

A BOARD GAME-BASED VIRTUAL ENVIRONMENT FOR
INTELLIGENT BOTS PROGRAMMING

A. Heras, V. Sanchez-Anguix, J.M. Alberola, A. Perez-Pascual
Universitat Politecnica de Valencia (SPAIN)

Abstract
Nowadays, there are few virtual environments based on board games with a didactic purpose. In fact, a
new board game-based environment is rarely created for training bots unless it is necessary for a study.
However, the development of intelligent bots applied to such games would be a stimulus to motivate
disciplines such as programming or Artificial Intelligence. In this paper, we present a virtual environment
based on a well-known board game such as Catan, which allows the incorporation of bots that can play
against each other. In this sense, the virtual environment allows the development of new bots with their
respective own strategies and algorithms, so that simulations of games can be carried out to measure
their effectiveness. In addition, it also allows the simulation of multiple games to develop bots that
incorporate learning techniques based on Artificial Intelligence or Machine Learning. In this sense, the
virtual environment offers a very interesting tool to be used in subjects related to these disciplines.

Keywords: Artificial Intelligence, Virtual environment, Bots programming, simulation, board-games.

1 INTRODUCTION
Simulation-based environments have been widely used in different areas such as nursing [1], maths [2],
medicine [3], and English instruction [4]. These environments are usually built by using Artificial
Intelligence techniques such as artificial neural networks, natural language processing, or machine
learning [5]. However, it is difficult to find simulation environments for teaching Artificial Intelligence itself.

When observing courses and subjects related to Artificial Intelligence topics, such as those based on
the Association for Computing Machinery (ACM) curriculum recommendations [6], it can be observed
that some fields of Artificial Intelligence are widely and commonly taught, such as Machine Learning,
adversarial search, or intelligent agents. We argue that simulation-based environments are very
powerful to teach some of these topics since these environments allow students to develop practical
abilities based on theoretical knowledge.

Regarding simulation, several simulators can be found in the literature that have been used for academic
purposes such as NetLogo [7], CoppeliaSim [8] or JGomas [9]. However, it is difficult to find simulation
environments for board games with a didactic purpose, as proposed in [10] for the game Diplomacy.
Through these board games, students could develop intelligent bots that implement player behaviours
and simulate different games to test their development.

There are different and popular board games with less or more complexity that could be interesting for
teaching Artificial Intelligence techniques, such as Ciudadelas, Cluedo, or Carcassonne. However,
these games lack player negotiation, which, from our point of view, reduces the complexity of what
students could implement with an intelligent bot. The development of these intelligent bots applied to
such games would be a stimulus to motivate disciplines such as programming or Artificial Intelligence.

As a result, this paper presents a virtual environment that allows the simulation of a popular board game
such as Catan. This board game has specific features that make it more complex than a game heavily
dependent on luck, such as a negotiation process among players. Therefore, the virtual environment
allows the programming of intelligent bots with different decision-making capabilities using Artificial
Intelligence techniques. In this way, bots with different strategies can be tested against each other.
Unlike other similar works like jSettlers [11], our virtual environment facilitates the implementation of
Artificial Intelligence techniques by providing an inheritable interface with which a technique can be
directly integrated into the game. Additionally, our environment allows for running simulations by
executing only bots without human intervention, which enables training various Artificial Intelligence
techniques to define the bot's behaviour.

The rest of the paper is organized as follows. In Section 2 we describe the virtual environment, including the
general architecture and the requirements for bots programming. In Section 3 we show some experiments
to validate our proposal. Finally, in Section 4 we draw some concluding remarks and future works.

Proceedings of INTED2023 Conference
6th-8th March 2023

ISBN: 978-84-09-49026-4
3062

2 DESCRIPTION OF THE VIRTUAL ENVIRONMENT
The general architecture of the virtual environment is shown in Fig. 1. As it can be observed, there are
two key components: the simulation environment and the visualizer. This separation allows the
execution of multiple games that may be necessary for training learning models. The execution of a
game is carried out in the simulation environment while the visualizer, which is responsible for showing
the result of the game. In this visualization process, every step that has occurred in each round of the
game can be analysed, so a JSON file needs to be loaded into the visualizer. The advantage of exporting
the execution trace of a game to a JSON file is that this information allows to carry out an underlying
learning process inside a bot, without using the visualizer.

Figure 1: Virtual environment architecture

The visualizer represents the frontend component of the virtual environment. This component is
responsible for displaying all relevant information about the execution of each round in a simple way
(Fig. 2).

Figure 2: Scheme of the different panels of the visualizer

As can be appreciated, the design was made with the aim of being functional, showing both the
information of the map and the players as well as what happens during the execution of each round.
This design was also thought to allow quick visualisation without consulting a user guide. The map
design has the classic hexagonal shape of Catan for positioning cities and roads. It also provides a
bottom menu that allows the selection of each round of the game.

3063

The simulation environment represents the backend component. This component is responsible for
carrying out the execution of each round of the game by following the flow diagram shown in Fig. 3.

Figure 3: Flow diagram of the game

As can be seen, a game consists of a round loop, where turns are passed between the four players.
This implies that each game is composed of an indeterminate number of rounds, however, all of them
are similar in terms of execution possibilities. It can also be observed that the turns are similar, while
each player is characterised by a number and has his/her own materials, cities, and roads.

The structure of each turn is composed of four phases: the initial or production phase where the dice is
rolled and materials are received, the trading phase where trades are proposed with other players, the
construction phase where materials are used for the buildings, and the final phase, which represents
the turn end and where the victory points are counted, and the special condition cards are handed out
if those conditions are met. In case any player obtains 10 victory points at the end phase, the game
ends.

Figure 4: Architecture of the simulation environment

The internal architecture of the simulation environment is shown in Fig. 4. This architecture is composed
of several components:

3064

• GameDirector controls the game by deciding the turn of each player and what action to take at
each moment. It also controls the order of rounds and checks if there is a winner.

• GameManager is responsible for executing the actions defined by the GameDirector. It also
ensures that the actions taken by the bots are always allowed and prevents them from performing
improper actions.

• TurnManager is responsible for counting the rounds, turns, and phases of the game.

• CommerceManager is responsible for performing trades.
• BotManager controls the information associated with each bot (materials, development cards,

and cities).

• TraceLoader is responsible for exporting a trace of the game to a JSON object for the visualizer.

2.1 Bots programming
The BotInterface interface is the component associated with bot programming. This interface contains
a set of triggers to be implemented, which define the logic of the bot. These triggers are implemented in
Python and act according to the different events they are associated with. If these triggers are not
implemented, the bot's decision-making is neutral and therefore has no intelligence. These triggers are
as follows:

• On_game_start is called when the game starts in order to choose where to place a city and a
road.

• On_turn_start is called at the beginning of the player's turn. Only allows to play development
cards.

• On_trade_offer is called when a trade proposed by another player is received.

• On_build_phase is called when the building phase begins. Allows to build roads, cities, or
development cards. Development cards are also allowed to be played.

• On_turn_end is called when the player's turn ends. Only allows to play development cards.

• On_commerce_phase is called during the commerce phase. Allows to send offers to other
players or to the bank. Development cards are also allowed to be played.

• On_moving_thief is called to move the thief to another terrain tile. Allows to choose which terrain
tile to move it to, and which adjacent player to steal a material from.

• On_having_more_than_7_materials is thrown when more than seven materials are held in
hand and a 7 comes up on the die. The half of the cards must be discarded. Otherwise, the
gamemanager will discard them randomly.

• On_road_building_card_use is thrown when the bot plays a road building card. Allows to
choose which two roads to build.

• On_monopoly_card_use is thrown when the bot plays a monopoly card. Allows to choose which
material is wanted to have the monopoly on.

• On_year_of_plenty_use is thrown when the bot plays a year of plenty card. Allows to choose
two materials, which can be the same twice, and obtain one material of each type.

The above list of triggers allows different types of practices in the classroom. As an example, it could
focus on the perspective of negotiation. In this case, the objective for students would be to implement a
negotiation algorithm using the on_commerce_phase and on_trade_offer triggers. Another example
could be focusing on blocking the expansion of other players. In this case, the objective for students
would be to implement an algorithm to determine which player's road can be blocked by building their
own road using the on_build_phase trigger.

3 RESULTS
To validate the virtual environment, a bot with an underlying simple heuristic has been implemented and
compared to dummy bots that make random decisions. The bot with the simple heuristic is prepared to
make strategic decisions that can give it a victory. Multiple triggers leave some random decisions. Thus,

3065

the heuristic bot is designed to be only slightly better than the dummy bots. Below, the implementation
of the different triggers associated with this heuristic is detailed:

• On_game_start: the bot chooses a node that is adjacent to a terrain piece with a probability of 6
or 8. If none are available, then it chooses one randomly from the viable options. The road is
always made pointing in a random direction.

• On_turn_start: the bot plays the knight card if it has one in hand.

• On_trade_offer: the bot accepts an offer if it receives more materials than it offers. The bot does
not propose counteroffers.

• On_build_phase: if the bot has the road building card and has two possible roads to build or has
the year of plenty card, the bot plays them. After playing development cards, if the bot has at least
one village built and has the materials to build a city, it builds a city.
o Cities are only built adjacent to terrain pieces with a probability of 4/36 or greater. If the bot

does not have enough materials, does not have villages or the cities would be built in a low-
probability area, it tries to build a village.

o Like cities, villages are also limited by the probability of the terrain pieces. For villages, the
goal is to find a terrain piece with a probability of 3/36 or greater.

o If the bot cannot build a village, it builds a road. The road is always built if the final node is
coastal and has a port, if there is none with those requirements, it is chosen randomly from
among all possible roads.

o If the bot cannot build a road, then it builds a development card. According to this, development
cards are given low priority.

• On_turn_end: the bot plays the Victory Point card if it has one in hand.
• On_commerce_phase: the bot plays the Monopoly card if it has delivered three or more of the

same material to a player in the previous trade.
o If the bot has at least one village built and already has enough materials to make a city, the

bot closes the trade phase.
o If the bot has at least one village and does not have enough materials, it asks for the ones

missing to complete a city by exchanging the same number of materials.
o If the bot does not have any villages, it asks for the materials missing to create a village, unless

it already has enough, in which case it cuts the trading phase.
• On_moving_thief: the bot moves the thief to one of the 4 terrain pieces with a 6 or 8. It makes

sure there is at least one city of an opponent and that he does not have one on that terrain piece.
If the conditions are not met, the bot lets the gamemanager decide where to place it.

• On_having_more_than_7_materials: the bot discards materials randomly but keeps enough to
build a city in case it can hold on to them. Otherwise, the bot lets the gamemanager discard them.

• On_monopoly_card_use: the bot chooses the material that has been traded at least three times.

• On_road_building_card_use: the bot chooses two random roads from the available options to
make roads.

• On_year_of_plenty_card_use: the bot chooses the materials which are demanded when using
the year of plenty card.

To validate the performance of the bot, 10 games were run where the heuristic bot was player 1 while
the rest of the players were dummy bots (Table 1). In addition, to avoid possible advantages that may
come from always being the first player, another 10 games were run where the heuristic bot was player
4 while the rest of the players were dummy bots (Table 2).

3066

Table 1: Execution of games where player 1 runs the heuristic bot (largest army: ♞; longest road: ⛙)

 P1 ♞ ⛙ P2 ♞ ⛙ P3 ♞ ⛙ P4 ♞ ⛙

Game 1 10 ✓ ✓ 2 4 3

Game 2 10 ✓ 2 3 2

Game 3 6 ✓ 10 ✓ 4 6

Game 4 10 ✓ ✓ 2 2 2

Game 5 10 ✓ 2 3 2

Game 6 10 ✓ 4 4 4

Game 7 8 10 ✓ 6 4

Game 8 10 ✓ ✓ 2 2 3

Game 9 4 3 10 5 ✓

Game 10 5 4 10 6 ✓

As it can be observed, the heuristic bot was able to win the majority of games in both cases, also
obtaining the special cards of the largest army or the longest road. It is observed that the heuristic bot
won 60% of the games. In this sense, it has been proven that the virtual environment allows the
development of bots that, although they consist on a simple heuristic, are capable of winning against
dummy bots that make random decisions in a game that is less dependent on luck, such as Catan.

Table 2: Execution of games where player 4 runs the heuristic bot (largest army: ♞; longest road: ⛙)

 P1 ♞ ⛙ P2 ♞ ⛙ P3 ♞ ⛙ P4 ♞ ⛙

Game 1 2 3 4 10 ✓

Game 2 4 4 4 10 ✓

Game 3 10 ✓ 4 4 4

Game 4 5 ✓ 4 10 6

Game 5 4 6 4 10 ✓

Game 6 2 10 ✓ 2 4

Game 7 2 2 2 10 ✓

Game 8 2 2 2 10 ✓

Game 9 3 10 3 8 ✓

Game 10 2 3 4 10 ✓

4 CONCLUSIONS
In this paper, we presented a virtual environment that allows the simulation of Catan, which is a well-
known board game. This virtual environment can be used in university educational courses to support
the learning process of students when practising skills related to programming and Artificial Intelligence
related skills and knowledge. To do this, the virtual environment provides an easy way for implementing
bots with specific strategies by using event-related triggers. Decoupling the simulation environment and
the visualizer allows running hundreds and thousands of games to train various learning strategies in a
shorter amount of time.

Unlike simpler board games, Catan offers a challenging environment where the player must know how
to adapt to luck while trying to obtain the best trades with other players. Thanks to all this, the negotiation

3067

component provided by Catan allows the implementation of different negotiation strategies that can be
applied within an environment where a bad trade could make to lose the game.

We have tested this environment by implementing a simple heuristic-based bot and running several
games against dummy bots. As we have shown in the evaluation, a short component of intelligence is
enough to win the majority of the games against these dummy bots. As a future work, we plan to test
this environment in the classroom in order to develop more complex bots which compete against each
other. In addition, by using the visualizer to check the weaknesses of the bot, a much intelligent bot
could be developed, capable of winning a greater percentage of times.

REFERENCES
[1] Lavoie, P., & Clarke, S. P. (2017). Simulation in nursing education. Nursing management, 48(2),

16-17.

[2] Gazdula, J., & Farr, R. (2020). Teaching risk and probability: Building the Monopoly® board game
into a probability simulator. Management Teaching Review, 5(2), 133-143.

[3] Pottle, J. (2019). Virtual reality and the transformation of medical education. Future healthcare
journal, 6(3), 181.

[4] Angelini, M. L., & García-Carbonell, A. (2019). Developing English speaking skills through
simulation-based instruction. Teaching English with Technology, 19(2), 3-20.

[5] Dai, C. P., & Ke, F. (2022). Educational applications of artificial intelligence in simulation-based
learning: A systematic mapping review. Computers and Education: Artificial Intelligence, 100087.

[6] ACM (2020). Computing Curricula 2020.

[7] Borowczak, M., & Burrows, A. C. (2019). Ants go marching—Integrating computer science into
teacher professional development with NetLogo. Education Sciences, 9(1), 66.

[8] e Silva, R. D. A. A., Joventino, C. F., Pereira, J. H., & Correa, L. P. (2021). Teaching Robotics in
Pandemic Times Through Remote Education. In 2021 Latin American Robotics Symposium
(LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in
Education (WRE) (pp. 371-376). IEEE.

[9] Hernandez, L., Esparcia, S., Julian, V., & Carrascosa, C. (2016). JGOMAS 2.0: A Capture-the-Flag
Game Using Jason Agents and Human Interaction. In International Conference on Practical
Applications of Agents and Multi-Agent Systems (pp. 173-184). Springer, Cham.

[10] Kramár, J., Eccles, T., Gemp, I., Tacchetti, A., McKee, K. R., Malinowski, M., ... & Bachrach, Y.
(2022). Negotiation and honesty in artificial intelligence methods for the board game of Diplomacy.
Nature Communications, 13(1), 1-15.

[11] Monin, J. (2010). Java Settlers of Catan. https://nand.net/jsettlers/

3068

