different grid maps of potential radiation PR (one for each DOY) were 
obtained using the upward-looking hemispherical viewshed algorithm 
and assuming values of transmissivity and diffuse radiation rate for the 
very best clear sky conditions (0.6 and 0.2 respectively). For each day we 
want to obtain a radiation map, the ratio of the actual radiation Rs 
(registered for each weather station) to DOY-specific PR at the weather 
station location was calculated. These punctual Rs/PR-ratio values were 
then spatially interpolated using the splines-with-tension method 
(Mitášová and Mitáš, 1993) obtaining an Rs/PR grid-cell map. Then, a 
daily Rs grid-cell map was derived by multiplying this Rs/PR ratio grid 
and the PR grid. In this work, Solar Analyst for ArcGIS environment was 
employed in order to obtain the 365 DOY-specific PR maps and v.surf.rst 
for GRASS environment to interpolate daily Rs/PR-ratio values using the 
splines-with-tension method. A monthly radiation average map was 
aggregated using the same method for the monthly-basis calculations. 
Further details about those algorithms can be found in the aforemen-
tioned references and GIS platform’s user manuals. 

2.5. Sensitivity analysis of PM56-ETo to the meteorological variables 

In order to assess the sensitivity of the ETo to the meteorological 
variable changes, a sensitivity analysis was developed. In this analysis, 
all the meteorological variables except one were maintained constant on 
the average monthly values while the ETo was calculated using the 
minimum and the maximum value of the range of each variable. The 
difference between them (ΔETo %) is expressed as a percentage of the 
ETo for the average conditions. This sensitivity analysis methodology 
has been widely employed in the literature for the very same purpose 
(Goyal, 2004; Irmak et al., 2006; Paturel et al., 1995; Vicente-Serrano 
et al., 2014; Wang et al., 2011; Xu et al., 2006). 

Table 1 
Geographical features acting as independent variables in the multiple regression 
interpolation.  

LONG Longitude, in degrees. 

LAT Latitude, in degrees. 
MEDIT Distance to the nearest sea with clear influence in the weather synoptic (the 

Mediterranean Sea in our case), in m. 
RAD Annual average incoming solar radiation, in MJ d− 1. 
RADx Annual average incoming solar radiation, in MJ d− 1, within xi, where x is a 

radius of 2.5, 5, and 25 km. 
ELEV Elevation, in m. 
ELEVx Mean elevation, in m, within xi, where x is a radius of 2.5, 5, and 10 km. 
Slope Terrain slope, in %. 
Aspect Terrain aspect, in 0–360 degrees, with respect north (0 degrees).  

Table 2 
Statistical metrics.  

MAE Mean absolute error MAE =
1
n
∑n

j=1

⃒
⃒Pj − Oj

⃒
⃒

MBE Mean bias error MBE =
1
n
∑n

j=1
(Pj − Oj)

RMSE Root mean squared error 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

j=1

(
Pj − Oj

)2
√

d Index of Agreement (Willmott, 1982) 
d = 1 −

∑n
j=1

(
Pj − Oj

)2

∑n
j=1

( ⃒
⃒Pj − Oj

⃒
⃒+

⃒
⃒Oj − O

⃒
⃒
)2 

NSE Nash-Sutcliffe model efficiency ( 
Nash and Sutcliffe, 1970) NSE = 1 −

∑n
j=1(Oj − Pj)

2

∑n
j=1(Oj − O)

2 

Where: Pj Predicted values  
Oj Observed values  
O Average of observed values  
n Number of total values  
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Fig. 5. Predicted vs Observed plot integrating all the validation stations. R2 = Coefficient of determination; MAE = Mean absolute error; MBE = Mean bias error; 
RMSE = Root mean squared error; d = Willmott Index of Agreement; NSE = Nash and Sutcliffe Nash-Sutcliffe model efficiency. 
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2.6. Maps validation and model performance 

The accuracy of the interpolated maps has to be assessed by 
comparing modeled vs actual registered data in other weather stations 
different from the one employed in the interpolation procedure. For this 
purpose, 20% of the AWN stations (14 out 63) were randomly selected to 
be employed only for the validation tests, as shown in Fig. 2. As 
explained before, the rest of the stations (49 out 63) were employed 
exclusively in the interpolation procedures. 

A number of statistical metrics can be found in the literature with the 
aim of assessing the ability of models to capture reality. According to 
Legates and McCabe (1999), a model performance assessment should 
include one or several absolute/relative error measures and one or 
several goodness-of-fit measures. Taking into account that the square of 
deviations (e.g., root mean square error, RMSE) use to be more sensitive 
to outliers than deviations (Pj – Oj) in an absolute value sense (e.g., mean 
absolute error, MAE or mean bias error, MBE), the statistical metrics 
included in Table 2 were employed to assess the ETo maps. 

As regards the performance comparison between models, two 
dimensionless indices were calculated: i) Willmott index of agreement, 
d, (Willmott, 1981), and ii) Nash-Sutcliffe model efficiency, NSE, (Nash 
and Sutcliffe, 1970). NSE ranges between 1 and − ∞. NSE = 1 means a 
perfect match between model outputs and observed values, and NSE < 0 
means that the average of the observations would be a better predictor 
than the model output. Regarding the Wilmott index of agreement, d has 
limits of 0, indicating no agreement, and 1, indicating perfect agreement 
(Groenendijk et al., 2014). 

The three evaluated models were graphically compared using a 
Taylor diagram (Taylor, 2001). The similarity between two patterns in 
the Taylor diagram is quantified in terms of their correlation, the 
amplitude of their variations -standard deviations-, and their centered 
root-mean-square difference. In the Taylor diagram, only one mark per 
model output is represented using the three dimensions. The closer the 
model mark regarding the “observed” mark is, the better the agreement 
was. 

Finally, the impact of using the DRI-interpolated vs nearest-weather- 

Fig. 5. (continued). 
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Fig. 6. Taylor Diagram comparing the three interpolation procedures performance.  
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station ETo value on a daily irrigation recommendation was assessed 
and quantified as follows: The area that is closest to each JRs-weather- 
station was obtained by creating the Thiessen polygons (Fig. 10) for 
each weather station. On the other hand, the centroid of each individual 
plot or farm was obtained, and the DRI-ETo value from the interpolated 
maps was assigned to it. The total number of plots in the JRs was 
263,413. The difference between the DRI-interpolated and the recorded 
in the nearest weather station ETo value was computed for each plot and 
compared. 

3. Results and discussion 

3.1. Interpolation procedures performance assessment 

The final purpose of this paper was to develop a dynamic method of 
mapping ETo. At the end of each day, a programmed script could pro-
duce a new continuous surface of PM56-ETo using the registered data of 
an AWN. However, since the proposed method does not make a direct 
spatial interpolation of ETo values but requires one interpolated surface 
of each meteorological variable involved in the PM56-ETo equation, not 
only the ETo maps should be assessed. In order to understand how the 
different methods worked out, Rs, Tmax, Tmin, HRmax, HRmin, and U2 
maps in addition to reference evapotranspiration were compared. The 
validation of the maps was developed by comparing the map value in 
those grid-cells where 14 out 63 stations (see Fig. 2) not included in the 
interpolation process were located, to the actual values registered in 
those stations. 

For each meteorological variable (Fig. 5), a predicted vs observed 
scatter plot was generated, including all the validation weather stations 
and all the daily observations of the year 2022 (365 × 14 = 5110). A 
legend with the statistical metrics was also incorporated in the body of 
the scatter plot. SRI showed the worst performance in all statistical 
metrics and for all meteorological variables, demonstrating that static 
regressions method based on historical data did not accurately capture 
the variability of daily ETo in respect of the monthly averaged values 
they come from. At the other end, the best performance was encountered 
for the DRI procedure. 

DRI and Meteoland exhibited a similar performance for Tmax and 
Tmin and relatively close for Rs. However, Meteoland showed a poor 
performance in Hrmin, Hrmax, and U2. This aspect was transmitted to 
the final ETo results and was reflected on the metrics, producing an R2 of 
0.95 vs 0.91, NSE of 0.95 vs 0.91, and d of 0.99 vs 0.97, for DRI and 
Meteoland respectively. A lesser error was also obtained according to 
the metrics for DRI as well. 

Another way of comparing models’ performance is by means of the 
Taylor Diagram. The similarity between patterns in this graphical 
method is quantified in terms of their correlation, amplitude of their 
variations -standard deviations-, and their centered root-mean-square 
difference. Each model is represented in the body of the plot using 
those three coordinates. The closer a point in respect of the point rep-
resenting the actual observed values is, the better performance the 
model has. Similar results to the one obtained using the statistical 
metrics could be observed in this analysis. The advantage of this graph 
over other performance evaluation methods, is that it allows 

Fig. 7. Frequency histograms and violin plots for the observed and interpolated values or ETo.  
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understanding at a glance how far one model is from the actual data and 
from the other models they are being compared. In Fig. 6 can be seen the 
Taylor Diagrams of the ETo and the different meteorological variables 
involved in the interpolation procedures. Fig. 6 was plotted using 
“plotrix” R package (Lemon, 2006). Another additional aspect can be 
seen in this graph: when two models exhibit similar values of correlation 
and error, the standard deviation breaks the tie. The standard deviation 
of the observed values is represented with a solid black line along the 
graph. The closer the point is in respect to this line, the better, because 
this is a symptom of the similarity of probability distributions. As can be 
seen in Fig. 6, SRI showed the worst performance and DRI the best one. 
In those meteorological variables with similar behavior when DRI and 
Meteoland were compared, always DRI was closer to the standard de-
viation line. 

As was mentioned in the last paragraph, the shape of the distribution 
function between observed and modeled values is also important. For 
this purpose, in the Fig. 7 both, a frequency histogram (with its density 
function), and overlapped, violin plots were generated for observed, 
DRI, SRI and Meteoland values of ETo. The violin plot (Adler et al., 
2022) is a symmetric representation of a box-and-whiskers plot. A 
similar shape in those three plots guarantees a similar distribution of 
probability. As can be seen in Fig. 7, DRI was able to reproduce, with 
greater similarity than the other methods, the shape of the observed-ETo 
distribution. 

3.2. Sensitivity analysis of PM56-ETo 

In order to understand the behavior of the different interpolation 
procedures, a sensitivity analysis of the PM56 ETo to the different 
meteorological variables involved was developed for the year 2022 in 
the AB09 validation station (see Fig. 2). This station was selected 
because it is located just in the center of the JRs. First of all, average 
values of Tmax, Tmin, HRmax, HRmin, Rs and U2 on a monthly basis were 
calculated and assigned to the 15th day of the month. On the other hand, 
each month’s minimum and maximum absolute values of each variable 
were recorded, indicating the range of this variable in this month. Re-
sults were exposed in Table 3. In this table, the first column on the left 
indicates the day of the year (DOY) for each 15th day of each month. 
Following this in the first row, 9.79 MJ m2 d− 1 is the monthly average 
value of Rs for January and occupies the second column, and finally, 
5.21 MJ m2 d− 1 and 12.81 MJ m2 d− 1 is the range of Rs for the same 
month that can be seen in the third and fourth columns. Next columns 
are showing the same information for the rest of the meteorological 
variables. To finish with, the last column shows the daily-average- 
conditions PM56 ETo (mm d− 1) obtained for this synthetic 2022-year 
with only one day per month. 

Emulating the same structure of Table 3, results of the sensitivity 
analysis were summarized in Table 4. In this analysis, all the meteoro-
logical variables except one were maintained constant on the average 
monthly values exposed in Table 3. Then, the ETo was calculated using 
the minimum and the maximum value of the range of each variable, and 
the difference between them (ΔETo %), expressed as a percentage of the 
ETo for the average conditions, pointed out in Table 4. Thus, for the first 
raw, when Rs adopted the minimum value in January, ETo was 1.03 mm 
d− 1(third column), exactly the same when Rs adopted the maximum 
value (fourth column), being 0% the increment of the ETo produced. The 
next columns are showing the same information for the rest of the 

Table 5 
Effect of each meteorological variable on ΔETo %. - ≤ 10%, 10%<X ≤ 20%, 
20%<XX≤ 30%, XXX> 30%. Tmax=maximum temperature; Tmin=minimum 
temperature; HRmax=maximum relative humidity; HRmin=minimum relative 
humidity; U2 =wind velocity; Rs= incident solar radiation.   

AB09 Weather Station 

Month Rs Tmax Tmin HRmax HRmin U2 

January - XXX - - XXX XXX 
February XX XXX - - XXX XXX 
March XXX XXX - - XXX XX 
April XXX XXX X - XX X 
May XXX XXX - - - X 
June XXX XX - - - XX 
July XX X - - - XX 
August XXX X - - - XXX 
September XXX XX - - - XXX 
October XXX XX - - X XXX 
November X XXX - X XXX XXX 
December - XXX - X XXX XXX 
Month Average Validation Weather Stations 
January - XXX - - XXX XXX 
February XX XXX - - XXX XXX 
March XXX XXX - - XXX XXX 
April XXX XXX - - XX XX 
May XXX XXX - - X X 
June XXX XX - - - - 
July XXX X - - - - 
August XXX X - - - - 
September XXX XX - - X X 
October XXX XX - - X X 
November - XXX - X XXX XXX 
December - XXX - X XXX XXX  

Fig. 8. Observed and DRI, SRI and Meteoland ETo for the year 2022 in the AB09 validation station.  

A. Garcia-Prats et al.                                                                                                                                                                                                                          



Agricultural Water Management 287 (2023) 108415

13

meteorological variables. This sensitivity analysis methodology has 
been widely employed in the literature for the very same purpose 
(Goyal, 2004; Irmak et al., 2006; Paturel et al., 1995; Vicente-Serrano 
et al., 2014; Wang et al., 2011; Xu et al., 2006). 

Based on the results of Table 4, Table 5 summarize the effect of each 
meteorological variable on ETo. The first part of the table is referred to 
the AB09 weather station we used as an example, and the second part is 
the result of averaging ΔETo (%) for all the validation weather stations 
prior to calculating Table 5. Only significant differences were encoun-
tered in wind velocity (U2). According to this, changes in Rs has no effect 
on ETo in winter, a slightly effect in summer, but a deep influence in 
spring, summer and autumn. Tmax has a slightly effect in summer, but a 
high influence in the rest of the year. HRmin demonstrated capacity to 
modify ETo in autumn and winter, and finally, U2 showed a high or very 
high influence on ETo although this depends on the wind exposure of the 
area. The station AB09 showed a deep influence to wind in summer, 
however the average of the validation weather station showed a low 
influence in summer. Tmin and HRmax had no influence at all to modify 
the ETo. Fig. 8 shows the complete ETo values of the year 2022 for the 
validation station AB09. According to the Table 5, and taking into ac-
count the good performance of both, Meteoland and DRI for Rs and 
Tmax, we can conclude that the meteorological variable responsible of 
the deviations between observed and modeled ETo values (Fig. 8) is the 
wind velocity. New investigations have to be done in this field to 
improve the accuracy of this interpolation. 

3.3. Daily Dynamic (DRI) vs Monthly Static (SRI) Regression-Based 
Interpolation comparison of Tmax, Tmin, Hrmax, Hrmin, U2 

As was explained before, SRI and DRI, from a mathematical sight, are 
the same interpolation procedure. The SRI-procedure produces only 
once the regression equations from historical data (one equation per 
meteorological variable and per month), and they are utilized every day 
to generate new maps. That is why we called this method “static”. 
However, in DRI, using exactly the same process, a new regression 
equation is obtained every day. According to the atmospheric conditions 
of each day, different geographical features are able to explain spatial 
variability. DRI adapts to the synoptic pattern of that day using some 
geographical features or others as appropriate to explain the spatial 
variability. For the year 2022, 365 days x 6 meteorological variables 
= 2190 regression equations were generated. In order to illustrate how 
the procedure worked, in Table 6 we reproduced the regression equation 
coefficients of 7 consecutive days for Tmax. It is worth emphasizing how 
the geographical features involved are constantly changing from one 
day to another. It can be checked that the behavior was always exactly 
like that for all the variables and all the days of the year, and that is why 
we call this method “dynamic”. This capacity of adaptation to the syn-
optic pattern is undoubtedly the best quality of that method and the 
cause of the good results. 

3.3. Radiation Rs interpolation procedure 

Many efforts can be found in the literature addressing how to pro-
duce radiation maps (Dubayah and Rich, 1995; Fu and Rich, 2000; 
Wilson and Gallant, 2000; Miklánek, 1993; Pons, 2006; Thornton et al., 
1997, 2021; Thornton and Running, 1999; De Cáceres et al., 2018; 
Hofierka et al., 2002). Those algorithms solve precisely the amount of 
radiation that reaches at the top of the atmosphere one specific DOY, the 
effect of the relief in the actual amount that reaches the soil, and, when 
the real atmospheric parameters are known, the effect of the atmo-
sphere. All the uncertainty of this method is related to those parameters 
(transmissivity and diffuse radiation rate) because they depend on the 
cloud cover, precipitation, dust or aerosols presence, etc., that use to be 
constantly changing. In addition, those parameters are not registered for 
the AWN. In this work, to overcome this, a simple but effective method 
was applied. Each DOY, a map of potential radiation was generated Ta
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using the best clear conditions, using a commercial software. Then, 
using the registered data of radiation Rs, each day at each weather 
stations a Rs/PR-ratio was obtained and spatially interpolated. This way 
the real effect of the atmosphere in the radiation was spatially accounted 
for. Rs maps were compared to a contrasted method, and a better per-
formance was encountered. Again, the proposed method can be called 
“dynamic” because using the registered data at the AWN, is able to adapt 
to the synoptic pattern. 

3.4. Final DRI PM56 ETo maps 

In this study, 365 maps of PM56 ETo for the JRs were obtained. To 
illustrate the final product, the corresponding map to the 15th day of 
each month of the year 2022 were plotted and can be seen in Fig. 9. 

3.5. Impact of using the DRI-interpolated vs nearest-weather-station ETo 
value on a daily irrigation recommendation 

For this purpose, the landscape of the JRs was divided into enclo-
sures that “belong to each weather station” using the Thiessen’s polygon 
method as can be seen in Fig. 10. For the 15th day of each month of the 
year 2022 and for each Thiessen polygon, the ETo registered in the 
weather station was compared to the DRI-interpolated ETo value cor-
responding to each individual plot. To do this, the centroid of each in-
dividual plot or farm was obtained, and the DRI-ETo value from the 
interpolated maps was assigned to it, and then compared to the one 
registered at the weather station. 

Table 7 summarizes that comparison. Due to the extension of that 
table, only one month was included (June) after checking that results are 
representative of the rest of the year. The DRI-ETo range into each 
Thiessen polygon was obtained was calculated by subtracting the 
maximum and the minimum values and expressed as absolute value 
(mm) and relative value (%) respectively. 

Fig. 9. PM56 ETo maps in the JRs for the 15th day of each month for the year 2022. Zoom made to the July map. Notice the detailed resolution in areas with 
important relief. 
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Taking into account that crop water needs -according to FAO-56 
methodology- use to be calculated as ETc = ETo x Kc, (being ETc the 
crop evapotranspiration, and Kc the crop coefficient), and thus a linear 

combination of ETo, the very same deviation observed when the nearest 
weather station ETo value is employed instead of the site-specific 
interpolated value, is expected to be transferred to the water needs. 

Fig. 9. (continued). 
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The mean value of that difference for the entire JRs was 9.14% for the 
year 2022 employed as a demonstrative example throughout this entire 
work, but with punctual values reaching more than 30%. This reveals 
the necessity of using an interpolation method capable to adapt the 
synoptic pattern of each day, producing site-specific values of ETo for 
each farm. Using the nearest weather station value of ETo must be 
overcome. 

4. Conclusions 

Several targets were set prior to begin with this investigation; how-
ever, the germ was a purely practical objective: to develop a dynamic 
method of mapping ETo that could be used to produce site-specific 
irrigation recommendations. At the end of each day, a programmed 
script could produce a new continuous surface of PM56-ETo using the 
registered data of an AWN. However, as the work progressed, a second 
objective was gaining weight: contributing to an improved compre-
hension of the ETo mapping on a daily basis considering the 
geographical characteristics of the landscape. Our study was conducted 
in the Jucar River system, a Mediterranean region of eastern Spain 
where the intensive irrigated agriculture and a pronounced relief in 
certain areas, provided an excellent context to address this problem. On 
the one hand we had the necessity of generating ETo maps, and on the 
other, a proper geographical context. 

Based on an existing statistical interpolation procedure developed to 
work on a monthly basis (DRI), a new version adapted to work on a daily 
basis (DRI) was developed. With the only aim to know the quality of the 
results, both, existing and proposed algorithms were compared to a 
contrasted interpolation method (Meteoland). Using performance model 

assessment statistics demonstrated that the interpolation method origi-
nally planned to work monthly, was unable to produce proper maps of 
any meteorological variable nor ETo. DRI exhibited a similar perfor-
mance than Meteoland for Tmax and Tmin and a better performance in 
the rest of meteorological variables. Both models demonstrated a poor 
performance in U2. On the other hand, a very simple but effective 
method to interpolate Rs was proposed, and demonstrating a very good 
performance. 

Both, DRI and Rs interpolation methods, we called them “dynamic” 
methods because of their capacity of adapt to the synoptic pattern of 
each day, being without any doubt the best quality of them and the cause 
of the good results. Besides, DRI was the only method that had the ability 
of reproducing the shape of the observed-ETo distribution. 

Deviations between observed and modeled ETo values could be 
attributed to the low performance mapping the wind speed. Although 
the quality of the ETo maps produced is very high, new investigations 
have to be done in this field to improve the accuracy of the wind velocity 
interpolation. This would be especially important in windy areas where 
the potential influence of U2 on ETo has been demonstrated could be 
very high. 

The impact of using the nearest-weather-station ETo vs DRI- 
interpolated value on a daily irrigation recommendation was investi-
gated and near 10% average value of error was encountered for the 
whole JRs in the year 2022. 
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Fig. 10. Thiessen polygon’s landscape division for the SIAR weather network.  
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the work reported in this paper. 
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Agroclimática para el Regadío. Ministerio de Agricultura, Pesca y 
Alimentación”. Special thanks to Carlos Garrido Garrido and Ivan Cilleros 
Fuentetaja for providing us an API-SIAR access. Thanks to Luis Bonet for 
giving us permission to use the picture of the IVIA-SIAR automated 
station. 

References 

Adler, D., Kelly, S.T., Elliott, T., Adamson, J., 2022. vioplot violin plot. 
Agnew, M.D., Palutikof, J.P., 2000. GIS-based construction of baseline climatologies for 

the Mediterranean using terrain variables. Clim. Res 14, 115–127. https://doi.org/ 
10.3354/CR014115. 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: guidelines 
for computing crop water requirements. Irrigation and Drainage Paper 56. FAO, 
Rome.  

Brown, P.W., 2007. Use of the ASCE Standardized Reference ET Equation by Agricultural 
Weather Networks in the Western U.S.: Current Status and Future Challenges. 
Examining the Confluence of Environmental and Water Concerns - Proceedings of 
the World Environmental and Water Resources Congress 2006 1–10. https://doi. 
org/10.1061/40856(200)256. 
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Weather 
Station 

SIAR 
ETo (mm) 

All plots average 
DRI-ETo (mm) 

Nº Plots Maximimum 
DRI-ETo (mm) 

Minimimum 
DRI-ETo (mm) 

DRI-ETo 
Range (mm) 

SIAR vs DRI (mm) 
average difference 

SIAR vs DRI (%) 
average difference 

A02  6.55  5.73 426  6.19  5.31  0.89  0.82  12.52 
AB01  7.16  6.84 2723  7.52  6.23  1.30  0.32  4.49 
AB03  7.27  7.22 3390  8.28  6.38  1.90  0.05  0.71 
AB05  7.51  6.85 6920  9.04  6.08  2.95  0.66  8.76 
AB07  6.97  6.71 1958  7.86  5.61  2.25  0.26  3.74 
AB08  6.42  6.19 5390  7.50  5.20  2.30  0.23  3.53 
AB09  6.19  7.81 5222  9.98  6.91  3.08  1.62  26.24 
AB10  6.64  5.87 522  7.06  5.60  1.46  0.76  11.51 
CR11  7.54  6.88 715  8.79  6.05  2.74  0.66  8.79 
CU01  6.74  6.10 800  6.78  5.16  1.61  0.65  9.60 
CU03  6.29  6.63 1703  7.56  5.92  1.64  0.34  5.40 
CU05  5.13  5.28 12,958  7.83  4.31  3.52  0.15  2.87 
CU08  6.20  6.06 1817  7.97  4.66  3.32  0.13  2.13 
CU09  4.64  4.93 3829  9.45  3.86  5.60  0.29  6.20 
V04  5.45  5.41 17,042  6.92  5.17  1.75  0.04  0.74 
V05  4.99  5.90 284  7.60  5.58  2.02  0.91  18.16 
V06  5.35  5.51 7815  8.05  5.14  2.91  0.16  2.92 
V07  4.76  5.72 22,964  9.54  5.29  4.25  0.96  20.14 
V102  6.05  5.84 17,265  8.53  5.52  3.01  0.21  3.46 
V103  6.16  5.76 22,243  7.14  5.14  2.00  0.40  6.45 
V104  6.61  6.00 4186  8.13  5.34  2.79  0.61  9.19 
V106  6.54  6.52 8893  8.23  5.59  2.64  0.02  0.33 
V14  5.59  5.62 13,774  5.93  5.35  0.58  0.03  0.62 
V17  4.89  5.21 21,151  6.44  4.84  1.60  0.32  6.51 
V18  5.08  5.15 11,379  6.60  4.60  2.01  0.07  1.36 
V19  5.36  5.50 12,697  7.49  4.92  2.58  0.14  2.62 
V21  6.34  6.63 4049  8.94  5.61  3.33  0.29  4.63 
V25  5.05  5.78 9029  9.52  4.97  4.55  0.73  14.48 
V28  5.04  5.27 10,741  7.27  4.82  2.44  0.23  4.54 
V29  5.57  5.33 4517  6.79  4.94  1.85  0.24  4.36 
V30  4.97  5.53 26,949  7.97  5.21  2.76  0.56  11.22  
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